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7.1 The Erdős-Rényi Model(s) . . . . . . . . . . . . . . . . . 70

7.2 Nonuniform Models . . . . . . . . . . . . . . . . . . . . 87

III Stochastic Algorithms 93

8 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Approximate counting . . . . . . . . . . . . . . . . . . . . . . . 100

10 Markov Chain Monte Carlo Simulations . . . . . . . . . . . . . . 105

11 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 112

11.1 The Basic Algorithm . . . . . . . . . . . . . . . . . . . . 112

11.2 Genetic Algorithms as Stochastic Processes . . . . . . . . 120

12 Combinatorial Phase Transitions . . . . . . . . . . . . . . . . . . 123

12.1 Phenomena and Models . . . . . . . . . . . . . . . . . . 123

12.2 Statistical Mechanics ofk-SAT (“1st-Order Analysis”) . . 126

12.3 Local Search Methods for 3-SAT . . . . . . . . . . . . . 128

12.4 Statistical Mechanics ofK-SAT (“Replica Analysis”) . . . 130



Preface

This set of lecture notes follows the Spring 2007 instalmentof the course. The
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According to current schedule, the next instalment of the course, and consequently
the next major update of the notes, is due in Spring 2009.

Helsinki, 22 April 2007

Pekka Orponen
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Part I

Markov Chains and Stochastic
Sampling

1 Markov Chains and Random Walks on Graphs

1.1 Structure of Finite Markov Chains

We shall only consider Markov chains with a finite, but usually very large,state
space S= {1, . . . ,n}.
An S-valued(discrete-time)stochastic processis a sequenceX0,X1,X2, . . . of S-
valued random variables over some probability spaceΩ, i.e. a sequence of (mea-
surable) mapsXt : Ω→ S, t = 0,1,2, . . .

Such a process is aMarkov chainif for all t ≥ 0 and anyi0, i1, . . . , it−1, i, j ∈ Sthe
following “memoryless” (forgetting) condition holds:

Pr(Xt+1 = j | X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = i)

= Pr(Xt+1 = j | Xt = i). (1)

Consequently, the process can be described completely by giving its initial distri-
bution (vector)1

p0 = [p0
1, . . . , p0

n] =
[
p0

i

]n
i=1 , wherep0

i = Pr(X0 = i)

1By a somewhat confusing convention, distributions in Markov chain theory are represented
as row vectors. We shall be denoting the 1× n columnvector with componentsp1, . . . , pn as
(p1, . . . , pn), and the correspondingn×1 row vector as[p1, . . . , pn] = (p1, . . . , pn)

T . All vectors
shall be column vectors unless otherwise indicated by text or notation.

2



1. Markov Chains and Random Walks on Graphs 3

and its sequence oftransition (probability) matrices

P(t) =
(

p(t)
i j

)n

i, j=1
, wherep(t)

i j = Pr(Xt = j | Xt−1 = i).

Clearly, by the rule of total probability, the distributionvector at timet ≥ 1

p(t) = [Pr(Xt = j)]nj=1

is obtained fromp(t−1) simply by computing for eachj:

p(t)
j =

n

∑
i=1

p(t−1)
i · p(t)

i j ,

or more compactly

p(t) = p(t−1)P(t).

Recurring back to the initial distribution, this yields

p(t) = p0P(1)P(2) · · ·P(t). (2)

If the transition matrix is time-independent, i.e.P(t) = P for all t ≥ 1, the Markov
chain ishomogeneous, otherwiseinhomogeneous. We shall be mostly concerned
with the homogeneous case, in which formula (2) simplifies to

p(t) = p0Pt .

We shall say in general that a vectorq∈ Rn is astochastic vectorif it satisfies

qi ≥ 0 ∀ i = 1, . . . ,n and ∑
i

qi = 1.

A matrix Q∈ Rn×n is astochastic matrixif all its row vectors are stochastic vec-
tors.

Now let us assume momentarily that for a given homogeneous Markov Chain
with transition matrixP and initial probability distributionp0 there exists a limit
distributionπ ∈ [0,1]n such that

lim
t→∞

p(t) = π (in any norm, e.g. coordinatewise). (3)

Then it must be the case that

π = lim
t→∞

p0Pt = lim
t→∞

p0Pt+1

=
(

lim
t→∞

p0Pt
)

P = πP.
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Figure 1: A Markov chain for Helsinki weather.

Thus, any limit distribution satisfying property (3), if such exist, is a left eigen-
vector of the transition matrix with eigenvalue 1, and can becomputed by solving
the equationπ = πP. Solutions to this equation are called theequilibriumor sta-
tionary distributionsof the chain.

Example 1.1 The weather in Helsinki.Let us say that tomorrow’s weather is
conditioned on today’s weather as represented in Figure 1 orin the transition
matrix:

P rain sun
rain 0.6 0.4
sun 0.7 0.3

Then the long-term weather distribution can be determined,in this case uniquely
and in fact independent of the initial conditions, by solving

πP = π, ∑
i

πi = 1

⇔
[

πr πs
][0.6 0.4

0.7 0.3

]
=
[

πr πs
]
, πr +πs = 1

⇔
{

πr = 0.6πr +0.7πs

πs = 0.4πr +0.3πs
, πr +πs = 1

⇔
{

πr = 0.64
πs = 0.36

Every finite Markov chain has at least one stationary distribution, but as the fol-
lowing examples show, this need not be unique, and even if it is, then the chain
does not need to converge towards it in the sense of equation (3).

Example 1.2 A reducible Markov chain.Consider the chain represented in Fig-
ure 2. Clearly any distributionp = [p1 p2] is stationary for this chain. The
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Figure 2: A reducible Markov chain.
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Figure 3: Periodic Markov chains.

underlying cause for the existence of several stationary distributions is that the
chain isreducible, meaning that it consists of several “noncommunicating” com-
ponents. (Precise definitions are given below.)

Any irreducible (“fully communicating”) chain has a uniquestationary distribu-
tion, but this does not yet guarantee convergence in the sense of equation (3).

Example 1.3 Periodic Markov chains.Consider the chains represented in Fig-
ure 3. These chains areperiodic, with periods 2 and 3. While they do have unique
stationary distributions indicated in the figure, they onlyconverge to those distri-
butions from the corresponding initial distributions; otherwise probability mass
“cycles” through each chain.

So when is a unique stationary limit distribution guaranteed? The brief answer is
as follows.

Consider a finite, homogeneous Markov chain with state setSand transition ma-
trix P. The chain is:

(i) irreducible, if any state can be reached from any other state with positive
probability, i.e.

∀ i, j ∈ S ∃ t ≥ 0 : Pt
i j > 0;
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(ii) aperiodicif for any statei ∈ S the greatest common divisor of its possible
recurrence times is 1, i.e. denoting

Ni = {t ≥ 1 | Pt
ii > 0}

we have gcd(Ni) = 1, ∀ i ∈ S.

Theorem (Markov Chain Convergence)A finite homogeneous Markov chain
that is irreducible and aperiodic has a unique stationary distributionπ, and the
chain will converge towards this distribution from any initial distribution p0 in the
sense of Equation (3).2

Irreducible and aperiodic chains are also calledregular or ergodic.

We shall prove this important theorem below, establishing first the existence and
uniqueness of the stationary distribution, and then convergence. Before going
into the proof, let us nevertheless first look into the structure of arbitrary, possibly
nonregular, finite Markov chains somewhat more closely.

Let the finite state space beSand the homogeneous transition matrix beP.

A set of statesC⊆ S,C 6=∅ is closedor invariant, if pi j = 0 ∀ i ∈C, j /∈C.

A singleton closed state isabsorbing(i.e. pii = 1).

A chain isirreducible if S is the only closed set of states. (This definition can be
seen to be equivalent to the one given earlier.)

Lemma 1.1 Every closed set contains aminimal closed set as a subset.2

Statej is reachablefrom statei, denotedi→ j, if Pt
i j > 0 for somet ≥ 0.

Statesi, j ∈ S communicate, denotedi↔ j, if i→ j and j → i.

Lemma 1.2 The communication relation “↔” is an equivalence relation. All the
minimal closed sets of the chain are equivalence classes with respect to “↔”. The
chain is irreducible if and only if all its states communicate. 2

States which do not belong to any of the minimal closed subsets are calledtran-
sient.

One may thus partition the chain into equivalence class withrespect to “↔”. Each
class is either a minimal closed set or consists of transientstates. This is illustrated
in Figure 4. By “reducing” the chain in this way one obtains a DAG-like structure,
with the minimal closed sets as leaves and the transient components as internal
nodes. (Actually a “forest” if the chain is disconnected.) An irreducible chain of
course reduces to a single node.
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T1 T2

C2C1 T3

C3

Figure 4: Partitioning of a Markov chain into communicatingclasses.

Theperiodof statei ∈ S is

gcd{t ≥ 1 | Pt
ii > 0︸ ︷︷ ︸

Ni

}.

A state with period 1 isaperiodic.

Lemma 1.3 Two communicating states have the same period. Hence, everycom-
ponent of the “↔” relation has a uniquely determined period.2

Define thefirst hit (or first passage) probabilities for statesi→ j andt ≥ 1 as:

f (t)
i j = Pr(X1 6= j,X2 6= j, . . . ,Xt−1 6= j,Xt = j | X0 = i),

and thehitting (or passage) probability for i→ j as

f ∗i j = ∑
t≥1

f (t)
i j .

Then theexpected hitting(passage) timefor i→ j is

µi j =





∑
t≥1

t f (t)
i j , if f ∗i j = 1;

∞ if f ∗i j < 1

For i = j, µii is called theexpected return time, and often denoted simplyµi .

Statei ∈ S is recurrent(or persistent) if f ∗ii = 1, otherwise it istransient. (In infi-
nite Markov chains the recurrent states are further dividedinto positive recurrent
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with µi < ∞ andnull recurrentwith µi = ∞, but the latter case does not occur in
finite Markov chains and thus need not concern us here.)

The following theorem provides an important characterisation of the recurrent
states.

Notation:Pk =
(

p(k)
i j

)n

i, j=1
.

Theorem 1.4 State i∈ S is recurrent if and only if∑k≥0 p(k)
ii = ∞. Correspond-

ingly, i∈ S is transient if and only if∑k≥0 p(k)
ii < ∞.

Proof. Recall the relevant definitions:

p(k)
ii = Pr(Xk = i | X0 = i),

f (t)
ii = Pr(X1 6= i, . . . ,Xt−1 6= i,Xt = i | X0 = i).

Then it is fairly clear that

p(k)
ii =

k

∑
t=1

f (t)
ii p(k−t)

ii =
k−1

∑
t=0

f (k−t)
ii p(t)

ii .

Consequently, for anyK:

K

∑
k=1

p(k)
ii =

K

∑
k=1

k−1

∑
t=0

f (k−t)
ii p(t)

ii

=
K−1

∑
t=0

p(t)
ii

K

∑
k=t+1

f (k−t)
ii

≤
K

∑
t=0

p(t)
ii f ∗ii

=

(
1+

K

∑
t=1

p(t)
ii

)
f ∗ii

SinceK was arbitrary, we obtain:

(1− f ∗ii )
∞

∑
k=1

p(k)
ii ≤ f ∗ii .

Now if i ∈ S is transient, i.e.f ∗ii < 1, then

∑
k≥1

p(k)
ii ≤

f ∗ii
1− f ∗ii

< ∞.
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Conversely, assume thati ∈ S is recurrent, i.e.f ∗ii = 1. Now one can see that

Pr(Xt = i for at least twot ≥ 1 | X0 = i) = ∑
t,t ′≥1

f (t)
ii f (t ′)

ii =

(

∑
t≥1

f (t)
ii

)2

= ( f ∗ii )
2 = 1,

and by induction that

Pr(Xt = i for at leasts times|X0 = i) = ( f ∗ii )
s = 1.

Consequently,

P∞
kk , Pr(Xk = i infinitely often| X0 = i) = lim

s→∞
( f ∗ii )

s = 1.

However, if∑k≥0 p(k)
ii < ∞, then by the Borel-Cantelli lemma (see below) it should

be the case thatp∞
kk = 0.

Thus it follows that if f ∗ii = 1, then also∑k≥0 p(k)
ii = ∞. 2

Lemma (Borel-Cantelli, “easy case”)Let A0,A1, . . . be events, and A the event
“infinitely many of the Ak occur”. Then

∑
k≥0

Pr(Ak) < ∞⇒ Pr(A) = 0.

Proof. Clearly

A =
\

m≥0

[

k≥m

Ak.

Thus for allm≥ 0,

Pr(A)≤ Pr

(
[

k≥m

Ak

)
≤ ∑

k≥m

Pr(Ak)→ 0 asm→ ∞,

assuming the sum∑k≥0Pr(Ak) converges.2

Let C1, . . . ,Cm⊆ Sbe the minimal closed sets of a finite Markov chain, andT ,
S\ (C1∪· · ·∪Cm).

Theorem 1.5 (i) Any state i∈Cr , for some r= 1, . . . ,m, is recurrent.
(ii) Any state i∈ T is transient.
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Proof. (i) Assumei ∈C, C minimal closed subset ofS. Then for anyk≥ 1,

∑
j∈S

p(k)
i j = ∑

j∈C

p(k)
i j = 1,

becauseC is closed andP is a stochastic matrix. Consequently,

∑
k≥0

∑
j∈C

p(k)
i j = ∞,

and becauseC is finite, there must be somej0 ∈C such that

∑
k≥0

p(k)
i j0

= ∞.

Since j0↔ i, there is somek0≥ 0 such thatp(k0)
j0i = p0 > 0. But then

∑
k≥0

p(k)
ii ≥ ∑

k≥k0

p(k−k0)
i j0

p(k0)
j0i =

(

∑
k≥k0

p(k−k0)
i j0

)
· p0 = ∞.

By Theorem 1.4i is thus recurrent.

(ii) DenoteC = C1∪· · ·∪Cm. Since for anyj ∈Y the set{l ∈ S| j→ l} is closed,
it must intersectC; thus for anyj ∈ T there is somek≥ 1 such that

p(k)
iC , ∑

l∈C

p(k)
jl > 0.

SinceT is finite, we may find ak0 ≥ 1 such that for anyj ∈ T, p(k0)
jC = p > 0.

Then one may easily compute that for anyi ∈ T,

p(k0)
iT ≤ 1− p, p(2k0)

iT ≤ (1− p)2, p(3k0)
iT ≤ (1− p)3, etc.

and so

∑
k≥1

p(k)
ii ≤ ∑

k≥1

p(k)
iT ≤ ∑

r≥0
k0p(rk0)

iT ≤ k0 ∑
r≥0

(1− p)r < ∞.

By Theorem 1.4,i is thus transient.2

1.2 Existence and Uniqueness of Stationary Distribution

A matrix A∈Rn×n is
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(i) nonnegative, denotedA≥ 0, if ai j ≥ 0 ∀ i, j

(ii) positive, denotedA & 0, if ai j ≥ 0 ∀ i, j andai j > 0 for at least onei j

(iii) strictly positive, denotedA > 0, if ai j > 0 ∀ i, j

We denote alsoA≥ B if A−B≥ 0, etc.

Lemma 1.6 Let P≥ 0 be the transition matrix of some regular finite Markov
chain with state set S. Then for some t0≥ 1 it is the case that Pt > 0 ∀ t ≥ t0.

Proof. Choose somei ∈ Sand consider the set

Ni = {t ≥ 1 | p(t)
ii > 0}.

Since the chain is (finite and) aperiodic, there is some finiteset of numberst1, . . . , tm∈
Ni such that

gcdNi = gcd{t1, . . . , tm}= 1,

i.e. for some set of coefficientsa1, . . . ,am∈ Z,

a1t1+a2t2+ · · ·+amtm = 1.

Let P andN be the absolute values of the positive and negative parts of this sum,
respectively. ThusP−N = 1. Let T ≥ N(N−1) and consider anys≥ T. Then
s = aN+ r, where 0≤ r ≤ N− 1 and, consequently,a≥ N− 1. But thens =
aN+ r(P−N) = (a− r)N+P wherea− r ≥ 0, i.e.Scan be represented in terms
of t1, . . . , tm with nonnegative coefficientsb1, . . . ,bm. Thus

p(s)
ii ≥ p(b1t1)

ii p(b2t2)
ii · · · p(bmtm)

ii > 0.

Since the chain is irreducible, the claim follows by choosing t0 sufficiently larger
thanT to allow all states to communicate withi. 2

Let thenA≥ 0 be an arbitrary nonnegativen×n-matrix. Consider the set

Λ = {λ ∈R | Ax≥ λx for somex≥ 0}.

Clearly 0∈ Λ, soΛ 6= ∅. Also, it is easy to see that the values inΛ are upper
bounded by the maximal rowsumM of A. ThusΛ⊆ [0,M], and we may define

λ∗ = supΛ.
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To see that the supremum ofΛ is actually attained by someλ∗ ∈ Λ and vector
x∗ ≥ 0, observe that one may also defineλ∗ as

λ∗ = max
x∈[0,1]n

min
i=1,...,n

(Ax)i

xi
,

where in the case ofxi = 0, the quotient(Ax)i
xi

is defined as the appropriate limit to
maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix A> 0 there
exist a positive real numberλ∗ > 0 and a strictly positive vector x∗ > 0 such that:

(i) Ax∗ = λ∗x∗;

(ii) if λ 6= λ∗ is any other (in general complex) eigenvalue of A, then|λ|< λ∗;

(iii) λ∗ has geometric and algebraic multiplicity 1.

Proof. Defineλ∗ as above, and letx∗ ≥ 0 be a vector such thatAx∗ ≥ λ∗x∗. Since
A > 0, alsoλ∗ > 0.

(i) Suppose that it is not the case thatAx∗ = λ∗x∗, i.e. thatAx∗ ≥ λ∗x∗, but not
Ax∗ = λ∗x∗. Consider the vectory∗ = Ax∗. SinceA > 0, Ax> 0 for anyx & 0; in
particular nowA(y∗−λ∗x∗) = Ay∗−λ∗Ax∗ = Ay∗−λ∗y∗ > 0, i.e.Ay∗ > λ∗y∗; but
this contradicts the definition ofλ∗.

ConsequentlyAx∗ = λ∗x∗, and furthermorex∗ = 1
λ∗Ax∗ > 0.

(ii) Let λ 6= λ∗ be an eigenvalue ofA andy 6= 0 the corresponding eigenvector,
Ay= λy. Denote|y|= (|y1|, . . . , |yn|). SinceA > 0, it is the case that

A|y| ≥ |Ay|= |λy|= |λ||y|.

By the definition ofλ∗, it follows that|λ| ≤ λ∗.

To prove strict inequality, letδ > 0 be so small that the matrixAδ = A−δI is still
strictly positive. Then for any eigenvalueλ of A, λ− δ is an eigenvalue ofAδ
and vice versa. SinceAδ > 0, its largest eigenvalue isλ∗− δ, i.e. for any other
eigenvalueλ of A, |λ−δ| ≤ λ∗−δ.

But this implies thatA cannot have any eigenvaluesλ 6= λ∗ on the circle|λ|= λ∗,
because such would have|λ−δ|> |λ∗−δ|. (See Figure 5.)

(iii) We shall consider only the geometric multiplicity. Suppose there was another
(real) eigenvectory > 0, linearly independent ofx∗, associated toλ∗. Then one
could form a linear combinationw = x∗+ αy such thatw & 0, but notw > 0.
However, sinceA > 0, it must be the case that alsow = 1

λ∗Aw> 0. 2
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λ

λ∗-δ

λ∗− δ

λ− δ

Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix (A≥ 0) such that some power of A is
strictly positive (An > 0), then the conclusions of Theorem 1.7 hold also for A.2

Note: In fact every nonnegative matrixA≥ 0 has a real “Perron-Frobenius” eigen-
valueλ∗≥ 0 of maximum modulus, i.e. such that|λ| ≤ λ∗ holds for all eigenvalues
λ of A. But in this general case there may also be complex eigenvalues of equal
modulus, andλ∗ itself may be nonsimple, i.e. have multiplicity greater than one.

Proposition 1.9 Let A≥ 0 be a nonnegative n×n matrix with row and column
sums

r i = ∑
j

ai j , c j = ∑
i

ai j , i, j = 1, . . . ,n

Then for the Perron-Frobenius eigenvalueλ∗ of A the following bounds hold:

min
i

r i ≤ λ∗ ≤max
i

r i , min
j

c j ≤ λ∗ ≤max
j

c j .
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Proof. Let x∗ = (x1,x2, . . . ,xn) be an eigenvector corresponding toλ∗, normalised
so that∑i xi = 1. Summing up the equations forAx∗ = λ∗x∗ yields:

a11x1 + a12x2 + . . . + a1nxn = λ∗x1

a21x1 + a22x2 + . . . + a2nxn = λ∗x2
...

an1x1 + an2x2 + . . . + annxn = λ∗xn

c1x1 + c2x2 + . . . + cnxn = λ∗ (x1+ · · ·+xn)︸ ︷︷ ︸
1

= λ∗

Thusλ∗ is a “weighted average” of the column sums, so in particular min j c j ≤
λ∗ ≤maxj c j .

Applying the same argument toAT , which has the sameλ∗ asA, yields the row
sum bounds.2

Corollary 1.10 Let P≥ 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution vectorπ such thatπP= π (⇔ PTπT = πT).

Proof.By Lemma 1.6 and Corollary 1.8,P has a unique largest eigenvalueλ∗ ∈R.
By Proposition 1.9,λ∗ = 1, because as a stochastic matrix all row sums ofP (i.e.
the column sums ofPT) are 1. Since the geometric multiplicity ofλ∗ is 1, there is
a unique stochastic vectorπ (i.e. satisfying∑i πi = 1) such thatπP = π. 2

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chainwith transition ma-
trix P has a unique stationary distribution vectorπ such thatπP = π.

By elementary arguments (page 3) we know that starting from any initial distribu-
tionq, if the iterationq,qP,qP2, . . . converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain determined byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let A∈ Cn×n be any matrix with eigen-
valuesλ1, . . . ,λl ∈C, l ≤ n. Then there exists an invertible matrix U∈Cn×n such
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that

UAU−1 =




J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jr




where each Ji is a ki×ki Jordan block associated to some eigenvalueλ of A:

Ji =




λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ




The total number of blocks associated to a given eigenvalueλ corresponds toλ’s
geometric multiplicity, and their total dimension∑i ki to λ’s algebraic multiplicity.

2

Now let us consider the Jordan canonical form of a transitionmatrixP for a regular
Markov chain. Assume for simplicity that all the eigenvalues of P are real and
distinct. (The general argument is similar, but needs more complicated notation.)
Then the rows ofU may be taken to be left eigenvectors of the matrixP, and the
Jordan canonical form reduces to the familiar eigenvalue decomposition:

UPU−1 = Λ =




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


 .

In this case one notes that in fact the columns ofU−1 = V are precisely theright
eigenvectors corresponding to the eigenvaluesλ1, . . . ,λn. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalueλ1 = 1, and the other eigen-
values may be ordered so that 1> |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. The unique (up to
normalisation) left eigenvector associated to eigenvalue1 is the stationary distri-
butionπ, and the corresponding unique (up to normalisation) right eigenvector is
1 = (1,1, . . . ,1). If the first row ofU is normalised toπ, then the first column of
V must be normalised to1 becauseUV =UU−1 = I , and hence(UV)11 = u1v1 =
πv1 = 1.
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Denoting

Λ =




1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn


 ,

we have then:

P2 = (VΛU)2 = VΛ2U = V




1 0 · · · 0

0 λ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 λ2
n


U,

and in general

Pt = VΛtU = V




1 0 · · · 0

0 λt
2

. . .
...

...
. . . . . . 0

0 · · · 0 λt
n


U

−−→
t→∞

V




1 0 · · · 0

0 0
...

...
...

. . . . . . 0
0 · · · 0 0


U =




v11u1

v12u1
...

v1nu1


=




π
π
...
π


 .

To make the situation even more transparent, represent a given initial distribution
q = q0 in the (left) eigenvector basis as

q = q̃1u1+ q̃2u2+ · · ·+ q̃nun

= π+ q̃2u2+ · · ·+ q̃nun, where ˜qi = 〈qT ,vi〉= qvi .

Then

qP= (π+ q̃2u2+ · · ·+ q̃nun)P = π+ q̃2λ2u2 + · · ·+ q̃nλnun,

and generally

q(t) = qPt = π+
n

∑
i=2

q̃iλt
iui ,

implying thatq(t) −−→
t→∞

π, and if the eigenvalues are ordered as assumed, then

||q(t)−π||= O (|λ2|t).
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1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Markovchain?

A moment’s thought shows that the transition matrix of an arbitrary (finite) Markov
chain can be put in the followingcanonical form:

P =




P1 0
...

0 Pr

0

R Q




where ther square matricesP1, . . . ,Pr in the upper left corner represent the tran-
sitions within ther minimal closed classes,Q represents the transitions among
transient states, andR represents the transitions from transient states to one of the
closed classes.

