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Abstract. We present a general method for rendering representations
of multi-stranded DNA complexes from textual descriptions into 2D dia-
grams. The complexes can be arbitrarily pseudoknotted, and if a planar
rendering is possible, the method will determine one in time which is
essentially linear in the size of the textual description. (That is, except
for a final stochastic fine-tuning step.) If a planar rendering is not possi-
ble, the method will compute a visually pleasing approximate rendering
in quadratic time. Examples of diagrams produced by the method are
presented in the paper.
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1 Background

Multi-stranded DNA complexes are of wide interest in the area of DNA nano-
technology. In the present work, we focus specifically on their use as building
blocks in DNA strand displacement (DSD) systems [40], which are a widely-
used methodology for embedding computational processes in the interactions of
pre-designed short DNA strands.

The design and modelling of DSD systems is typically done at the binding-
domain level, where a domain is a contiguous and functionally distinct sequence
of nucleotides. A DNA strand is then a sequence of connected domains. Strands
are oriented, starting at the 5-end and ending at the 3-end. Domains of different
strands may bind with each other in antiparallel orientation, forming a DNA
complex which is (mathematically speaking) a multiset of strands connected by
domain bindings. At the design phase one is however generally not interested
in individual strands and complexes, but rather distinct similarity types (equiv-
alence classes) of these. A similarity type of DNA complexes is called a DNA
species, whereas with some abuse of terminology the term “strand” is retained
also for similarity types of strands.

Automated tools for designing and modelling DSD systems commonly follow
a four-stage pipeline (Figure 1) in which we are presently concerned with the final
step of visualisation — or more specifically the task of producing 2D diagrams
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Fig. 1: DSD system design pipeline.

of species generated from an initial set of species. Such diagrams are highly
useful to understand the characteristics of species emerging in a given DSD
system, validate the system design, and communicate related results to a broader
audience.

Fig. 2: DNA species diagrams. a: Good drawing. b: Unsatisfactory drawing.

As is customary in the DSD design literature [40], we aim to render multi-
strand DNA species as 2D diagrams, where each strand is represented as a
sequence of contiguous line or curve segments that depict the domains, and
domain pairings are indicated by some connector symbol, for instance a line seg-
ment connecting the domain midpoints (Figure 2). Ideally, a 2D rendering of a
given DNA species should satisfy the following conditions: (i) the domain depic-
tions are straight-line segments of equal length; (ii) bound domains are drawn
close to each other, ideally at a fixed distance and in antiparallel orientation;
(iii) the polylines (or polycurves) representing species do not cross each other
in the drawing plane. For structurally complex species, the task of satisfying all
these constraints simultaneously and satisfactorily can be quite difficult or even
impossible.

The challenge of pseudoknots Many current DNA species rendering algorithms
take inspiration from methods used in visualising RNA secondary structures. In
RNA, a single strand folds upon itself and forms bindings pairing its nucleotides.
In simple “nested” pairing arrangements, this process results in a tree-like sec-
ondary structure with contiguous stem segments of paired bases constituting the
edges and loops of unpaired bases forming the leaves (Figure 3). Visualisation
methods for such structures commonly follow this intrinsic tree layout [6,31].

This approach extends to DNA visualisations as well, because if the strands
constituting a multi-strand DNA species are arranged in some linear order and



Fig. 3: RNA secondary structure diagrams. a: A 1D arc diagram depicting base
pairings. b: Corresponding 2D secondary structure diagram.

connected into a single strand, the rendering problem reduces to the correspond-
ing one for RNA secondary structures. Thus, the only additional task is to de-
termine a good ordering for the strands. (Of course for n strands there are n!
possible orderings, so the task is not quite straightforward.) This method is
widely used in visualisations of nested DNA species, for instance in the Dy-
NAMiC Workbench tool [16].

Fig. 4: An H-type RNA pseudoknot. a: Arc diagram. b: Secondary structure
diagram.

A problem emerges, however, when base pairings are not nested, but cross
each other in the linear strand arrangement, as in Figure 4a. In this pseudo-
knotted situation, the secondary structure no longer has a tree-like character
(Figure 4b), and many challenges ensue both in diagramming and otherwise
analysing the structure [1,25].

A number of RNA visualisers nevertheless support the rendering of pseu-
doknotted structures using alternative approaches. PseudoViewer3 [7] identifies
and draws known types of pseudoknots, and arranges the rest of the structure in
relation to them. The tool jViz.Rna 2.0 [36] uses a force-directed algorithm for
assembling the nucleotides, whereas jViz.RNA 4.0 [30] and forna [23] identify the
pseudoknotting connections and draw them on top of a pruned pseudoknot-free
skeleton of the species.

