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Abstract Many application domains such as intelligence analysis and cyber-
security require tools for the unsupervised identification of suspicious entities
in multi-relational/network data. In particular, there is a need for automated
semi-automated approaches to ‘uncover the plot’, i.e., to detect non-obvious
coalitions of entities bridging many types of relations. We cast the problem
of detecting such suspicious coalitions and their connections as one of mining
surprisingly dense and well-connected chains of biclusters over multi-relational
data. With this as our goal , we model data by the Maximum Entropy principle,
such that in a statistically well-founded way we can gauge the surprisingness
of a discovered bicluster chain with respect to what we already know. We
design an algorithm for approximating the most informative multi-relational
patterns, and provide strategies to incrementally organize discovered patterns
into the background model. We illustrate how our method is adept at discov-
ering the hidden plot in multiple synthetic and real-world intelligence anal-
ysis datasets. Our approach naturally generalizes traditional attribute-based
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maximum entropy models for single relations, and further supports iterative,
human-in-the-loop, knowledge discovery.

Keywords Multi-relational data · Maximum entropy modeling · Subjective
interestingness · Pattern mining · Biclusters

1 Introduction

Knowledge discovery from multi-relational datasets is a crucial task that arises
in many domains, e.g., intelligence analysis, biological knowledge discovery. In
the domain of intelligence analysis, questions such as ‘How is a suspect con-
nected to the passenger manifest on this flight?’, ‘How do distributed terrorist
cells interface with each other?,’ are common conundrums faced by analysts.
Similarly, ‘how do these two pathways influence each other?’, ‘what is the
signal transduction cascade from an extracellular molecule to an intracellular
protein?’ are typical questions posed by biologists. A pervasive task performed
by analysts is thus the laying out of evidence from multiple sources, identifying
coalitions of entities, incrementally building connections between them, and
chaining these connections to create stories that either serve as end hypotheses
or as templates of reasoning that can then be prototyped.

Our work here focuses exclusively on multi-relational datasets, either avail-
able in native form or obtained through straightforward ‘relationalization’
of unstructured text datasets. We focus on discovering patterns that tie to-
gether three inter-related aspects: coalitions (which groups of entities come to-
gether?), connections (how do they interface with other groups?), and chains
(how do such connections form a chain of evidence?). Fig. 1 illustrates a pat-
tern example from the popular Crescent dataset used in intelligence analysis.
The hidden plot in this dataset is a distributed and loosely organized network
of terrorist cells that plan to attack multiple cities. As shown, the plot involves
four coalitions (of phone numbers, dates, people, and places), three relations
(who called which number, from where, and when), and the combined chain
reveals an odd group of people that turns out to be central to communication
and coordination between the terrorist cells. Note the multiple phone numbers
that were used by the group to coordinate with each other, and by chaining
patterns across the phone number interface we are able to discover the dis-
tributed terrorist network. Note also that the chains do not necessarily have to
be perfect to be informative; here there are phone numbers (e.g, 732-455-6392,
706-437-6673) not perfectly related to other pieces of evidence, yet the entire
chain is surprising enough to alert the analyst to the overall pattern. Similarly,
in the domain of bioinformatics, it is easy to imagine coalitions of genes, pro-
teins, and other molecules, and where the connections straddle relations such
as transcriptional regulation, signal transduction, and small molecule binding,
and the combined chain would indicate a cascade of how extracellular inputs
get propagated into downstream cellular responses.

Finding surprising chains as shown in Fig. 1 from multi-relational data has
thus far been considered somewhat of a black art and requires significant trial-
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Fig. 1 Uncovering the plot in the Crescent dataset. A network of terrorist cells is discovered
by a surprising multi-relational pattern involving phone numbers–who called these numbers,
where was the call made from, and when was the call made.

and-error on the part of the analyst. Our goal is to formalize these notions so
that algorithmic support can complement (and sometimes even supplant and
supercede) painstaking manual analysis of large-scale multirelational datasets.
In particular, the objective of knowledge discovery is not to extract a unique
answer from the dataset but rather to guide an expert into deeper considera-
tion of key process elements.