In this ordering, stationary distributions (left eigenvectors ofP corresponding to
eigenvalue 1) must apparently be of the formπ = [π1 · · · πr 0 · · · 0]. (Note that
sinceQ has at least one row sum less than 1, by the proof argument in Proposi-
tion 1.9 also all of its eigenvalues have modulus less than 1.Thus the only solution
of the stationarity equationµQ= µ is µ= 0.)

Consider then thefundamental matrix M= (I −Q)−1 of the chain. Intuitively, if
M is well-defined, it corresponds toM = I +Q+Q2 + . . . , and represents all the
possible transition sequences the chain can have without exiting Q.

Theorem 1.12 For any finite Markov chain with transition matrix as above, the
matrix I−Q is invertible, and its inverse can be represented as the convergent
series M= I +Q+Q2 + . . .

Proof. Since for anyt ≥ 1,

(I −Q)(I +Q+ · · ·+Qt−1) = I −Qt ,

andQt → 0 ast→ ∞, the result follows.2

A transparent stochastic interpretation of the fundamental matrix may be obtained
by considering any two transient statesi, j in a Markov chain as above. Then:

Pr(Xt = j | X0 = i) = Qt
i j , q(t)

i j .
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21

p
q = 1− p1

Figure 6: A Markov chain representing the geometric distribution.

Thus,

E[number of visits toj ∈ T | X0 = i ∈ T] = q(0)
i j +q(1)

i j +q(2)
i j + . . .

= Ii j +Qi j +Q2
i j + . . .

= Mi j , mi j .

Furthermore,

E[number of moves inT before exiting toC | X0 = i ∈ T]

= ∑
j∈T

E[number of visits toj ∈ T | X0 = i ∈ T]

= ∑
j∈T

mi j

= (M1)i.

As another application, letbi j be the probability that the chain when started in
transient statei ∈ T will enter a minimal closed class via statej ∈ C. Denote
B = (bi j )i∈T, j∈C. Then in factB = MR.

Proof. For giveni ∈ T, j ∈C,

bi j = pi j + ∑
k∈T

pikbk j.

Thus,

B = R+QB ⇒ B = (I −Q)−1R= MR.

Example 1.4 The geometric distribution.Consider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in thiscase is

P =

[
1 0
p q

]
.
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A loses A winsq

0

q

1

q

2

1 1

−2 −1

p p p

Figure 7: A Markov chain representing a coin-flipping game.

Now Q = (q), M = (1−q)−1 = 1/p. Thus, e.g.

E[number of visits to 2 before exiting to 1| X0 = 2] = M1 =
1
p
.

An elementary way to obtain the same result would be:

E[number of visits] = ∑
k≥0

Pr[number of visits= k] ·k

= ∑
k≥0

Pr[number of visits≥ k]

= 1+q+q2+ · · ·= 1
1−q

=
1
p
.

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A’s success probability equal top and B’s success probability equal to 1− p = q.
The person to first obtainn successes over the other wins. What are A’s chances of
winning, given that he initially hask successes over B,−n≤ k≤ n? (A more tech-
nical term for this process is “one-dimensional random walkwith two absorbing
barriers.”)

For simplicity, let us consider only the casen= 2. Then the chain is as represented
in Figure 7, with transition matrix:

−2 −1 0 1 2
−2 1 0 0 0 0
−1 q 0 p 0 0
0 0 q 0 p 0
1 0 0 q 0 p
2 0 0 0 0 1
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i.e. in canonical form:

−2 2 −1 0 1
−2 1 0 0 0 0
2 0 1 0 0 0
−1 q 0 0 p 0
0 0 0 q 0 p
1 0 p 0 q 0

Thus,M = (I −Q)−1

=




1 −p 0
−q 1 −p
0 −q 1



−1

=
1

p2+q2




p+q2 p p2

q 1 p
q2 q q+ p2




and soB = MR

=
1

p2 +q2




p+q2 p p2

q 1 p
q2 q q+ p2






q 0
0 0
0 p


=

1
p2 +q2




qp+q3 p3

q2 p2

q3
︸︷︷︸

A loses

pq+ p3
︸ ︷︷ ︸

A wins


 .

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chainsoften encountered
in algorithmic applications. Many examples of these types of chains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred time direction at equilibrium, i.e.
any given sequence of states is equally likely to occur in forward as in backward
order.

A Markov chain determined by the transition matrixP = (pi j )i, j∈S is reversibleif
there is a distributionπ that satisfies thedetailed balanceconditions:

πi pi j = π j p ji ∀ i, j ∈ S.

Theorem 1.13 A distribution satisfying the detailed balance conditionsis sta-
tionary.

Proof. It suffices to show that, assuming the detailed balance conditions, the fol-
lowing stationarity condition holds for alli ∈ S:

πi = ∑
j∈S

π j p ji .
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π jπi

pi j

p ji

Figure 8: Detailed balance conditionπi pi j = π j p ji .

But this is straightforward:

∑
j∈S

π j p ji = ∑
j∈S

πi pi j = πi ∑
j∈S

p ji = πi .

2

Observe the intuition underlying the detailed balance condition: At stationarity,
an equal amount of probability mass flows in each step fromi to j as from j to
i.(The “ergodic flows”’ between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graph,V = {1, . . . ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbours is selected as
the next state, uniformly at random. That is,

pi j =

{ 1
di

, if (i, j) ∈ E
0, otherwise

(di = deg(i))

Let us check that this chain is reversible, with stationary distribution

π =

[
d1

d
d2

d
· · · dn

d

]
,

whered = ∑n
i=1di = 2|E|. The detailed balance condition is easy to verify:

πi pi j =

{
di
d · 1

di
= 1

d =
d j
d · 1

d j
= π j p ji , if (i, j) ∈ E

0 = π j p ji , if (i, j) /∈ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that
this chain has the unique stationary distributionπ =

[
1
3

1
3

1
3

]
. However, for

any i = 1,2,3:

πi pi,(i+1) =
1
3
· 2
3

=
2
9

> πi+1p(i+1),i =
1
3
· 1
3

=
1
9
.

Thus, even in a stationary situation, the chain has a “preference” of moving in the
counter-clockwise direction, i.e. it is not time-symmetric.
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2

13 1/3

2/3

2/3 2/3

1/3 1/3

Figure 9: A nonreversible Markov chain.

Figure 10: Hard-core colouring of a lattice.

2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) sampling, which is an
extremely important method for dealing with “hard-to-access” distributions.

Assume that one needs to generate samples according to a probability distribution
π, but π is too complicated to describe explicitly. A clever solution is then to
construct a Markov chain that converges to stationary distribution π, let it run
for a while and then sample states of the chain. (However, oneobvious problem
that this approach raises is determining how long is “for a while”? This leads to
interesting considerations of the convergence rates and “rapid mixing” of Markov
chains.)

Example 2.1 The hard-core model.

A hard-core colouringof a graphG = (V,E) is a mapping

ξ : V→{0,1} (“empty” vs. “occupied” sites)

such that

(i, j) ∈ E ⇒ ξ(i) = 0∨ξ( j) = 0 (no two occupied sites are adjacent)
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E.g. on a lattice graph, the hard-core colouring condition models an exclusion
principle, whereby a “particle” at one site excludes the presence of “particles” at
neighbouring sites, cf. Figure 10. In computer science terms, a hard-core colour-
ing of a graphG corresponds to an independent set of nodes fromG.

Denote byµG the uniform distribution over all theZG valid hard-core colourings of
G. We would like to sample colourings according toµG, e.g. in order to compute
the expected number of ones in a valid colouring:

E(n(X)) = ∑
ξ∈{0,1}V

n(ξ)µG(ξ) =
1

ZG
∑

ξ∈{0,1}V
n(ξ)I[ξ is valid],

wheren(ξ) denotes the number of ones in colouringξ.

However, the combinatorial structure of distributionµG is quite complicated; it is
far from clear how one could pick a random valid hard-core colouring of graph
G. (Even computing their total numberZG is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless P = NP.)

Given a graphG = (V,E), V = {1, . . . ,n}, let us consider the following Markov
chain(X0,X1, . . .) on the space of valid hard-core colourings ofG:

• Initially chooseX0 to be any valid hard-core colouring ofG.

• Then, given colouringXt, generate colouringXt+1 as follows:

1. Choose some nodei ∈V uniformly at random.

2. If all the neighbours ofi have colour 0 inXt , then letXt+1(i) = 1 with
probability 1/2 andXt+1(i) = 0 with probability 1/2.

3. At all other nodesj, let Xt+1( j) = Xt( j).

It can be seen that the chain thus determined is irreducible (since all colourings
communicate via the all-zeros colouring) and aperiodic (since for any colouring
ξ, Pξξ > 0).

To see that the chain hasµG as its unique stationary distribution, it suffices to
check the detailed balance conditions with respect toµG. Let ξ,ξ′ be two different
colourings. If they differ at more than one node, thenPξξ′ = Pξ′ξ = 0, so it suffices
to check the case whereξ(i) 6= ξ′(i) at a single nodei. But then

µG(ξ)Pξξ′ =
1

ZG
· 1
n
· 1
2

= µG(ξ′)Pξ′ξ.

The above hard-core sampling algorithm is a special case of aGibbs samplerfor
a target distributionπ on a state space of the formS= CV .
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The general principle is to choose in step 2 of the state update rule the new value
for Xt+1(i) according to theconditionalπ-distribution:

PrMC(Xt+1(i) = c) = Prπ(ξ(i) = c | ξ( j) = Xt( j), j 6= i).

(In addition, the chain needs to be initialised in a stateX0 that has nonzeroπ-
probability.) It can be seen that the chain so obtained is aperiodic and hasπ as
a stationary distribution. Whether the chain is also irreducible depends on which
statesξ have nonzeroπ-probability.

Example 2.2 Sampling graph k-colourings.Let G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in thespaceS= {1, . . . ,k}V
of k-colourings ofG:

• Initially chooseX0 to be any validk-colouring ofG. (Of course, finding a
valid k-colouring is an NP-complete problem fork≥ 3, but let us not worry
about that).

• Then, given colouringXt , generate colouringXt+1 as follows:

1. Choose some nodei ∈V uniformly at random.

2. LetC′ be the set of colours assigned byXt to the neighbours ofi:

C′ = {Xt( j) | (i, j) ∈ E}.

(Note that|C′|< k.) Choose a colour forXt+1(i) uniformly at random
from the set{1, . . . ,k}\C′.

3. At all other nodesj, let Xt+1( j) = Xt( j).

Note that it is a nontrivial question whether this chain is irreducible or not.

Another general family of MCMC samplers are theMetropolis chains.

Let the state spaceShave some neighbourhood structure, so that it may be viewed
as a (large) connected graph(S,N). Denote byN(i) the set of neighbours of state
i, and letdi = |N(i)|. We assume that the neighbourhood structure is symmetric,
so thati ∈ N( j) if and only if j ∈ N(i).

Then the (basic)Metropolis samplerfor distributionπ onSoperates as follows:

• Initially chooseX0 to be some statei ∈ S.

• Then, given stateXt = i, stateXt+1 is obtained as follows:
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1. Choose somej ∈N(i) uniformly at random.

2. With probability min
{

π jdi
πid j

,1
}

, acceptXt+1 = j. Otherwise letXt+1 =

i.

Thus, fully written out the transition probabilities are:

pi j =





1
di

min

{
π jdi

πid j
,1

}
, if j ∈ N(i)

0, if j /∈ N(i), j 6= i
1− ∑

j∈N(i)

pi j , if j = i

To show that this chain hasπ as its stationary distribution, it suffices to check the
detailed balance conditions:

πi pi j = π j p ji ∀ i, j ∈ S.

The conditions are trivial ifi = j or j /∈ N(i), so let us consider the casej ∈ N(i).
There are two subcases:

(i) Caseπ jdi
πid j
≥ 1: Then:





πi pi j = πi ·
1
di
·1

π j p ji = π j ·
1
d j
· πid j

π jdi
=

πi

di

(ii) Caseπ jdi
πid j

< 1: Then:





πi pi j = πi ·
1
di
· π jdi

πid j
=

π j

d j

π j p ji = π j ·
1
d j
·1

(Note that in both casesπi pi j = π j p ji = min{πi
di

,
π j
d j
}.) Henceπ is a stationary

distribution of the chain.

Furthermore, the chain is guaranteed to be aperiodic if there is at least onei ∈ S
such thatπ jdi

πid j
< 1 (⇒ pii > 0) i.e. it is not the case that for alli, j ∈ S:

πi

di
=

π j

d j
= const.
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In the latter case the chain reduces to a simple random walk onthe graph(S,N)
with stationary distribution

π =

[
d1

d
d2

d
· · · dn

d

]

as seen earlier. Such a random walk is aperiodic, if and only if the graph(S,N)
contains at least one odd cycle, i.e. if(S,N) is not bipartite.

3 Estimating the Convergence Rate of a Markov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on state setS= {1, . . . ,n}, with transition prob-
ability matrixP = (pi j ) and stationary distributionπ.

We would like to measure the rate of convergence of the chain to π, e.g. in terms
of thetotal variation distance:

∆(i)
V (t) = dV(π(i,t),π),

whereπ(i,t)
j = p(t)

i j , and

dV(ρ,π) = max
A⊆S
|ρ(A)−π(A)|= 1

2 ∑
j∈S

|ρ j −π j |.

However, we get somewhat tighter results by using instead ofdV therelative point-
wise distance

dU
rp(ρ,π) = max

j∈U

|ρ j −π j |
π j

.

Hence, we define our convergence rate function as:

∆U(t) = max
i∈U

dU
rp(π

(i,t),π) = max
i, j∈U

|p(t)
i j −π j |

π j
.

When we consider convergence over the whole state space, i.e. U = S, we denote
simply:

∆(t) = ∆S(t).
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Proposition 3.1 For any two distributionsρ, π, whereπ j > 0 for all j:

dV(ρ,π)≤ 1
2

dS
rp(ρ,π)≤ 1

minj π j
dV(ρ,π).

Consequently,∆(i)
V (t)≤ 1

2∆(t) for all i , t. 2

Define themixing timeof a given regular chain as

τ(ε) = min{t | ∆(t ′)≤ ε ∀ t ′ ≥ t}.

In algorithmic applications, the details of the chain are often determined by some
inputx, in which case we write∆x(t), τx(ε) correspondingly.

A chain (more precisely, a family of chains determined by inputs x) is rapidly
mixing if

τx(ε) = poly

(
|x|, ln 1

ε

)
.

Our goal is now to establish some techniques for analysing the convergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and stationary dis-
tribution π is reversible, if and only if the matrix D1/2PD−1/2 is symmetric, where
D1/2 = diag(

√
π1,
√

π2, . . . ,
√

πn).

Proof. D1/2PD−1/2 =
(

D1/2PD−1/2
)T
⇔ DP = PTD.

Inspecting this condition coordinatewise shows that it is exactly the same as the
reversibility conditionπi pi j = p ji π j ∀ i, j. 2

Now it is easy to see that the matrixA = D1/2PD−1/2 has the same eigenvalues as
P: if λ is an eigenvalue ofP with left eigenvectoru, then for the vectorv= uD−1/2

we obtain

vA= uD−1/2
(

D1/2PD−1/2
)

= uPD−1/2 = λuD−1/2 = λv.

Since matrixA is symmetric for reversibleP, this shows that reversibleP have
real eigenvalues. By the Perron-Frobenius theorem they canthus be ordered as

λ1 = 1 > λ2≥ λ3≥ ·· · ≥ λn >−1.

Denoteλmax= max{|λi| : 2≤ i ≤ n}= max{λ2,−λn}.
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Theorem 3.3 Let P be the transition matrix of a regular, reversible Markov chain,
and other notations as above. Then for any U⊆ S,

∆U(t)≤ λt
max

min
i∈U

πi
.

Proof.Let e1, . . . ,en be an orthonormal basis forRn consisting of left eigenvectors
of A, where vectorei is associated to eigenvalueλi . Especially,e1 = πD−1/2 =
[
√

π1,
√

π2, . . . ,
√

πn].

ThenA has a spectral representation

A =
n

∑
i=1

λi(e
i)Tei =

n

∑
i=1

λiEi ,

whereEi = (ei)Tei . ClearlyE2
i = Ei, andEiE j = 0 if i 6= j.

Thus, for anyt ≥ 0, At = ∑n
i=1 λt

iEi , and hence

Pt = D−1/2AtD1/2 =
n

∑
i=1

λt
i

(
D−1/2(ei)T

)(
eiD1/2

)

= 1π+
n

∑
i=2

λt
i

(
D−1/2(ei)T

)(
eiD1/2

)
.

In component form, this means:

p(t)
jk = πk +

√
πk

π j

n

∑
i=2

λt
ie

i
je

i
k.

Computing the relative pointwise distance convergence rate, we thus get for any
U ⊆ S:

∆U(t) = max
j ,k∈U

∣∣∣∣∣
n

∑
i=2

λt
ie

i
je

i
k

∣∣∣∣∣
√π jπk

(4)

≤ λt
max

max
j ,k∈U

∣∣∣∣∣
n

∑
i=2

ei
je

i
k

∣∣∣∣∣
min
j∈U

π j

≤ λt
max

min
j∈U

π j
(by the Cauchy-Schwarz inequality and normality).2
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Theorem 3.4 With notation and assumptions as above,

∆(t)≥ λt
max

for all even t. Moreover, if all eigenvalues of P are nonnegative, then the bound
holds for all t.

Proof. Continuing from equation (4) above, whent is even or all eigenvalues are
nonnegative, the following holds:

∆(t) = ∆S(t)≥max
j∈S

∣∣∣∣∣
n

∑
i=2

λt
i(e

i
j)

2

∣∣∣∣∣
π j

≥ λt
maxmax

j∈S

(ei0
j )2

π j
,

whereei0 is a normalised eigenvector corresponding to eigenvalue with absolute
valueλmax. Necessarily(ei0

j )2≥ π j for somej for otherwise

||ei0||=
n

∑
j=1

(ei0
j )2 <

n

∑
j=1

π j = 1,

contradicting the normality ofei0. 2

Negative eigenvalues are often a nuisance, but they can always be removed, with-
out affecting the convergence properties of the chain much,by adding appropriate
self-loops to the states. E.g.:

Proposition 3.5 With notation and assumptions as above, consider the chain de-
termined by transition matrix P′ = 1

2(I +P). This chain is then also regular and

reversible, has same stationary distributionπ, and its eigenvalues satisfyλ′n > 0
andλ′max= λ′2 = 1

2(1+λ2). 2

With Theorem 3.3 and Proposition 3.5 in mind, it is clear thatthe key to analysing
convergence rates of reversible Markov chains is to find goodtechniques for
bounding the second eigenvalueλ2 away from 1.

An interesting and intuitive approach to this task is via thenotion of “conduc-
tance” of a chain.

Given a finite, regular, reversible Markov chainM on the state spaceS= {1, . . . ,n},
transition probability matrixP= (pi j ) and stationary distributionπ = (πi), we as-
sociate toM a weighted graphG = (S,E,W), whereE = {(i, j) | pi j > 0}, and
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the weights, or “capacities” on the edges correspond to theergodic flowsbetween
states:

wi j = πi pi j = π j p ji .

Given a state setA⊆ S, thevolumeof A is defined as

VA = π(A) = ∑
i∈A

πi,

and theergodic flowout ofA as

FA = ∑
i∈A
j /∈A

πi pi j = ∑
i∈A
j /∈A

wi j = w(A, Ā).

(Note that 0< FA≤VA < 1.)

Then theconductanceof the cut(A, Ā), or the(weighted) expansionof A is

ΦA =
FA

VA
=

w(A, Ā)

π(A)
,

and finally theconductanceof M , or G, is obtained as

ΦM = Φ(G) = min
0<π(A)≤1/2

ΦA.

Since clearlyFA = FĀ for any∅ 6= A S, this may equally well be defined as:

Φ = min
∅ 6=A S

max(ΦA,ΦĀ).

Theorem 3.6 For a regular reversible Markov chain with underlying graphG,
the second eigenvalue of the transition matrix satisfies:

(i)

λ2≤ 1− Φ(G)2

2
;

(ii)

λ2≥ 1−2Φ(G).

Proof. Later.2
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Corollary 3.7 With notation and assumptions as above, the convergence rates for
the chain under consideration satisfy, for any∅ 6= A S and t≥ 0:

(i)

∆A(t)≤
(
1−Φ2/2

)t

min
i∈A

πi
;

(ii)

∆(t)≥ (1−2Φ)t .

Corollary 3.8 Consider a family of regular reversible chains where all eigenval-
ues are nonnegative, parameterised by some input string x, and with underlying
graphs Gx. Then the chains are rapidly mixing, if and only if

Φ(Gx)≥
1

p(|x|) ,

for some polynomial p and all x.

Proof. According to Corollary 3.7 (i):

∆(t) ≤ ε

if
(1−Φ2/2)

t

mini∈A πi
≤ ε

if t · ln
(

1− Φ2

2

)

︸ ︷︷ ︸
≤−Φ2/2

≤ ln ε+ ln πmin

if −tΦ2/2 ≤ ln ε+ ln πmin

if t ≥ 2
Φ2

(
ln 1

ε + ln 1
πmin

)
.

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

∆(t) > ε
if λt

2 > ε
if t lnλ2 > ln ε
if t ln 1

λ2
< ln 1

ε

if t · 1−λ2
λ2

< ln 1
ε ln 1

λ = ln
(

1+ 1−λ
λ

)
≤ 1−λ

λ , 0 < λ≤ 1

if t < λ2
1−λ2
· ln 1

ε
if t < 1−2Φ

2Φ ln 1
ε

λ
1−λ increasing inλ, 1−2Φ≤ λ2.
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Figure 11: Random walk on a ring.

Consequently,

1−2Φ(Gx)

2Φ(Gx)
ln

1
ε
≤ τx(ε)≤

2
Φ(Gx)2

(
ln

1
ε

+ ln
1

πx
min

)
.2

Example 3.1 Random walk on a ring.Consider the regular, reversible Markov
chain described by the graph in Figure 11.

Clearly the stationary distribution isπ = [1
n,

1
n, · · · , 1

n].

The conductanceΦA = FA/VA of a cut(A, Ā) is minimised by choosingA to consist
of anyn/2 consecutive nodes on the cycle, e.g.A = {1,2, . . . ,n/2}. Then

Φ = ΦA =
FA

VA
=

∑
i∈A
j /∈A

πi pi j

∑
i∈A

πi
=

2 · 1
n · 1

4
n
2 · 1

n

=
1/2n
1/2

=
1
n
.

Thus, by Theorem 3.6, the second eigenvalue satisfies:

1− 2
n
≤ λ2≤ 1− 1

2n2 ,

by Corollary 3.7, the convergence rate satisfies

(
1− 2

n

)t

≤ ∆(t)≤ n ·
(

1− 1
2n2

)t

,

and by Corollary 3.8, the mixing time satisfies:

1−2/n
2/n

ln
1
ε
≤ τ(ε)≤ 2n2

(
ln

1
ε

+ lnn

)

⇔
(n

2
−1
)
· ln 1

ε
≤ τ(ε)≤ 2n2

(
lnn+ ln

1
ε

)
.
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It is an intriguing, and nontrivial, exercise to work out thevalue ofλ2 exactly in
this case, in order to determine whether the mixing timesτ(ε) are closer to the
given lower or upper bounds as a function ofn.

Let us now return to the proof of Theorem 3.6, establishing the connection be-
tween the second-largest eigenvalue and the conductance ofa Markov chain. Re-
call the statement of the Theorem:

Theorem 3.6 Let M be a finite, regular, reversible Markov chain andλ2 the
second-largest eigenvalue of its transition matrix. Then:

(i) λ2≤ 1− Φ2

2 ,

(ii) λ2≥ 1−2Φ.

Proof. (i) The approach here is to boundΦ in terms of the eigenvalue gap ofM ,
i.e. to show thatΦ2/2≤ 1−λ2, from which the claimed result follows.

Thus, consider the eigenvalueλ = λ2. (The following proof does not in fact de-
pend on this particular choice of eigenvalueλ 6= 1, but since we are proving an
upper bound of the formΦ2/2≤ 1−λ, all other eigenvalues yield weaker bounds
thanλ2.)

Let e be a left eigenvectore 6= 0 such thateP= λe. Now e must contain both
positive and negative components, since∑i ei = 0 as can be seen:

eP= λe ⇔ ∑
i

ei pi j = λej ∀ j

⇒ ∑
j
∑
i

ei pi j = ∑
i

ei ∑
j

pi j

︸ ︷︷ ︸
=1

= λ∑
j

ej

λ6=1
⇒ ∑

i
ei = 0.

DefineA = {i | ei > 0}. Assume, without loss of generality, thatπ(A) ≤ 1/2.
(Otherwise we may replaceeby−e in the following proof.)

