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Abstract. An important heuristic in local search algorithms for Satisfi-
ability is focusing, i.e. restricting the selection of flipped variables to those
appearing in presently unsatisfied clauses. We consider the behaviour on
large randomly generated 3-SAT instances of two focused solution meth-
ods: the well-known WalkSAT algorithm, and the straightforward algo-
rithm obtained by imposing the focusing constraint on basic Metropolis
dynamics. We observe that both WalkSAT and our Focused Metropolis
Search method are quite sensitive to the proper choice of their “noise”
and “temperature” parameters, and attempt to estimate ideal values for
these, such that the algorithms exhibit generically linear solution times
as close to the satisfiability transition threshold αc ≈ 4.267 as possible.
With an appropriate choice of parameters, the linear time regime of both
algorithms seems to extend well into clauses-to-variables ratios α > 4.2,
which is much further than has generally been assumed in the literature.

1 Introduction

An instance of the 3-satisfiability (3-SAT) problem is a formula consisting of
M clauses, each of which is a set of three literals, i.e. Boolean variables or
their negations. The goal is to find a solution consisting of a satisfying truth
assignment to the N variables, such that each clause contains at least one literal
evaluating to ’true’, provided such an assignment exists. In a random 3-SAT
instance, the literals comprising each clause are chosen uniformly at random.

It was observed in [15] that random 3-SAT instances change from being gener-
ically satisfiable to being generically unsatisfiable when the clauses-to-variables
ratio α = M/N exceeds a critical threshold αc. Current numerical estimates [4]
suggest that this satisfiability threshold is located approximately at αc ≈ 4.267.
For a general introduction to aspects of the satisfiability problem see [6].

Two questions are often asked in this context: how to solve random 3-SAT
instances effectively close to the threshold αc, and what can be said of the point

? Research supported by the Academy of Finland, by grants 206235 (S. Seitz) and
204156 (P. Orponen), and by the Center of Excellence program (M. Alava).



at which various types of algorithms begin to falter. Recently progress has been
made by the survey propagation method [4, 5, 14] that essentially iterates a guess
about the state of each variable, in the course of fixing an ever larger proportion
of the variables to their “best guess” values. In this paper we argue that also
simple local search methods, i.e. algorithms that try to find a solution by flipping
the value of one variable at a time, can achieve comparable performance levels
on random 3-SAT instances.1

When the variables to be flipped are chosen only from the unsatisfied (un-
sat) clauses, a local search algorithm is called focusing. A well-known example
of a focused local search algorithm for 3-SAT is WalkSAT [23], which makes
greedy and random flips with a fixed probability. Many variants of this and
other local search algorithms with different heuristics have been developed; for
a general overview of the techniques see [1]. We shall contrast the WalkSAT
algorithm with a focused variant of the standard Metropolis dynamics [12] of
spin systems, which is also the base for the well-known simulated annealing op-
timisation method. When applied to the 3-SAT problem, we call this dynamics
the Focused Metropolis Search (FMS) algorithm.

The space of solutions to 3-SAT instances slightly below αc is known to de-
velop structure. Physics-based methods from mean-field -like spin glasses imply
through replica methods that the solutions become “clustered”, with a thresh-
old of α ≈ 3.92 [14]. Clustering implies that solutions belonging to the same
cluster are close to each other in terms of, e.g., Hamming distance. A possible
consequence of this is the existence of cluster “backbones”, which means that
in a cluster a certain fraction of the variables is fixed, while the others can be
varied subject to some constraints. The stability of the replica ansatz becomes
crucial for higher α, and it has been suggested that this might become important
at α ≈ 4.15 [16]. The energy landscape in which the local algorithms move is
however a finite-temperature version. The question is how close to αc one can get
by moving around by local moves (spin flips) and focusing on the unsat clauses.

