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Abstract

We consider the problem of static transmission-power assignment for lifetime
maximization of a wireless sensor network with stationary nodes operating in a
data-gathering scenario. Using a graph-theoretic approach, we propose two dis-
tributed algorithms, MLS and BSPAN, that construct spanning trees with mini-
mum maximum (minmax) edge cost. MLS is based on computation of minmax-
cost paths from a reference node, while BSPAN performs a binary search over
the range of power levels and exploits the wireless broadcast advantage. We also
present a simple distributed method for pruning a graph to its Relative Neighbor-
hood Graph, which reduces the worst-case message complexity of MLS under
natural assumptions on the path-loss. In our network simulations both MLS and
BSPAN significantly outperform the recently proposed Distributed Min-Max Tree
algorithm in terms of number of messages required.

1 Introduction

Consider a group of sensors newly deployed in an environment. In many applications,
it is desirable to have the network to self-configure, i.e., to have the nodes after wakeup
contact their neighbors in order to decide where to forward the collected data, at what
intervals, transmission power levels, etc. One important goal of this self-configuration
process is to initialize data-gathering and transmission protocols so that the operational
time of the network, for given initial battery levels, is maximized [1,5].

We address this lifetime maximization problem in the setting where it is the task
for a network of stationary nodes to provide a roughly uniform, low-intensity stream

∗Preliminary work has been reported in the Third International Conference on Mobile Ad-hoc and Sensor
Networks (MSN), Beijing, China, December 12 – 14, 2007 and the Fifth European Conference on Wireless
Sensor Networks (EWSN), Bologna, Italy, January 30 – February 1, 2008.
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of data to a designated sink node. Possible application scenarios include monitoring
some environmental parameters (temperature, humidity, chemical concentrations) in a
given region or, say, a forest-fire alarm network, where mostof the data traffic consists
of regular “status ok” messages.

More specifically, we consider the problem of determining transmission power lev-
els for the nodes so that, under the assumption of uniform traffic load per node, all the
nodes maintain connectivity to the sink for a maximum amountof time. In this paper,
we only consider the case of static power assignments, i.e.,we assume that once the
transmission power levels have been set, they stay the same throughout the operating
life of the network. We also assume that transmission costs have a dominant effect on
the lifetime on the nodes, which may operate a sleep-scheduling scheme [4].

Under these assumptions of stationary nodes, uniform traffic load and static power
assignments, the goal of maximizing the lifetime of a network is in fact equivalent to
finding the lowest possible transmission power levels for the nodes that suffice to make
all of the network connected to the sink. In graph-theoreticterms, the problem becomes
to find a spanning subgraph of thetransmission graph with the minimum possible
maximum edge cost, where the transmission graph contains all nodes of the network
and edges between nodes within maximum transmission range.Although the problem
can in principle be solved by a distributed algorithm findingMinimum Spanning Tree
(MST), the construction of an MST is more involved than the distributed search for
a spanning subgraph with minimum maximum (minmax) edge cost. We present two
simple and efficient distributed algorithms for the lifetime maximization problem that
are able to exploit different properties of the problem and therefore also typically differ
in the number of control messages and running time required.

Our Maximum Lifetime Spanner (MLS) algorithm is based on an approach similar
to the distributed MST algorithm of Gupta and Srimani [12], viz., the construction of
paths with minmax edge cost by breadth-first search. However, as we do not consider
the construction of an MST, we obtain a significantly simpleralgorithm. The solution
of the problem via computation of minmax-cost paths is advantageous, as the process
can be efficiently distributed and the set of candidate edgescan be reduced drastically
prior to the execution of the algorithm. For this purpose, weutilize an algebraic formu-
lation of relative neighborhood graphs (RNG) [22] and present a distributed method
for obtaining the RNG of a given transmission graph.

Our Binary Search for Min-Max Power Spanner (BSPAN) algorithm is a distributed
algorithm based on a “binary search over transmission powerlevels” idea. Lloyd et
al. [15] proposed a simple and efficient binary search based solution, assuming that
complete information on network connectivity and edge costs is centrally available.
Our proposed BSPAN algorithm is particularly suitable for implementation in wireless
networks because it utilizes broadcast messages and therefore exploits the wireless
broadcast advantage. As the number of available transmission power levels is expected
to be rather small in practice, the search terminates in a fewiterations, which generally
yields a low number of control messages required.

We have implemented both algorithms down to the level of a protocol agent in the
ns2 [17] simulator, and they show quite competitive performance in comparison with
the Distributed Min-Max Tree (DMMT) algorithm that was recently proposed by Guo,
Yang, and Leung [11].
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The rest of the paper is organized as follows. The following section overviews some
of the related work on lifetime maximization. Section 3 gives a precise formulation of
the version of the problem we consider. In Section 4, we propose a generic method
for the initialization of nodes upon wakeup that does not assume prior neighborhood
information. Section 5 describes the MLS algorithm and presents a distributed method
for RNG computation. Section 6 presents the BSPAN algorithm, and in Section 7 we
evaluate MLS and BSPAN in terms of the number of required control messages, and
compare them with the performance of DMMT. For our experimental comparison we
use thens2 network simulator. Section 8 concludes the paper.

2 Related work

The problem of minimizing the maximum transmission power required to establish
connectivity has been considered previously in the literature. One of the earliest papers
on the topic is the work of Ramanathan and Rosales-Hain [19],which addresses the
problem in the setting of maximizing the lifetime of a single-session broadcast. Ra-
manathan and Rosales-Hain propose a centralized algorithmfor finding the minmax
transmission power level that maintains network connectivity, as well as two simple
distributed heuristics that aim at achieving the same. Their distributed heuristics, how-
ever, are suboptimal and do not necessarily guarantee connectivity in all cases.