Define further a “π-normalised” version ofe� A:

ui =

{
ei/πi, if i ∈ A
0, if i /∈ A

Without loss of generality we may again assume that the states are indexed so that
u1≥ u2≥ . . .≥ ur > ur+1 = . . . = un = 0, wherer = |A|.
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In the remainder of the proof, the following quantity will beimportant:

D =

∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i

.

We shall prove the following claims:

(a) Φ≤D,

(b) D2/2≤ 1−λ,

which suffice to establish our result.

Proof of (a): DenoteAk = {1, . . . ,k}, for k = 1, . . . , r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out of theAk as
follows:

∑
i< j

wi j (u
2
i −u2

j ) = ∑
i< j

wi j ∑
i≤k< j

(u2
k−u2

k+1)

=
r

∑
k=1

(u2
k−u2

k+1) ∑
i∈Ak
j /∈Ak

wi j

=
r

∑
k=1

(u2
k−u2

k+1)FAk.

Now the capacities of theAk satisfyπ(Ak)≤ π(A)≤ 1/2, so by definitionΦAk ≥
Φ ⇒ FAk ≥Φ ·π(Ak). Thus,

∑
i< j

wi j (u
2
i −u2

j ) =
r

∑
k=1

(u2
k−u2

k+1)FAk

≥ Φ ·
r

∑
k=1

(u2
k−u2

k+1)π(Ak)

= Φ ·
r

∑
k=1

(u2
k−u2

k+1)
k

∑
i=1

πi

= Φ ·
r

∑
i=1

πi

r

∑
k=i

(u2
k−u2

k+1)

= Φ ·∑
i∈A

πiu
2
i .
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Hence,

Φ≤
∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i

= D.

Proof of (b): We introduce one more auxiliary expression:

E =

∑
i< j

wi j (ui−u j)
2

∑
i

πiu
2
i

,

and establish that: (b’)D2≤ 2E, (b”) E ≤ 1−λ. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b’): Observe first that

∑
i< j

wi j (ui +u j)
2≤ 2∑

i< j
wi j (u

2
i +u2

j )≤ 2∑
i∈A

πiu
2
i .

Then, by the Cauchy-Schwartz inequality:

D2 =




∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i




2

≤




∑
i< j

wi j (ui +u j)
2

∑
i

πiu
2
i







∑
i< j

wi j (ui−u j)
2

∑
i

πiu
2
i


≤ 2E.

Proof of (b”): DenoteQ = I −P. TheneQ= (1−λ)eand thus

eQuT = (1−λ)euT = (1−λ)
r

∑
i=1

πiu
2
i .
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On the other hand, writingeQuT out explicitly:

eQuT =
n

∑
i=1

r

∑
j=1

qi j eiu j qi j =−pi j =−wi j

πi
, i 6= j

≥
r

∑
i=1

r

∑
j=1

qi j eiu j qii = 1− pii = ∑
i 6= j

pi j

= −∑
i∈A

∑
j∈A
j 6=i

wi j uiu j + ∑
i∈A

∑
j∈A
j 6=i

wi j u
2
i ei = πiui , i ∈ A

= −2∑
i< j

wi j uiu j + ∑
i< j

wi j (u
2
i +u2

j )

= ∑
i< j

wi j (ui−u j)
2.

Thus,

E ·∑
i

πiu
2
i = ∑

i< j
wi j (ui−u j)

2≤ eQuT = (1−λ) ·∑
i

πiu
2
i ⇒ E ≤ 1−λ.

(ii) Given the stationary distribution vectorπ ∈ Rn, define an inner product〈·, ·〉π
in Rn as:

〈u,v〉π =
n

∑
i=1

πiuivi .

By (a slight modification of) a standard result (the Courant-Fischer minimax the-
orem) in matrix theory, and the fact thatP is reversible with respect toπ, implying
〈u,Pv〉π = 〈Pu,v〉π, one can characterise the eigenvalues ofP as:

λ1 = max

{〈u,Pu〉π
〈u,u〉π

| u 6= 0

}
,

λ2 = max

{〈u,Pu〉π
〈u,u〉π

| u⊥ π,u 6= 0

}
, etc.

In particular,

λ2≥
〈u,Pu〉π
〈u,u〉π

for anyu 6= 0 such that∑
i

πiui = 0. (5)

Given a set of statesA⊆ S, 0 < π(A)≤ 1/2, we shall apply the bound (5) to the
vectoru defined as:

ui =





1
π(A)

, if i ∈ A

− 1
π(Ā)

, if i ∈ Ā
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Clearly

∑
i

πiui = ∑
i∈A

πi

π(A)
−∑

i∈Ā

πi

π(Ā)
= 1−1 = 0, and

〈u,u〉π = ∑
i

πiu
2
i = ∑

i∈A

πi

π(A)2 + ∑
i∈Ā

πi

π(Ā)2
=

1
π(A)

+
1

π(Ā)
,

so let us compute the value of〈u,Pu〉π.

The task can be simplified by representingP asP = In− (In−P), and first com-
puting〈u,(I−P)u〉π:

〈u,(I −P)u〉π = ∑
i

πiui ∑
j
(I −P)i j u j

= −∑
i

∑
j 6=i

πiui pi j u j +∑
i

∑
j 6=i

πiui pi j ui

= ∑
i

∑
j 6=i

πi pi j (u
2
i −uiu j)

= ∑
i< j

πi pi j (ui−u j)
2

= ∑
i∈A
j 6=i

πi pi j

(
1

π(A)
+

1
π(Ā)

)2

=

(
1

π(A)
+

1

π(Ā)

)2

FA.

Thus,

λ2 ≥
〈u,Pu〉π
〈u,u〉π

=
1

〈u,u〉π

(
〈u,u〉π−〈u,(I −P)u〉π

)

= 1− 1
〈u,u〉π

· 〈u,(I −P)u〉π

= 1−
(

1
π(A)

+
1

π(Ā)

)−1( 1
π(A)

+
1

π(Ā)

)2

·FA

= 1−
(

1
π(A)

+
1

π(Ā)

)
·FA

≥ 1− 2
π(A)

·FA = 1−2ΦA.
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Since the bound (6) holds for anyA⊆ Ssuch that 0< π(A)≤ 1/2, it follows that
it holds also for the conductance

Φ = min
0<π(A)≤1/2

ΦA.

Thus, we have shown thatλ2≥ 1−2Φ, which completes the proof.2

Despite the elegance of the conductance approch, it can be sometimes (often?)
difficult to apply in practice – computing graph conductancecan be quite difficult.
Also the bounds obtained are not necessary the best possible; in particular the
square in the upper boundλ2≤ 1−Φ2/2 is unfortunate.

An alternative approch, which is sometimes easier to apply,and can even yield
better bounds, is based on the construction of so called “canonical paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain with stationary distributionπ,
represented as a weighted graph with node setSand edge setE = {(i, j) | pi j > 0}.
The weight, or capacity,we associated to edgee= (i, j) corresponds to the ergodic
flow πi pi j between statesi and j.

Specify for each pair of statesk, l ∈ Sa canonical pathγkl connecting them. The
paths should intuitively be chosen as short and as nonoverlapping as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

DenoteΓ = {γkl | k, l ∈ S} and define the unweighted and weightededge loading
induced byΓ on an edgee∈ E as:

ρe =
1
we

∑
γkl3e

πkπl

ρ̄e =
1
we

∑
γkl3e

πkπl |γkl|,

where|γkl| is the length (number of edges) of pathγkl. (Note that here the edges
are considered to beoriented, so that only paths crossing an edgee= (i, j) in the
direction fromi to j are counted in determining the loading ofe.) Themaximum
edge loadinginduced byΓ is then:

ρ = ρ(Γ) = max
e∈E

ρe

ρ̄ = ρ̄(Γ) = max
e∈E

ρ̄e.

Theorem 3.9 For any regular, reversible Markov chain and any choice of canon-
ical paths,

Φ≥ 1
2ρ

.
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Proof. Represent the chain as a weighted graphG, where the weight (capacity) on
edgee= (i, j) is defined as:

wi j = πi pi j = π j p ji .

Every set of statesA⊆ Sdetermines a cut(A, Ā) in G, and the conductance of the
cut corresponds to itsrelative capacity:

ΦA =
w(A, Ā)

VA
=

1
π(A) ∑

i∈A, j∈Ā

wi j .

Let thenA be a set with 0< π(A)≤ 1
2 that minimisesΦA, and thus hasΦA = Φ.

Assume some choice of canonical pathsΓ = {γi j}, and assign to each pathγi j a
“flow” of value πiπ j . Then the total amount of flow crossing the cut(A, Ā) is

∑
i∈A, j∈Ā

πiπ j = π(A)π(Ā),

but the cut edges, i.e. edges crossing the cut, have only total capacityw(A, Ā).
Thus, some cut edgeemust have loading

ρe =
1
we

∑
γi j3e

πiπ j ≥
π(A)π(Ā)

w(A, Ā)
≥ π(A)

2w(A, Ā)
=

1
2Φ

.

The result follows.2

Corollary 3.10 With notations and assumptions as above,

λ2≤ 1− 1
8ρ2 .

Proof. From Theorems 3.6 and 3.9.�

A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:

(i) λ2≤ 1− 1
ρ̄

(ii) ∆(t)≤ (1−1/ρ̄)t

min
i∈A

πi
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(iii) τ(ε)≤ ρ̄
(

ln
1
ε

+ ln
1

πmin

)
.2

Example 3.2 Random walk on a ring.Let us consider again the cyclic random
walk of Figure 11. Clearly the stationary distribution isπ = [1

n, 1
n, · · · , 1

n], and the
ergodic flow on each edgee= (i, i±1) is

we = πi pi,i±1 =
1
n
· 1
4

=
1
4n

.

An obvious choice for a canonical path connecting nodesk, l is the shortest one,
with length

|γkl|= min{|l −k|,n−|l−k|}.

It is fairly easy to see that each (oriented) edge is now travelled by 1 canonical
path of length 1, 2 of length 2, 3 of length 3,. . . , n

2 of length n
2 (actually the last

one is just an upper bound). Thus:

ρ = max
e

1
we

∑
γkl3e

πkπl |γi j | ≤ 4n
n/2

∑
r=1

1
n2 · r

2

=
4
n
· 1
6
· n
2
·
(n

2
+1
)
· (n+1) =

1
6

(n+1)(n+2)

⇒
τ(ε) ≤ 1

6 (n+1)(n+2)
(
ln n+ ln 1

ε
)

= 1
6n2
(
ln n+ 1

ε
)
+O

(
n
(
ln n+ ln 1

ε
))

.

Example 3.3 Sampling permutations.Let us consider the Markov chain whose
states are all possible permutations of[n] = {1,2, . . . ,n}, and for any permutations
s, t ∈ Sn:

pst =





1
2, if s= t,
1
2 ·
(n

2

)−1
, if scan be changed tot by transposing two elements,

0, otherwise

Thus, e.g. forn = 3 we obtain the transition graph in Figure 12.

Clearly, the stationary distribution for this chain isπ =
[

1
n! ,

1
n! , . . . ,

1
n!

]
, and the

ergodic flow on each edgeτ = (s, t), with s 6= t, pst > 0, is:

wτ = πspst =
1
n!
· 1
2
·
(

n
2

)−1

.
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Figure 12: Transition graph for three-element permutations.

A natural canonical path connecting permutations to permutationt is now ob-
tained as follows:

s= s0→ s1→ s2→ ·· · → sn−1 = t.

where at eachsk,sk(k) = t(k). (Thus, eachsk matchest up to elementk, sk(1. . .k) =
t(1. . .k).)

Thus, e.g. the canonical path connectings= (1234) to t = (3142) is as follows:

(1234)→
ω︷ ︸︸ ︷

(3|214)
τ→

ω′︷ ︸︸ ︷
(31|24)→ (314|2).

Now let us denote the set of canonical paths containing a given transitionτ : ω→
ω′ by Γ(τ). We shall upper bound the size ofΓ(t) by constructing an injective
mappingστ : Γ(τ)→ Sn. Obviously, the existence of such a mapping implies that
|Γ(τ)| ≤ n!.

Supposeτ transposes locationsk+1 andl , k+1 < l , of permutationω. Then for
any〈s, t〉 ∈ Γ(τ), define the permutationz= στ(s, t) as follows:

1. Place the elements inω(1. . .k) in the locations they appear ins. (Note that
permutationω is given and fixed as part ofτ.)

2. Place the remaining elements in the remaining locations in the order they
appear int.

Thus, for example in the above example case:

στ(〈1234〉,〈3142〉)→ ( 3 )→ (1432)︸ ︷︷ ︸
z

ω = (3|214), k = 1
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Why is this mapping an injection, i.e. how do we recoversandt from a knowledge
of τ andz= στ(s, t)? The reasoning goes as follows:

1. t = ω(1. . .k)+ “other elements in same order as inz”

2. s= “elements inω(1. . .k) at locations indicated inz” + “other elements in
locations deducible from the transposition paths= s0→ s1→·· ·→ sk = ω”

This is somewhat tricky, so let us consider an example. Sayω = (3 1|2 4),
k = 2, z= (1 4 3 2). Then:

1. t = (3 1| )+( |4 2) = (3 1|4 2)

2.

s = s0 = (1 3 ) s0 = (1 3 )
s1 = (3| ) ⇒ s1 = (3| 2 1 )

ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)
∴ s = s0 = (1 2 3 4) s0 = (1 2 3 4)

s1 = (3| 2 1 4) ⇒ s1 = (3| 2 1 4)
ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)

Thus, we know that for each transitionτ,

|Γ(τ)| ≤ n!

We can now obtain a bound on the unweighted maximum edge loading induced
by our collection of canonical paths:

ρ = max
τ∈E

1
qτ

∑
〈s,t〉∈Γ(τ)

πsπt ≤
(

1
n!
· 1
2
·
(

n
2

)−1
)−1

·n! ·
(

1
n!

)2

= 2n!

(
n
2

)
·n! · ( 1

n!
)2 = 2 ·

(
n
2

)
= n(n−1).

By Theorem 3.9, the conductance of this chain is thusΦ≥ 1
2n(n−1) , and by Corol-

lary 3.8, its mixing time is thus bounded by

τn(ε) ≤
2

Φ2

(
ln

1
ε

+ ln
1

πmin

)
≤ 2(2n(n−1))2

(
ln

1
ε

+ lnn!

)

= O

(
n4
(

nlnn+ ln
1
ε

))
.
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3.2 Coupling

An important “classical” approach to obtaining convergence results for Markov
chains is thecoupling method. As a simple case, letM = (X0,X1, . . .) andN =
(Y0,Y1, . . .) be two independent Markov chains with the same state spaceS=
{1, . . . ,n} and the same regular transition matrixP = (pi j ), and consequently the
same stationary distributionπ.

Thus, if one considers the Markov chainM ×N with random variablesZt =
(Xt,Yt), one obtains transition probabilities

pZ
i j ,kl = Pr(Zt = (k, l) | Zt−1 = (i, j))

= Pr(Xt = k | Xt−1 = i) ·Pr(Yt = l |Yt−1 = j)

= pik p jl .

Moreover, sinceM andN are regular with stationary distributionπ, then so is
M ×N with stationary distributionπZ = πTπ (i.e. πZ

i j = πiπ j).

Note once more that “projected” (marginalised) to its first or second component,
M ×N yields realisations of the same process, i.e.

Pr(Zt = (k,∗) | Z0 = (k0, l0)) = Pr(Xt = k | X0 = k0)

= p(t)
k0k, independent ofl0;

Pr(Zt = (∗, l) | Z0 = (k0, l0)) = Pr(Yt = l |Y0 = l0)

= p(t)
l0l , independent ofk0.

(6)

Now define a random variableT that for any realisation ofM ×N indicates the
first time at whichXt andYt have the same value, i.e. theircoupling time:

T = inf{t ≥ 0|Xt = Yt}.

One can in fact modify the chainM ×N so that after coupling theX- andY-
components not just have the same distributions, but in factstrictly the same val-
ues (i.e.Xt = Yt ∀ t ≥ T), yet the marginal properties (6) stay the same. Simply
defineX′t = (X′t ,Yt), where

X′t =

{
Xt, t < T,
Yt , t ≥ T.

Let us denote the resulting nonhomogeneous chain byM |N . Now the projections
of M |N to its X- andY-components are surely not independent, but viewed in
isolation, as marginals ofM |N , they have exactly the same stochastic properties.
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In particular, in a coupled chainM |N , let us fix an arbitrary initial stateX0 = k0

for M , and similarlyY0 = l0 for N , and denote the respective timet distributions

asp(t) = (p(t)
k0k)k andq(t) = (p(t)

l0l )l . Then for anyA⊆ S:

p(t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

= 1−Pr(Yt /∈ A∨Xt 6= Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

= Pr(Yt ∈ A)−Pr(t < T)

= q(t)(A)−Pr(t < T),

i.e. q(t)(A)− p(t)(A)≤ Pr(t < T). A similar argument shows that alsop(t)(A)−
q(t)(A)≤Pr(t < T), and so for anyA⊆S, |p(t)(A)−q(t)(A)|≤Pr(T > t), implying
that

dV(p(t),q(t)) = sup
A⊆S
|p(t)(A)−q(t)(A)| ≤ Pr(T > t). (7)

If one establishes the coupling bound (7) so that it holds forarbitrary pairs of
initial states, then it also holds for arbitrary initial distributions.

In particular, if the initial state of the chainY is chosen according to the stationary
distributionπ, thenq(t) = π for all t ≥ 0, and one obtains the convergence bound:

dV(p(t),π) =
1
2∑

i
|p(t)

i −πi | ≤ Pr(T > t). (8)

Example 3.4 Random walk on a ring.Consider again the cyclic random walk
of Figure 11 withn states,n even. To obtain an upper bound on the coupling
probability Pr(T > t), consider two independent copies(Xt), (Yt) of the walk,
initiated atX0 = 1 andY0 = n

2 +1.

DenoteDt = min{|Yt −Xt |,n− |Yt −Xt|}. ThenD0 = n
2, 0≤ Dt ≤ n

2 for all t,
Pr(Dt+1 < Dt |Dt > 0)≥ 1

4, andT = inf{t |Dt = 0} (cf. Figure 13). Thus for any
k≥ 0,

Pr(T ≤ k+
n
2
| T > k)≥ (

1
4
)n/2 = (

1
2
)n,

and consequently

Pr(T > t)≤ (1−2−n)bt/(n/2)c.
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0 T

n/2

Figure 13: A realisation of the(Dt) chain.

Hence we obtain a geometric bound on the convergence rate of this walk:

dV(p(t),π)≤ (1−2−n)b2t/nc.

The bound is not very tight, mainly because there is no systematic “drift” effect
that would bring the chains(Xt) and(Yt) closer to each other: they just eventually
coalesce by random “fluctuation”. A much more interesting application of the
coupling technique will be presented below.

Generally speaking, acouplingof two Markov chains(Xt) and(Yt) (or any stochas-
tic processes) is a processZt = (X′t ,Y

′
t ) that has(Xt) and(Yt) as its marginal dis-

tributions.

In the case of finite Markov chains this means that:

Pr(X′t+1 = k|X′t = i,Y′t = j) = Pr(Xt+1 = k|Xt = i) = pX
ik,

Pr(Y′t+1 = l |X′t = i,Y′t = j) = Pr(Xt+1 = l |Yt = j) = pY
jl .

(9)

The coupling conditions (9) are trivially satisfied by the independent coupling,
wherepZ

i j ,kl = pX
ikpY

jl , but the more interesting couplings are the non-independent
ones.

In the following Lemma, and also later in this section, mixing times are considered
with respect to the total variation distance, i.e. for now

τ(ε) = τV(ε) = min
{

t | dV(p(i,s),π)≤ ε ∀ s≥ t and∀ initial statesi
}

.

Lemma 3.12 (“Coupling lemma”) LetM be a finite, regular Markov chain and
Zt = (Xt,Yt), t ≥ 0, a coupling of two copies ofM (i.e. (Zt) is a Markov chain
whose X- and Y-marginals satisfy the coupling conditions(9) with respect to the
transition probabilities ofM ). Suppose further that t: (0,1]→ N is a function
such that given anyε ∈ (0,1], Pr(Xt 6= Yt) ≤ ε holds for all t≥ t(ε), uniformly
over the choice of the initial state(X0,Y0). Then the mixing timeτ(ε) of M is
bounded above by t(ε).
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Proof. Let X0 = i be arbitrary, and chooseY0 according to the stationary distribu-
tion π of M . Fix ε ∈ (0,1] and lett ≥ t(ε). Then for any set of statesA:

p(i,t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

≥ Pr(Yt ∈ A)− ε
= π(A)− ε,

and similarly for the set̄A = S\A. Thus

|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε),

and becauseA was chosen arbitrarily, also

dV(p(i,t),π) = max
A⊆S
|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε).

Thusτ(ε)≤ t(ε). 2

Example 3.5 Gibbs sampler for graph colourings.Let G = (V,E) be an undi-
rected graph with maximum node degree∆. Without loss of generality assume
thatV = {1, . . . ,n}. A q-colouringof G is a mapσ : V → {1, . . . ,q} = Q such
that

(i, j) ∈ E ⇒ σ(i) 6= σ( j).

According to so called Brooks’ Theorem,G has aq-colouring for anyq≥ ∆+1.
(In fact, already forq≥ ∆ unlessG contains a(∆ + 1)-cliqueK∆+1 as a compo-
nent.)

For q≥ ∆ + 2, one can set up the following Gibbs sampler Markov chainM to
sampleq-colourings ofG asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colouringσ ∈QV :

(i) select a nodei ∈V uniformly at random;

(ii) select a legal colourc for i uniformly at random (c is legal for i if c 6=
σ( j) ∀ j ∈ Γ(i));

(iii) recolour i with colourc (i.e. move fromσ to σ′, whereσ′(i) = c andσ′( j) =
σ( j) for j 6= i).
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Let us verify thatM is regular forq≥ ∆+2:

1. Irreducibility: Any colouring can be reached from any other by recolouring
the nodes in increasing order; becauseq≥ ∆ + 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numbered neighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loop probability, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibilityM has as its stationary distributionπ the
uniform distribution over the set of legal colouringsS⊆QV .

Let us then consider how quickly the chainM converges toπ, in terms of thedV

distance. To introduce the ideas, consider first the trivialcaseE =∅ (⇒ S= QV ).

In this case one can effect a coupling between two copies ofM as follows: in a
transition(Xt,Yt)→ (Xt+1,Yt+1):

(i) select a nodei ∈V uniformly at random;

(ii) select a colourc∈ Q uniformly at random and recolouri with colourc in
bothXt andYt ; let the resulting colourings beXt+1 andYt+1.

Now clearly(Xt) and(Yt) are both faithful copies ofM , i.e. the marginal transition
probabilities work out OK:

Pr(Xt+1 = σ′ | Xt = σ,Yt = η) = Pr(σ,σ′),
Pr(Yt+1 = η′ | Xt = σ,Yt = η) = Pr(η,η′).

On the other hand, it is clear that the time required for the chains(Xt) and(Yt) to
coalesce is not very much larger thann, because at each step of the coupled chain,
a randomly chosen node is coloured similarly in both(Xt) and(Yt).

More precisely, introduce the random variable

Dt = #{i ∈V|Xt(i) 6= Yt(i)}.

ThusDt = 0 ⇔ Xt = Yt ⇔ T ≤ t.
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Furthermore,

E(Dt+1 | Dt) =
Dt

n
· (Dt−1)+

n−Dt

n
·Dt =

(
1− 1

n

)
·Dt

⇒ E(Dt | D0) =

(
1− 1

n

)t

·D0

(Markov)
⇒ Pr(Dt > 0 | D0)≤ E(Dt | D0)≤

(
1− 1

n

)t

·n≤ ne−t/n.

Thus, choosingt ≥ nln n
ε suffices to guarantee that Pr(Xt 6= Yt) ≤ ε, which by

Lemma 3.12 implies that the mixing time satisfiesτ(ε)≤ nln n
ε .

For the general case we need a more complicated coupling, in order to take into
account the constraints on colour choice caused by the edgesin E.

We observe that by a simple construction, it is possible to combine two finite state
setsA andB to a single state setC so that there are random variablesXA andXB

such that

(i) Pr(XA = x) =

{
1/|A|, x∈ A,
0, x /∈ A;

Pr(XB = x) =

{
1/|B|, x∈ B,
0, x /∈ B;

(ii) Pr(XA = XB) =
|A∩B|

max{|A|, |B|}.

(10)

DenoteΓ(i) = { j ∈V | (i, j) ∈ E}, Xt(i) = colour of nodei in colouringXt, and
Xt(U) = {Xt(i) | i ∈U}.
Consider the following coupling(Xt ,Yt)→ (Xt+1,Yt+1):

(i) select a nodei ∈V uniformly at random;

(ii) select colourscX ∈ Q\Xt(Γ(i)), cY ∈Q\Yt(Γ(i)) uniformly (but not inde-
pendently) at random, using the joint sample space indicated in (10);

(iii) recolour nodei with colourcX in Xt to yield Xt+1; similarly with colourcY

in Yt to yieldYt+1.