Our contributions are:

1. We present a formalization of data mining patterns that encapsulate sur-
prising coalitions of entities in multi-relational schemas. More importantly,
our approach can help gauge the surprisingness of such patterns w.r.t. prior
knowledge on the data and its patterns – a key requirement in intelligence
analysis to not mine obvious or pervasive patterns.

2. We develop an algorithm for approximating the most informative multi-
relational patterns, with specific consideration to two different data models.
These data models represent the two most common ways in which connec-
tions are made in domains such as intelligence analysis and bioinformatics.

3. Using results on both synthetic and real-world datasets, we demonstrate
how our approach is adept at discovering coalitions, connections, and chains.
In particular, we show how our approach fosters human-in-the-loop knowl-
edge discovery whereby an analyst can provide feedback to steer the dis-
covery of patterns.

The rest of this paper is organized as follows. In Section 2, we introduce
some preliminaries that will be used in the following sections and formally
state the problem studied in this paper. A quick refresher on maximum en-
tropy modeling theory follows in Section 3. Sections 4 and 5 describe in detail
our proposed framework and an algorithm to find surprising bicluster chains,
respectively. Section 6 outlines experiment results on both synthetic and real
datasets. Related work is surveyed in Section 7. Advantages and limitations
of the proposed framework are discussed in Section 8, and we round up with
conclusions in Section 9.
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2 Preliminaries and Problem Statement

Before formalizing our problem statement, we introduce some preliminary con-
cepts and notations.

Multi-relational schema We assume that we are given m domains or universes
which we will denote throughout the paper by Ui. An entity is a member of
Ui and an entity set Ei is simply a subset of Ui. We write R = R(Ui, Uj)
to be a binary relation between some Ui and Uj . Given a set of domains
U = {U1, U2, . . . , Ul} and a set of relations R = {R1, R2, . . . , Rm}, a multi-
relational schema S(U ,R) is a connected bipartite graph whose vertex set is
given by U ∪R and edge set is the collection of edges each of which connects
a relation Rj in R and a domain Ui in U that the relation Rj involves. In this
paper, without loss of generality, all vertices in R are assumed to have degree
of two, i.e., only binary relationships are considered. As is well known, ternary
and higher-order relations can be converted into sets of binary relationships.
(No such degree constraint exists for U ; a domain can participate in many
relationships.) Figure 2 shows a toy example of a multi-relational schema in-
volving four domains (i.e., Phone Numbers, Organizations, People, and Places)
and three binary relations (Person–Phone Number, Person–Organization , and
Organization–Place) between these domains.

We now introduce mechanisms to relate entity sets. Redescriptions relate
entity sets in the same domain whereas biclusters are ways to relate entity sets
across domains.

Tiles A tile T on binary relationship, a notion introduced by Geerts et al
(2004), is essentially a rectangle in a data matrix. Formally, it is defined as
a tuple T = (r(T ), c(T )) where r(T ) is a set of row identifier (e.g., row IDs)
and c(T ) is a set of column identifier (e.g., column IDs) on the matrix rep-
resentation of the binary relationship. In this most general form, it imposes
no constraints on values of the matrix elements identified by a tile. So, each
element in a tile could be either 1 or 0. In Figure 2, T1 is an example of a tile.
When all elements within a tile T have the same value (i.e., either all 1s or all
0s) we say it is an exact tile. Otherwise we call it a noisy tile.