Kang and Poovendran [13] discuss several problems related to dynamic lifetime
maximization, such as the issue of non-uniform energy levels. They also emphasize
the importance of considering the minmax energy metric rather than the more often ad-
dressed minimum total energy metric for the purpose of maximizing network lifetime.
For a distributed implementation, Kang and Poovendran relyon distributed methods for
constructing minimum spanning trees, such as the algorithmof Gallager, Humblet and
Spira [10]. These techniques are, however, rather involved, and we complement this
work by suggesting an efficient and much simpler method for computing the minmax
edge cost required for connectivity. For a discussion of thetwo different objectives,
minimizing total transmission power and minimizing maximum transmission power,
see, e.g., [13,15].

Narayanaswamy et al. [18] propose a protocol for power control in wireless ad-
hoc networks with discrete power levels. Their protocol also establishes a spanning
subgraph of the transmission graph with minmax cost. However, the solution proposed
in [18] relies on a proactive routing protocol and requires significant control overhead
that renders it unsuitable for sensor networks.

The problem of minimizing thetotal, as opposed to minmax, network transmis-
sion power required for connectivity has been studied extensively (cf., e.g., [15] and
the references therein). Rodoplu and Meng [20] present a distributed algorithm for this
problem that is based on the concept ofrelay regions: each node is aware of its own ge-
ographic location and the location of its neighbors. Based on a path-loss model, nodes
can locally determine which neighbor they should forward the message to in order to
minimize the total energy consumption. The algorithm proposed in [20] is optimal but
requires extensive assumptions, such as the availability of location information and a
specific path-loss model.
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Wattenhofer et al. [23] propose a distributed algorithm forthe same problem. Their
algorithm, which relies on a geometric cone-based forwarding scheme, requires that
nodes can measure exactly the direction of incoming radio transmissions (angle of
arrival). It also makes further assumptions on geometric properties of the underlying
graph model.

In a recent work, Guo, Yang, and Leung [11] proposed a distributed algorithm
DMMT (Distributed Min-Max Tree) for the construction of multicast trees with min-
imum maximum transmission cost, following Prim’s algorithm for constructing mini-
mum spanning trees. Since their technique can easily be adapted also for the purpose
of sensor network lifetime maximization, and seems to be theproposal in the litera-
ture closest to our approach, we conducted an experimental comparison of the runtime
behavior of the algorithms DMMT and our proposed MLS and BSPAN algorithms.

3 The lifetime maximization problem

We consider a wireless sensor network composed of stationary nodes with distinct
identifiers, operating in a data-gathering scenario. Each node is able to vary its trans-
mission power, using a possibly large set of power levels. The energy budget that is
consumed during the operation of the network is finite and initially the same for all
nodes. We consider a scenario where the energy consumed by wireless transmission
dominates over energy consumed by computation or sensing. We further assume that
traffic is generated uniformly over the nodes and that data-aggregation techniques can
be applied. When traffic is generated uniformly and aggregated on its path towards the
sink, upstream nodes forward the same amount of traffic as downstream nodes, thus
yielding a close to uniform load within the network.

In order to maintain connectivity to a neighboru, a nodev has to spend some en-
ergy that depends onv’s transmission power level. Each node has the same maximum
transmission powerpmax that must not be exceeded. We assume that the transmission
costs are symmetric, so that ifv can reachu at a certain power, thenu can also reach
v at the same power; this is the case for example if the costs represent signal attenua-
tion resulting from a deterministic path-loss model that only depends on the pairwise
distance of nodes. We consider the notion of lifetime that regards all nodes as equally
important, so that the objective is to maximize the time spanafter which the first node
runs out of energy [6].

The transmission structure of the network is modeled as a directed graphG = (V,E)
with an associated edge cost functionδ : E 7→ [0, pmax] that gives the minimum power
necessary to use the link:v can reachu if the transmission powerτ(v) satisfiesτ(v)≥
δ (v,u). As we assume transmission costs to be symmetric,δ (u,v) = δ (v,u). The
vertices inV represent the nodes of the network, andE contains an edge for each
link that is usable at maximum power. A transmission power assignmentτ : V 7→
[0, pmax] induces a graphG(τ) = (V,E(τ)) whose edges represent the radio links that
are supported by the given assignmentτ, so thatE(τ) = {(v,u) | (v,u) ∈ E andτ(v)≥
δ (v,u)}. For simplicity, we assume that the transmission graphG(τmax) with τmax(v)=
pmax for all v is a connected graph.

We consider the problem of finding a static transmission power assignmentτ, such
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that the lifetime of the network is maximized while the network remains connected.
Any power assignmentτ that connects the network induces a spanning subgraph with
some maximum edge costα = max(v,u)∈E(τ) δ (v,u); we aim to find a power assignment
that minimizesα. Although this condition generally does not uniquely determine τ,
choosingτ(v) = α for all nodesv does not decrease the lifetime. The power assignment
τ is considered to be fixed after it has been once determined during the initial network
setup. Note that this problem is considerably different from the case of computing a
dynamic assignment of power levels, which is a computationally more complex prob-
lem [9].

Definition 1. Given a transmission graphG(V,E), and an edge cost functionδ : E 7→
[0, pmax], a graphG′ = (V,E ′) with E ′ ⊆ E is an α-spanner if G′ is connected and
δ (v,u)≤ α for each edge(v,u) ∈ E ′.

In other words, anα-spanner is a connected spanning subgraph for the transmission
graph where no edge has cost greater thanα. For any network apmax-spanner exists
exactly when the network can be connected by the nodes sending at full power.

For a given transmission graphG, an α-spannerG′ is optimal if no α ′-spanners
exist forα ′ < α. An optimalα-spanner has a maximum edge costα and there are no
spanners with only edges of cost strictly less thanα; thus, we also call such a spanner
aminmax spanner. Network lifetime can now be maximized by determining a minmax
spannerG∗ = (V,E∗) and choosing the power assignmentτ(v) = max(v,u)∈E∗ δ (v,u).