DenoteA = At = {i ∈V | Xt(i) = Yt(i)}. ThusDt = |Ā|= |V \A|.
Now clearlyDt+1∈{Dt +1,Dt ,Dt−1}. Let us compute the probabilitiesP(Dt+1 |Dt)
for each of these cases:
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(i) Dt+1 = Dt +1. In this event the choseni ∈ A, andcX 6= cY.

Denote byξ = |Q\Xt(Γ(i))|, η = |Q\Yt(Γ(i))|, ζ = |Q\(Xt(Γ(i))∪Yt(Γ(i)))|
the number of legal values forcX, cY, and their overlap, respectively. Thus,
the probability that the same colour is chosen fori in bothXt+1 andYt+1 is
ζ/max{ξ,η}. Denoted′(i) = |Γ(i)\A| (recall thati ∈ A). Then

q−∆≤ ξ,η≤ ζ+d′(i).

Hence:

Pr(cX = cY) =
ζ

max{ξ,η} ≥
max{ξ,η}−d′(i)

max{ξ,η}

≥ 1− d′(i)
q−∆

and consequently:

Pr(Dt+1 = Dt +1)≤ 1
n ∑

i∈A

d′(i)
q−∆

=
m′

(q−∆)n
,

wherem′ = ∑i∈Ad′(i).

(ii) Dt+1 = Dt−1. In this event the choseni ∈ Ā, andcX = cY.

Denoteξ,η,ζ as in case (i), andd′′(i) = |Γ(i)∩A|. Now

q−∆≤ ξ,η≤ ζ+(∆−d′′(i)).

As in case (i), we obtain:

Pr(cX = cY) =
ζ

max{ξ,η} ≥
max{ξ,η}− (∆−d′′(i))

max{ξ,η}

≥ 1− ∆−d′′(i)
q−∆

=
q−2∆+d′′(i)

q−∆

and consequently:

Pr(Dt+1 = Dt−1) ≥ 1
n ∑

i∈Ā

(
q−2∆
q−∆

+
d′′(i)
q−∆

)

=
q−2∆

(q−∆)n
Dt +

m′

(q−∆)n
,

wherem′ = ∑i∈Ād′′(i) = ∑i∈Ad′(i).
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Denoting for brevity

a =
q−2∆

(q−∆)n
, b = b(m′) =

m′

(q−∆)n
,

we see that

Pr(Dt+1 = Dt +1)≤ b, Pr(Dt+1 = Dt−1)≥ aDt +b.

Assume thata > 0, i.e. thatq > 2∆. Then

E(Dt+1|Dt) ≤ b(Dt +1)+(aDt +b)(Dt−1)+(1−aDt−2b)Dt

= (1−a)Dt.

Thus,E(Dt)≤ (1−a)tD0≤ (1−a)tn, and hence by Markov’s inequality

Pr(Dt > 0)≤ (1−a)tn≤ ne−at.

Thus Pr(Xt 6= Yt)≤ ε for t ≥ 1
a ln n

ε , and so by Lemma 3.12, the mixing time of the
chain satisfies

τ(ε)≤ q−∆
q−2∆

·nln
n
ε
≤ (∆+1)nln

n
ε

for q > 2∆.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing method for producing
samples from a Markov chainexactlyaccording to its stationary distribution. This
exact sampling(or “coupling from the past”) technique eliminates the needto
compute Markov chain convergence rates for quality control: when the algorithm
stops, it is guaranteed to produce a perfect sample. Howeverfor slowly converging
chains stopping will take a long time, so convergence rates are still of importance
from the point of view of algorithm efficiency. (There are also some other effi-
ciency caveats in the method besides slow convergence of thesimulated chain.
These are discussed below.)

LetM be a regular reversible Markov chain with state setS= {1, . . . ,n}, transi-
tion probability matrixP = (pi j ), and stationary distributionπ.
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Consider an explicit simulation ofM by the following method: at each stept, a
uniformly distributed random numberRt ∈ [0,1) is chosen, and the state transition
of M is determined asXt+1 = s(Xt,Rt), where

s(i, r) =





1, if r ∈ [0, pi1),
2, if r ∈ [pi1, pi1+ pi2),
...
n, if r ∈ [pi1+ . . .+ pi(n−1),1).

It is clear that transition probabilities according to the chainM can equivalently
be computed with respect to sequences(Rt) and the above deterministic transition
rule, e.g.

P(t)
i j = Pr(Xt = j|X0 = i) = Pr~R(s(t)(i,~R) = j),

where

s(t)(i,〈r0, r1, . . . , rt−1〉) = s(s(· · ·s(s︸ ︷︷ ︸
t

(i, r0), r1) · · ·), rt−1).

Now let us consider the following curious simulation methodfor the chainM ,
from further and further away in thepast(t =−T, T = 1,2,4,8, . . .) to the present
(t = 0):

Algorithm PW (Propp-Wilson):

setT ← 1
generate random numbersr−T , . . . , r−1 ∈ [0,1) uniformly at random;
(1) simulate the chainM as above, using the random numbers

r−T , . . . , r−1, from every possible initial stateX−T ∈ S;
if all the simulations lead to the same stateX0 = i0, then outputi0

and stop;
otherwise generateT more random numbersr−2T , . . . , r−T−1 ∈ [0,1)

uniformly at random;
setT ← 2T; go to (1).

For a three-state chain, a run of the PW algorithm might look as illustrated in
Figure 14. Here the algorithm has required two restarts, butthe third run from
T =−4 has resulted in all the simulated realisations of the chaincoalescing, with
common resulti0 = 2.

In the following, we shall assume that the PW algorithm always converges with
probability 1. Ensuring this may require some care in verifying that the determin-
istic update rules(i, r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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Figure 14: A Propp-Wilson simulation of a 3-state Markov chain.

Theorem 4.1 Let Y be a random variable indicating the eventual output state of
the PW algorithm, under the above assumptions and notations. Then

PrR(Y = i) = πi , ∀ i ∈ S.

Proof. Fix some valuei ∈ S. To prove the Theorem, it suffices to show that for
anyε > 0

|PrR(Y = i)−πi| ≤ ε.

So fix an arbitraryε > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value ofT such that

PrR(PW simulation converges for chains of lengthT)≥ 1− ε. (11)

Now consider running the actual chain from time−T to time 0, starting with the
stationary distribution:

Pr(X−T = i) = πi .

In this case, of course also the variableX0 is distributed according to the stationary
distribution:

PrR(X0 = i) = πi .
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However, if the coalescence event (11) occurs for a given sequenceR of random
numbers, thenX0 = Y, and so PrR(X0 6= Y)≤ ε. Thus,

Pr(Y = i)−πi = Pr(Y = i)−Pr(X0 = i)

≤ Pr(Y = i,X0 6= i)

≤ ε,

and by a similar argument

πi−Pr(Y = i)≤ ε.

Thus,|Pr(Y = i)−πi| ≤ ε, and the claim is proved.2

Note that the PW algorithm cannot be “simplified” by simulating the chains for-
wards from timeT = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcomings:

1. The need to store long sequences of random numbers for reuse (can be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possibleinitial states (in-
feasible in many applications where the number of system states is expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modification to the algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a solution that can be applied
when the states of the system have a suitable partial orderv respected by the
update rule.

Specifically, assume that the states of the system to be simulated form a partial
order(S= {σ1, . . . ,σn},v) with a unique largest element> (“top”) and unique
smallest element⊥ (“bottom”), and satisfying the condition

σv σ′ ⇒ s(σ, r)v s(σ′, r), ∀ σ,σ′ ∈ Sandr ∈ [0,1). (12)

Then it suffices to simulate the “top” and “bottom” chains until they couple, since
their coupling implies the coalescence of all the other chains as well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulation of, say, 2n parallel
chains to just 2.
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Figure 15: Coalescence of an ordered Propp-Wilson simulation.
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Figure 16: A one-dimensional random walk with semi-reflecting barriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk on the state set
S= {1, . . . ,n} with, say, semi-reflecting barriers to ensure regularity ofthe chain
(Figure 16). Assume the state transition rule is:

s(i, r) =

{
max{i−1,1}, if 0 ≤ r < 1

2,

min{i +1,n}, if 1
2 ≤ r < 1.

The the natural ordering of states fulfills the condition (12):

i ≤ j ⇒ s(i, r)≤ s( j, r) ∀ i, j = 1, . . . ,n, r ∈ [0,1).

Interestingly, also complicated systems such as the Ising spin glass model admit
such orderings. In the case of the Ising model, the order between statesσ,σ′ ∈
{−1,+1}n is determined simply by

σv σ′ if σi ≤ σ′i ∀ i = 1, . . . ,n.

Clearly⊥ = (−1, . . . ,−1) and> = (1, . . . ,1) with respect tov, and also condi-
tion (12) can be verified.



Part II

Combinatorial Models

5 A Sketch of Basic Statistical Physics

Statistical physics= Thermodynamics (macroscopic)

+ Statistical mechanics (microscopic)

5.1 Thermodynamics

A thermodynamic systemis characterised by (macroscopic, observable) variables
T (“temperature”) andX1, . . . ,Xn. These variables determine “all interesting”
properties of the system.

E.g. in the classical ideal gas model a sufficient set of variables isT, p, V andN.
(N ∼ the number of molecules is here for simplicity thought of as acontinuous
quantity. This might be easier ifN was replaced byn = N/N0, the amount in
moles of gas, whereN0 = 6.02·1023 is Avogadro’s number.)

The system is in (thermal) equilibriumif it satisfies a characteristicstate equation

g(T,X1, . . . ,Xn) = 0

E.g. ideal gas:pV−NkT= 0, wherek= 1.38·10−23J/K is Boltzmann’s constant,
or pV−nRT= 0, whereR= 8.32J/Kmol is thegas constant.

A potentialor energy functionfor the system is some sufficiently smooth function

F = F(T,X1, . . . ,Xn).

55
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In classical thermodynamics, a key role is given to thetotal energyfunction de-
termined by theFirst Law of Thermodynamics:

dU = dQ+dW, (1)

wheredQ is the amount of “heat” added to a system anddW is the amount of
“work” performed on it.

Integrating the potential given e.g. the state equation of the ideal gas yields

U(T, p,N) = U0+

(
1
2

f N+N−S0

)
(T−T0)−NT ln

((
T
T0

)1+ f /2 p0

p

)
,

whereU0,S0,T0 andp0 are reference values andf/2 a constant (“specific heat”).1

In classical thermodynamics, the system variables are divided intoextensiveand
intensive, depending on whether their values depend on the “size” of the system
or not. E.g.T andp are intensive,V andN extensive.

Two systems at the same temperature may be “combined”, and ifF is otherwise a
function of extensive variables only, then it is linear, i.e.

F(T,X1+X′1, . . . ,Xn+X′n) = F(T,X1, . . . ,Xn)+F(T,X′1, . . . ,X
′
n).

By the total derivative formula:

dF =

(
∂F
∂T

)
dT+

n

∑
i=1

(
∂F
∂Xi

)
dXi. (2)

State variables areconjugate(with respect toF), if

X =
∂F
∂Y

or Y =
∂F
∂X

.

In classical thermodynamics conjugates of extensive variables are intensive, and
vice versa. The conjugate ofT w.r.t.U ,

S=
∂U
∂T

is called theentropyof the system.

1To be precise, sinceT andp are not “natural” variables of the energy functionU arising from
its differential definition (1), this equation refers to a variant ofU expressed in terms ofT, p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged via theLegendre transform, yielding
new forms of a given potential function. E.g. in the case of the ideal gas with
fixed N, U = U(S,V) and

dU = TdS− pdV.

Here we may interchangeS for T by considering instead ofU theHelmholz free
energy F= U−ST. This satisfies:2

dF = dU−SdT−TdS= TdS− pdV−SdT−TdS=−SdT− pdV.

For this potential function the “natural” variables areT andV, i.e.F = F(T,V).

In the classical setting, it is a law of nature (theSecond Law of Thermodynamics)
that in equilibrium processes (evolutions) entropy never decreases:

dS≥ 0.

Processes for which entropy stays constant (dS= 0) are calledadiabatic.

5.2 Statistical Mechanics

Let us consider a thermodynamic energy function framed in terms of extensive
variables:

U = U(S,X1, . . . ,Xn),

and assume that the value ofU expresses in fact only theaverageof a large number
of microscopic potentials:

U = 〈H〉= ∑
ω

pωH(ω).

The micropotential functionH(ω) is also called theHamiltonianof the system.
We shall furthermore assume, motivated by the additivity ofU , that the Hamilto-
nian of a system consisting of two independent subsystems atthermal equilibrium
can be decomposed as:

H(〈ω1,ω2〉) = H(ω1)+H(ω2).

What is now the distribution of the microstatespω, given the constraint that〈H〉=
U? We assume that all microstates with the same value of the Hamiltonian are
equally probable, so thatpω has the formpω = g(H(ω)).

2There is an unfortunate sign difference here as compared to formula (2). We could have fixed
this by definingF = ST−U , but this would have been against convention.
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u
E-u

Figure 1: A heat bath.

To further specify the functional form of the distribution,think of our systemS
as being in thermal equilibrium with, but otherwise independent of, a much larger
system or “reservoir”R . Denote the total system consisting ofS andR by T
(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote byΩ(u) = |H−1(u)| the number of its microstates
at potentialu. (Whether we are referring toS , R or T should always be clear
from the context.) Fix some reference potential levelE�U for the total system
T , and observe that by our assumption, all microstates ofT with potentialE have
the same probability.

Now for every microstateω of S , there are exactlyΩ(E−H(ω)) microstatesωr

of R such that the combined state〈ω,ωr〉 of T has potentialE. Since all of these
are equally probable, it follows thatpω ∝ Ω(E−H(ω)). Taking logarithms and
applying Taylor’s formula yields:

ln pω = lnΩ(E−H(ω))+const.

= lnΩ(E)−
(

∂ lnΩ(E′)
∂E′

)

E′=E
H(ω)+ · · ·

= lnΩ(E)−βH(ω)+ · · · ,

whereβ = ∂ lnΩ/∂E is a parameter whose value is to be determined later.

Taking exponentials again, we obtain the so calledGibbs(or Boltzmann) distribu-
tion

pω ∝ e−βH(ω) (3)

with normalisation constant (actually, function)

Z = Zβ = ∑
ω

e−βH(ω), (4)
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known as thepartition function. 3 Now the value ofβ is in principle determined
implicitly by the condition

〈H〉= 1
Z ∑

ω
e−βH(ω)H(ω) = U,

but we shall obtain a more transparent representation for itbelow.

The (logarithm of the) partition function (4) can be used to compute several macro-
scopic quantities:

First:

∂ lnZ
∂β

=
1
Z

∂Z
∂β

=
1
Z

∂
∂β ∑

ω
e−βH(ω)

=
1
Z ∑

ω
e−βH(ω) (−H(ω))

= −∑
ω

pωH(ω)

= −U.

Second: Consider an extensive variableXi and its conjugateµi = ∂U/∂Xi.

∂ lnZ
∂Xi

=
1
Z ∑

ω

∂
∂Xi

e−βH(ω;Xi)

=
1
Z ∑

ω
e−βH(ω;Xi)

(
−β

∂H(ω;Xi)

∂Xi

)

= −β∑
ω

pω
∂H(ω;Xi)

∂Xi

= −β
〈

∂H(ω;Xi)

∂Xi

〉

= −βµi .

3In fact, Z = Z(β,X1, . . . ,Xn). Note also thatZ is a kind of agenerating functionfor the
sequence of valuesΩ(u), sinceZ(β) = ∑u Ω(u) · (e−β)u.
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Third:

d lnZ =
∂ lnZ

∂β
dβ+

n

∑
i=1

∂ lnZ
∂Xi

dXi

= −Udβ−β
n

∑
i=1

µidXi

= −d(βU)+βdU−β
n

∑
i=1

µidXi

︸ ︷︷ ︸
βTdS

.

∴ TdS=
1
β

d(lnZ+βU)

∴
1
β

= kT, dS= kd(lnZ+βU) , k =
1

βT
= constant

∴
1
β

= kT, S= k lnZ+
U
T

+const.∼ k lnZ+
U
T

∴ β =
1

kT
, −kT lnZ∼U−TS= F (Helmholz free energy)

Conversely, let us expand the entropy variable as a microscopic average:

S = k lnZ+kβU

= k lnZ+k∑
ω

pωβH(ω)
pω = 1

Ze−βH(ω)

⇒ βH(ω) =− ln(Zpω)

= k

(
lnZ−∑

ω
pω(lnZ+ ln pω)

)

= −k∑
ω

pω ln pω. ∑
ω

pω = 1

One more, simplified expression for entropy: partition the range of possible po-
tential values into narrow bands (of width∆U , say), and denote the number of
microstates falling in bandr as

Ω(Ur) =
∣∣∣{ω : Ur ≤ H(ω) < Ur +∆U}

∣∣∣

Then the partition function is approximately

Z≈∑
r

Ω(Ur)e
−βUr
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In fact, since the number of microstates in a typical system is huge, the microstate
potentials are highly concentrated around the averageU = 〈H〉, and so in fact

Z≈Ω(U)e−βU ,

whence

S=
1
T

(−F +U) = k lnZ+
U
T
≈ k lnΩ(U)−βkU +

U
T︸ ︷︷ ︸

=0

≈ k lnΩ(U).

6 The Ising Model, Spin Glasses and Neural Net-
works

6.1 The Ising Model

The following model was introduced by Ernst Ising in 1925 to explain magnetism
in materials.

At a microscopic level, Ising’s model system consists ofN sitesarranged in a lat-
tice, either 1-D, 2-D (N = L2), or maybe even 3-D. At each sitei = 1, . . . ,N is
located a magnetic ion orspinpointing eitherup or down(Si = ±1). Neighbour-
ing sites〈i j 〉 are related by aninteraction coefficient Ji j , which in Ising’s model
is uniformly either a positiveJ > 0 (“ferromagnetic case”) or a nonpositiveJ≤ 0
(“antiferromagnetic case”). A system whose internal interactions are all weak
(Ji j ≈ 0) is “paramagnetic”. In addition, there may be anexternal field hinfluenc-
ing the orientation of each of the spins. (More generally, one could have separate
fieldshi for each spinSi .)

The Hamiltonian of spin stateσ = 〈S1, . . . ,SN〉 is

H(σ) =−J∑
〈i j 〉

SiSj −h∑Si,

where the sum is taken overnearest neighbour pairs〈i j 〉 and periodic boundary
conditions are assumed for simplicity.

Statesσ yielding the global minimum value ofH(σ) are calledground statesof
the system. For a ferromagnetic system, the ground state haseither allSi = +1 if
h > 0, or allSi =−1 if h < 0. If h = 0, these two states are both equally good.
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As a very simple example, let us compute the partition function for a trivial Ising
paramagnet withN spins andJ = 0. DenoteΩ = {+1,−1}N. Then:

Zβ = ∑
σ∈Ω

e−βH(σ)

= ∑
σ∈Ω

exp(βh∑
i

Si)

= ∑
S1=±1

∑
S2=±1

· · · ∑
SN=±1

eβhS1eβhS2 · · ·eβhSN

=

(

∑
S=±1

eβhS

)N

coshx =
ex +e−x

2

=
(
2cosh(βh)

)N

Define the(total) magnetisationof stateσ as

M(σ) =
N

∑
i=1

Si .

The corresponding thermodynamic average at givenβ is

〈M〉 =
1
Z ∑

σ∈Ω
M(σ)exp(−βH(σ))

=
1
Z ∑

σ∈Ω

(
∑
i

Si
)

exp(−βH(σ)).

︸ ︷︷ ︸
(F)

However now in fact(F) = ∂Z
∂(βh) , so fortuitously:

〈M〉 =
1
Z

∂Z
∂(βh)

=
∂ lnZ
∂(βh)

= N
∂ ln(2cosh(βh))

∂(βh)

= N
2(∂cosh(βh)/∂(βh))

2cosh(βh)

= N
2sinh(βh)

2cosh(βh)

= N tanh(βh).
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Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisation density” of a totally
decoupled Ising paramagnet at external fieldh and temperatureT = 1/kβ equals

〈M〉= tanh

(
h

kT

)
.

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solvable with somewhat
more work. The 2-D ferromagnetic case withh = 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. The2-D case with
h 6= 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glassesgeneralise the Ising model with more general interactions.Also the
spins may be nonbinary, in which case such models are calledPotts glasses.

The general form of the (binary-state) spin glass Hamiltonian is

H(σ) =−∑
〈i j 〉

Ji j SiSj −∑
i

hiSi ,

whereJi j ,hi ∈R. Also the neighbourhood relation may correspond to an arbitrary
graph, not necessary a lattice.

Several varieties of spin glass models have been introduced, e.g.:
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Figure 3: Frustrated spin glass configuration.

• The Sherrington-Kirkpatrick model: Hamiltonian as above,complete inter-
connection graph, coefficientsJi j according to a specific probability distri-
bution.

• The Edwards-Anderson model: Hamiltonian

H(σ) =−∑
〈i j 〉

Ji j SiSj ,

regular lattice topology (e.g. cubic),Ji j independent Gaussian variables.

A phenomenon that makes spin glass models even less tractable than the Ising
model isfrustration. E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by the Hamiltonian can have a
very complicated structure, with large numbers of local minima, and no obvious
location for the globally minimal ground state.

In fact, the problem of determining the ground state of a given SK-spin glass
instance〈J̄, h̄〉 is NP-complete, even withh̄ = 0.

This can be seen by reduction from the well-known NP-complete MAX CUT
problem: Given a graphG = (V,E), determine the partitionV = V1∪V2 that max-

imisesw(V1,V2) =
∣∣∣{(i, j) ∈ E : i ∈V1∧ j ∈V2}

∣∣∣.

The reduction is as follows:

Given a graphG = (V,E), let J̄ be an SK system with sites corresponding toV,
andJi j determined by

Ji j =

{
−1, if 〈i, j〉 ∈ E,

0, otherwise.
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Let thenC = (V1,V2) be a cut inG, and divide the edges inG corresponding as

E1 = {〈i, j〉 ∈ E : i, j ∈V1},
E2 = {〈i, j〉 ∈ E : i, j ∈V2},
EC = {〈i, j〉 ∈ E : i ∈V1∧ j ∈V2}.

Consider the spin glass stateσ determined as

Si =

{
+1, if i ∈V1,
−1, if i ∈V2.

For this,

H(σ) = −∑
〈i j 〉

Ji j SiSj = ∑
〈i j 〉∈E

SiSj

= ∑
〈i j 〉∈E1

SiSj + ∑
〈i j 〉∈E2

SiSj + ∑
〈i j 〉∈EC

SiSj

= |E1|+ |E2|− |EC|
= |E|−2|EC|
= |E|−2w(C).

Conversely, given any spin glass stateσ, one obtains a cutC satisfyingw(C) =
1
2|E|− 1

2H(σ).

Thus, graph cuts and spin glass states correspond one-to-one, withw(C) ∝−H(σ),
and minimising one is equivalent to maximising the other.

The result means that the SK spin glass ground state problem is in a sense “univer-
sal” difficult problem, i.e. it contains as special cases allthe∼2000 other known
NP-complete problems.

ForJi j > 0 and arbitrarȳh the problem reduces to network flow, and can be solved
in polynomial time. For planarG and h̄ = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 1982). However, for planar
G with h̄ 6= 0, and for 3-D lattices the problem is NP-complete (Barahona1982). It
is also NP-complete for every other nonplanar crystal lattice graph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to the complexity of the
ground state problem; the key is rather the planarity of the interconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, to usethe SK model as
a basis for “neural associative memories”. The idea is to create anN-site SK
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system whose local potential minima correspond to a set ofN-bit vectors to be
stored. These local minima are also stable states of the system’s deterministic
(0-temperature) “Glauber dynamics”. When such a system is initialised at a state
which is “close” to one of the stored stable states, the dynamics (presumably)
tends to return it to the nearby local minimum. Thus small perturbations in the
stable states tend to get corrected, and the system has “error-correcting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a systemis as follows: at a
given discrete time instant, a randomly (or in a round-robinmanner) chosen sitek
is updated according to the local rule:

S′k = sgn

(

∑
〈k j〉

Jk jSj +hk

)

︸ ︷︷ ︸
(F)

=





+1, if (F) > 0,
−1, if (F) < 0,
Sk, if (F) = 0,

It can be seen that each time a site changes state, the value ofH(σ) decreases:
AssumeS′k 6= Sk. Consider

H(σ′)−H(σ) = −∑
〈i j 〉

Ji j S
′
iS
′
j −∑

i
hiS
′
i

+∑
〈i j 〉

Ji j SiSj +∑
i

hiSi

= −∑
〈k j〉

Jk jS
′
kSj + ∑

〈k j〉
Jk jSkSj −hk(S

′
k−Sk)

= −
(
S′k−Sk

)
︸ ︷︷ ︸

N

(

∑
〈k j〉

Jk jSj +hk

)

︸ ︷︷ ︸
H

< 0,

whereH andN have the same sign.