A multi-strand DNA species can be considered pseudoknotted when no linear
ordering of its constituent strands results in a nested base-pairing arrangement.
Rendering of pseudoknotted species in DSD systems has been little studied,
because when there is no tree structure to be identified, exploring the space of
n! permutations for a species of n strands becomes challenging. VisualDSD [24],
a widely-used tool for designing and modelling DSD systems, takes the approach



of rendering a pseudoknot-free skeleton of the species and then just highlighting
the pseudoknot-inducing domains, without connecting them visually. While in
RNA this approach may be helpful in order to easily identify the type of the
pseudoknot, in DNA it is less useful in illustrating the structure. (For examples,
see Figure 7.) A force-directed approach was used in [15] but it covers only
relatively simple pseudoknotted structures. Other common DSD system design
tools such as NUPACK [39] and DyNAMiC Workbench [16] do not provide
options for visualising pseudoknots.

2 A DNA species rendering algorithm

We approach the task of rendering multi-strand DNA species in a Gordian-
knot manner: since a key target is to achieve a noncrossing arrangement for the
strands, we aim to achieve this directly by a planar graph embedding technique
that is guaranteed to find such an arrangement efficiently if one exists. For cases
where no planar (noncrossing) representation is possible, we present an efficient
and visually appealing approximate method.

Luckily, quite many pseudoknotted (RNA and multi-strand DNA) structures
have planar renderings: a simple example is the H-type pseudoknot in Figure 4,
for which a planar drawing is presented in subfigure 4b. In RNA, planar pseudo-
knots are closely related to the Rivas-Eddy class of secondary structures, which
is also one of the largest known algorithmically tractable families of RNA struc-
tures [13,26,29].

Text representation For textual description of multi-strand DNA species we use
a ‘process calculus’ notation based on named-domain pairings and introduced
to the DSD context in [27] (see Figure 5a). Lowercase letters and numbers are
used as domain names (e.g. a). A complementary domain has the same name
with an additional asterisk appended (e.g. a∗). A domain with a given name
can appear repeatedly. A pairing of domains is indicated by an exclamation
mark followed by a matching index, appended to the domain names (e.g. a!1,
a∗!1). Each pairing must be unique. A strand comprises one or more sequentially
connected domains, enclosed in angle brackets: 〈a b〉. A species is a collection
of strands, separated by two forward slashes: 〈a b〉//〈c〉. Paired domains must
belong to the same species in the description.

Graph representation and algorithm generality Figure 5a presents an example of
a textual description of a species S and Figure 5b its graph representation G.
The vertices in G correspond to the domain boundaries, including the 5- and
3-ends, of the strands in S. The domains within the strands (solid lines in Figure
5b) and the domain pairings connecting the strands (dashed lines in Figure 5b)
constitute the edges in G. To ensure the antiparallel orientation of each domain
pairing {a, a∗}, the 5-end of a is connected to the 3-end of a∗ and vice versa.
We say that a species S is planar if G is a planar graph, i.e. can be embedded
on a plane without edge crossings. Determining if S is planar can be done in
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Fig. 5: Rendering steps of a species S. Each box displays a stage of the rendering
algorithm. The captions on the arrows indicate the operations taken to achieve
the next step. a: Text representation. b: Straight-line drawing. Vertices mark
the ends of domains, solid lines represent the domains and dashed lines the pair
connections. c: Minimised depth. d: Initial optimisation. e: Final drawing.



linear time by using any planarity testing algorithm, e.g. the Boyer-Myrvold
edge addition method [5].

To characterise the generality of the algorithm we consider the notion of book
thickness of a graph [2] that is widely used in the context of RNA theory [21].
For a given graph G a book embedding comprises a linear ordering of the vertices
of G, called the book spine, and a partition of its edges. The edges in each
class of the partition are drawn as non-crossing arcs on a separate halfplane (a
page) bordered on the book spine. The book thickness of G is then the minimum
number of pages needed to achieve such a book embedding, for some ordering
of the vertices along the spine. It is known that the book thickness of a graph G
is at most 2 if and only if G is a subgraph of a planar Hamiltonian graph [2].

In RNA the vertices represent nucleotides and the edges their pairings [21].
There is only one possible ordering of the vertices, and in case of linear RNA,
connecting the first and the last vertex makes the graph Hamiltonian. Therefore
the existence of a planar rendering of an RNA secondary structure is equivalent
to the condition that its arc diagram can be embedded on at most 2 pages.
This can be tested by e.g. checking the bipartiteness of an inconsistency graph
θ(V,E) [21], where every vertex corresponds to a crossing of the arcs in the arc
diagram.

In multi-strand DNA, the ordering of the vertices is not given, which makes
the problem of determining if a 2-page embedding exists NP-complete [10,37].
Moreover, there exist maximal planar graphs that are not Hamiltonian, therefore
some planar graphs might need more than 2 pages (see Figure 7c). In fact, any
planar graph can be embedded on 4 pages [22,38]. Therefore the notion of planar
DNA species as defined in this paper encompasses all 1-page (= nested) species,
all 2-page pseudoknots, and some pseudoknots that require more than 2 pages
and are planar.