4 Algorithm initialization and termination

In Sections 5 and 6 we describe two algorithms for computing minmax spanners. Both
algorithms require prior knowledge of the network topology, such as network size and
neighbor lists. Also, for both algorithms, after termination the nodes in the network
should be notified so that they can set their transmission power level accordingly.

In Section 4.1 we present a method of collecting the necessary neighborhood in-
formation, and in Section 4.2 we describe a method of notifying the nodes in the net-
work of the termination of the algorithm. Both methods employ standard distributed-
algorithm techniques upon which we expand by integrating the computation of the
edge-cost functionδ .

4.1 Setup stage

The setup stage as described in Algorithm 1 first finds a spanning tree of the trans-
mission graph by a process of beaconing at maximum transmission powerpmax. Each
node, once it has joined the spanning tree under construction, starts sending a sequence
of beacon messages using random delays between consecutivemessages. These bea-
cons enable nodes to discover their neighbors, estimate thecost of their incident edges
in the transmission graph and determine whether they are leaf nodes in the spanning
tree. The repeated transmission of beacons is necessary to reduce the probability of
undiscovered edges due to packet collisions.
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Algorithm 1 : Setup stage
nodev with variablesbeacon count, beacon delay, expecting reply, father,
neighbor list, node count, timer;

at start
node count← 0; expecting reply← /0;
enter stateIDLE;

in state IDLE // wait for incoming beacons
if beacon(u, f ′) is received with strengthsrecv then

father← u; δ ← (sthresh/srecv)pmax; // estimate cost
neighbor list← neighbor list∪ (u,δ );
broadcast beacon(v, father) at powerpmax;
timer← beacon event after rand(0,beacon delay);
enter stateBEACON;

end

in stateBEACON // send beacons with random delay
if beacon(u, f ′) is received with strengthsrecv then

δ ← (sthresh/srecv)pmax; // estimate cost
neighbor list← neighbor list∪ (u,δ );
if f ′ = v then

expecting reply← expecting reply∪{u};
end
if reply(u,count) is received with strengthsrecv then

expecting reply← expecting reply \ {u};
if expecting reply = /0 andbeacon count = beacon repetitions then

unicast reply(v,node count+ count+1) at power
pmax to father;

enter stateSETUPFINISHED; // end of stage
else

node count← node count+ count;
end

end
if timer triggers beacon eventthen

broadcast beacon(v, father) at powerpmax;
if beacon count < beacon repetitions then

beacon count← beacon count+1;
timer← beacon event after rand(0,beacon delay);

else ifexpecting reply = /0 then
unicast reply(v,node count+1) at powerpmax to
father;

enter stateSETUPFINISHED; // end of stage
end

end
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When the beaconing sequence has terminated, a reply messageis transmitted along
the attained spanning tree edges to the reference node, starting at the leaf nodes. This
reply message contains a count of the number of children of each node, so that the
reference node eventually obtains a count of the total number of nodes in the network.
More specifically, in a beacon message beacon(v, f ) the parameterv denotes the iden-
tity of the beaconing node andf is its father in the spanning tree being constructed; in
a reply message reply(v,count) the parameterv is again the identity of the sender, and
count represents the number of nodes in the subtree rooted atv. When the reference
node has received reply messages from all its children, it knows that the setup stage
has terminated.

The setup stage is initiated as if the reference node had received a beacon message.
Upon receiving a beacon message from a nodeu for the first time, each nodev sends
the message beacon(v,u) and schedules a number of retransmissions using random
delays. After transmitting the beacon for the first time,v starts listening for messages
from neighboring nodes and records their presence in a neighbor list together with a
flag indicating whether the neighbor is a child node in the spanning tree. Note that the
neighboru is a child ofv if u includes the information that it previously received the
beacon fromv in the message.

For each received beacon,v also estimates a lower bound on the transmission power
that is required to reach the neighboring node. More specifically, we consider a mes-
sage that a nodev receives from nodeu, received with signal strengthsrecv, arrived suc-
cessfully ifsrecv≥ sthresh, wheresthreshis the threshold signal strength required for a suc-
cessful transmission (disregarding interference). In oursimulations, the signal strength
srecv is computed by the propagation model under consideration. Assuming that the
received signal strength depends linearly on the sending power, srecv = Xu,v psend, and
the receiverv knows the sending power used,v can estimate the attenuation coeffi-
cientXu,v = srecv/psend. Assuming thatXv,u = Xu,v, nodev can estimate the minimum
transmission powerpmin it needs to use to transmit tou by solvingsthresh= Xv,u pmin.
Combining these, we have

pmin =
sthreshpsend

srecv ,

wherepsendis the power that was used byu for sending (in Algorithm 1 we usepsend=
pmax). If the assumption does not hold or if the measured receivedsignal strength
shows random variations, then beacon messages with varyingtransmission power can
be used for the same purpose, similar to the techniques proposed in [14]. Recall that
the edge costsδ (v,u) represent the minimum power required forv to send tou, so by
estimatingpmin nodev can estimate the edge cost asδ (v,u) = pmin, or if the maximum
power was used for sending,psend= pmax andδ (v,u) = (sthresh/srecv)pmax.

Whenv has sent a certain number of beacon messages, it decides thatthe setup
stage has locally terminated. In the case thatv discovers itself to be a leaf node of the
constructed spanning tree, it sends a reply message to its father reporting a node count
of one. Ifv is not a leaf node, it waits until it receives replies from allits children before
it sends a reply to its father that contains the sum of its child counts incremented by
one, indicating the termination within the subtree rooted at v. When the reference node
has received replies from all its child nodes the setup stagehas terminated.

7



For measuring the strength of arriving radio signals, one can utilize for example
Received Signal Strength Indication (RSSI) [21] or, alternatively, methods similar to
the ones proposed in [14]. To obtain the correct neighborhood information for all the
nodes, in most cases the number of retransmissions for the beacon messages can be
fairly small. Assuming, here and in future analysis of message complexity, that the
average number of retransmissions of a packet is bounded by some constant as the
network grows, the message complexity of the beaconing stage is O(N), whereN is
the number of nodes in the network.

