The Long and the Short of It
Summarizing Event Sequences with Serial Episodes

Nikolaj Tatti and Jilles Vreeken
(nikolaj.tatti, jilles.vreeken}@ua.ac.be, University of Antwerp, Belgium

The Problem
An ideal outcome of pattern mining are small sets of informative patterns, containing no redundancy or noise, identifying the key structure of the data.
Standard frequent pattern mining does not achieve this goal, as it does not penalize redundancy
We pursue the ideal for sequential data and serial episodes, taking a pattern set mining approach: instead of ranking patterns individually, we aim for the best set of patterns

The Big Question
How do we identify the optimal set of patterns?
we need a score rewarding models that identify real structure, while punishing redundancy
no off-the shelf score fits our setting, but we can make our intuitions concrete by MDL
The Minimum Description Length (MDL) principle given a dataset \(D \) and a collection of models \(\mathcal{H} \) the best model \(H \) is the model that minimizes
\[
L(H) + L(D|H)
\]

MDL for Event Sequences
By MDL we define the optimal set of patterns as the set that describes the data most succinct
To use MDL we need to define a lossless encoding for our models, and for data given a model. As models we use code tables—dictionaries of patterns and associated codes

Encoding Event Sequences
We encode the data \(D \) using two code streams: the pattern-stream \(C_p \) and the gap-stream \(C_g \)

How to Cover your String?
Given a pattern set, there are many ways to cover a sequence database. We are after the optimum.
if we fix the cover, we can compute code lengths
if we fix the code lengths, we can obtain the optimal cover by dynamic programming
We alternate these steps until convergence

Mining Code Tables
We propose two algorithms for mining code tables
- \(SQS-CND \) filters a list of ordered candidate patterns
- \(SQS-SEARCH \) mines code tables directly from data, iteratively considering joins of current patterns

Starting with the basic singleton-event code table, \(SQS-SEARCH \) iteratively finds codes that frequent co-occur, and considers their join as a candidate pattern

Experiments
For ease of interpretation we evaluate on text data

Conclusions
Mining highly informative patterns is an important aspect of exploratory data mining
- we score sets of serial episodes by MDL, and formalize how to optimize a cover of the data
- \(SQS \) efficiently mines good code tables, by filtering pre-mined candidates, or directly from data
- experiments show the discovered code tables are small, non-redundant and characteristic for the data
- future work includes
 - overlapping, nesting and interleaving patterns