Straight-line drawing It is known that any planar simple graph (= no multi-
edges, no self-loops) has a plane embedding with straight-line edges [35,12,32].
By definition, a species graph G as described earlier is always simple, and can
thus be drawn with straight lines if it represents a planar species. Rendering
G this way satisfies the conditions that the domains are drawn as straight-line
segments and the shortest distance between domains within a pair is represented
by a straight line.

Given a planar species graph G, a drawing (plane embedding) D of G can be
achieved in linear time by an algorithm described in [9] that produces crossing-
free, straight-line drawings on an (n−2)×(n−2) grid for graphs with n vertices.
The algorithm comprises four stages:

1. G is augmented by additional edges to achieve the biconnectivity required
for the canonical decomposition [20] applied in step 3.

2. A combinatorial embedding of G (clockwise ordering of incident edges at
each vertex) is determined e.g. with the Boyer-Myrvold method [5]. The
face of G with most vertices is chosen as the external face.



3. The canonical decomposition is computed. This is an ordered partition of
the set of vertices of G and determines the order of the vertices in the process
of drawing.

4. The graph is drawn on a plane according to the algorithm in [9]. The aug-
mented edges are removed from D.

All stages of the algorithm are of linear time complexity. An example result is
presented in Figure 5b.

The aforementioned algorithm covers only planar graphs, and a different
approach needs to be adopted for the non-planar cases. Our non-planar draw-
ing method follows the topology-shape-metrics approach [11,34] for orthogonal
drawings, where the edges may be either straight or bend 90 degrees. It priori-
tises the minimisation of the number of crossings and adheres to other aesthetic
criteria such as minimising the number of edge bends, edge length, and the area
of the drawing. These criteria correspond to our criteria of a good DNA species
drawing with no crossings and close distances between the paired domains. The
algorithm comprises three stages:

1. G is planarised by first finding some maximal planar subgraph of G and
then reinserting the remaining edges in a way that minimises the number of
crossings [18]. A dummy vertex is created at the location of each crossing.
From here, a planar embedding is computed using the same method as in
step 2 of the planar drawing.

2. Given the planar embedding, the orthogonalisation stage of the algorithm
constructs a network in which the minimum number of bends in G is deter-
mined by a min-cost flow method described in [33].

3. Lastly, the compaction stage determines the lengths of the edges and coor-
dinates of the vertices, producing a drawing of minimum possible area. In
the final rendering of D, the dummy vertices are removed, edge bending is
ignored and the edges are represented with straight lines. This may lead to
crossings in D.

The time complexity of this algorithm ranges from O(n) to O((n + c)2 log n),
where c is the number of crossings, depending on the planarity of the graph and
the orthogonalisation and compaction methods [34].

Minimum depth and maximum external face drawing The depth of a graph is
a measure of the topological nesting of its biconnected components (maximal
biconnected subgraphs) [28]. In a species graph G, the biconnected components
comprise connected domains and domain pairs. When depth is not minimised,
some domains are topologically nested inside other pairs, which prevents the
outer pair from achieving the desired proximity between its domains.

Consider a planar embedding of a graph of a species with strands
〈e!1 f〉 〈e∗!1〉. Let r be a vertex between domains e and f and !1 be the edge
connecting the bound domains. There exist two possible combinatorial embed-
dings in r (see Figure 6d) but only the one of minimum depth will result in a
drawing that minimises the distance between the paired domains. In Figure 5b,



pairs aa∗ bb∗, and ff∗ are topologically nested, and therefore pairs cc∗, dd∗, and
ee∗ cannot properly align.

In order to minimise the depth, a linear time embedding algorithm [19] that
uses an SPQR-tree data structure is applied to the second stage of the planar G
drawing. It chooses a planar embedding of maximum external face size among all
planar embeddings with minimum depth. Embeddings with maximum external
face have shown to improve certain metrics like the length of the edges and the
size of the area [17]. The result of the new embedding is presented in Figure 5c.

Drawing optimisation The final step for both planar and non-planar G is to
adjust the lengths of the edges without introducing new crossings in D. This
consideration imposes an additional requirement on force-directed graph layout
methods commonly used for such purposes. In a force-directed layout algorithm,
the connected vertices are attracting each other until the distance between them
is of desirable length, and the unconnected vertices are repelling each other.
An additional node-edge repulsion formula tries to prevent the overlapping of
nodes and edges, but due to the discreteness of the movements of the vertices,
new crossings may appear. Article [3] introduces the use of zones around every
vertex that confine its movement at each iteration of the algorithm and prevent
the formation of new crossings (see Figure 5d).