4.2 Notification stage

The notification stage consists of a simple network-wide broadcast by which the refer-
ence node informs all other nodes about the termination of the algorithm for computing
a minmax spanner. As each node transmits at most one message during the notification
stage (subject to retransmissions due to collisions), the number of required messages is
at mostN. The implementation of this stage depends on the algorithm for computing
the minmax spanner, as described later in this paper.

From the adjacency list and by listening to notification messages all nodes can infer
locally their power level assignment. More specifically, each node sets its transmission
powerτ(v) to the value that suffices to maintain the most expensive edgeto its neigh-
bors in the optimalα-spanner, i.e.,τ(v) = max(v,u)∈E ′ δ (v,u), whereE ′ is the set of
edges in the minmax spanner.

5 A distributed algorithm for minmax spanners

In the following, we describe a distributed algorithm for obtaining a minmax spanner
that relies on neighborhood information gathered during the setup stage described in
the previous section. AssumingG(τmax) is connected, the Maximum Lifetime Spanner
(MLS) algorithm computes a spanning tree with minmax edge cost by establishing
paths from the reference node to any other node in the network. In Section 5.3, we
present a modified beaconing method that computes a subgraphof G(τmax) by pruning
edges non-relevant to the search of a minmax spanner. By running the algorithm on the
subgraph obtained, we are able to reduce the message complexity significantly.

Our Algorithm 2 for finding a minmax spanner is based on distributed breadth-first
search similar to the asynchronous Bellman-Ford algorithm[16, Sec. 15.4]. However,
we use the properties of the minmax edge cost function to reduce the complexity of
the search. First, a given reference node sends to each of itsneighbors a message
that contains the cost of the connecting edge. Upon first receiving the request, each
node makes note of the node from which the message was received and retransmits the
request to its neighbors, updating the maximum edge costα indicated in the request
accordingly. Each node also remembers the bestα sent to each neighbor. If a node that
has already received and forwarded a request receives a request that indicates a better
route from the reference node, it retransmits the latter request to its neighbors if this
leads to obtaining a route with a lowerα, to those neighbors. In a typical data-gathering
scenario, the natural choice for the reference node is the data sink.
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Algorithm 2 : Distributed algorithm for finding a minmax spanner [MLS]

nodev with local variablesα,α[·], father,status[·]

at start
α ← ∞; father← undefined;
for u ∈ N(v) do

α[u]← ∞; status [u]← ready;
end
enter stateIDLE;

in state IDLE or SEARCH
if (α ′) with α ′ < α is received from some nodeu then

if father is definedthen send NAK(α) to father;
father← u;
for w in N(v)\ {u} do

if max(α ′,δ (v,w)) < α[w] then
send(max(α ′,δ (v,w))) to w;
α[w]←max(α ′,δ (v,w));
status [w]← wait;

end
end
enter stateSEARCH

end
if (α ′) with α ′ ≥ α is received from some nodeu then

send NAK(α ′) to u;
end

in stateSEARCH // wait for incoming acknowledgements
if status [w]=ready for allw ∈ N(v)\ {father} then

send ACK(α) to father;
enter stateIDLE

end
if ACK(α ′) or NAK(α ′) is received fromu andα[u] = α ′ then

status [u]← ready;
end
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Figure 1: Sample execution of Algorithm 2 from reference node 1; messages listed
assource→destination:message. The three graphs show the initial state, intermediate
state, and final state of the algorithm with messages listed between states in the order
of their transmission.

Moreover, the nodes collect acknowledgements from their neighbors. When a node
receives the request, it forwards it to its neighbors, and waits for each neighbor to either
accept (ACK) or reject (NAK) it. When acknowledgements havebeen received from
each neighbor, the node sends an ACK to the node from which it received the request.
A NAK is sent if the node receiving the request already knows of a better path, or if a
node learns of a better path while waiting for the acknowledgements from its neighbors.
In this way, an ACK response means that the responding node has accepted the other
node as its father in the tree being constructed, while a NAK signifies refusal. It can
happen that a node will first respond with an ACK but later senda NAK; however, when
the reference node has received acknowledgements from its neighbors, the algorithm
has finished. A sample run of Algorithm 2 is given in Fig. 1.

In Algorithm 2, α is the current estimate of the minmax cost of a path from the
reference node to each nodev; and father is the node from whichv has received the
last accepted message. Initially, father is undefined andα = ∞ for eachv. The min-
max spanner is defined by the father variables of each node after the algorithm has
terminated.

To justify the algorithm, we firstly observe that it always terminates. Let∆ =
{δ (u,v) | (u,v) ∈ E} be the set of distinct edge costs in the graph. Obviously, no node
can learn of a new route with betterα more than|∆| times. Secondly, at the end each
node has a correctαv: if from some nodev there would exist a path with maximum
edge costα0 < αv to the reference node, then on the path there is some edge of cost
at mostα0 where exactly one endpoint would have a maximum edge cost estimate
higher thanα0. This cannot happen, since the endpoint with cost at mostα0 should
send a message along that edge. Thirdly, it cannot happen that a node would remain in
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the search state, since its neighbors will respond to the queries either by an immediate
NAK if the cost was too large, a delayed ACK once the neighbor has received responses
from its children, or a delayed NAK in case the neighbor laterlearns of a path with a
lower maximum edge cost.

To consider the communication complexity of the algorithm,observe that the num-
ber of distinct edge costs is bounded by|∆| ≤ |E|. In this regard the minmax edge cost
spanner problem is different from finding minimum cost routes, where the number of
routes with different total cost between two nodes can be exponential in the number
of nodes [16, Sec. 15.4]. When a node learns of a betterα, it will send a message to
its neighbors, who will eventually answer with an ACK or a NAK. Since the requests
sent by a node to its neighbor are in order of decreasingα, at most|∆| requests are
sent along each of the|E| directed edges, and there are a total ofO(|∆| |E|) messages
of constant size (we consider node ids, node counts and powerlevels to be of constant
size).