Biclusters As local patterns of interest over binary data, we consider biclus-
ters. A bicluster, denoted by B = (Ei, Ej), on relation R = R(Ui, Uj), consists
of two entity sets Ei ⊆ Ui and Ej ⊆ Uj such that Ei × Ej ⊆ R. As such
a bicluster is a special case of an exact tile, one in which all the elements
are 1. Further, we say a bicluster B = (Ei, Ej) is closed if for every entity
ei ∈ Ui \ Ei, there is some entity ej ∈ Ej such that (ei, ej) /∈ R and for every
entity ej ∈ Uj \Ej , there is some entity ei ∈ Ei such that (ei, ej) /∈ R. In other
words, we cannot expand Ei without modifying Ej and vice versa. If a pair of
entities ei ∈ Ui, ej ∈ Uj belongs to a bicluster B, we denote it by (ei, ej) ∈ B.

In Figure 2, B1, B2 and B3 are three biclusters from relation R1, R2 and
R3, respectively—T1 is not a bicluster, as not all its elements are 1s.



Uncovering the Plot 5

𝑹𝟏 

𝑹𝟐 

𝑹𝟑 

P
h

o
n

e
 N

u
m

b
e

rs 

Persons 

O
rgan

izatio
n

s 

Places 

𝑑1 
𝑑2 

𝑇1 

𝐵1 

𝐵2 

𝐵3 

𝑝1 

𝑝2 

𝐶1 

Fig. 2 An example multi-relational schema involving four entity domains (People, Places,
Organizations, and Phone Numbers) and three relations (R1, R2, R3). Blue squares indicate
presence in the binary relations, and gray squares indicate absence. Examples of redescrip-
tion ((p1, d1) ∼org (p2, d2)), biclusters (B1, B2, B3), tiles (T1), and bicluster chains (C1)
are shown.

Redescriptions Assume that we are given two biclusters B = (Ei, Ej) and
C = (Fj , Fk), where Ei ⊆ Ui, Ej , Fj ⊆ Uj , and Fk ⊆ Uk. Note that Ej and
Fj lie in the same domain. Assume that we are given a threshold 0 ≤ ϕ ≤ 1.
We say that B and C are approximate redescriptors of each other, which
we denote by B ∼ϕ,j C if the Jaccard coefficient |Ej ∩ Fj | / |Ej ∪ Fj | ≥ ϕ.
The threshold ϕ is a user parameter, consequently we often drop ϕ from the
notation and write B ∼j C. The index j indicates the common domain over
which we should take the Jaccard coefficient. If this domain is clear from the
context we often drop j from the notation. For example, in Figure 2, we have
(p1, d1) ∼ϕ,org (p2, d2) for ϕ ≤ 3/5. If B ∼1,j C, then we must have Ej = Fj
in which case we say that B is an exact redescription of C.

This definition is a variant of the definition given by Zaki and Ramakrish-
nan (2005), whom define redescriptions for itemsets over their mutual domain,
transactions, such that the set Ej consists of transactions containing itemset
Ei and the set Fj consists of transactions containing itemset Fk.

Bicluster Chains A bicluster chain C consists of an ordered set of biclusters
{B1, B2, . . . , Bk} and an ordered bag of domain indices {j1, j2, . . . , jk−1} such
that for each pair of adjacent biclusters we have Bi ∼ji Bi+1. Note that this
implicitly require that two adjacent biclusters share a common domain.

In Figure 2, C1 is an example of a bicluster chain comprising three biclus-
ters, viz., B1, B2 and B3. If a bicluster BRi is a part of the bicluster chain C,
we will represent this by BRi

∈ C in this paper.
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Surprisingness In data mining the main goal is to extract novel knowledge.
That is, we aim to find results that are highly informative with regard to what
we already know—we are not so much interested in what we already do know,
or what we can trivially induce from such knowledge.

To this end, we suppose a probability distribution p that represents the
user’s current beliefs about the data. When mining the data (e.g., for a bi-
cluster or chain), we can use p to determine the likelihood of a result under
our current beliefs: if it is high, this indicates that we most likely already
know about it, and thus, reporting it would provide little new information. In
contrast, if the likelihood of a result is very low, the result is very surprising,
which means it conveys a lot of new information. In Section 3, we will discuss
how to infer such a probability distribution for binary data. First, we formally
define the problem we consider in this paper.