Thus, since the value ofH(σ) is lower bounded by

H(σ)≥−∑
〈i j 〉
|Ji j |−∑

i
|hi|,

the system converges eventually to a local minimum of its Hamiltonian.
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How should one then craft the interaction coefficients so that a given set of patterns
become stable states of the system’s dynamics? This can in principle be done in
various ways, of which Hopfield proposed the following adaptation of “Hebb’s
rule”:4

Consider first a single patternσ = (S1, . . . ,SN) ∈ {+1,−1}N and chooseJ =
σσT − I = [SiSj ]i j − I ,h = 0. Then the dynamics operates as follows:

sgn(Jσ) = sgn
(
(σσT − I)σ

)
= sgn

(
(||σ||2−1)σ

)
= σ,

i.e. σ is a stable state of the dynamics.

Given then a (smallish) set of patternsσ1, . . . ,σm, choose

J =
m

∑
p=1

σpσT
p−mI

(
or normalisedJ =

1
m∑

p
σpσT

p− I

)
.

If the patterns are random, independent identically distributed bit vectors, and
there are onlym�N of them, they are “almost orthogonal”, and we may approx-
imate:

sgn(Jσk) = sgn

((
m

∑
p=1

σpσT
p−mI

)
σk

)

= sgn




(||σk||2−m)σk︸ ︷︷ ︸
“signal”

+ ∑
p6=k

≈0︷ ︸︸ ︷
(σT

pσk)σp

︸ ︷︷ ︸
“noise”




= σk,

“with high probability”.

This analysis has been performed rigorously many times under different assump-
tions, and the number of patternsm that can be reliably stored has been estimated
under different criteria. Typically, the “reliable” storage capacity comes out as
m≈ 0.14N . . .0.18N.

The deterministic Glauber dynamics of SK spin glasses has also other computa-
tionally interesting features. One can e.g. show that convergence to a stable state

4In a 1949 book, D. O. Hebb suggested as a basic mechanism of neuronal memory that simul-
taneous activity reinforces the interconnections betweenneurons. Physiologically this suggestion
is still controversial, but mathematically the idea has been used as a basis of several learning
mechanisms in artificial neural networks.
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can require a number of spin flips that is exponential inN (A. Haken et al. ca.
1989), and that one can in fact embed arbitrary computationsin the dynamics
(Orponen 1995). (More precisely, determining whether a given “output spin” is
+1 or−1 in the local minimum reached from a given initial state is a “PSPACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable family of fitness land-
scapes”.

A fitness landscapeis a triple〈X,R, f 〉, whereX is theconfiguration(or state)
space, R⊆ X×X is aneighbourhood relationonX, and f : X→R is afitness(or
objective) function.

A point x∈ X is a local optimum(of f on X) if

f (y)≤ f (x) ∀ yRx

and aglobal optimum(maximum) if

f (y)≤ f (x) ∀ y∈ X

Questions of the “ruggedness” of landscapes (correlation structure), number and
height of local optima, sizes of “attraction basins” of local optima with respect to
“hill-climbing” algorithms etc. are of great interest for natural landscapes.

In Kauffman’s NK models,X = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences the landscape characteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic interactions in chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, achromosomeis anN-vector of loci (genes, “positions”),
each of which has a value from a set ofalleles A(usually justA = {0,1}). A
“filled-in” chromosomeα ∈ AN is called agenotype.

The fitness of each genei ∈ {1, . . . ,N} in a genotypeα = (a1, . . . ,aN) ∈ AN de-
pends on the alleleai andK other allelesai

1, . . . ,a
i
K via some local fitness function

f i(α) = f i(ai ;ai
1, . . . ,a

i
K), usually normalised so thatf i(α) ∈ [0,1]. The total fit-

ness of a genotypeα ∈ AN is the normalised sum of its genes’ local fitnesses:

f (α) =
1
N

N

∑
i=1

f i(ai ;a
i
1, . . . ,a

i
k) ∈ [0,1].
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Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

Figure 5: An NK interaction network withN = 5, K = 2.

Figure 5 illustrates an NK network with five loci and two “epigenetic interactions”
per locus.

In Kauffman’s versions of the model, theK loci affecting locusi can either be
systematically selected as e.g.i +1, . . . , i +K(modN), or the chromosome can be
simply “randomly wired”. Thef i are usually determined as randomly generated
2K+1-element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model withN spins can be seen
as anN2 network wheref i(Si;Si−1,Si+1) = J

2(Si−1Si + SiSi+1), and an SK spin
glass with coefficientsJi j and local fieldshi as anN(N−1) network where

f i(Si;σ\{Si}) =
1
2 ∑
〈i j 〉

Ji j SiSj +hiSi .

Basic properties of the NK model, for binary allelesA= {0,1} and varying values
of K, include the following:

K = 0:

If f i(0) 6= f i(1) ∀i = 1, . . . ,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hill-climbing” algo-
rithm.
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Expected length of the hill-climbing path isN/2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed at each step.)

Neighbouring genotypesα, α′ are always highly correlated, as necessarily
| f (α)− f (α′)| ≤ 1/N.

1≤ K < N−1:

For K = 1, a global optimum can still be found in polynomial time. For
K ≥ 2, global optimisation is NP-complete. However, for adjacent affect-
ing loci (i x i + 1, . . . , i + K), the problem can be solved in timeO (2KN)
(Weinberger).

K = N−1:

Neighbouring genotypes are totally uncorrelated.

⇒ Probability that a given genotypeα is a local optimum is equal to the
probability thatα has the highest rank within its 1-mutant neighbourhood.
This probability is equal to 1/(N+1).

⇒ The expected number of local optima is 2N/(N+1).

The expected number of improvement steps for 1-mutant hill-climbing to hit
a local optimum is proportional to log2N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement step is proportional
to N.

7 Random Graphs

7.1 The Erdős-Ŕenyi Model(s)

Two closely related “uniform” random graph models introduced in 1959 by P.
Erdős & A. Rényi and E. N. Gilbert.

Consider the familyGn of all (labelled, undirected) graphs onn nodes. Denote
N =

(n
2

)
; then|Gn|= 2N.

Define the following two probability spaces

[Erdős & Rényi:] G (n,M) = all G∈ Gn with exactlyM ≤ N edges, taken with
uniform probability, i.e.

Pr(GM = H) =

{(N
M

)−1
, if H hasM edges

0; otherwise.
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[Gilbert:] G (n, p) = all G∈ Gn, taken so that each edge has occurrence probabil-
ity p, 0≤ p≤ 1, independently of the other edges, i.e.

Pr(Gp = H) = pM(1− p︸ ︷︷ ︸
q

)N−M, if H hasM edges.

These spaces are in a precise sense “close” ifM ∼ pN, and are often both referred
to (unfairly to Gilbert) as the “Erdős-Rényi random graphmodel”, or alternatively
as theG (n,M) andG (n, p) random graph models.

Let Ωn,n = 0,1,2, . . . be a sequence of probability spaces ofn-node graphs. Say
thatalmost every(a.e.) graph inΩn has propertyQ if

Pr(G∈Ωn hasQ)→ 1, asn→ ∞.

Conversely,almost nograph inΩn has propertyQ if a.e. graph inΩn has property
¬Q, i.e.

Pr(G∈Ωn hasQ)→ 0, asn→ ∞.

Theorem 7.1 Let H be a fixed graph and p a constant,0 < p < 1. Then a.e.
G∈ G (n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whose induced sub-
graph is isomorphic toH.

Proof. Let k = |H| = number of nodes inH. Then a graphG with n = |G| ≥ k
nodes can be partitioned intobn/kc disjoint sets ofk nodes (with some left over).
For each of these sets, the probability that it forms an induced copy ofH is r > 0.

(Precisely,r = k!
|Aut(H)| p

e(H)q(k
2)−e(H).)

Thus, the probability that none of these sets forms an induced copy ofH is

(1− r)bn/kc→ 0, asn→ ∞.2

Let k, l ∈N. Say that a graphG= (V,E) has propertyQkl if ∀U,W, |U | ≤ k, |W| ≤
l ,U∩W =∅, G contains a nodev∈V \(U∪W) such thatv is adjacent to allu∈U
and now∈W (cf. Figure 6).

Lemma 7.2 For every constant p,0 < p < 1, and all k, l ∈ N, a.e. G∈ G (n, p)
has property Qkl.
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G

v

W

U

Figure 6: PropertyQkl.

Proof. For a fixedU,W,v ∈ V \ (U ∪W), the probability that the condition is
satisfied is

p|U |q|W| ≥ pkql

The events are independent for differentv, so the probability that no appropriatev
exists is

(
1− p|U |q|W|

)n−|U |−|W|
≤
(

1− pkql
)n−k−l

.

There are at mostnk+l (U,W)-pairs to be considered, so the probability that some
pair has no goodv is bounded by

nk+l (1− pkql
︸ ︷︷ ︸

<1

)n−k−l → 0, asn→ ∞.

Thus in a.e.G∈ G (n, p) all (U,W)-pairs have some appropriatev. 2

Corollary 7.3 Let p, 0 < p < 1, be a constant. Then (i) a.e. G∈ G (n, p) has
minimum degree≥ k, for given constant k (ii) a.e. G∈ G (n, p) has diameter 2
(iii) a.e. G∈ G (n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G ∈ G (n, p), no two nodesu1, u2 can be separated by a cutset of
sizek−1, because we may choose in Lemma 7.2U = u1,u2, W = w1, . . . ,wk−1
for arbitrary w1, . . . ,wk−1, and obtain a pathu1—v—u2 connectingu1, u2 and
avoidingw1, . . . ,wk−1. 2
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Corollary 7.4 Let φ be any first-order sentence about graphs (i.e. quantification
over nodes, relations E(u,v) + identity). Then either G|= φ or G |= ¬φ for a.e.
G∈ G (n, p).

Proof. Skipped.2

Thus, all the first-order properties ofG (n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes discussed and/or the prob-
ability p depends onn.

Given graphG, denote:

independence numberα(G) = size of the largest independent set inG,
clique numberω(G) = size of the largest clique inG,

chromatic numberχ(G) = smallest number of colours needeed for
colouring nodes inG so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n≥ k≥ 2, random G∈ G (n, p):

Pr(α(G)≥ k)≤
(

n
k

)
q(k

2).

Proof. Probability that givenk-set of nodes inG is independent isq(k
2). Total

number ofk-sets is
(n

k

)
. 2

Theorem 7.6 Let p,0 < p < 1 andε > 0 be constant. Then for a.e. G∈ G (n, p):

χ(G)≥ ln1/q
2+ ε

�
n

lnn
= Ω

( n
lnn

)
= large!

Proof. By Lemma 7.5, for any fixedn≥ k≥ 2:

Pr(α(G)≥ k) ≤
(

n
k

)
q(k

2) ≤ nkq(k
2)

= qk lnn
lnq+ 1

2k(k−1)

= q
k
2 [− 2lnn

ln1/q+k−1]

→ 0 for k large,

i.e. when

k
2

[
− 2lnn

ln1/q
+k−1

]
→ ∞.
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A sufficient condition for this to hold is thatk≥ k(n,ε) = (2+ ε) lnn
ln1/q. Thus for

largen, almost no graphG∈ G (n, p) can have a colouring that would assign the
same colour tok(n,ε) or more nodes. Hence, a proper colouring of almost any
G∈ G (n, p) requires at least n

k(n,ε) = ln1/q
2+ε · n

lnn colours.2

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. G∈ G (n, p):

ω(G) ∈ {d,d+1},

where d= d(n, p) is the largest integer such that

(
n
d

)
p(d

2) ≥ ln n.

(This implies d= 2log1/p(n)+O(loglogn.).) 2

A graph property Qis an isomorphism-closed family of graphs, i.e. ifG∈ Q (or
“G hasQ”) and G≈G′, then alsoG′ ∈Q.

A threshold functionfor a graph property Q is a functiont : N→ R such that

Pr(G∈ G (n, p(n)) hasQ)−−→
n→∞

{
1, if p� t,
0, if p≺ t,

where:

p� t ⇔ lim
n→∞

p(n)

t(n)
= ∞,

p≺ t ⇔ lim
n→∞

p(n)

t(n)
= 0.

Further notation:

p∼ t ⇔ lim
n→∞

p(n)

t(n)
= 1,

p≈ t ⇔ p(n) = Θ(t(n)).

Denote:PQ
n (p) = Pr(G∈ G (n, p) hasQ).

For technical reasons, we will actually use the following slightly stronger defini-
tion for a threshold function:t(n) is a threshold function for graph propertyQ if
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Figure 7:PQ
n (p) for (a) small, (b) intermediate and (c) largen.

for any sequencen1 < n2 < .. . of graph sizes andp(n1), p(n2), . . . of associated
edge probabilities,

lim
k→∞

p(nk)

t(nk)
= ∞ ⇒ PQ

nk
(p(nk)) = 1, (∗)

lim
k→∞

p(nk)

t(nk)
= 0⇒ PQ

nk
(p(nk)) = 0. (∗∗)

A graph property ismonotoneif it is preserved under addition of edges, i.e. if
G = (V,E) andG′ = (V,E′) are graphs such thatE ⊆ E′ andG hasQ, then also
G′ hasQ. For monotoneQ it is the case thatp1≤ p2⇒ PQ

n (p1)≤ PQ
n (p2), so the

inverse ofPQ
n (p) is well-defined:

pQ
n (α) = the smallestp such thatPQ

n (p)≥ α.

In fact for monotoneQone can show thatPQ
n (p) is a continuous, strictly increasing

function of p, so actuallypQ
n (α) = unique psuch thatPQ

n (p) = α.

Figure 7 illustrates the evolution of the functionPQ
n , and a corresponding threshold

functiont(n), for a monotone graph propertyQ from small to large values ofn.

Lemma 7.8 A function t(n) is a threshold for monotone graph property Q if and
only if t(n)≈ pQ

n (α) for all 0 < α < 1.

Proof. Suppose thatt(n) is threshold function forQ, but t(n) 6≈ pQ
n (α) for some

0 < α < 1. Denoting for brevityp(n) = pQ
n (α), this means that either there is a

sequencen1,n2, . . . such that

p(nk)/t(nk)→ ∞,

or there is a sequencen1,n2, . . . such that

p(nk)/t(nk)→ 0.
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However, since for alln it holds thatPQ
n (p(n)) = PQ

n (pQ
n (α)) = α, 0 < α < 1,

the former case violates condition (*) and the latter case condition (**) in the
definition of a threshold function.

“⇐” Assume then thatt(n) is nota threshold function forQ. Then there are either
a sequencen1,n2, . . . and a constantα < 1 such that

p(nk)/t(nk)→ ∞ but PQ
nk

(p(nk))≤ α,

or a sequencen1,n2, . . . and a constantα > 0 such that

p(nk)/t(nk)→ 0 but PQ
nk

(p(nk))≥ α.

In the former case,

t(nk)≺ p(nk)≤ pQ
nk

(α),

and in the latter case

t(nk)� p(nk)≥ pQ
nk

(α).

Thus in either case,t(n) 6≈ pq
n(α) for some 0< α < 1. 2

Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denotepQ
n (α) = p(α). Choose some arbitrary 0< α < 1

2. The
goal is to prove thatp(α)≈ p(1−α), thus establishing e.g.

t(n) = p

(
1
2

)
= pQ

n

(
1
2

)

as a threshold function for Q. (Sincep(α)≤ p(1
2)≤ p(1−α).)

Let m∈ N be such that(1−α)m≤ α. Let p = pn(α) and consider a sample of
m independent graphsG1, . . . ,Gm from G (n, p). Then the graphG1∪ · · · ∪Gm∈
G (n,q), whereq = 1− (1− p)m≤mp, and so

Pr(G1∪· · ·∪Gm hasQ)≤ Pr(G∈ G (n,mpn(α)) hasQ).

On the other hand, sinceQ is monotone, if anyGi hasQ, then so doesG1∪ · · ·∪
Gm. Thus,

Pr(G1∪· · ·∪Gm does not haveQ) ≤ (1−Pr(Gi hasQ))m

= (1−α)m≤ α.
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Hence,

PrQn (mpn(α))≥ Pr(G1∪· · ·∪Gm hasQ)≥ 1−α,

and so

pn(α)≤ pn(1−α)≤mpn(α),

i.e. p(α)≈ p(1−α). (Sincem depends only onα, not onn.) 2

Consider a graph propertyQ defined as “G hasQ” if X(G) > 0, whereX ≥ 0 is a
random variable onG (n, p).

E.g. if X(G) denotes the number of spanning trees ofG, then propertyQ corre-
sponds to connectedness.

Recall the two properties characterising a threshold function t(n):

(i) p(n)≺ t(n)⇒ almost noG∈ G (n, p(n)) hasQ.
(ii) p(n)� t(n)⇒ almost allG∈ G (n, p(n)) haveQ.

If X is integral, then one can aim to verify conditions (i) and (ii) by the so called
“first-moment method” and “second-moment method”, respectively.

The first-moment method consists simply of upper-bounding the expectationE[X]
and applying Markov’s inequality:

Pr(X ≥ 1)≤ E[X] ( more generally, fora > 0
p(X ≥ a)≤ E[X]/a ).

More specifically, one aims to show that if the choice of edge probabilities satisfies
p(n) ≺ t(n), thenE[Xn]→ 0. By Markov’s inequality it then follows that also
PQ

n (p(n)) = Pr(Xn≥ 1)→ 0.

The second-moment method is based on lower-boundingE[X] andupper-bounding
Var[X].

Denoteµn = E[Xn], σ2
n = Var[Xn] = E[(Xn−µn)

2] = E[X2
n ]−µ2

n. Recall Cheby-
shev’s inequality (a simple consequence of Markov’s inequality): for any λ > 0,

Pr(|X−µ| ≥ λ)≤ σ2

λ2 .

Lemma 7.10 If µn > 0 for n large, andσ2
n

µ2
n
→ 0 as n→ ∞, thenPr(Xn > 0)→ 1

as n→ ∞.

Proof. If Xn = 0, then|Xn−µn|= µn. Hence

Pr(Xn = 0)≤ Pr(|Xn−µn| ≥ µn)≤
σ2

n

µ2
n
→ 0 asn→ ∞. 2
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For the next result, denote the number of nodes in a graphG by |G|, the number

of edges bye(G), and define itsdensityasδ(G) =
e(G)
|G| . Aay that a graphG is

balancedif δ(G′)≤ δ(G) for all subgraphsG′ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function n−1/δ(H).

Proof. DenoteX(G) =number ofH-subgraphs of a given graphG. Let k = |H|,
l = e(H), soδ(H) = l/k, and letG∈ G (n, p), wherep = γn−1/δ(H) = γn−k/l for
someγ = γn. Let us first apply the first-moment method to show that ifγ→ 0,
then almost noG contains a subgraph isomorphic toH. Denote

H = {all copies ofH on vertex-set ofG}.

Then|H | =
(n

k

)
h≤

(n
k

)
k! ≤ nk, whereh is the number of different arrangements

of H on a set ofk vertices,h = k!/|Aut(H)|. Thus

E[X] = ∑
H ′∈H

Pr(H ′ ⊆G) = |H | · pl

≤ nkpl = nk(γn−k/l )l = γl −−→
γ→0

0,

and by Markov’s inequality the desired result follows.

For the other part, we wish apply the second-moment method toshow that if
γ→ ∞, then almost every graphG contains a subgraph isomorphic toH. For this,
we need to verify thatµ= E[X] > 0 for all sufficiently largen, and then show that

σ2

µ2 =
1
µ2(E[X2]−µ2)→ 0 asn→ ∞.

The first condition is easy to check: without loss of generality, assume thatγ =
γn≥ 1 for all n. Then:

µ = E[X] = |H | · pl

=

(
n
k

)
h · γl

n ·n−k

≥ const·nk ·h · γl
n ·n−k

> 0.
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For the other requirement, let us try to compute:

E[X2] = ∑
H ′,H ′′∈H

Pr(H ′∪H ′′ ⊆G)

= ∑
H ′,H ′′∈H

pe(H ′)+e(H ′′)−e(H ′∩H ′′)

≤ ∑
H ′,H ′′∈H

p2l−iδ(H),

wherei = |H ′∩H ′′|. (Note thatδ(H ′∩H ′′)≤ δ(H).)

Denote thenH 2
i = {(H ′,H ′′) ∈ H 2 : |H ′∩H ′′| = i} and compute separately for

eachi the sum

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆G)

Case i= 0:

A0 = ∑
H 2

0

Pr(H ′∪H ′′ ⊆G)

= ∑
H 2

0

Pr(H ′ ⊆G) ·Pr(H ′′ ⊆G) H ′,H ′′ independent

≤ ∑
H 2

Pr(H ′ ⊆G) ·Pr(H ′′ ⊆G)

=

(

∑
H

Pr(H ′ ⊆G)

)2

= µ2.
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Case i≥ 1:

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆G)

= ∑
H ′∈H

∑
H ′′:

|H ′∩H ′′|=i

Pr(H ′∪H ′′ ⊆G)

≤ |H | ·
(

k
i

)(
n−k
k− i

)
hp2l p−il /k h =

k!
|Aut(H)|

≤ |H | ·c1nk−ihp2l (γn−k/l )−il /k

= µ·c1nk−ihpl γ−il /kni

= µ·c1nkhpl γ−il /k

= µc2

(
n
k

)
h

︸ ︷︷ ︸
|H |

pl γ−il /k

= µ2 ·c2γ−il /k

≤ µ2 ·c2γ−l/k.

Thus, denotingc3 = kc2, we get the estimate

E[X2]

µ2 =

(
A0

µ2 +
∑i Ai

µ2

)
≤ 1+c3γ−l/k

and hence

σ2

µ2 =
E[X2]−µ2

µ2 ≤ c3γ−l/k−−→
γ→∞

0.

The desired result then follows by Lemma 7.10.2

Corollary 7.12 For k ≥ 3, the property of containing a k-cycle has threshold
t(n) = n−1. (Note that the threshold is independent of k.)2

Corollary 7.13 For k≥ 2, the property of containing a specific tree structure T
on k nodes has threshold function t(n) = n−k/(k−1). 2

Corollary 7.14 For k≥2, the property of containing a k-clique (≈Kk) has thresh-
old function t(n) = n−2/(k−1). 2

Denoteδ∗(H) = max{δ(H ′)|H ′ is subgraph ofH}.

Theorem 7.11’ The graph property “G has a subgraph isomorphic to H” has
threshold function n−1/δ∗(H). 2
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Threshold functions for global graph properties

Also known as the “phase transition”.

The “epochs of evolution”: Consider the structure of randomgraphsG∈ G (n, p),
asp= p(n) increases. The following results can be shown (note thatnp= average
node degree):

0. If p≺ n−2, then a.e.G is empty.

1. If n−2≺ p≺ n−1, then a.e.G is a forest (a collection of trees).

• The threshold for the apperarance of anyk-node tree structure isp =
n−k/(k−1).

• The threshold for the appearance of cycles (of all constant sizes) is
p = n−1.

2. If p∼ cn−1 for anyc < 1 (i.e.np→ c < 1 asn→ ∞), then a.e.G consists
of components with at most one cycle andΘ(logn) nodes.

3. “Phase transition” or “emergence of the giant component”at p∼ n−1 (i.e.
np→ 1).

4. If p∼ cn−1 for anyc> 1 (i.e.np→ c> 1), then a.e.G consists of a unique
“giant” component withΘ(n) nodes and small components with at most one
cycle.

5. If n−1 ≺ p≺ lnn
n , then a.e.G is disconnected, consisting of one giant com-

ponent and trees.

6. If p� lnn
n , then a.e.G is connected (in fact Hamiltonian).

Theorem 7.15 Let pl (n) =
lnn−ω(n)

n , pu(n) =
lnn+ω(n)

n whereω(n)→ ∞. Then

(i) a.e. G∈ G (n, pl) is disconnected;

(ii) a.e. G∈ G (n, pu) is connected.

Proof. We shall use the second moment method on random variablesXk = Xk(G)
= number of components onG with exactlyk nodes.

Assume without loss of generality thatω(n)≤ ln lnn andω(n)≥ 10.
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(i) Set p = pl and computeµ= E(X1),σ2 = Var(X1). By linearity of expectation,

µ = E(X1) = n(1− p)n−1 = ne(n−1) ln(1−p)

≤ ne−np = ne− lnn+ω(n) = eω(n) −−→
n→∞

∞.

Furthermore, the expected number of ordered pairs of isolated nodes is

E(X1(X1−1)) = n(n−1)(1− p)2n−3.

Hence,

σ2 = Var(X1) = E(X2
1)−µ2

= E(X1(X1−1))+µ−µ2

= n(n−1)(1− p)2n−3+n(1− p)n−1−n2(1− p)2n−2

≤ n(1− p)n−1+ pn2(1− p)2n−3

≤ µ+(lnn−ω(n))ne−2lnn+2ω(n) (1− p)−3
︸ ︷︷ ︸
≤2

≤ µ+
2lnn

n
e2ω(n) ≤ µ+1 for largen.