5.1 Notification stage

To notify the remaining nodes about the termination of the algorithm, the reference
node initiates a network-wide broadcast using the edges of the computed spanning tree.
Each nodev receiving this broadcast message can then decrease its transmission power
τ(v) to the minimum power required to reach its father and the neighboring nodes that
have chosenv to be their father.

5.2 Relative neighborhood graphs

Algorithm 2 requires nodes to exchange messages with all neighbors. In a dense sensor
network where the number of nodes within transmission rangemay be large, it is bene-
ficial to limit the number of nodes that need to be contacted, while maintaining network
connectivity at the same minmax transmission cost. For thispurpose, we userelative
neighborhood graphs [22]. Relative neighborhood graphs and related structureshave
been used for topology control [2, 3], mostly in a geometric context, where nodes are
placed in a plane andδ (v,u) depends only on the Euclidean distance betweenu andv.
However, we only assume that path loss is symmetric, i.e.,δ (v,u) = δ (u,v). We will
find, though, that when the nodes are placed in the Euclidean plane, our algorithm runs
much faster.

Definition 2. Given a graphG = (V,E) and an edge cost functionδ , the relative
neighborhood graph ofG is the graph with vertex setV and edge set{(v,u) | (v,u) ∈
E,∄w s.t. (v,w),(w,u) ∈ E,δ (v,w) < δ (v,u),δ (w,u) < δ (v,u)}.

Thus, the relative neighborhood graph is obtained from the original graph by delet-
ing each edge(v,u) if there is a pathv–w–u of two cheaper edges. Such a generalization
of the concept of RNG has been already successfully applied to other problems, such
as searching and broadcasting in peer-to-peer networks [8].

Claim. For anyα, the RNG ofG contains anα-spanner ifG does.
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Proof. Consider anα-spanner in the original graph. Order thek edges removed from
the original graph in constructing the relative neighborhood graph in decreasing order
of cost ase1,e2, . . . ,ek. Let E0 denote the edge set of the original graph, and letEi =
Ei−1 \ {ei} for 0 < i ≤ k. Now for 0< i ≤ k, sinceEi−1 admits anα-spanner and
the endpoints ofei are connected by a path of two cheaper edges,Ei also admits an
α-spanner, so the RNG(V,Ek) admits anα-spanner.

5.3 Distributed algorithms for RNGs

In this section, we describe a modification to the beaconing method proposed in Sec-
tion 4.1 to obtain a distributed method for constructing RNGs. We again do not assume
that a node initially knows about the cost of the edges to its neighbors, but we assume
that a node can estimate the strength of arriving radio signals. To construct the RNG,
each node again starts beaconing at maximum power after receiving an initial wakeup
message originating from the reference node. However, in addition to its distinct node
identifier, a node also includes the identifiers of neighboring nodes and the associated
δ the node has learned so far in the beacon message.

After having learned about the neighbors of their neighbors, the nodes prune un-
necessary edges from the transmission graph. If a nodev learns that for some third
nodew it holds thatδ (v,w) < δ (v,u) andδ (w,u) < δ (v,u), thenv can determine that
the edge(v,u) is not in the RNG, as per Definition 5.2. Thus, the nodes can prune their
neighborhood so that only the RNG remains inO(|V |) messages, the size of each of
which is proportional to the number of neighbors the beaconing node has. Thus, the
total amount of data transmitted during the RNG construction is O(|E|). Note that a
natural point for including the pruning of non-RNG edges into Algorithm 1 is the state
when the node sends the reply message to its father node during the setup stage.

Pruning the transmission graph down to the RNG before running Algorithm 2 can
give very considerable savings in complexity. Beaconing and determining the RNG
requires sendingO(N) messages withO(E) bits in total, and then determining the
minmax spanner requiresO(|∆| |E ′|) messages of constant size, whereE ′ is the set of
edges in the RNG. With an arbitrary path loss function, the RNG can still contain
O(|V |2) edges. However, when the nodes are in a plane and path loss is an increasing
function of distance, the RNG is a subgraph of the Delaunay triangulation of the origi-
nal graph and contains onlyO(|V |) edges [22]. In this special case, then, the algorithm
would require sending a total ofO(|∆||V |) messages of constant size.

6 Distributed binary search for minmax spanners

Previously, we described a distributed algorithm for computing a minmax spanner that
did not require any assumptions on the edge-cost functionδ besides being symmetric.
In practice, however, the range ofδ most likely corresponds to a small set of possible
transmission power levels. Furthermore, it is beneficial touse broadcast messages
to further reduce the total number of control messages required. In this section, we
propose a distributed algorithm for determining a minmax spanner, given a graph with
edge costs and the set of available transmission power levels P = {p1, p2, . . . , p|P|},
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wherep1 < p2 < .. . < p|P| = pmax, so now the transmission power level assignment
is of the typeτ : V 7→ P. The algorithm utilizes broadcast messages to reduce the total
number of messages sent during the execution of the algorithm.

As also the MLS algorithm presented in Section 5, the Binary Search for Min-
Max Power Spanner (BSPAN) algorithm relies on the availability of a reference node
for coordination, which initiates Algorithm 1 and thus obtains a count of the number
of nodes in the network. Thereafter, it performs a binary search over the range of
transmission power levels to find the minmax power required for connectivity and uses
this value to establish a minmax spanner.

At each iteration of the algorithm, the reference node initiates the computation of a
rooted tree spanning the nodes that can be reached from the reference node using paths
with maximum edge cost at mostα. The construction of the tree is achieved by flooding
request messages over edges with cost at mostα. In the second phase of the iteration,
the reference node then checks whether this tree spans all nodes in the network by
comparing the number of nodes reached with the total number of nodes in the network.
The counting of nodes reached using edges with cost at mostα is performed by a
convergecast of reply messages back to the reference node. In Algorithm 3, N(v)
denotes the set of neighbors of nodev in the given transmission graphG(τmax) =
G(V,E), i.e.,N(v) = {u ∈V |(v,u) ∈ E}.