Our results concern the optimality of this strategy for various algorithms
and clauses-to-variables ratios α. First, we demonstrate that WalkSAT works
in the “critical” region up to α > 4.2 with the optimal noise parameter p ≈
0.57. Then we concentrate on the numerical performance of the FMS method.
In this case, the solution time is found to be linear in N within a parameter
window ηmin ≤ η ≤ ηmax, where η is essentially the Metropolis temperature
of the FMS dynamics. More precisely, we observe that within this window, the
median and all other quantiles of the solution times normalised by N seem to
approach a constant value as N increases. A stronger condition would be that the
distributions of the solution times be concentrated in the sense that the ratio of
the standard deviation and the average solution time decreases with increasing
N . While numerical studies of the distributions do not indicate heavy tails that
would contradict this condition, we can of course not at present prove that this

1 Anecdotal evidence suggests that local search methods may also be more robust
than survey propagation on structured SAT instances, but we have at present no
systematical data to support this conjecture.



is rigorously true. The existence of the η window implies that for too large η
the algorithm becomes entropic, while for too small η it is too greedy, leading
to freezing of degrees of freedom (variables) in that case.

The optimal η = ηopt(α), i.e. that η for which the solution time median is
lowest, seems to increase with increasing α. We have tried to extrapolate this
behaviour towards αc and consider it possible that the algorithm works, in the
median sense, linearly in N all the way up to αc. This is in contradiction with
some earlier conjectures. All in all we postulate a phase diagram for the FMS
algorithm based on two phase boundaries following from too little or too much
greed. Of this picture, one particular phase space point has been considered
before [3, 25], since it happens to be the case that for η = 1 the FMS coincides
with the so called Random Walk method [17], which is known to suffer from
metastability at α ≈ 2.7 [3, 25].

The structure of this paper is as follows: In Section 2 we present the WalkSAT
algorithm, list some of the known results concerning the random 3-SAT problem,
and report on our experiments on the behaviour of WalkSAT for varying p and
α values. In Section 3 we outline the FMS algorithm, report on the correspond-
ing numerical simulations with it, and present some analysis of what the data
indicates about this algorithm’s threshold behaviour. Section 4 summarises our
results. An extended version of this paper, available as a technical report [22],
contains some further experiments covering also the so called Focused Record-
to-Record Travel (FRRT) algorithm [7, 21], as well as a discussion on how the
notion of whitening [18] might shed some light on the dynamics of focused local
search.

2 Local Search for Satisfiability

It is natural to view the satisfiability problem as a combinatorial optimisation
task, where the goal for a given formula F is to minimise the objective function
E = EF (s) = the number of unsatisfied clauses in formula F under truth as-
signment s. The use of local search heuristics in this context was promoted e.g.
by Selman et al. in [24] and by Gu in [8]. Viewed as a spin glass model, E can
be taken to be the energy of the system.

Selman et al. introduced in [24] the simple greedy GSAT algorithm, whereby
at each step the variable to be flipped is determined by which flip yields the
largest decrease in E, or if no decrease is possible, then smallest increase. This
method was improved in [23] by augmenting the simple greedy steps with an
adjustable fraction p of pure random walk moves, leading to the algorithm
NoisyGSAT.

In a different line of work, Papadimitriou [17] introduced the very important
idea of focusing the search to consider at each step only those variables that
appear in the presently unsatisfied clauses. Applying this modification to the
NoisyGSAT method leads to the WalkSAT [23] algorithm (Figure 1), which is
arguably the currently most popular local search method for satisfiability.



WalkSAT(F,p):

s = random initial truth assignment;

while flips < max_flips do

if s satisfies F then output s & halt, else:

- pick a random unsatisfied clause C in F;

- if some variables in C can be flipped without

breaking any presently satisfied clauses,

then pick one such variable x at random; else:

- with probability p, pick a variable x

in C at random;

- with probability (1-p), pick some x in C

that breaks a minimal number of presently

satisfied clauses;

- flip x.

Fig. 1. The WalkSAT algorithm.

In [23], Selman et al. presented some comparisons among their new NoisyGSAT
and WalkSAT algorithms, together with some other methods. These experi-
ments were based on a somewhat unsystematic set of benchmark formulas with
N ≤ 2000 at α ≈ αc, but nevertheless illustrated the significance of the focus-
ing idea, since in the results reported, WalkSAT outperformed NoisyGSAT by
several orders of magnitude.