Further correction in the placement of the domains is required, as the pre-
vious step does not achieve the desired lengths for all the edges or the right
alignment between domains in a pair. A simulated annealing algorithm [4] is
used. Let domains d1 and d2 be paired and represented by vectors, such that
d1 = [d31, d

5
1] and d2 = [d32, d

5
2]. A distance to the correct placement of d1 and d2

is computed in three steps as follows (see Figure 6).
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1. Let a and b be vectors rotated 90 degrees counter-clockwise in relation to d1
and d2 respectively. Let p31 and p51 be the endpoints of a anchored at both
ends of d1 and p32 and p52 be the endpoints of b anchored at both ends of d2.
Let c31 = [d31, d

5
2], c51 = [d51, d

3
2], c32 = [d32, d

5
1], and c52 = [d52, d

3
1] (Figure 6a).

2. The correct side for d1 to bind with d2 is determined by the inequality:

sign(cos(a, c31)) + sign(cos(a, c51)) + sign(cos(b, c32)) + sign(cos(b, c52)) ≥ 3

where sign(x) = 0 if x ≤ 0, and 1 otherwise. If the inequality is not satisfied,
rotate a and b so that they are in 90 degrees clockwise relation to d1 and d2
respectively, as shown in Figure 6b. Note the change of the position of the
endpoints of a and b.

3. Compute the distances from d52 to p31, d32 to p51, d51 to p32, and d31 to p52 as in
Figure 6c.

At each step of the algorithm, three factors are being optimised: the distance
to the correct placement of domains for all pairs, the deviation from the desired
lengths of the edges, the deviation from the desired distance between the ends
of loop domains.

Figure 5e presents the final outcome where, to follow standard practice, the
double vertices at the domain boundaries have been removed and replaced by
single edges connecting the respective paired domains.

Implementation The planar embeddings of minimum depth and maximum ex-
ternal face for both planar and non-planar species and the graph drawing were
achieved with the help of algorithms in the Open Graph Drawing Framework
[8]. The visualisation is implemented as a part of the XDSD design tool [14].

3 Results

Figure 7 demonstrates the visualisation possibilities of the algorithm. The results
are compared with VisualDSD [24], a widely-used tool that accepts pseudoknot-
ted multi-strand designs as inputs.

The rendering algorithm in VisualDSD admits multi-strand, pseudoknotted
species with loops as inputs. The bonds that make the species a pseudoknot
(pseudoknotting connections) are accepted but not specifically handled except
for denoting them by boldening the domain and bond name.

Figure 7a presents a 1-page, nested species. The VisualDSD method does
not maintain the connectedness of the strands and instead draws dashed lines
between the separated domains. Our algorithm resolves to manipulating the
lengths of the domains in order to keep the domains together.

The species in Figure 7b is a 2-page pseudoknot. The VisualDSD version
breaks the species apart and superposes the pseudoknotting connections after
the other parts of the species are rendered. Our method does not distinguish
between the regular and pseudoknotting connections and renders all of them.
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Figure 7c shows another pseudoknot, a 3-page species that has a planar rep-
resentation. Again, the VisualDSD rendering ignores the pseudoknotting con-
nections. These noticeably change the appearance of the species, once the pseu-
doknotting domains are brought together.

4 Conclusions

Discussion Based on notions of planar pseudoknots and planar multi-strand
DNA species, we have presented a rendering method that is able to closely fol-
low the conventions of DSD system drawings (strands do not cross each other,
domains are represented as fixed length straight-line segments, and bound do-
mains are close to each other at a fixed distance) while keeping the strands
connected and pseudoknots visualised.

In renderings for pseudoknot-free species, conventionally there is one binding
side for all the domains in the species (e.g. clockwise or to the right w.r.t. the 5-3
direction of the domains). Our algorithm on the other hand does not distinguish
between pseudoknotted and pseudoknot-free species, and automates the embed-
ding of the species without paying attention to the consistency of the binding
sides (see Figure 6a). This may in some cases lead to decreased readability of
the drawing.

Further work The current implementation of the embedder cannot be applied
before the augmentation stage of the drawing algorithm. Therefore the aug-
mented edges are embedded as well, which after their removal may result in a
species rendering with crossings and non-minimal depth. In a future version,
one could aim to apply the embedder before the graph is augmented, so that
the addition and removal of the support edges does not affect the depth of the
resulting graph.

The drawing optimisation now uses a simulated annealing approach with
fixed hyperparameters that does not take into account the production of new
crossings. This way the optimisation process is faster, but may exert too much
or too little pressure on the species, resulting in new crossings or unaligned pairs
of uneven-length domains respectively. Further developments of the drawing op-
timisation part are needed since this is the only non-linear step in the algorithm.
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