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PROBLEM DEFINITION

Dense subgraphs:
The density of a subgraph G = (V,E) is

dens(G) =
|E|
|V |

.

Distance between subgraphs:
The distance of two subgraphs G = (V,E)
and H = (W,A) is

D(G,H) = 2− |V ∩W |
2

|V | |W |
,

and 0 if V =W .

Objective: Find k subgraphs such that∑
i=1

dens(Gi) + λ
∑
i<j

D(Gi, Gj) .

first term: graphs should be dense
second term: graphs should be diverse
λ controls the balance of the terms
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Fig. 1 Densest overlapping subgraphs on Zachary karate club dataset [44]. k = 3, � = 2.

1 Introduction

Finding dense subgraphs is a fundamental graph-mining problem, and has
applications in a variety of domains, ranging from finding communities in social
networks [25,33], to detecting regulatory motifs in DNA [15], to identifying
real-time stories in news [3].

The problem of finding dense subgraphs has been studied extensively in
theoretical computer science [2,8,13,24], and recently, due to the relevance of
the problem in real-world applications, it has attracted considerable attention
in the data-mining community [5,34–36,33]. In a domain where most inter-
esting problems are NP-hard, much of the recent work has leveraged the fact
that under a specific definition of density, the average-degree density, finding
the densest subgraph is a polynomially-time solvable task [19]. Furthermore,
there is a linear-time greedy algorithm that provides a factor-2 approximation
guarantee [8].

The exact polynomial algorithm [19] and its fast approximation counter-
part [8], apply only to the problem of finding the single densest subgraph. On
the other hand, in most applications of interest we would like to find the top-k
densest subgraphs in the input graph. Given an e�cient algorithm for finding
the single densest subgraph, there is a straightforward way to extend it in or-
der to obtain a set of k dense subgraphs. This is a simple iterative method, in
which we first find the densest subgraph, remove all vertices contained in that
densest subgraph, and iterate, until k subgraphs are found or only an empty
graph is left.

This natural heuristic has two drawbacks: First it produces a solution in
which all discovered subgraphs are disjoint. Such disjoint subgraphs are often
not desirable, as real-world networks are known to have not well-separated
communities and hubs that may belong to more than one community [26],
and hence, may participate in more than one densest subgraph. Second, when
searching for the top-k densest subgraphs, we would like to maximize a global
objective function, such as the sum of the densities over all k subgraphs and, as

MAX-SUM DIVERSIFICATION
Find k elements S maximizing

f(S) + λ
∑

x,y∈S

d(x, y),

where

f is a submodular function
d is a metric.

Greedy yields 1/2 approximation [1]:

S ← ∅;
foreach i = 1, . . . , k do

add x to S maximizing the gain

1

2
f(S ∪ {x}) + λ

∑
y∈S

d(x, y)

If the maximization step is approximative
with c, then greedy approximates with c/2.

GAIN PROBLEM
Given a set S of subgraphs, find a subgraph
G maximizing

1

2
dens(G) + λ

∑
H∈S

D(G,H) .

exponential number of subgraphs
Gain problem is NP-hard

GREEDY FOR GAIN

Warm-up, λ = 0:

Known greedy algorithm [2] for
finding dense subgraphs

W ← V ;
while W 6= ∅ do

v ← vertex with the smallest
degree;
delete v from W ;

return the best observed subgraph;

This yields 1/2 approximation.

General case, λ ≥ 0:

Given a set S of subgraphs and a set of ver-
tices W , define

p(v;W ) =
∑

H=(U,E)∈S|v∈U

|U ∩W |
|U |

.

Large p(v;W ) = node is shared with many
previous communities.

W ← V ;
while W 6= ∅ do

v ← vertex minimizing
deg(v)− 4λp(v;W );
delete v from W ;

return the best observed subgraph;

This yields c = 1/5 approximation.

1/10 approximation for the general problem.
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DBLP.E2 Papadimitriou DBLP.C KDD G+.S 1183...6467 FB 1684 BKGW BK Latin-America
|E| = 2616 |E| = 2891 |E| = 694 |E| = 786 |E| = 1216

dens(G) = 3.62 dens(G) = 3.88 dens(G) = 40.24 dens(G) = 17.84 dens(G) = 2.22

Fig. 3 Solution profiles for five networks. Each row corresponds to the profile of one net-
work, as indicated on the left.

102 103 104 105 106 107

10�1

101

103

105

LinksDense

Metis

MAR
� = 0.25

MAR � = 0.95

DOS
� = 0.1

DOS
� = 0.001

Network size (|E|)

R
u
n
n
in

g
ti

m
e

(s
)

Fig. 4 Running times of DOS and MAR with di↵erent values of their overlap parameters, as
well as the three baselines, on networks of increasing sizes sampled from the seven datasets.
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Fig. 4 Running times of DOS and MAR with di↵erent values of their overlap parameters, as
well as the three baselines, on networks of increasing sizes sampled from the seven datasets.

REFERENCES
[1] Allan Borodin, Hyun Chul Lee, and Yuli
Ye. Max-sum diversification, monotone sub-
modular functions and dynamic updates.
PODS, pages 155–166, 2012.

[2] Moses Charikar. Greedy approximation
algorithms for finding dense components in
a graph. APPROX, pages 84–95, 2000.

[3] Oana Denisa Balalau, Francesco Bonchi,
TH Chan, Francesco Gullo, and Mauro
Sozio. Finding subgraphs with maximum to-
tal density and limited overlap. In WSDM,
pages 379–388, 2015.