6.1 Request phase

The request messages are of the form(v,α, f ) wherev is the identity of the sending
node,α is the maximum allowable edge cost in this iteration, andf is the father of node
v. In the first step, each nodev, upon receiving a request from a neighboru, broadcasts
a request message at most once by broadcasting it to all neighboring nodes. We assume
that all messages are sent at maximum power, although that assumption is not critical
to the algorithm: choosing a power corresponding toα would be possible as well.

Nodev decides that sending the message is required under the following conditions.
Firstly, v must not have broadcast a request earlier in this iteration.If so, and the
cost of the edge(u,v) is less or equal toα, the current edge cost under consideration,
u becomes thefather of v. Note that the edge costs are assumed to be symmetric.
Secondly, there must still be adjacent nodesw different fromu such that the edge(v,w)
has cost less than or equal toα.

6.2 Reply phase

After sending the request (v, α, u), v waits for a request from anyw that meets the
condition above. In the case thatv receives a request (w, α, v′) from w, it will mark w
aschild if v′ = v, and asprocessed otherwise. A neighbor markedchild corresponds to
w beingv’s child in the tree of the current iteration, and the labelprocessed corresponds
at this step tow being in the tree already with a different father nodev′.

In the case thatv has no child nodes, either because there are no adjacent nodes
with low enough edge costs or if they all have different father nodes, it can determine
that it is a leaf node in the current tree. Subsequently, it originates a reply message that
contains its id and a node count of one, which it sends to its father nodeu. If v has
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Algorithm 3 : Distributed binary search for a minmax spanner [BSPAN]

nodev with variablesα, lower, curr, upper, child candidates, father,
is reference node, N(v), node count, status ;

at start
if is reference node then

lower← 0; upper← |P|;
curr← ⌊(lower+upper)/2⌋; α ← pcurr;

for u ∈ N(v) do status[u]← processed;
enter stateRESET;

in stateRESET
father← none;node count← 0;
if is reference node then

if lower+1 < upper then
enter stateSEND REQUEST;

else enter stateSEARCH FINISHED;
else enter stateIDLE;

in state IDLE // wait for incoming requests
if request(u,α ′, f ′) with α ′ ≥ δ (u,v) is receivedthen

α ← α ′; father← u;
enter stateSEND REQUEST;

end

in stateSEND REQUEST // broadcast request to neighbors
child candidates← {w ∈ N(v)\ {father} | δ (v,w)≤ α};
for w ∈ child candidates do status[w]← wait;
if child candidates 6= /0 then

broadcast request(v,α, father);
enter statePROCESSING;

in statePROCESSING // process requests, wait for replies
if request(u,α ′, f ′) is receivedthen

if f ′ = v then // u has acknowledgedv as its father
status[u]← child;

else // u has fatherf ′ different from v
status[u]← processed;

end
if reply(u,nodes) is receivedthen

status[u]← processed;node count← node count+nodes;
if status[w] = processed for allw ∈ N(v)\ {father} then

if is reference node then
if total nodes = node count then upper← curr;
else lower← curr;
curr←⌊(lower+upper)/2⌋; α ← pcurr;

else // report node count
unicast reply(v,node count+1) to father;

enter stateRESET;
end
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(a) Spanning Tree

1: transmit request(1,0.75,−),
2: mark 1 as father,
2: transmit request(2,0.75,1),
4: drop request from 2,
1: mark 2 as child,
3: mark 2 as father,
3: transmit request(3,0.75,2),
2: mark 3 as child,
4,5: mark 3 as father,
5: transmit request(5,0.75,3),
4: transmit request(4,0.75,3),
4: drop request from 5,
5: drop request from 4,

(b) Request phase

4→ 3: reply(4,1),
5→ 3: reply(5,1),
3→ 2: reply(3,3),
2→ 1: reply(2,4)

(c) Reply phase

Figure 2: Simple example of a single iteration of BSPAN as described in Algorithm 3,
initiated by reference node with id 1. (a) shows the spanningtree that results from the
father record at each node at the end of the iteration; edges that are not contained in
the tree are shown dashed. (b) shows the request messages andthe resulting actions of
the nodes during the construction of the tree. (c) shows the replies that are sent along
the attained spanning tree edges and the node counting operation. Note that requests
reach all neighboring nodes (broadcast), while replies aresent from a child to its father
(unicast). The set of transmission power levels isP = {0.05,0.1, . . . ,0.95,1.0}.

at least one childw, v waits for replies from all its child nodes before sending a reply.
After receiving a reply fromw, nodev marksw asprocessed.

When v receives the last outstanding reply (all neighbors except its father are
markedprocessed in v’s neighbor table),v updates the last reply to contain the sum
of all node counts received from its child nodes incrementedby one and then forwards
the reply to its father. Thus, the reference node can determine the number of nodes in
the network reachable by edges with cost at most the current candidate edge costα. By
comparing this count with the count obtained during the setup stage, the reference node
is able to determine whetherα is an upper or lower bound of the minmax transmission
cost and updateα correspondingly. See Algorithm 3 for details and Fig. 2 for atoy
example of a single iteration of the algorithm.