More recently, Barthel et al. [3] performed systematic numerical experi-
ments with Papadimitriou’s original Random Walk method at N = 50, 000,
α = 2.0 . . . 4.0. They also gave an analytical explanation for a transition in the
dynamics of this algorithm at αdyn ≈ 2.7, already observed by Parkes [20]. When
α < αdyn, satisfying assignments are generically found in time that is linear in
the number of variables, whereas when α > αdyn exponential time is required.
(Similar results were obtained by Semerjian and Monasson in [25], though with
smaller experiments (N = 500).) The reason for this dynamical threshold phe-
nomenon seems to be that at α > αdyn the search equilibrates at a nonzero
energy level, and can only escape to a ground state through a large enough ran-
dom fluctuation. A rate-equation analysis of the method [3] yields a very well
matching approximation of αdyn ≈ 2.71.2 See also [26] for further analyses of
the Random Walk method on random 3-SAT.

WalkSAT is more powerful than the simple Random Walk, because in it
focusing is accompanied by other heuristics. However, it is known that the be-
haviour of WalkSAT is quite sensitive to the choice of the noise parameter p.
E.g. Parkes [19] experimented with the algorithm using a noise value p = 0.3 and
concluded that with this setting the algorithm works in linear time at least up to
α = 3.8. Even this result is not the best possible, since it has been estimated [9,
10, 27] that for random 3-SAT close to the satisfiability transition the optimal

2 Our numerical experiments with the Random Walk algorithm suggest that its dy-
namical threshold is actually somewhat lower, αdyn ≈ 2.67.



noise setting for WalkSAT is p ≈ 0.55. (Actually our numerical experiments,
reported below, suggest that the ideal value is closer to p ≈ 0.57.)

These positive results notwithstanding, it has been generally conjectured
(e.g. in [4]) that no local search algorithm can work in linear time beyond the
clustering transition at αd ≈ 3.92. In a series of recent experiments, however,
Aurell et al. [2] concluded that with a proper choice of parameters, the median
solution time of WalkSAT remains linear in N up to at least α = 4.15, the
onset of 1-RSB symmetry breaking. Our experiments, reported below, indicate
that the median time in fact remains linear even beyond that, in line with our
previous results [21].
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Fig. 2. Normalised solution times for WalkSAT, α = 3.8 . . . 4.3.

Figure 2 illustrates our experiments with the WalkSAT algorithm3 on ran-
domly generated formulas of size N = 105, various values of the noise parameter
p, and values of α starting from 3.8 and increasing at increments of 0.2 up to
4.22. For each (p, α)-combination, 21 formulas were generated, and for each of
these the algorithm was run until either a satisfying solution was found or a
time limit of 80000×N flips was exceeded. Figure 2(a) shows the solution times
tsol, measured in number of flips normalised by N , for each generated formula.
Figure 2(b) gives the medians and quartiles of the data for each value of α.

As can be seen from the figures, for value p = 0.45 of the noise parameter
WalkSAT finds satisfying assignments in roughly time linear in N , with the co-
efficient of linearity increasing gradually with increasing α, up to approximately
α = 4.1 beyond which the distribution of solution times for the algorithm di-
verges. For p = 0.55, this linear regime extends further, up to at least α = 4.18,
but for p = 0.65 it seems to end already before α = 3.9. For the best value of

3 Version 43, downloaded from the Walksat Home Page at
http://www.cs.washington.edu/homes/kautz/walksat/, with its default heuris-
tics.



p we have been able to experimentally determine, p = 0.57, the linear regime
seems to extend up to even beyond α = 4.2.
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Fig. 3. Cumulative solution time distributions for WalkSAT with p = 0.55.