Problem Statement Given a multi-relational dataset, a bicluster chain across
multiple relations describes a progression of entity coalitions. We are particu-
larly interested in chains that are surprising w.r.t. what we already know, as
these could help to uncover the plots hidden in the multi-relational dataset.

More formally, given a multi-relational dataset schema S(U ,R), where U =
{U1, U2, . . . , Ul} and R = {R1, R2, . . . , Rm}, we are interested to find K non-
redundant bicluster chains that are most surprising with regard to each other
and w.r.t. the background knowledge:

Given: Multi-relational Dataset Schema S(U ,R)
Find: K Bicluster Chains C = {C1, C2, . . . , CK}

such that C is non-redundant and surprising
with respect to the background knowledge of
S(U ,R).

Next, we first discuss how to probabilistically model binary data using the
Maximum Entropy principle. In Section 4 we will use this model to develop
scores for bicluster chains, while in Section 5 we will discuss strategies for
efficiently mining surprising bicluster chains from data.

3 MaxEnt Models for Binary Data

Our problem statement is based on a notion of multi-relational schema. For
technical reasons we will base our score, however, on binary datasets. More
specifically, we assume that our schema was generated from a transactional
binary data matrix D. This data matrix can be viewed as a binary matrix of
size N -by-M . We will introduce two ways of obtaining a schema from D in
Section 4.1. In both of these approaches the columns of D correspond to the
entities of the schema. Hence, we will refer to the columns of D as entities.

In this section, we will define the Maximum Entropy (MaxEnt) model for
binary data using tiles as background knowledge—recall that a tile is a more
general notion than a bicluster. We will first introduce notation that will be
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useful to understand the model derivation. Then, we will recall MaxEnt theory
for modelling binary data given tiles as background information, and finally,
identify how we can fit the model to the data by maximizing the likelihood.

3.1 Notation for Tiles

Given a binary dataset D of size N -by-M and a tile T , the frequency of T in
D, fr(T ;D), is defined as

fr(T ;D) =
1

|σ(T )|
∑

(i,j)∈σ(T )

D(i, j) . (1)

Here, D(i, j) represents the entry (i, j) in D, and σ(T ) = {(i, j) | i ∈ r(T ), j ∈
c(T )} denotes the cells covered by tile T in data D. Recall that a tile T is
called ‘exact’ if the corresponding entries D(i, j) ∀(i, j) ∈ σ(T ) are all 1 (resp.
0), or in other words, fr(T ;D) = 0 or fr(T ;D) = 1. Otherwise, it is called a
‘noisy’ tile.

Let D be the space of all the possible binary datasets of size N -by-M , and
p be the probability distribution defined over the dataset space D. Then, the
frequency of the tile T with respect to p is

fr(T ; p) = E [fr(T ;D)] =
∑
D∈D

p(D)fr(T ;D) , (2)

the expected frequency of tile T under the dataset probability distribution.
Combining these definitions, we have the following lemma.

Lemma 1 Given a dataset distribution p and a tile T , the frequency of tile T
is

fr(T ; p) =
1

|σ(T )|
∑

(i,j)∈σ(T )

p ((i, j) = 1) ,

where p((i, j) = 1) represents the probability of a dataset having 1 at entry
(i, j) under the dataset distribution p.

Lemma 1 is trivially proved by substituting fr(T ;D) in Equation (2) with
Equation (1) and switching the summations.

3.2 Global MaxEnt Model from Tiles

Here, we will construct a global statistical model based on tiles. Suppose we
are given a set of tiles T , and each tile T ∈ T is associated with a frequency
γT—which typically can be trivially obtained from the data. This tile set T
provides information about the data at hand, and we would like to infer a
distribution p over the space of possible datasets D that conforms with the
information given in T . That is, we want to be able to determine how probable
is a dataset D ∈ D given the tile set T .
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To derive a good statistical model, we take a principled approach and em-
ploy the Maximum Entropy principle (Jaynes, 1957) from information theory.
Loosely speaking, the MaxEnt principle identifies the best distribution given
background knowledge as the unique distribution that represents the provided
background information but is maximally random otherwise. MaxEnt mod-
elling has recently become popular in data mining as a tool for identifying sub-
jective interestingness of results with regard to background knowledge (Wang
and Parthasarathy, 2006; De Bie, 2011; Tatti and Vreeken, 2012).