6.3 Notification stage

After the search has terminated, the reference node initiates the notification stage and
informs all other nodes about the termination and the minimum edge cost necessary to
connect all nodes. The notification stage again uses broadcast messages over edges of
cost at mostα and constructs a spanning tree of the transmission graph. Nodes observe
which of the incident edges are part of the spanning tree and then set their transmission
power level to the minimum level required to reach the fatherand all child nodes in the
tree.
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Table 1: Simulation parameters; the input graphs were generated by random placement
of nodes within the area, while disconnected graphs were discarded.
ns2 version 2.31 Node density 1 node per 130 m×130 m
Transmission range 250 m Number of nodes 50-500
Max jitter (MLS,
BSPAN)

0.5 s Propagation model TwoRayGround

Message timeout 2.1 s |P| 128
Beacon delay (max) 1.5 s Beacon repetitions 10

6.4 Message complexity

In each iteration each node that has been reached by a request, except the reference
node, sends at most two messages, one request and one reply. The reference node
sends a request but no reply. Therefore, the total number of messages sent in a single
iteration is at most 2|V |−1. The binary search over a set of power levelsP requires
⌈log(|P|)⌉ iterations, where the logarithm is taken in base 2. Thus, thealgorithm has
message complexityO(log(|P|) |V |).

7 Experimental evaluation

We experimentally evaluated MLS, BSPAN, the beaconing method of Section 4.1, and
the distributed method for RNG construction of Section 5.3 using thens2 [17] network
simulator. We also compared MLS and BSPAN with the previously proposed DMMT
algorithm [11].

To measure the performance of the algorithms, we consideredboth the number of
control messages and the time it takes for the algorithms to finish. In our simulations,
we use thedisk graph model to represent a wireless network topology: the networks are
created by randomly scattering nodes onto a square area withgiven dimensions, and
connectivity is defined by thens2 default maximum transmission range. We used the
TwoRayGround model as the propagation model, for it perfectly meets the conditions
as outlined in Section 4, and discarded disconnected graphs.

The parameter values used for the simulations are given in Table 1. We chose
a rather large number of 10 beacons per node during the setup stage to reduce the
probability of repeated collisions of beaconing messages;it would also be possible
to increase the time interval between beaconing messages. As our main focus is on
analyzing MLS and BSPAN, we discarded trials where some node had an incomplete
list of neighbors or the initializing node had the wrong nodecount. RNG pruning
requires information about the neighbors to be broadcast, which makes the beacon
packets longer and susceptible to collisions. After initially trying a smaller number of
4 beacons per node and observing a failure rate of 1 to 2% of thetrials for the setup
stage, we settled on a value of 10 for which the setup terminated successfully in all
trials. To safeguard MLS and BSPAN against deadlocks arising from permanent node
failures, one should consider implementing a timeout scheme.
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7.1 Distributed minmax tree algorithm

The Distributed Min-Max Tree (DMMT) algorithm proposed in [11] determines for
a given setM of nodes (themulticast group) a spanning tree with minmax edge cost.
ChoosingM = V , DMMT can be readily applied to solve the lifetime maximization
problem as formulated in Section 3. In this paper, we focus onthe version of the
algorithm that was proposed for omnidirectional antennas.

The DMMT algorithm borrows ideas from the well-known Prim’salgorithm for
constructing minimum spanning trees (see for example [7, pp. 570-573]). Prim’s algo-
rithm grows a subtree of the original graph starting from an initial node, such that in
each step the minimum cost edge is added that connects one node belonging to the tree
and another node not yet in the tree. After all nodes have beenadded, the algorithm
terminates and the resulting tree forms a minimum spanning tree.

The DMMT algorithm finds a minmax spanner by adding an additional step to
each iteration, the so-calledgrowth phase: after the attempt of finding the minimum
outgoing-edge-cost has terminated, this cost is propagated to all tree nodes in ajoin
request message. Each tree nodev then forwards this message to each neighboru that
v believes is not yet in the tree if the cost of the edge(v,u) is less or equal to the
minimum outgoing edge-cost. This operation corresponds togrowing the tree along
edges with cost less or equal to the current threshold cost. After a non-tree node has
been added via an edge adjacent to the tree node, the tree nodebecomes the father
of the non-tree node – which itself can become father of one ormore non-tree nodes
added during the current growth phase – in the minmax spannerbeing constructed.

However, DMMT does not necessarily always find an outgoing edge in thesearch
phase of the algorithm, as is the case for an iteration of Prim’s algorithm. This is due
to the fact that nodes only learn about their neighbors beingin the tree when these
forward request messages to them and can thus result in costly non-progress iterations
of the algorithm.

The formulation in [11] employs timers at each node in order to let the nodes dis-
tributively estimate the termination of the growth phase. In our evaluation we consid-
ered a more synchronized method initiated by the reference node to notify the nodes to
switch from the growth to the search phase. This modificationwas considered neces-
sary in order to make DMMT more resilient against network failures, such as packet
drops at the MAC level. The additional control messages werenot taken into account
for the comparisons described below.

7.2 Network simulations

We implemented the aforementioned algorithms, DMMT, MLS, and BSPAN, as pro-
tocol agents inns2. For MLS and BSPAN, the reference node starts the protocol by
initiating Algorithm 1 to obtain the weighted neighbor lists and a count of the nodes in
the network. The topology information required by DMMT is loaded onto the nodes
prior to the execution of the protocol, but could also be obtained by the methods de-
scribed in Section 4. For the following observations we fixedP at 128 distinct equally
spaced power levels.

Figure 3 depicts one transmission graph of 100 nodes, its MST, RNG, and the trees
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constructed by DMMT, MLS, and BSPAN. One can see that the shortest-hop distances
between pairs of nodes in the minmax spanner resulting from MLS initialized by the
RNG are generally slightly longer than in the spanner resulting from the original graph.
Running MLS on the RNG instead of the original graph generally reduces the number
of messages required, but it also removes paths with low minmax cost and a small
hopcount. The algorithms DMMT and BSPAN are insensitive to which input graph is
used in terms of the number of control messages required, as DMMT considers only
the single least-cost outgoing edge in each iteration and BSPAN relies on broadcast
messages to all neighbors.