Thus,σ2

µ2 ≤ µ+1
µ2 → 0 asn→ ∞, and by lemma 7.10,

Pr(G is disconnected)≥ Pr(X1(G) > 0)→ 1 asn→ ∞.

(ii) (Here basic expectation estimation, or “1st moment method” suffices.)

Setp = pu =
lnn+ω(n)

n and compute

Pr(G is disconnected) = Pr

(bn/2c
∑
k=1

Xk≥ 1

)

≤ E

(bn/2c
∑
k=1

Xk

)
=
bn/2c
∑
k=1

E(Xk)

≤
bn/2c
∑
k=1

(
n
k

)
(1− p)k(n−k) (5)
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Split the sum (5) in two parts:

(a) ∑
1≤k≤n3/4

(
n
k

)
(1− p)k(n−k)

≤ ∑
1≤k≤n3/4

(en
k

)k
ek(n−k)(−p)

= ∑
1≤k≤n3/4

(en
k

)k
e−knpek2p

≤ ∑
1≤k≤n3/4

k−knkeke−k(lnn+ω(n))ek2·2lnn/n

= ∑
1≤k≤n3/4

k−ke(1−ω(n))ke2k2 lnn/n

≤ e−ω(n) · ∑
1≤k≤n3/4

exp

(
−k lnk+k+2k2 lnn

n

)

︸ ︷︷ ︸
≤3

≤ 3e−ω(n).

(b) ∑
n3/4≤k≤n/2

(
n
k

)
(1− p)k(n−k)

≤ ∑
n3/4≤k≤n/2

(en
k

)k
ek(n−k)(−p)

≤ ∑
n3/4≤k≤n/2

(
en1/4

)k
n−n/4

≤ n
2

en/2n−
1
4n3/4

≤ n−n3/4/5

= exp

(
−n3/4

5
lnn

)

≤ e−ω(n) for largen.

Thus, altogether

Pr(G is disconnected)≤ 4e−ω(n) −−→
n→∞

0. �
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What happens at the “phase transition”p∼ n−1? For fixed values ofn andN =(n
2

)
, consider the space of “graph processes”G̃ = (Gt)

N
t=0, where at each “time

instant”t a new edge is selected uniformly at random for insertion intoann-node
graph. (Thus, picking graphGt from a randomly chosen process̃G ∈ G (n,M),
whereM = t.)

Theorem 7.16 Let c> 0 be a constant andω(n)→∞. Denoteβ =(c−1− lnc)−1

and t= t(n) = bcn/2c. Then

(i) At c< 1, every component C of a.e. Gt satisfies
∣∣∣∣|C|−β

(
lnn− 5

2
ln lnn

)∣∣∣∣≤ ω(n).

(ii) At c= 1, for any fixed h≥ 1 the h largest components C of a.e. Gt satisfy

|C|= Θ(n2/3).

(iii) At c> 1, the largest component C0 of a.e. Gt satisfies

||C0|− γn| ≤ ω(n) ·n1/2,

where0 < γ = γ(c) < 1 is the unique root of

e−cγ = 1− γ.

The other components C of a.e. Gt satisfy also in this case
∣∣∣∣|C|−β

(
lnn− 5

2
ln lnn

)∣∣∣∣≤ ω(n).

Thus, the fraction of nodes in the “giant” component of a.e.Gt for t = cn/2 be-
haves as illustrated in Figure 8.

Let us prove one part of this result, the emergence of a gap in the component sizes
of G∈ G (n, p) at p∼ n−1. (This corresponds tot ∼ Np∼ n/2.)

Theorem 7.17 Let a≥ 2 be fixed. Then for large n,ε = ε(n) < 1/3 and p=
p(n) = (1+ ε)n−1, with probability at least1−n−a, a random G∈ G (n, p) has
no component C that satisfies

8a
ε2 lnn≤ |C| ≤ ε2

12
n.
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1 2 3 4

γ(c)
1

c

Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider “growing” the componentC(u) of an arbitrary nodeu in G
incrementally as follows:

1. (Stage 0:) SetA0 =∅,B0 = {u}.

2. (Stagei + 1:) If Bi = Ai , then stop withC(u) = Bi . Otherwise pick an
arbitraryv∈ Bi \Ai ; setAi = Ai ∪{v}, Bi+1 = Bi ∪{neighbours ofv in G}.

Now what is the probability distribution of|Bi | (=size of setBi)?

Consider any nodev∈G\{u}. It participates ini independent Bernoulli trials for
being included inBi , each with success probability equal top. Thus the inclusion
probability for any fixedv 6= u is 1− (1− p)i, independently of each other.

Consequently, the size of eachBi obeys a simple binomial distribution

Pr(|Bi |= k) =

(
n−1

k

)
(1− (1− p)i)k(1− p)i(n−k−1).

This gives also for eachk an upper bound on the probability

Pr(|C(u)|= k) = Pr(|Bi|= k∧ process stops at stagei).

Denotingpk = Pr(|C(u)|= k) for any fixedu∈G, it is clear that

Pr(G contains a component of sizek)≤ npk,

and to prove the theorem it suffices to show that

k1

∑
k=k0

pk ≤ n−a−1,
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wherek0 = d8aε−2 lnne, k1 = dε2n/12e.
Since presumablyk0≤ k1, we may assumeε4≥ 96alnn

n ≥ 1
n.

We may now estimate

pk ≤ Pr(|Bi|= k)≤ nk

k!
e−

k2
2n (kp)k(1− p)k(n−k−1), (6)

because

(
n−1

k

)
=

nk

k!

k

∏
j=1

(
1− j

n

)
≤ nk

k!
e−

k2
2n , and

(1− p)k≥ 1−kp.

Applying Stirling’s formula

√
2πk

(
k
e

)k

≤ k! ≤ e
1

12k
√

2πk

(
k
e

)k

and the boundsk0≤ k≤ k1 to (6) we obtain

pk ≤ exp

(−k2

2n
− ε3k

3
+

k2(1+ ε)
n

)

≤ exp

(−ε2k
3

+
k2

n

)

≤ exp

(−ε2k
4

)
,

and consequently

k1

∑
k=k0

pk ≤
k1

∑
k=k0

e−ε2k/4≤ e−ε2k0/4 · (1−e−ε2/4)−1

≤ 5
ε2 ·e

−ε2k0/4≤ 5
√

n·n−2a

= 5n−2a+1/2 < n−a−1.

for largen. 2
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7.2 Nonuniform Models

Introduction

Obviously (in hindsight), most large “real-world” networks do not conform to the
Erdös-Rényi random graph model. Consider e.g. the Internet, the WWW, traffic
networks (airline connections, roads), collaboration networks (scientists, artistic,
business), etc. All these exhibit strong nonuniformities:clustering, nodes with
exceptionally high degree, (“hubs”) etc.

This was noted (vaguely) in the social sciences at least in the 1960’s (Milgram,
“six degrees of separation”) and also in popular culture (“small worlds”, “the
Kevin Bacon game”).

Curiously, the first serious mathematical (physical) investigation of the phenomenon
seems to have been Duncan Watts’ Ph.D. thesis (under Steven Strogatz) in 1998
(?), and the “letter” to Nature by Watts and Strogatz in June 1998.

The Watts & Strogatz paper set off a veritable avalanche of work in the area –
fueled in no small part by the current interest in modeling the Internet and the
WWW.

“Small World” Networks

Watts & Strogatz 1998 etc.

Empirical measurements of real networks vs. predictions ofthe ER random graph
model showed that the ER model is not an adequate model of practical networks.

Statistical measures on a graphG = (V,E), |V|= n:

• Characteristic path length = average distance between nodes:

L (G) =

(
n
2

)−1

∑
u6=v

dist(u,v),

where dist(u,v) is the length of the shortest path betweenu andv.

• Clustering coefficient

C (G) = n−1∑
v

ρ(Γv),

whereΓv is the subgraph ofG induced by the neighbours of nodev in G,
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Figure 9: The SW random graph model: circulant graph and rewired graph.

and for a graphΓ with k nodes andl edges, thedensityof Γ is5

ρ(Γ) = l/

(
k
2

)
.

Watts and Strogatz considered the following three empirical graphs (n = number
of nodes,δ = average node degree; only the largest component of each graph was
chosen):

• Hollywood film actors collaboration network:n = 225226,δ = 61

• Power grid of the western US:n = 4941,δ = 2.67

• Neural network of nematodeCaenorhabditis elegans: n = 282,δ = 14

Watts and Strogatz obtained the following comparisons (LER andCER denote the
corresponding values for ER random graphs of comparable size and density):

L LER C CER

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.08 0.0005
C. elegans 2.65 2.25 0.28 0.05

The empirical conclusion is thus that “real networks” have path length compara-
ble to ER random graphs (= short) but considerably higher clustering. To model
such observations, Watts and Strogatz introduced a specific“small world” (SW)
random graph model, whereby one starts with a “circulant graph” Cn,k, and then
randomly “rewires” some small fractionp of the edges. (Cf. Figure 9.)

5To be precise, the definition requires thatk≥ 2. For nodesv with 0 or 1 neighbours, it is most
convenient to stipulate that the neighbourhood density corresponds to the global density, i.e. that
ρ(Γv) = |E|/|V|.
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Figure 10: Path length and clustering coefficient in SW random graphs.

Watts & Strogatz experimented on the effect of the rewiring probability p onL (G)
andC (G) in this model and obtained results as indicated in Figure 10 (curves nor-
malised byC (Cn,k) andL (Cn,k); n = 1000,k = 5). Thus, the “small world” phe-
nomenon of smallL and largeC seems to occur forp in the range 0.0005. . .0.05.

Watts and Strogatz call all graph families with this qualitative property “small
world graphs”. The notion has also been quantified by Walsh (1999) in terms of
theproximity ratio

µ=
C /L

CER/LER
.

Thus, presumablyµ� 1 for small world graphs. However, this quantity does
not seem to be very invariant over various SW graph families.E.g. forC. elegans,
µ≈4.8 and for the power grid graphµ≈106, but for the actors’ networkµ≈ 2400.

For analytical simplicity, Newman et al. (1999, 2000) modified the Watts-Strogatz
SW model to simply adding a fractionp of random cross edges, rather than
rewiring. This variant of the model is called the “solvable SW”, or SSW model.

Other Small World Models

• Kleinberg’s (2000) lattice model: Basis is ans× s square lattice, with
Manhattan (L1) metric:

d(u,v) = d((i, j),(k, l)) = |k− i|+ |l− j|.

Each nodeu has local connections to all nodes within distanced ≤ p, and
in additionq≥ 0 directed “long distance” connections. The probability of
creating a long distance connection betweenu andv is proportional to thei
distance, Pr((u,v)) ∝ d(u,v)−r , r ≥ 0.
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Figure 11: A Kleinberg lattice.

• “Caveman graphs”: (Watts 1999; old idea?) Deterministic SW graph
model. Connect a collection ofr “k-man caves” (k-cliques) together in a
systematic manner.

Figure 12: A collection of six 5-caves connected together ina 6-cycle.

Scale Free Networks

So are small world graphs a good model of real world networks?Not always.
(Usually not?)

One aspect of real networks that SW graphs often do not model well is the degree
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Figure 13: Degree distribution of an ER random graph.

distribution. In an ER random graphG ∈ G (n, p), the degree distribution is al-
most binomial with parametersn−1, p. For largen and smallp, the distribution
approaches Poisson(λ), whereλ = np.

More precisely, ifXk = Xk(G) = number of nodes inG with deg =k, then

P(k) =
E(Xk)

n
=

(
n−1

k

)
pk(1− p)n−1−k ≈ e−np(np)k

k!
≈ e−δ δk

k!
,

whereδ = average degree of graphG. Thus, the degree distribution of a typical
ER graphG looks as illustrated in Figure 13.

The degree distributions of SW graphs are typically even more peaked around
δ(G). E.g. in WS graphs based on the circulantCn,t , approximately fraction
1− 2t p of the nodes has degree equal to 2t (recall thatp� 1 is the rewiring
probability).

However, many real world networks seem to have very heavy tailed degree distri-
butions, well matched by “power laws”

P(k) ∝ k−γ,

whereγ = 2. . .4. This indicates that there are some nodes with unreasonably
large (in the ER or SW models) degrees. Also, such networks are called “scale
free”, because there is no characteristic “scale” or node degree value at which
large networks would concentrate.

On a log-log plot, the degree distributions of such networkslook somewhat as in
Figure 14

For instance, the following values forγ have been estimated for real world net-
works (Barabási & Albert 1999)
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logXk

slope =−γ

logk

Figure 14: Degree distribution of a “scale-free” random graph.

n δ γ
Film actors 212250 28.8 2.3± 0.1
WWW (local) 325729 5.46 2.1± 0.1
Power grid 4941 2.67 4

Barabási & Albert (1999) proposed the following attractive “growth and preferen-
tial attachment” model (BA model) to explain the emergence of such power law
degree distributions in networks:

• The network is initialised at timet = 0 with some small set of nodes and
edges,G0 = (V0,E0)

• At time t +1, a new nodeu is introduced to the network, withd0 edges that
are preferentially attached to the existing nodesv∈Vt so that

Pr((u,v) ∈ Et+1) ∝ degt(v).

Barabási and Albert argue heuristically and experimentally that this growth pro-
cess yields networks with power law degree distributions

P(k) ∝ k−3.

They also claim that with nonlinear preferences the exponent γ can be adjusted
also to values different than 3.

These arguments have been made rigorous by Eriksen & Hörnquist (2002) and by
Krapivsky (2000). (However some problems still remain withnonlinear prefer-
ences?)

Finally, note that the popular experimental graphs (Internet, actors, power grid,
etc.) have both small world and scale free properties, so neither the SW nor the BA
model (which are mutually contradictory) provides a fully satisfactory explanation
for them.



Part III

Stochastic Algorithms

8 Simulated Annealing

Global optimisation (say, minimisation) of an objective function H(σ), framed
as a Hamiltonian of a statistical mechanics system, via a sequence of Metropolis
samplers for the Gibbs distributions determined byH(σ) at decreasing values of
the temperature parameterT→ 0.

Let H : S→ R be a function to be minimised over a finite (but typically very
large) state spaceS. Assume thatShas some neighbourhood structureS= (S,N)
(cf. page 24).

In any specific application of the method, the algorithm designer typically has a
lot of freedom in the choice of the most appropriateN. This choice can have a
significant effect on the efficiency of the algorithm: one would like to haveN such
that N(σ) is small for eachσ ∈ S, yet the resulting Metropolis chains converge
rapidly.

The Gibbs distribution determined byH at temperatureT is (recall page 58):

π(T)
σ = PrT(σ) =

1
ZT

e−H(σ)/kT =
1

ZT
e−βH(σ),

whereβ = 1/kT.

A relevant observation is that asT → 0 (or β→ ∞), the distribution PrT(σ) gets
more peaked according toH. Denoting byS∗ = {σ∗ ∈ S | H(σ∗) = min} the set
of global optima ofH, one observes that:

PrT(σ)

PrT(σ∗)
= e−β(H(σ)−H(σ∗)) −−−−→

T→0
(β→∞)

{
0, σ /∈ S∗

1, σ ∈ S∗

93
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Thus, in the limit one obtains:

π∗σ = lim
T→0

PrT(σ) =

{
0, σ /∈ S∗

1/|S∗|, σ ∈ S∗

Of course, one cannot directly sample according toπ∗, but the idea is that by
starting at a high value ofT and then slowly (but how slowly?) decreasing it, one
obtains a nonhomogenous Metropolis chain that converges reasonably fast (?) to
π∗.

As regards the convergence of the chains at each fixedT > 0, we can appeal to the
general results concerning Metropolis samplers from page 24 onwards.

Let us just check the form of the acceptance probabilities: aproposed moveσ→ τ,
whereτ ∈N(σ), is accepted with probability:

pστ = min

{
πτdσ
πσdτ

,1

}

= min

{
e−βH(τ)

e−βH(σ)
· dσ

dτ
,1

}

= min

{
e−β(H(τ)−H(σ)) · dσ

dτ
,1

}

= min
{

e−β(H(τ)−H(σ)),1
}

,

if (S,N) is regular i.e.|N(σ)|= |N(τ)| for all σ,τ.

Thus, for a regular neighbourhood structure, and denoting∆H = H(τ)−H(σ),
a proposed transitionσ→ τ is accepted always if∆H ≤ 0, and with probability
e−β∆H , if ∆H > 0.1

In summary, one obtains the following general method for minimising a function
H over a state spaceSwith regular neighbourhood structureN:

Algorithm SA(H,S,N):

T← Tinit ;
σ← σinit ;
while T > Tf inal do

L← sweep(T);
for L times do

1In the general case of nonregular neighbourhoods, potential-increasing transitions should be
accepted with probabilitye−β∆H ·dσ/dτ.
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chooseτ ∈ N(σ) uniformly at random;
∆H← H(τ)−H(σ);
if ∆H ≤ 0 thenσ← τ;
else chooser ∈ [0,1) uniformly at random;

if r ≤ exp(−∆H/T)
thenσ← τ;

end for;
T← lower(T);

end while;
result← σ;

The obvious question is now how to choose appropriate functions lower(T) and
sweep(T), i.e. what is a good “cooling schedule”〈T0,L0〉,〈T1,L1〉, . . .
In practice, it is customary to just start from some “high” temperatureT0, and
after each “sufficiently long” sweepL decrease the temperature by some “cooling
factor” α≈ 0.8. . .0.99:

Tk+1 = αTk.

Theoretically this is much too fast, as we shall see, but often seems to work well
enough.

Consider an inhomogenous Markov chain with transition matricesP(0), P(1), P(2), . . .
Denote

P(m,k) = P(m)P(m+1) · · ·P(m+k−1)

i.e. Pi j (m,k) = Pr(Xm+k = j | Xm = i).

The chainM is weakly ergodicif for all m≥ 0:

lim
k→∞

sup
µ,ν

dV
(
µTP(m,k),νTP(m,k)

)
= 0

andstrongly ergodicif there is some distributionπ such that for allm≥ 0:

lim
k→∞

sup
µ

dV(µTP(m,k),π) = 0

Let Q be ann×m stochastic matrix. The(Dobrushin) ergodic coefficientof Q is
defined as:

ρ = ρ(Q) = max
i, j

dV(qi,q j)
qi = (qi1, . . . ,qim)
q j = (q j1, . . . ,q jm)

=
1
2

max
i, j

m

∑
k=1

|qik−q jk|
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The following key technical lemmas will possibly be proved later. The proofs are
not exceedingly difficult.

Lemma 8.1 (“Dobrushin’s inequality”)
Given the stochastic matrices Q1 ∈ [0,1]n×m,Q2 ∈ [0,1]n×l :

ρ(Q1Q2)≤ ρ(Q1)ρ(Q2).

Lemma 8.2 (“Dobrushin convergence rate bound”)
Given the stochastic matrix P and the distributions µ,ν:

dV(µTPn,νTPn)≤ dV(µ,ν)ρ(P)n.

Lemma 8.3
An inhomogeneous Markov chainM with transition probability matrices P(0),
P(1), . . . is weakly ergodic if and only if either (and hence both) of thefollowing
conditions hold:

(i) for any m≥ 0: limk→∞ ρ(P(m,k)) = 0;

(ii) for some increasing sequence0≤m0 < m1 < · · ·
∞

∑
i=0

(1−ρ(P(mi,mi+1))) = ∞.

Lemma 8.4
Let M be a weakly ergodic Markov chain with transition probability matrices
P(0),P(1), . . . Suppose that there exists a sequence of distributionsπ(0),π(1), . . .
such that

(i) π(m)P(m) = π(m), for each m≥ 0;

(ii)
∞

∑
m=0
||π(m)−π(m+1)||1 < ∞.

ThenM is also strongly ergodic, with limit distribution

π∗i = lim
m→∞

π(m)
i .
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Theorem 8.5
Consider a simulated annealing computation on input(H,S,N). Assume the
neighbourhood graph(S,N) is connected and regular of degree r. Denote:

∆ = max{H(τ)−H(σ) | σ ∈ S,τ ∈ N(σ)}.
Suppose the cooling schedule used is of the form〈T0,L〉,〈T1,L〉,〈T2,L〉, . . . , where

L≥ min
σ∗∈S∗

max
σ/∈S∗

dist(σ,σ∗), (1)

wheredist(σ,σ∗) is the distance in graph(S,N) fromσ to σ∗, and for each cooling
stage l≥ 2:

Tl ≥
L∆
ln l

(but Tl −−→
l→∞

0). (2)

Then the distribution of states visited by the computation converges in the limit to
π∗, where

π∗σ =

{
0, if σ /∈ S∗

1/|S∗|, if σ ∈ S∗

Proof: Denote byP(0),P(1), . . . the sequence of transition matrices for the Markov
chain onSdetermined by the SA algorithm with the given parameters. Weshall
show, based on Lemma 8.4, that this chain is strongly ergodicwith the given limit
distribution.

Let us first verify weak ergodicity using Lemma 8.3 (ii). Letσ∗ ∈ S∗ be some
ground state achieving the lower bound in condition (1). We shall show that for
anyσ ∈ Sandk≥ k0, wherek0 is sufficiently large:

Pσσ∗(k,k+L)≥
(

1
r

e−∆/tk

)L

, (3)

wheretk = Tbk/Lc = cooling temperature at stepk.

It then follows from condition (3) and from the fact|p−q|= p+q−2min{p.q}
that

1−ρ(P(k,k+L))

= 1− 1
2

max
σ,τ ∑

ν∈S

|Pσν(k,k+L)−Pτν(k,k+L)|

= min
σ,τ ∑

ν∈S

min{Pσν(k,k+L),Pτν(k,k+L)}

≥ min
σ∈S

Pσσ∗(k,k+L)

≥ r−Le−L∆/tk,
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and so (choosingml = l ·L):

∞

∑
l=0

(1−ρ(P(ml ,ml+1)))≥
∞

∑
l=k0

(1−ρ(P(lL, lL +L)))

≥
∞

∑
l=k0

r−Le−L∆/tk ≥ r−L
∞

∑
l=k0

1
l

= ∞.

Thus, let us check that condition (3) holds for some sufficiently largek0. Observe
first that for anyσ ∈ Sandτ ∈ N(σ):

Pστ(k) =
1
r

min{e−(H(τ)−H(σ))/tk,1} ≥ 1
r

e−∆/tk.

Similarly, for anyσ∗ ∈ S∗ there is somek0 such that for allk≥ k0:

Pσ∗σ∗(k)≥
1
r

e−∆/tk.

Namely, letδ = min{H(τ)−H(σ∗) | σ∗ ∈ S∗,τ ∈N(σ∗)\S∗}. Now δ > 0, unless
H is a constant function. Thus for allk≥ k0, wherek0 is sufficiently large:

1−e−δ/tk ≥ e−∆/tk,

and so

Pσ∗σ∗ = 1− ∑
τ∈N(σ∗)

Pσ∗τ(k)

= 1− ∑
τ∈N(σ∗)

1
r

e−(H(τ)−H(σ))/tk

≥ 1− 1
r
(r−1+e−δ/tk)

=
1
r
(1−e−δ/tk)

≥ 1
r

e−∆/tk.

Thus, for anyσ ∈ Sandk≥ k0:

Pσσ∗(k,k+L)

= ∑
τ1

∑
τ2

· · · ∑
τL−1

Pστ1(k)Pτ1τ2(k+1) · · ·PτL−1σ∗(k+L−1)

≥ Pσσ1(k)Pσ1σ2(k+1) · · ·PσL−1σ∗(k+L)

≥
(

1
r
e−∆/tk

)L

,
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whereσ,σ1,σ2, . . . ,σL−1,σ∗ is a shortest path fromσ to σ∗ in (S,N), with pos-
sibly stateσ∗ repeated several times if the length of the actual path is less than
L.

Having now established the weak ergodicity of our chain, letus check conditions
(i) and (ii) of Lemma 8.4 to complete the proof.

For condition (i) it suffices to observe that the stationary distribution at stagel of
the algorithm:

π(l)
σ =

1
Zl

e−H(σ)/Tl , Zl = ∑
σ∈S

e−H(σ)/Tl ,

satisfies the conditionπ(l)P(m) = π(l), for values ofm from lL to (l +1)L−1.

For condition (ii), one can show by a somewhat tedious calculation (cf. Aarts
& Korst, “Simulated Annealing. . . ”, p. 22) that for each of the intermediate
stationary distributionsπ(l):

if σ∗ ∈ S∗, then
∂

∂T
π(l)

σ∗ < 0;

if σ /∈ S∗, then
∂

∂T
π(l)

σ > 0 for l ≥ l1 sufficiently large.