To investigate the convergence of the solution time distributions, we tested
the WalkSAT algorithm with p = 0.55 at α = 4.15 and α = 4.20, in both cases
with randomly generated sets of 100 formulas of sizes N = 104, 3×104, 105, 3×105

and 106. Figure 3 shows the cumulative distributions of the solution times nor-
malised by N achieved in these tests. As can be seen, for α = 4.15 the distribu-
tions are well-defined, with normalised medians and all other quantiles converg-
ing to a finite value for increasing N . However, for α = 4.20, the distributions
seem to diverge, with median values increasing with increasing N .4
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4 For α = 4.20, the tests for N = 105 and larger were not completed, because the
solution times consistently overran the time limit of 80000×N flips, and consequently
the test runs were exceedingly long yet uninformative.
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In order to estimate the optimal value of the WalkSAT noise parameter, i.e.
that value of p for which the linear time regime extends to the biggest value of
α, we generated test sets consisting of 21 formulas, each of size N = 105, for α
values ranging from 4.10 to 4.22 at increments of 0.02, and for each α for p values
ranging from 0.50 to 0.60 at increments of 0.01. WalkSAT was then run on each
resulting (α, p) test set; the medians and quartiles of the observed solution time
distributions are shown in Figure 4. The data suggest that the optimal value
of the noise parameter is approximately p = 0.57. Figure 5 shows the empirical
solution time distributions at α = 4.20 for p = 0.57. In contrast to Figure 3(b),
now the quantiles seem again to converge to a finite value for increasing N ,
albeit more slowly than in the case of the simpler α = 4.15 formulas presented
in Figure 3(a).

3 Focused Metropolis Search

From an analytical point of view, the WalkSAT algorithm is rather complicated,
with its interleaved greedy and randomised moves. Thus, it is of interest to
investigate the behaviour of the simpler algorithm obtained by imposing the
focusing heuristic on a basic Metropolis dynamics [12].

FMS(F,eta):

s = random initial truth assignment;

while flips < max_flips do

if s satisfies F then output s & halt, else:

pick a random unsatisfied clause C in F;

pick a variable x in C at random;

let x’ = flip(x), s’ = s[x’/x];

if E(s’) <= E(s) then flip x, else:

flip x with prob. eta^(E(s’)-E(s)).

Fig. 6. The Focused Metropolis Search algorithm.



We call the resulting algorithm, outlined in Figure 6, the Focused Metropolis

Search (FMS) method. The algorithm is parameterised by a number η, 0 ≤ η ≤ 1,
which determines the probability of accepting a candidate variable flip that
would lead to a unit increase in the objective function E. (Thus in customary
Metropolis dynamics terms, η = e1/T , where T is the chosen computational
temperature. Note, however, that detailed balance does not hold with focusing.)
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Fig. 7. Normalised solution times for FMS, α = 3.8 . . . 4.3.

We repeated the data collection procedure of Figure 2 for the FMS algorithm
with various parameter values. The results for η = 0.2, 0.3, 0.4 and η = 0.36 (the
best value we were able to find) are shown in Figure 7; note that also rejected
flips are here included in the flip counts. As can be seen, the behaviour of the
algorithm is qualitatively quite similar to WalkSAT. For parameter value η = 0.2,
the linear time regime seems to extend up to roughly α = 4.06, for η = 0.3 up to
at least α = 4.14, and for η = 0.36 even beyond α = 4.20; however for η = 0.4
again only up to maybe α = 4.08. To test the convergence of distributions, we
determined the empirical cumulative distributions of FMS solution times for
η = 0.3 at α = 4.0 and α = 4.1, in a similar manner as in Figure 3. The results
are shown in Figure 8.

To determine the optimal value of the η parameter we proceeded as in Fig-
ure 4, mapping out systematically the solution time distributions of the FMS
algorithm for α increasing from 4.10 to 4.22 and η ranging from 0.28 to 0.38.
The results, shown in Figure 9, suggest that the optimal value of the parameter
is approximately η = 0.36.

In order to investigate the algorithm’s behaviour at this extreme of its pa-
rameter range, we determined the empirical cumulative distributions of the FMS
solution times for η = 0.36 at α = 4.20. The results, shown in Figure 10, suggest
that even for this high value of α, the FMS solution times are linear in N , with
all quantiles converging to a finite value as N increases.
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Fig. 8. Cumulative solution time distributions for FMS with η = 0.3.
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The linearity of FMS can fail due to the formation of heavy tails. This, with
a given α and a not too optimal, large η would imply that the solution time tsol

has at least a divergent mean (first moment) and perhaps a divergent median as
well. This can be deliberated upon by considering the ”scaling ansatz”