The total message counts of DMMT, MLS, and BSPAN averaged over a set of
graph instances are depicted in Fig. 4. Note that the number of messages for MLS
and BSPAN also include the messages transmitted in the setup-stage ofthe protocols.
However, as opposed to MLS and BSPAN, the number of messages required for obtain-
ing this information are not included in the total message counts of DMMT. Despite
this handicap, both outperform DMMT significantly when comparing the number of
control messages required by the protocols.

More specifically, one can see from Fig. 4(a) that DMMT requires between 2 and
6 times more messages than MLS run on the transmission graph and between 6 and
more than 30 times more messages than BSPAN. Therefore, DMMT does not scale
well with the size of the network. Comparing MLS with BSPAN, one can see from
Fig. 4(b) that BSPAN outperforms MLS by a factor of 2.5 for 50 nodes and 4 for
200 nodes when MLS is run on the transmission graph. When using the distributed
algorithm for constructing the RNG, however, MLS outperforms BSPAN by a factor of
1.5 for 50 nodes and 1.2 for 200 nodes. One should also note that BSPAN significantly
benefits from using requests, which are transmitted as broadcast messages, as implicit
acknowledgements.

For a fixedP the number of messages required by BSPAN is linear in the number of
nodes, whereas for a fixed number of nodes the message count for BSPAN is linear in
log|P|. Figure 5 illustrates the effect of different numbers of power levels. As opposed
to DMMT and MLS when run on the transmission graph, MLS run on the RNG and
BSPAN scale well with the number of nodes.

When evaluating running time, one has to consider the effectof timers on the per-
formance of the different protocols. Assuming a collision free network, MLS and
BSPAN would only require a timer in the setup stage of the protocol,which uses bea-
con messages to establish local network topology information. A nodev discovers that
it is a leaf node if no other nodeu has forwarded a beacon message indicating thatv
is the father ofu in the spanning tree constructed in the setup stage. Hence, atimer is
required in order to wait a certain time to discover child nodes in the tree. In order to
avoid deadlocks caused by packet collisions due to interference at a later stage in algo-
rithms MLS and BSPAN, it was necessary to introduce retransmission timers, whose
timeout values, however, only depend on the propagation delay between neighboring
nodes.

The DMMT protocol makes extensive use of timers, whose values naturally have a
strong impact on the running time. Figure 6 shows that BSPAN is slightly slower than
MLS, and that both significantly outperform DMMT.

As already mentioned above, running MLS on the RNG instead ofthe original
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(a) Transmission graph (b) MST of transmission graph

(c) RNG of transmission graph
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Figure 3: Resulting minmax spanner for a graph with 100 nodes; the reference node is
indicated by a black square and the critical edge is the long edge in the bottom left part
of the graph.
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Figure 4: Number of messages required by DMMT, MLS, and BSPAN versus number
of nodes in the network. Error bars represent standard deviations over 200 repeti-
tions. The number of messages for MLS and BSPAN also includes the messages of the
setup stage; the notification stage was excluded from the results, as it is not part of the
DMMT algorithm, although required for global termination.For BSPAN the value of
|P| in both plots is 128. The plots show data for MLS run on the transmission graph
TG and its RNG. Note the different scale in (a) and (b).
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Figure 5: Number of messages required by BSPAN versus number of nodes in the
network over a range of values for|P|. Error bars represent standard deviations over
200 repetitions. The number of messages includes the messages of the setup stage but
not the notification stage.
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Figure 6: Total simulated running time (in seconds). Error bars represent standard
deviations over 200 repetitions; note that the total running times are plotted on a loga-
rithmic scale. The duration of the notification stage of MLS and BSPAN was excluded
from the results, as it is not part of the DMMT algorithms although required for global
termination. For BSPAN the value of|P| is 128. The plot shows data for MLS run on
the transmission graph TG and its RNG.

graph reduces the number of messages required, but it also removes paths with low
minmax cost and a small hopcount. Indeed, the experiments show a slightly higher
running time, as propagating ACKs and NAKs along the tree takes longer.

8 Conclusions

We have presented two efficient distributed algorithms for the problem of lifetime max-
imization in a wireless sensor network with stationary nodes and static transmission
power assignments. The first algorithm is based on a distributed computation of paths
from a reference node to all other nodes which have minimum maximum cost, while the
second algorithm performs a binary search over the range of transmission power lev-
els. Both algorithms have been formulated as network protocols, which, unlike many
previously proposed solutions to related problems, do not rely on prior knowledge of
the network, such as network size or neighbor lists.

In our network simulations, using thens2 network simulator, both the proposed al-
gorithms, MLS and BSPAN, significantly outperform the recently proposed Distributed
Min-Max Tree algorithm in terms of the number of messages required. When run on
the transmission graph, BSPAN typically shows better performance than MLS. When
MLS is run on the RNG of the transmission graph, however, one observes a drastic
reduction in the number of control messages required. We also present a distributed
method for pruning a transmission graph to its RNG. This method enables us to re-
duce the number of messages required by MLS if nodes are placed in a plane and
transmission costs depend only on the Euclidean distance.

Both algorithms proposed in this paper solve the lifetime maximization problem
optimally. However, there are different cases in which one would prefer one algorithm
over the other. Depending on the radio conditions, transmission of broadcast messages
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might not be feasible. Furthermore, the RNG of the transmission graph could be easily
computed if the network topology is predetermined, nodes know the locations of their
neighbors, and the edge costs are increasing in distance. Inthese cases one might prefer
MLS over BSPAN. In other cases, e.g., if the number of power levels is quite small
and broadcast messages are feasible, BSPAN would be the better choice. BSPAN also
provides a tighter bound on the message complexity of the algorithm, as is evident from
our simulation results.

A natural extension of the present work would be to consider the task of life-
time maximization under dynamic transmission power assignments. This is, how-
ever, a computationally much more challenging problem thanthe static one considered
here [9], so obtaining an optimal solution by an efficient distributed algorithm may be
impossible. Naturally, heuristic methods could be used to obtain reasonable practical
solutions.
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