As Tl+1≤ Tl at each stagel , it thus follows that:

π(l+1)
σ∗ ≥ π(l)

σ∗ for σ∗ ∈ S∗

π(l+1)
σ ≤ π(l)

σ for σ /∈ S∗ andl ≥ l1

Thus, forl ≥ l1:

∣∣∣
∣∣∣π(l)−π(l+1)

∣∣∣
∣∣∣
1

= ∑
σ∈S

∣∣∣π(l)
σ −π(l+1)

σ

∣∣∣

= ∑
σ∗∈S∗

∣∣∣π(l)
σ∗ −π(l+1)

σ∗

∣∣∣+ ∑
σ/∈S∗

∣∣∣π(l)
σ −π(l+1)

σ

∣∣∣

= 2

(

∑
σ∗∈S∗

π(l+1)
σ∗ − ∑

σ∗∈S∗
π(l)

σ∗

)
.



100 Part III. Stochastic Algorithms

Hence, denotinĝπ(m) = π(bm/Lc):

∞

∑
m=0

∣∣∣
∣∣∣π̂(m)− π̂(m+1)

∣∣∣
∣∣∣
1

=
∞

∑
l=0

∣∣∣
∣∣∣π̂(l)− π̂(l+1)

∣∣∣
∣∣∣
1

=
l1

∑
l=0

∣∣∣
∣∣∣π̂(l)− π̂(l+1)

∣∣∣
∣∣∣
1
+

∞

∑
l=l1+1

∣∣∣
∣∣∣π̂(l)− π̂(l+1)

∣∣∣
∣∣∣
1

≤ 2l1+2

(

∑
σ∗∈S∗

π∗σ∗− ∑
σ∗∈S∗

π(l1+1)
σ∗

)

≤ 2l1+2 < ∞.

This completes the proof, because according to Lemma 8.4 thechain has the limit
distributionπ∗, where

π∗σ = lim
l→∞

π(l)
σ = lim

l→∞

1
Zl

e−H(σ)/Tl =

{
0, if σ /∈ S∗

1/|S∗|, if σ ∈ S∗ �

9 Approximate counting

Let Σ be an alphabet (without loss of generalityΣ = {0,1}) andR⊆ Σ∗×Σ∗ an
NP relation overΣ∗, i.e.

• for some polynomialp(n), R(x,w) ⇒ |w| ≤ p(|x|), where|z| denotes the
length of string z

• the conditionR(x,w) can be tested in polynomial time, for any given〈x,w〉

Well-known examples of NP relations:

• SAT(φ, t), whereφ is (an encoding of) a Boolean formula andt : Varφ →
{T,F} is a truth assignment to its variables; relation holds ifφ evaluates to
T undert.

• COLq(G,σ), whereG = (V,E) is a graph andσ : V → {1, . . . ,q} is a can-
didateq-colouring of its nodes; relation holds ifσ is valid for G, i.e. if
(u,v) ∈ E ⇒ σ(u) 6= σ(v) ∀ u,v∈V.

DenoteR(x) = {w∈ Σ∗|R(x,w) holds}.
One may consider different computational problems relatedto R:
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• existence problem: givenx, determine ifR(x) 6=∅

• counting problem: givenx, determineNR(x) = |R(x)|

• sampling problem: givenx, providew∈ R(x) uniformly at random

A randomised approximation scheme (ras)for the counting problem associated to
R is a randomised algorithmA(x,ε) such that for anyx∈ Σ∗,ε > 0:

Pr((1− ε)NR(x)≤ A(x,ε)≤ (1+ ε)NR(x))≥ 3
4
,

where the probability is with respect to the random choices made by the algorithm.
The ras isfully polynomial (fpras)if its running time is polynomial in|x| and 1/ε.

An almost uniform sampler (aus)for R is a randomised algorithmS(x,δ) such that
for any x ∈ Σ∗,S(x,δ) ∈ R(x) anddV(S(x,δ),UR(x)) ≤ δ, whereS(x,δ) denotes
(by slight abuse of notation) the distribution of the outputof S(x,δ), andUR(x)
denotes the uniform distribution overR(x). An aus isfully polynomial (fpaus)is
its running time is polynomial in|x| and ln1/δ.

It can be shown (Jerrum et al. 1986, Sinclair 1993) that ifR is “self-reducible”,
thenR has an fpras if and only if it has an fpaus.

Self-reducibility ofR means roughly (the exact definition is somewhat more gen-
eral) that there is a small collection of polynomial time functions fi ,gi , i = 1, . . . ,k,
such that for anyx∈ Σ∗, | fi(x)|< |x| and

R(x) =
k

[

i=1

gi(x,R( fi(x))).

E.g. for the SAT relation SAT(φ) = SAT(φT)∪SAT(φF), whereφT (φF ) is the for-
mula obtained fromφ by substitutingT (F) for the first variable and simplifying.
Almost all “natural” NP-complete relations are self-reducible.

Let us see concretely, in the case of low-degree graph colouring, how an efficient
fpaus (pages 46-50) can be converted into an efficient fpras.

Given a graphG = (V,E) with maximum node degree∆ < q, denote for brevity
Ω(G) = COLq(G), and assume the existence of a fpausS(G,δ) for q-colourings.
(Actually, the fpaus-construction on pages 46-50 requiresmore strongly that∆ <
q/2.)

One possible self-reduction for graph colouring is

Ω(G) = g(G,Ω(G′)),
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whereG′ ∼G with one edge (e.g. highest-numbered one) removed, and

g(G,σ) =

{
σ if σ is valid forG
⊥ otherwise

where⊥ is a “null-value”(S∪{⊥}= S for anyS).

Assuming|E| = m, denoteG = Gm, G′ = Gm−1, . . . ,G(m) = G0 = (V,∅). Now
clearly |Ω(G0)| = qn, wheren = |V|. Then the quantity we are interested in can
be expressed as:

N(G) = |Ω(G)|= |Ω(G)m|
|Ω(G)m−1|

· |Ω(G)m−1|
|Ω(G)m−2|

· · · |Ω(G)1|
|Ω(G)0|

· |Ω(G)0|

= ρm ·ρm−1 · · ·ρ1 ·qn, (4)

where

ρk =
|Ω(G)k|
|Ω(G)k−1|

.

Now each of the ratios inρk and hence the product (4) can be estimated using
our presumed fpaus to generate a “sufficiently large” numberof samples form
eachΩ(Gk−1) and seeing how many of those fall also inΩ(Gk). Some analysis is
needed to determine the appropriate numbers.

Before going into the analysis, let us note that the same approach, combined with
more complicated samplers, has been used to provide fpras for such important
problems as:

• approximating the volume of a convex body (Dyer, Frieze, Kannan 1991)

• approximating the partition function of a ferromagnetic Ising model (Jerrum
& Sinclair 1993)

• approximating the permanent of a positive matrix (Jerrum, Sinclair & Vigoda
2001)

Let us then complete the analysis of the graph colouring fpras. Recall that

|Ω(G)|= ρm ·ρm−1 · · ·ρ1 ·qn,

where each

ρk =
|Ω(G)k|
|Ω(G)k−1|

.
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Now clearly eachΩ(Gk) ⊆ Ω(Gk−1), so thatρk ≤ 1. On the other hand, each
colouringσ ∈ Ω(Gk−1) \Ω(Gk) must be such that it assigns the same colour to
both endpointsu,v of the edgee removed fromGk to obtainGk−1. Let u be the
lower-numbered of the nodes. Thenσ can be transformed to a valid colouring of
Gk by recolouringu with one of the≥ q−∆ ≥ 1 colours free for it. On the other
hand, each colouring inΩ(Gk) is generated by this process in at most one way.
Thus

|Ω(Gk−1)\Ω(Gk)| ≤ |Ω(Gk)|,

and soρk ≥ 1
2.

Assume then without loss of generality thatm≥ 1 and 0< ε ≤ 1. (Recallε ∼
error tolerance for the fpras to be constructed).

Let Zk ∈ {0,1} be a random variable obtained by running the presumed fpaus for
Gk−1 and testing whether the resulting colouring is also valid for Gk (→ Zk = 1)
or not (→ Zk = 0). Denoteµk = E[Zk].

By settingδ = ε
6m in the fpaus one may ensure that

ρk−
ε

6m
≤ µk≤ ρk +

ε
6m

, (5)

and noting the bounds onρk, that

(
1− ε

3m

)
ρk ≤ µk ≤

(
1+

ε
3m

)
ρk. (6)

Note also that by (5),µk≥ 1
3.

To decrease the variance of ourρk-estimate, letZ(1)
k , . . . ,Z(s)

k bes= d74ε−2me ≤
75ε−2m independent copies of variableZk, and let

Z̄k =
1
s

s

∑
i=1

Z(i)
k

be their mean. ThenE[Z̄k] = E[Zk] = µk and

Var(Z̄k)

µ2
k

=
s−2 ·s·Var(Zk)

µ2
k

=
s−1(µk−µ2

k)

µ2
k

= s−1(µ−1
k −1)≤ 2s−1

We shall take as our estimator for|Ω(G)| the random variableY = qnµ1 · · ·µm.
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The variance ofY can be bounded as:

Var(Y)

E(Y)2 =
Var(Z̄1 · · · Z̄m)

(µ1 · · ·µm)2

=
m

∏
k=1

(
1+

Var(Z̄k)

µ2
k

)
−1

≤
(

1+
2
s

)m

−1 s= d74m
e2e ⇒ 2

s ≤ 2ε2

74m = ε2

37m

≤
(

1+
ε2

37m

)m

−1

≤ eε2/37−1 ex−1 = x+
x2

2!
+

x3

3!
+ · · ·

︸ ︷︷ ︸
small!

≤ ε2

36
.

Since by Chebyshev’s inequality:

Pr(|Y−E(Y)| ≥ λE(Y))≤ 1
λ2

Var(Y)

E(Y)2

i.e.

Pr

(∣∣∣∣
Y
qn −µ1 · · ·µm

∣∣∣∣ ≥ λµ1 · · ·µm

)
≤ 1

λ2

ε2

36

we obtain, by choosingλ = ε/3, the bound

Pr

((
1− ε

3

)
µ1 · · ·µm≤ q−nY ≤

(
1+

ε
3

)
µ1 · · ·µm

)
≥ 3

4
.

But from inequality (6) we obtain the bound

(
1− ε

3m

)m
ρ1 · · ·ρm≤ µ1 · · ·µm≤

(
1+

ε
3m

)m
ρ1 · · ·ρm

⇒
(

1− ε
2

)
ρ1 · · ·ρm≤ µ1 · · ·µm≤

(
1+

ε
2

)
ρ1 · · ·ρm

Putting these two bounds together yields the desired fpras condition:

Pr


(1− ε)qnρ1 · · ·ρm︸ ︷︷ ︸

|Ω(G)|

≤Y ≤ (1+ ε)qnρ1 · · ·ρm︸ ︷︷ ︸
|Ω(G)|


≥

3
4
.
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10 Markov Chain Monte Carlo Simulations

This is a very broad area and would actually merit a full main section of its own.
Maybe later.

In many practical applications of Markov chains, one is interested not just in sam-
pling according to the stationary distributionπ, but also in computing expected
values of various quantities with respect to it:

Eπ[ f ] = ∑
σ∈S

f (σ)πσ (also denoted〈 f 〉π)

E.g. one might want to compute the average magnetisation of aspin glass model
at a given inverse temperatureβ (cf. page 62):

〈M〉= ∑
σ∈S

M(σ) ·e−βH(σ)/Zβ︸ ︷︷ ︸
Gibbs density

The task could be approached by producing many independent sample statesσ
according toπ, computingf (σ) for each and controlling the estimation error.

However, it is customary to compute the estimates from a single (or a few) long
runs of the chain:

Eπ[ f ]≈ 1
N

N

∑
k=1

f (Xk(ω)), N large

(More precisely, maybe

Eπ[ f ]≈ 1
N−N0

N

∑
k=N0+1

f (Xk(ω)),

whereN0 is an initial “burn-in” time to eliminate systematic effects of choice of
the initial state.)

For this approach to work properly, the Markov chains must be“path-ergodic” in
the sense that the stationary distribution is sampled properly along almost every
individual path of the chain.

In fact, if the word was not already so overused, we could define a Markov chain
M = (X1,X2, . . .) to beergodic with stationary distributionπ if for any initial
distributionµ and for all statesσ ∈ S:

lim
N→∞

1
N

N

∑
k=1

Iσ(Xk) = πσ µ-almost surely,
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i.e.

Prµ

(
lim

N→∞

1
N

N

∑
k=1

Iσ(Xk(ω)) 6= πσ

)
= 0,

whereIσ is an indicator function for stateσ:

Iσ(ξ) =

{
1, if ξ = σ
0, if ξ 6= σ

Luckily, all regular (finite) Markov chains are ergodic alsoin this strong sense. In
fact, even more is true:

Theorem 10.1 (Ergodic Theorem for Regular Markov Chains)
LetM = (X1,X2, . . .) be a regular Markov chain with state space S, and f: S→R
any function. Then for any initial distribution µ:

lim
N→∞

1
N

N

∑
k=1

f (Xk) = Eπ[ f ] µ-almost surely.

We do not have all the tools (or the time) to give a complete proof of Theo-
rem 10.1, but here are the key components:

Theorem 10.2 (Kolmogorov’s Strong Law of Large Numbers)
Let X1,X2, . . . be a sequence of independent identically distributed random vari-
ables defined on probability space(Ω,F ,P), and such that E[|Xk|] = E[|X1|] < ∞
for all k. Then

lim
N→∞

1
N

(X1+ . . .+XN) = E[X1] P-almost surely.

Lemma 10.3 (Regenerative Cycle Lemma / Strong Markov Property)
Let M = (X0,X1, . . .) be a regular finite Markov chain with state space S. Fix
any state0∈ S. Then0 is visited on any given sample path ofM infinitely often
(almost surely), and denotingτ0,τ1,τ2, . . . the successive times of visit to0, the
sample path segments

{Xτk,Xτk+1, . . . ,Xτk+1−1}, k≥ 0,

are independent and identically distributed.
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Proof of Theorem 10.1:Recall that for anyσ ∈ S:

πσ =
ρσ
µ0

=
1
µ0
·E0

[

∑
n≥1

I[Xn=σ]I[τ1>n]

]
=

1
µ0

E0

[
τ1

∑
n=1

I[Xn=σ]

]
,

whereE0[·] = E[·|X0 = 0], τ1 is the time of first return to 0, andµ0 = E[τ1].

Given a sample path starting at state 0, letτ1,τ2, . . . be the successive return times
to 0, and define

Up =
τp+1

∑
n=τp+1

f (Xn).

By Lemma 10.3, theUp’s are independent and identically distributed random vari-
ables. Assumingf ≥ 0 we obtain:

E[U0] = E0

[
τ1

∑
n=1

f (Xn)

]

= E0

[
τ1

∑
n=1

∑
σ∈S

f (σ)I[Xn=σ]

]

= ∑
σ∈S

f (σ)E0

[
τ1

∑
n=1

I[Xn=σ]

]

= µ0 ∑
σ∈S

f (σ)πσ = µ0Eπ[ f ]

By Theorem 10.2 (Strong Law of Large Numbers), then:

lim
n→∞

1
n

n

∑
p=1

Up = E[U0] = µ0Eπ[ f ] η-almost surely,

i.e.

lim
n→∞

1
n

τn+1

∑
k=τ1+1

f (Xk) = µ0Eπ[ f ] η-almost surely. (7)

Define then random variablesν(n) as:

ν(n) =
n

∑
k=1

I[Xk=0]
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(∼ number of returns to 0 by timen). Clearlyτν(n) ≤ n < τν(n)+1 for all n, so that

1
ν(n)

τν(n)

∑
k=1

f (Xk)≤
1

ν(n)

n

∑
k=1

f (Xk) <
1

ν(n)

τν(n)+1

∑
k=1

f (Xk) almost surely.

Since by Lemma 10.3,ν(n)→ ∞ asn→ ∞, we obtain from equation (7):

lim
n→∞

1
ν(n)

n

∑
k=1

f (Xk) = lim
n→∞

1
n

τn+1

∑
k=1

f (Xk) = µ0Eπ[ f ] almost surely. (8)

However, asymptotically also

n∼ τν(n) =
ν(n)−1

∑
i=0

(τi+1− τi) almost surely,

so by Lemma 10.3 and Theorem 10.2:

n
ν(n)

∼ 1
ν(n)

ν(n)−1

∑
i=0

(τi+1− τi) = E[τ1] = µ0 almost surely.

Thusµ0ν(n)∼ n, and by combining equations (7) and (8):

lim
n→∞

1
n

n

∑
k=1

f (Xk) = lim
n→∞

1
µ0ν(n)

n

∑
k=1

f (Xk) almost surely

= Eπ[ f ].

The case of generalf : S→R can be handled by treating separately the nonnega-
tive functions

f + = max{ f ,0} and f− = max{− f ,0}
and summing up the resulting equalities.�

Convergence Rates of MCMC Simulation Algorithms

LetM =(X0,X1, . . .) be a regular finite Markov chain with state spaceS= {1, . . . , r},
transition probability matrixP, and stationary distributionπ. Denote:

Π =




π1 · · · πr

π1 · · · πr
...

π1 · · · πr


 (i.e. for any distributionµ, µTΠ = πT).

Thefundamental matrixof chainM is defined as

Z = (I − (P−Π))−1.
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Proposition 10.4 For a regular chainM , the fundamental matrix Z is well-defined,
and

Z = I + ∑
n≥1

(Pn−Π).

Proof: It is easy to verify that for allk≥ 1:

PΠk = ΠkP = Π.

Thus,

(P−Π)n =
n

∑
k=0

(
n
k

)
(−1)n−kPkΠn−k

= Pn+
n−1

∑
k=0

(
n
k

)
(−1)n−kΠ

= Pn−Π.

Therefore, withA = P−Π,

(I −A)(I +A+A2 + . . .+An−1) = I −An = I +Pn−Π,

and consequently

(I −A)(I + ∑
n≥1

An) = lim
n→∞

(I +Pn−Π) = I .

Hence the matrixI −A = I − (P−Π) is invertible, and

(I − (P−Π))−1 = I + ∑
n≥1

(P−Π)n = I + ∑
n≥1

(Pn−Π). �

The fundamental matrix has many uses (analogous to the fundamental matrix of
transient states) in computing expected recurrence times etc.

We, however, quote only the one of main interest to us (and even that without its
somewhat technical proof). Given a Markov chainM with finite state spaceS,
and any functionsf ,g : S→ R, denote:

〈 f ,g〉π = Eπ[ f (X)g(X)] = ∑
i∈S

π(i) f (i)g(i)

Varµ( f ) = Eµ[( f (X)− f̄ )2] = Eµ[ f (X)2]− (Eµ[ f (X)]︸ ︷︷ ︸
f̄

)2
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Theorem 10.5 (Asymptotic variance of Ergodic Estimates)
For a regular chainM , and any function f: S→R,

lim
N→∞

1
N

Varµ

(
N

∑
k=1

f (Xk)

)
= 2〈 f ,Z f〉π−〈 f ,(I +Π) f 〉π︸ ︷︷ ︸

Denote v( f ,P,π)

for any initial distribution µ.

Proof: E.g. Brémaud 1999, pages 232-234.�

Since by Theorem 10.1,

f̃N =
1
N

N

∑
k=1

f (Xk)−→
a.s.

f̄ = Eπ[ f ],

by Chebyshev’s inequality we see that for anyδ > 0 and for “largeN”:

Pr(| f̃N− f̄ | ≥ δ)≤ 1
δ2Var( f̃N) =

1
δ2N2Var

(
N

∑
k=1

f (Xk)

)
≈ v( f ,P,π)

δ2N

independent of the initial distributionµ.

Suppose then that the transition probability matrixP hasr distinct eigenvalues
1= λ1 > λ2 > · · ·> λr >−1, with associated left and right eigenvectorsu1, . . . ,ur

andv1, . . . ,vr , respectively (normalized so thatuT
i vi = 1 ∀ i). Then:2

Pn =
r

∑
i=1

λn
i viu

T
i = Π+

r

∑
i=2

λn
i viu

T
i ,

and so

Z = I + ∑
n≥1

(Pn−Π) = I +
r

∑
i=2

λi

1−λi
viu

T
i .

Thus

v( f ,P,π) = 2〈 f ,Z f〉π−〈 f ,(I +Π) f 〉π

= 2〈 f , f 〉π +2
r

∑
i=2

λi

1−λi
〈 f ,vi〉π(uT

i f )−〈 f , f 〉π−〈 f ,Π f 〉π

= 〈 f ,(I −Π) f 〉π︸ ︷︷ ︸
Varπ( f (X0))

+2
r

∑
i=2

λi

1−λi
〈 f ,vi〉π( f Tui).

2Cf. page 16. Also left eigenvectors are here represented as column vectors, however.
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For a reversible chain (D1/2PD−1/2 symmetric),ui = Dvi and thereforef Tui =
〈 f ,vi〉π. Applying the decompositionf = ∑i〈 f ,vi〉πvi we obtain in this case

v( f ,P,π) =
r

∑
i=2

1+λi

1−λi
|〈 f ,vi〉π|2.

Let us then consider the task of designing good “Metropolis-like” reversible Markov
chains with given stationary distributionπ and as good convergence rate as possi-
ble.

To achieve a given stationary distributionπ, the detailed balance conditions re-
quire only that

πi pi j = π j p ji , for all statesi, j ∈ S (9)

There are potentially an infinite number of transition matricesP satisfying condi-
tions (9). Let us focus on solutions of the form

pi j = qi j αi j ,

whereQ= (qi j ) is an irreduciblecandidate-generation matrix, andαi j ∈ (0,1] are
theacceptance probabilitiesfor given tentative state transitions.

W. Hastings (1970) proposed the following general class of acceptance probability
matrices guaranteeing the validity of the detailed balanceconditions (9):

αi j =
si j

1+ ti j
,

where

ti j =
πiqi j

π jq ji
.

andsi j = sji are numbers chosen so thatαi j ∈ (0,1], i.e.

0 < si j ≤ 1+min{ti j , t ji} ∀ i, j. (10)

Enforcing equality in condition (10) results in the Metropolis-Hastings algorithm

αi j = min

{
1,

π jq ji

πiqi j

}

(check this!), whereas always choosingsi j = 1 defines the so calledBarker’s al-
gorithm:

αi j =
π jqi j

π jq ji +πiqi j
.

Let us then compare the various Hastings-type MCMC algorithms with respect to
their asymptotic variance (Theorem 10.5). We quote the following result without
proving it:
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Theorem 10.6
Let P= (pi j ) and P′ = (p′i j ) be regular transition matrices over finite state space
S, with the same stationary distributionπ. If pi j ≥ p′i j for all i 6= j, then

v( f ,P,π)≤ v( f ,P′,π)

holds for all functions f: S→ R.

Proof: E.g. Brémaud page 300.�

Corollary 10.7
For a given candidate-generation matrix Q, the Metropolis-Hastings algorithm
has optimal asymptotic variance in the class of Hastings algorithms.

Proof: Since theαi j are probabilities, the upper bound onsi j given in condition
(10) cannot be exceeded. The Metropolis-Hastings algorithm matches the upper
bound.�

11 Genetic Algorithms

Genetic algorithms (GA) are a general-purpose “black-box”optimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

The method has attracted lots of interest, but its theory is still incomplete and the
empirical results somewhat inconclusive. Advantages of the technique are that
it is general-purpose, parallelisable, and adapts incrementally to changing cost
functions (“on-line optimisation”). Disadvantages, on the other hand include that
GA’s are typically very slow – thus the technique should be used with moderation
for simple serial optimisation of a stable, easily evaluated cost function.

Some claim that GA’s typically require fewer function evaluations to reach com-
parable results as e.g. simulated annealing. Thus the method may be good when
function evaluations are expensive (e.g. require some acutal physical measure-
ment).

11.1 The Basic Algorithm

We consider the so called “simple genetic algorithm”; also many other variations
exist.
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Assume we wish to maximise a cost functionc defined onn-bit binary strings:

c : {0,1}n→R.

Other types of domains must be encoded into binary strings, which is a nontrivial
problem. View each of the candidate solutionss∈ {0,1}n as anindividual or
chromosome. At each stage (generation) t the algorithm maintains apopulation
of individualspt = (s1, . . . ,sm).

There are three operations defined on populations:

• selectionσ(p) (“survival of the fittest”)

• recombinationρ(p) (“mating”, “crossover”)

• mutation µ(p)

TheSimple Genetic Algorithmis then as follows:

function SGA(σ, ρ, µ):
p← random initial population;
while p “not converged”do

p′← σ(p);
p′′← ρ(p′);
p← µ(p′′)

end while;
return p (or “fittest individual” in p).

end.

Selection

DenoteΩ = {0,1}n. The selection operatorσ : Ωm→Ωm maps populations prob-
abilistically: given an individuals∈ p, the expected number of copies ofs in σ(p)
is proportional to thefitnessof s in p. This is a function of the cost ofscompared
to the costs of others′ ∈ p.