P (tsol) ∼ (tsol)
−af(tsol/N

b) (1)

where f(x) = const for x small, and f → 0 rapidly for x ≥ 1. This simply states
that for a fixed N there has to be a maximal solution time (even exponentially
rare) since the FMS is generically “ergodic” or able to get out of local minima.
The condition that 〈tsol〉 ∼ N b(2−a) be divergent with N would then set a rela-
tion for the exponents a and b. Our experiments in the linear regime have not
yielded any evidence for a distribution following such an ansatz, and moreover
we have not explored systematically the non-linear parameter region, where such
behaviour might make considering scalings as Eq. (1) interesting. The average
solution time, in terms of flips per spin, is shown in Figure 11(a) for α = 4.1.
Together with Figure 11(b), showing the tendency for the width of the distribu-
tion to diminish as 1/

√
N , this 1/N -behaviour implies rather trivial finite size

corrections to P (tsol). In the Figure we depict the width of the distribution P
measured by quantiles instead of the standard deviation, since this is the most
sensible measure given the nature of the data.

We also tried to extract the best possible performance of the algorithm as
a function of α. Using the data for varying η allows one to extract roughly the
optimal values ηopt(α) which are demonstrated in Figure 12. As can be seen,
the data indicate a roughly linear increase of the optimal η with in particular
no notice of the approach to αc or to an algorithm-dependent maximum value
αmax. The same data can be also utilised to plot, for a fixed N (recall the FMS
runs linearly in this regime) the solution time at the optimal noise parameter η.
Figure 13 shows that this as expected diverges. Attempts to extract the value
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αmax limiting the linear regime by fitting to various divergences of the kind
tsol ∼ (αmax − α)−b do not allow one to make a statistically reliable conclusion
as to whether αmax < αc, though . The reason for this is, as far as the data
is concerned, the distance of the α studied to any plausible value of αmax. See
Figure 14.

4 Conclusions

In this paper we have elucidated the behaviour of two focused local search algo-
rithms for the random 3-SAT problem. An expected conclusion is that they can
be tuned so as to extend the regime of good, linear-in-N behaviour closer to αc.
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The data points are rough estimates based on a few runs of the FMS algorithm.

An unexpected conclusion is that both algorithms seem to work well also
quite close to the critical threshold. Figure 15 proposes a phase diagram. FMS
with η = 1 is just the Random Walk algorithm; hence the first transition point is
at α ≈ 2.67. For larger α there is the possibility of having two phase boundaries

in terms of the noise parameter. The upper value ηu separates the linear regime
from one with too much noise, in which the fluctuations of the algorithm degrade
its performance. For η < ηl, greediness leads to dynamical freezing, and though
FMS remains ergodic, or able to climb out of local minima, the algorithm no
longer scales linearly in the number of variables.

The phase diagram presents us with two main questions: what is the smallest
α at which ηl(α) starts to deviate from zero? Does the choice of an ideal ηopt allow
one to push the linear regime arbitrarily close to αc? Note that the deviation
of ηu(α) from unity with increasing α could perhaps be analysed with similar



techniques as the methods in refs. [3, 25]. The essential idea there is to construct
rate equations for densities of variables or clauses while ignoring correlations of
neighboring ones. Such analysis, while illuminating, would of course not resolve
the above two main questions.

The resolution of these questions will depend on our understanding the per-
formance of FMS or other local search methods in the presence of the clustering
of solutions. The range of the algorithm presents us with a fundamental dilemma:
though replica methods have revealed the presence of clustering in the solution
space starting from α ≈ 3.92, the FMS works for much higher α’s still. The clus-
tered solutions should have an extensive core of frozen variables, and therefore
be hard to find. Thus, the ability of FMS to perform well even in this regime,
given the right choice of η, tells us that there are features in the solution space
and energy landscape that are not yet well understood.

Our numerical experiments also indicate that in the linear scaling regime
the solution time probability distributions become sharper (“concentrate”) as
N increases, implying indeed that the median solution time scales linearly. We
cannot establish numerically that this holds also for the average behaviour, but
would like to note that our empirical observations from the distributions do not
indicate such heavy tails that would contradict this possibility.

Acknowledgements: We are most grateful to Dr. Supriya Krishnamurthy
for useful comments and discussions.
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