Some possible fitness functions are:

• Relativecost(⇒ “canonical GA”):

f (s) =
c(s)

1
m ∑

s′∈p

c(s′)
,

c(s)
c̄

.
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• Relativerank :

f (s) =
r(s)

1
m ∑

s′∈p

r(s′)
=

2
m+1

· r(s),

wherer(s) is the rank of individuals in a worst-to-best ordering of alls′ ∈ p.

Once the fitness of individuals has been evaluated, selection can be performed in
different ways:

• Roulette-wheel selection(“stochastic sampling with replacement”):

– Assign to each individuals∈ p a probability to be selected in propor-
tion to its fitness valuef (s). Selectm individuals according to this
distribution.

– Pictorially: Divide a roulette wheel intom sectors of width propor-
tional to f (s1), . . . , f (sm). Spin the wheelm times.

• Remainder stochastic sampling:

– For eachs∈ p, select deterministically as many copies ofsas indicated
by the integer part off (s). After this, perform stochastic sampling on
the fractional parts of thef (s).

– Pictorially: Divide a fixed disk intom sectors of width proportional
to f (s1), . . . , f (sm). Place an outer wheel around the disk, withm
equally-spaced pointers. Spin the outer wheel once.

Recombination

Given a populationp, choose two random individualss,s′ ∈ p. With probability
pρ, apply acrossover operatorρ(s,s′) to produce two new offspring individuals
t, t ′ that replaces,s′ in the population. Repeat the operationm/2 times, so that on
average each individual participates once. Denote the total effect on the popula-
tion asp′ = ρ(p). (A practical implementation: choose

pρ
2 ·m random pairs from

p and apply crossover deterministically.) Typicallypρ ≈ 0.7. . .0.9.

Some possible crossover operators are illustrated in Figure 1.
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0 1 1 0

1 1 0 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1

0 1 1 0

1 1 0 1

0 0 1 1 0 0 1

1 0 1 1 0 1 1

(a) 1-point

1 0 1 1
0 1 0 0 11 1

0 11 0 1 0 1
1 11 0 1 0 1
0 10 1 0 0 11 0 1 1

1 0 0 1 1 0 0 1

(b) 2-point

0 11 1 0 1 0 0 1 1 0 0 1

0 1 1 0 1 0 1 1 0 1 1 1 0 11 0 0 11 10 1

1 0 11 0 0 10 1

(c) uniform

Figure 1: Typical crossover operators.

Mutation

Given populationp, consider each bit of each individual and flip it with some
small probabilitypµ. Denote the total effect on the population asp′ = µ(p).
Typically, pµ ≈ 0.001. . .0.01. It appears that forn-bit strings a good choice is
pµ = 1/n.

Theoretically mutation is disruptive. Recombination and selection should take
care of optimisation; mutation is needed only to (re)introduce “lost alleles”, al-
ternative values for bits that have the bits that have the same value in all current
individuals.

In practice mutation plus selection equals local search. Mutation, even with quite
high values ofpµ, can be efficient and is often more important than recombination.

Analysis of GA’s: Hyperplane sampling

The notion of hyperplane sampling presents a heuristic viewof how a genetic
algorithm works.

A hyperplane(actually subcube) is a subset ofΩ = {0,1}n, where the values of
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some bits are fixed and other are free to vary. A hyperplane maybe represented by
a schema H∈ {0,1,∗}n. E.g. the schema ’0∗1∗ ∗’ represents the 3-dimensional
hyperplane (subcube) of{0,1}5 where bit 1 is fixed to 0, bit 3 is fixed to 1, and
bits 2, 4, and 5 vary.

An individual s∈ {0,1}n sampleshyperplaneH, or matchesthe corresponding
schema if the fixed bits ofH match the corresponding bits ins. BY some abuse
of notation, this situation is denoted as “s∈H”. Note that a given individual gen-
erally samples many hyperplanes simultaneously, e.g. individual ’101’ samples
’10∗’, ’1 ∗1’, etc.

Define theorder of a hyperplaneH as:

o(H) = number of fixed bits inH

= n−dim H.

Theaverage costof hyperplaneH is then:

c(H) =
1

2n−o(H) ∑
s∈H

c(s).

Denoting bym(H, p) the number of individuals in populationp that sample hy-
perplaneH, theaverage fitnessof hyperplaneH in populationp is defined as:

f (H, p) =
1

m(H, p) ∑
s∈H∩p

f (s, p)

A heuristic claim is then that selection drives the search towards hyperplanes of
higher average cost (quality).

Consider e.g. the cost function and partition ofΩ into hyperplanes (in this case,
intervals) of order 3 presented in Figure 2. Here the currentpopulation of 21
individuals samples the hyperplanes so that e.g. ’000∗∗’ and ’010∗∗’ are sampled
by three individuals each, and ’100∗ ∗’ and ’101∗ ∗’ by two individuals each.
Hyperplane ’010∗ ∗’ has a rather low average fitness in this population, whereas
’111∗∗’ has a rather high average fitness.

The result of e.g. roulette wheel selection on this population might lead to elimi-
nation of some individuals and duplication of others, as presented in Figure 3.

Then, in terms of expected values, one can show that

E[m(H,σ(p))] = m(H, p) · f (H, p).
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c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Figure 2: A population sampling hyperplanes.

c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Figure 3: A sampling population after selection.
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The effect of crossover on schemata

Consider a schema such as

H = ∗∗11∗∗01∗1︸ ︷︷ ︸
∆(H)=7

∗∗

and assume that it is represented in the current population by somes∈H.

If sparticipates in a crossover operation and the crossover point is located between
bit positions 3 and 10, then with large probability the offspring are no longer inH.
In this case schemaH is said to bedisrupted. On the other hand, if the crossover
point is elsewhere, then one of the offspring stays inH, andH is retained.

Generally, the probability that in 1-point crossover a schema H = {0,1,∗}n is
retained, is (ignoring the possibility of “lucky combinations”)

Pr(retainH)≈ 1− ∆(H)

n−1
,

where∆(H) is thedefining lengthof H, i.e. the distance between the first and last
fixed bit in H.

More precisely, ifH hasm(H, p) representatives in populationp of total sizem:

Pr(retainH)≥ 1− ∆(H)

n−1

(
1−m(H, p)

m

)
.

The Schema “Theorem”

The Schema Theorem, proposed by J. Holland (1975), providesa heuristic esti-
mate of the changes in representation of a given schemaH from one generation to
the next.

Denote:

m(H, t) =number of individuals in population at generationt

that sampleH.

Then:

(i) Effect of selection:

m(H, t ′)≈m(H, t) · f (H)
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(ii) Effect of recombination:

m(H, t ′′)≈ (1− pρ)m(H, t ′)+ pρ


m(H, t ′)Pr(retainH)+m·Pr(luck)︸ ︷︷ ︸

≥0




≥ (1− pρ)m(H, t ′)+ pρm(H, t ′)

(
1− ∆(H)

n−1

(
1−m(H, t ′)

m

))

= m(H, t ′)
(

1− pρ
∆(H)

n−1

(
1−m(H, t ′)

m

))

(iii) Effect of mutation:

m(H, t +1)≈m(H, t ′′) · (1− pµ)
o(H)

In summary, then:

m(H, t +1) & m(H, t) · f (H) ·
(

1− pρ
∆(H)

n−1

(
1−m(H, t ′)

m

))
· (1− pµ)

o(H).

The formula leads to so called“Building Block Hypothesis”: In a genetic search,
short, above-average fitness schemata of low order (“building blocks”) receive an
exponentially increasing representation in the population.

The following criticisms have been expressed as regards the“Schema Theorem”
and the Building Block Hypothesis, however:

• Many of the approximations used in deriving the “Schema Theorem” im-
plicitly assume that the population is very large. In particular, it is assumed
that all the relevant schemata are well sampled. This is clearly not possible
in practice, because there are 3n possible schemata of lengthn.

• The result cannot be used to predict the development of the population for
much more than one generation, because:

– firstly, the long-term development depends on the coevolution of the
schemata, and the “theorem” considers only one schema in isolation;

– secondly, an “exponential growth” cannot in any case continue for
long in a finite population.
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11.2 Genetic Algorithms as Stochastic Processes

A proper mathematical treatment of GA’s would view them as stochastic pro-
cesses. It is unfortunately very difficult to obtain any nontrivial analytical results
in this direction. Here we outline a simple Markov chain model presented by Vose
& Liepins (1991) and Rudolph (1994).

Consider the “canonical GA”, i.e. the Simple Genetic Algorithm using the relative
cost fitness function and standard proportional (“roulette-wheel”) selection, in the
form:

p← random initial population;
p← σ(p); (selection)
while p “not converged”do

p′← ρ(p); (recombination)
p′′← µ(p′) (mutation)
p← σ(p′′); (selection)

end while.

Encode a population ofm individuals, each ann-bit string, as an integer (in binary
representation)

p∈ {0,1}mn≡ {0,1, . . . ,2mn−1}︸ ︷︷ ︸
Z2mn

.

Then the CGA can be modeled as a Markov chain on state spaceZ2mn, with the
transitions probability matrixP = CMS, where

C is the recombination (“crossover”) transition probability matrix
M is the mutation transition probability matrix
S is the selection transition probability matrix

A stochastic matrixP = (pi j ) is:

(i) positive, if pi j > 0 for all i, j;

(ii) primitive, if Pk is positive for somek≥ 0;

(iii) reducible, if it can be converted to the form

P̃ =

[
C 0
R T

]
,

whereC andT are square matrices, by applying the same permutation to
the rows and the columns;
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(iv) irreducible, if it is not reducible.

The interpretation of these definitions is that primitive matrices correspond to the
irreducible and aperiodic Markov chains defined before. In areducible matrix, the
upper rows correspond to a “closed” or “absorbing” class of states, the lower rows
to “transient” states. Note that a positive matrix is trivially primitive.

Theorem 11.1
Let P be a primitive stochastic matrix. Then the sequence Pk converges as k→ ∞
to a stochastic matrix P∞ which has the form

P∞ =




p∞

...
p∞


 ,

where p∞ is a stochastic vector with all components positive. (The vector p∞

represents the stationary distribution of the chain.)

Theorem 11.2
Let P be a reducible stochastic matrix of the form

P =

[
C 0
R T

]
,

where C is primitive, and T does not contain an irreducible submatrix. Then the
sequence Pk converges as k→ ∞ to a stochastic matrix P∞ of the form

P∞ =




p∞ 0
...

...
p∞ 0


 ,

where p∞ is a stochastic vector with all components positive.

Lemma 11.3
The transition probability matrix P= CMS of the “canonical genetic algorithm”,
with mutation probability0 < pµ < 1 is positive and hence primitive.

Proof: DenoteC = (cik),M = (mkl),S= (sl j ). ThenP = (pi j ), where

pi j = ∑
kl

cikmklsl j .

Observe:
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(i) ∀ i∃ ki : ciki > 0 (BecauseC is stochastic⇒ ∀ i : ∑k cik = 1)

(ii) M is positive: denoteN = mn, d(k, l) = Hamming distance between popu-
lationsk, l . Then:

mkl = pd(k,l)
µ · (1− pµ)

N−d(k,l) > 0.

(iii) ∀ j : sj j > 0 (Because with nonzero probability, selection does not change
the population.)

Thus:

pi j = ∑
kl

cikmklsl j ≥ ciki mki jsj j > 0. �

Theorem 11.4
The CGA with mutation probability0 < pµ < 1 converges to a stationary distri-
bution of populations where the probability of every population is nonzero.

Proof: Follows from Theorem 11.1 and Lemma 11.3.�

Assume the CGA is defined so as to maximize the functionc : {0,1}→R. Denote

c∗ = max{c(i) | i ∈ {0,1}n},

and for a population̂i = (i1, . . . , im):

c∗(î) = max{c(ik) | k = 1, . . . ,m}.

Denote byî(t) the population of the CGA at timet. The algorithmconverges to
global optimumif

lim
t→∞

Pr(c∗(î(t)) = c∗) = 1.

Note that the simulated annealing algorithm converges to global optimum in ex-
actly this sense.

Corollary 11.5
If nonoptimal solutions with respect to the cost function c exist (i.e. if c( j) < c∗

for some j∈ {0,1}n), then the CGA does not converge to the global optimum.
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Proof: Let ĵ = ( j, j, . . . , j) be a population such thatc∗( ĵ) < c∗ By Theorem 11.2,

lim
t→∞

Pr(î(t) = ĵ) = ε > 0,

and thus

lim
t→∞

Pr(c∗(î(t)) = c∗)≤ 1− ε < 1. �

Theorem 11.6
On the other hand, if the best solution found is always kept inthe population
(“elitist” selection) and not mutated, then the CGA does converge to the global
optimum.

Proof: Simple corollary to Theorem 11.2: the transition probability matrix P re-
duces in this case to the form

P =

[
C 0
R T

]
,

where the upper rows correspond to the unique closed class ofpopulations con-
taining a globally optimal solution.�

Note that for practical purposes, such (non)convergence results are of course
largely irrelevant. The important (but difficult) questions are:

• How fast does the CGA with elitist selection converge towards an optimal
solution?

• Does the CGA without elitist selection converge to a population with mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models

“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial time “on average” or
“with high probability” for reasonable-looking distributions of problem instances.
E.g. Satisfiability in timeO (n2) (Goldberg et al. 1982), Graph Colouring in time
O (n2) (Grimmett & McDiarmid 1975, Turner 1984).
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Where, then, are the (presumably) exponentially hard instances of these problems
located? Could one tell ahead of time whether a given instance is likely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), Hubermann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logemann-Loveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.g. satisfiable 3-cnf formula

(x1∨ x̄2∨x3)∧ (x̄1∨x2∨ x̄4)

The expressions in parenthesis areclausesand thex’s areliterals.

Distribution of test formulas:

• number of variables

• m= αn randomly generated clauses of 3 literals, 2≤ α≤ 8

TThe Davis-Putnam[-Logemann-Loveland] (DP[LL]) method for testing the sat-
isfiability of a set of clausesΣ on the variable setV:

1. If Σ is empty, return “satisfiable”.

2. If Σ contains an empty clause, return “unsatisfiable”.

3. If Σ contains a unit clausec = x±, assign tox a value which satisfiesc,
simplify the remaining clauses correspondingly, and call DPLL recursively.

4. Otherwise select an unassignedx ∈ V, assignx← 1, simplify Σ, and call
DPLL recursively. If this call returns “satisfiable”, then return “satisfiable”;
else assignx← 0, simplify Σ, and call DPLL recursively again.

For each set of 500 formulas, Mitcell et al. plotted the median number of DPLL
calls required for solution.

The results of this experiment are illustrated in Figures 4 and 5. Discussion:
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Figure 4: Number of DPLL calls required to determine satisfiability (Mitchell et
al. 1992).

Figure 5: Number of required DPLL calls according to type of formula (Mitchell
et al. 1992).
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Figure 6: Probability of satisfiability for random 3-cnf formulas (Mitchell et al.
1992).

• A clear peak in running times (number of DPLL calls) near the point where
50% of formulas are satisfiable.

• The “50% satisfiable” point or “satisfiability threshold” seems to be located
at roughlyα≈ 4.25 for largen.

• The peak seems to be caused by relatively short unsatisfiableformulas.

A fundamental question is whether the connection of the running time peak and
the satisfiability threshold a characteristic of the DPLL algorithm, or a (more or
less) algorithm independent “universal” feature?

The “50% satisfiable” point or “satisfiability threshold” for 3-SAT seems to be
located atα≈ 4.25 for largen.

12.2 Statistical Mechanics ofk-SAT (“1st-Order Analysis”)

Kirkpatrick & Selman (Science 1994)

Similar experiments as above fork-SAT, k = 2, . . . ,6, 10000 formulas per data
point. Results illustrated in Figure 7. Further observations:

• The “satisfiability threshold”αc shifts quickly to larger values ofα for in-
creasingk.

• For fixedk, the value ofαc drifths slowly to smaller values for increasingn.

A statistical mechanics model of ak-cnf formula:
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Figure 7: Probability of satisfiability for randomk-cnf formulas (Kirkpatrick &
Selman 1994).

• variablesxi ∼ spins with states±1

• clausesc ∼ k-wise interactions between spins

• truth assignmentσ ∼ state of spin system

• HamiltonianH(σ) ∼ number of clauses unsatisfied byσ

• αc ∼ critical “interaction density” point for “phase transition” from “satis-
fiable phase” to “unsatisfiable phase”

Estimates ofαc for various values ofk via “annealing approximation”, “replica
theory”, and observation:

k αann αrep αobs

2 2.41 1.38 1.0
3 5.19 4.25 4.17± 0.03
4 10.74 9.58 9.75± 0.05
5 21.83 20.6 20.9± 0.1
6 44.01 42.8 43.2± 0.2

The “annealing approximation” means simply assuming that the different clauses
are satisfied independently. This leads to the following estimate:

• The probability that a given clausec is satisfied by a randomσ: pk = 1−
2−k.
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• The probability that a randomσ satisfies allm= αn clauses assuming inde-
pendence:pαn

k .

• Total number of satisfying assignments= 2npαn
k , Sn

k(α).

• For largen, Sn
k(α) falls rapidly from 2n tp 0 near a critical valueα = αc.

Where isαc?

• One approach: solve forSn
k(α) = 1.

Sn
k(α) = 1⇔ 2pα

k = 1

⇔ α =− 1
log2 pk

=− ln2
ln(1−2−k)

≈− ln2
2−k = (ln2) ·2k.

It is in fact known that:

• A sharp satisfiability thresholdαc exists for allk≥ 2 (Friedgut 1999).

• Fork = 2, αc = 1 (Goerdt 1982, Chvátal & Reed 1982). Note that 2-SAT∈
P.

• For k = 3, 3.14< αc < 4.51 (lower bound due to Achlioptas 2000, upper
bound to Dubois et al. 1999).

• Current best empirical estimate fork = 3: αc ≈ 4.27 (Braunstein et al.
2002).

12.3 Local Search Methods for 3-SAT

Local search methods (e.g. simulated annealing, genetic algorithms) can be used
for finding (with high probability) satisfying truth assignments to randomly gen-
erated 3-cnf formulas in the satisfiable phase (m/n = α < αc).

Consider first a general objective functionE = E(x) to be minimised. Then the
basic local search scheme is:

• Start with some randomly chosen feasible solutionx = x0.

• If value of E(x) is not “good enough”, search for some “neighbour”x′ of x
that satisfiesE(x′) . E(x). If such anx′ is found, setx← x′ and repeat.

• If no improving neighbour is found, then either restart at new randomx= x0

or relax the neighbourhood condition [algorithm-dependent].



12. Combinatorial Phase Transitions 129

In the setting of the 3-SAT problem, the objective function to be minimised isE =
EF(s) = the number of unsatisfied clauses in formulaF under truth assignments.
Whenα < αc, an assignments satisfyingE(s) = 0 exists with high probability,
and local search techniques are surprisingly powerful in finding such assignments.

The first systematically tested algorithm of this type was the following procedure
GSAT by (Selman et al. 1992):

GSAT(F):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- find a variable x whose flipping causes

largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.

An improvement to GSAT is to augment it with a fractionp of random walk
moves, leading to algorithm NoisyGSAT (Selman et al. 1996):

NoisyGSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- with probability p, pick a variable x

uniformly at random and flip it;
- with probability (1-p), do basic GSAT move:

- find a variable x whose flipping causes
largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.

A subtle but important change to NoisyGSAT is tofocusthe search on the presently
unsatisfied clauses. This leads to the current “industry standard” WalkSAT algo-
rithm (Selman et al. 1996):

WalkSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a random unsatisfied clause C in F;
- if some variables in C can be flipped without
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breaking any presently satisfied clauses,
then pick one such variable x at random; else:

- with probability p, pick a variable x
in C at random;

- with probability (1-p), pick an x in C
that breaks a minimal number of presently
satisfied clauses;

- flip x.

The focusing seems to be important: in the (somewhat unsystematic) experiments
performed by Selman et al. (1996), WalkSAT outperforms NoisyGSAT by several
orders of magnitude.

Also other local search techniques can be applied to the satisfiability problem.
Good results have been obtained e.g. with the following Record-to-Record Travel
(RRT) method first introduced in the context of the TSP problem (Dueck 1993):

RRT(E,d):
s = initial feasible solution;
s* = s; E* = E(s);
while moves < max_moves do

if s is a global min. of E then output s & halt,
else:

pick a random neighbour s’ of s;
if E(s’) <= E* + d then let s = s’;
if E(s’) < E* then:
s* = s’; E* = E(s’).

In applying RRT to SAT, one chooses againE(s) = number of clauses unsatisfied
by truth assignments, together with single-variable flip neighbourhoods. Impos-
ing thefocusingheuristic of always selecting the flipped variables from unsatisfied
clauses (precisely: one unsatisfied clause is chosen at random, and from there a
variable at random) leads to the “focused RRT” (FRRT) algorithm for 3-SAT,
which is quite competitive with WalkSAT (Seitz & Orponen 2003).

12.4 Statistical Mechanics ofK-SAT (“Replica Analysis”)

The analyses in this area are rather technical, so we presentjust some basic ideas.

Consider again the statistical mechanics model ofk-SAT formulas discusses on p.
126. I.e. we consider the ensemble of randomk-cnf formulas withn variables and
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m= αn clauses. The Boolean-valued variablesxi are mapped to binary-state spins
asxi ∈ {true, false} 7→ spinSi ∈ {+1,−1}.
A formula consists of a set of clausesCl represented in terms of an “interaction
matrix” C = (Cli):

Cli =






+1, if Cl includesxi

−1, if Cl includes ¯xi

0, otherwise

Thus,

n

∑
i=1

Cli Si =−K

if and only if all the literals in clauseCl are “wrong”, i.e. the clause is unsatisfied
by truth assignment (spin state)S= (S1, . . . ,Sn).

We consider the Hamiltonian function

E[S,C] =
m

∑
l=1

δ

(
n

∑
i=1

Cli Si +K

)
= number of clauses inC unsatisfied byS,

δ(u) =

{
1, if u = 0
0, otherwise

The ground state potential (minimum number of unsatisfied clauses) of a given
systemC is E∗[C] = minSE[S,C]. For randomly generatedC, Pr(E∗[C] = 0)with
high probability whenα is small, and we would like to approximate the value
α = αc(K) where this property ceases to hold.

This is however a very difficult problem, so we approach it indirectly by consid-
ering rather the average ofE∗[C] with respect toC, denotedEGS= E∗[C]. (Such
averages with respect to system parameters are called “quenched averages”, as
opposed to the more usual “thermal averages” computed with respect to system
states.)

For largen, the distribution ofE∗[C] is highly concentrated aroundEGS= EGS(α,K).
(E∗ is said to be “self-averaging”.) In particular:

EGS≈ 0 in the sat. phase(α < αc(K)),

EGS > 0 in the unsat. phase(α > αc(K)).

Thus, we use the behaviour ofEGSas a guide to determining the value ofαc.
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It is known that

EGS=−T lnZT [C]+O (T2)

asT→ 0, where

ZT [C] = ∑
S

exp(−E[S,C]/T).

(This follows by averaging from the fundamental thermodynamic formulaF =
E−TS=−kT lnZ (p. 60).)

The important, but complicated quantitylnZ can be estimated using the so called
“replica method”.

Consider the Taylor expansion ofZν as a function ofν for smallν:

Zν = eν lnZ = 1+ν lnZ+O (ν2)

Thus, for a fixedZ > 0:

lnZ = lim
ν→0

Zν−1
ν

.

Applying this to lnZT [C] and averaging overC yields:

EGS=−T lim
ν→0

1
ν

(
ZT [C]ν−1

)
+O (T2) (11)

asT→ 0.

Now assume that the “smallν” is in fact an integer. Then:

ZT [C]ν =

(

∑
S

exp(−E[S,C]/T)

)ν

= ∑
S1

. . . ,∑
Sν

exp

(
−

ν

∑
r=1

E[Sr ,C]/T)

)

Thus we have transformed the problem of computingZν
T to the consideration ofν

interconnected “replicas” of the original system.

This modified structure can further be viewed as a single system consisting of
n vector-valued spins~σi ∈ {+1,−1}ν, i = 1, . . . ,n, with (non-random) potential
function

Ee f f[~σ1, . . . ,~σn] =−T ln


exp

(
−

ν

∑
r=1

E[Sr ,C]/T

)
 .
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One can easily check that with this choice:

Zν
T = Ze f f

T = ∑
{~σi}

exp(−Ee f f[{~σ}]/T).

This partition function may in some cases be so concentratedthat for largen:

Zν
T = Ze f f

T ≈ e−nf̃T(ν) ≈ 1−nf̃T(ν),

where f̃T(ν) is some nonlinear function with̃fT(0) = 0.

Plugging this estimate in formula (11) yields

EGS≈−T lim
ν→0

−nf̃T(ν)

ν
= Tnf̃ ′T(0).

The replica method has been partially mathematically vindicated, i.e. the requisite
“analytic continuation” from integer to realν is justified under some conditions,
although not generally.

From an application point of view, approximating the function f̃T(ν) is the diffi-
cult part of the technique.