To formally define a MaxEnt distribution, we first need to specify the
space of the probability distribution candidates. Here, these are all the possible
dataset distributions that are consistent with the information contained in
the tile set T . Hence, the dataset distribution space is defined as: P = {p |
fr(T ; p) = γT ,∀T ∈ T }. Among all these possible distributions, we choose the
distribution p∗T that maximizes the entropy,

p∗T = arg max
p∈P

H(p) .

Here, H(p) represents the entropy of the dataset probability distribution p,
which is defined as

H(p) = −
∑
D∈D

p(D) log p(D) .

Next, to infer the MaxEnt distribution p∗T , we rely on a classical theorem
about how MaxEnt distributions can be factorized. In particular, Theorem
3.1 in (Csiszar, 1975) states that for a given set of testable statistics T (back-
ground knowledge, here a tile set), a distribution p∗T is the Maximum Entropy
distribution if and only if it can be written as

p∗T (D) ∝

{
exp

( ∑
T∈T

λT · |σ(T )| · fr(T ;D)
)
D 6∈ Z

0 D ∈ Z ,

where λT is a certain weight for fr(T ;D) and Z is a collection of datasets such
that p(D) = 0, for all p ∈ P.

De Bie (2011) formalized the MaxEnt model for a binary matrix D given
row and column margins—also known as a Rasch (1960) model. Here, we
consider the more general scenario of binary data and tiles, for which we
additionally know (Theorem 2 in Tatti and Vreeken, 2012) that given a tile
set T , with T (i, j) = {T ∈ T | (i, j) ∈ σ(T )}, we can write the distribution
p∗T as

p∗T =
∏

(i,j)∈D

p∗T ((i, j) = D(i, j)) ,

where

p∗T ((i, j) = 1) =
exp

(∑
T∈T (i,j) λT

)
exp

(∑
T∈T (i,j) λT

)
+ 1

or 0, 1 .
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This result allows us to factorize the MaxEnt distribution P ∗T of binary dataset
given background information in the form of a set of tiles T into a product
of Bernoulli random variables, each of which represents a single entry in the
dataset D. We should emphasize here that this model is different MaxEnt
model than when we assume independence between rows in the dataset D (see,
e.g., Tatti, 2006; Wang and Parthasarathy, 2006; Mampaey et al, 2012). Here,
for example, in the special case where the given tiles are all exact (γT = 0 or
1), the resulting MaxEnt distribution will have a very simple form:

p∗T ((i, j) = 1) =

{
γT if ∃T ∈ T such that (i, j) ∈ σ(T )
1
2 otherwise.

3.3 Inferring the MaxEnt Distribution

To discover the parameters of the Bernoulli random variable mentioned above,
we follow a standard approach and apply the well known Iterative Scaling
(IS) algorithm (Darroch and Ratcliff, 1972) to infer the tile based MaxEnt
distribution on binary dataset. Basically, for each tile T ∈ T , the algorithm
updates the probability distribution p such that the expected frequency of 1s
under distribution p for that will match the given frequency γT . Clearly, during
this update we may change the expected frequency for other tiles, and hence
several iterations are needed until the probability distribution p converges. For
the proof of algorithm convergence, please refer to Theorem 3.2 in (Csiszar,
1975). In practice, it typically takes on the order of seconds for the algorithm
to converge.

4 Scoring Bicluster Chains

We now turn our attention to using the above formalisms to help score our
patterns, viz., bicluster chains. But before we do so, we need to pay attention
to the schemas over which these chains are inferred, as this influences how
chains can be represented as tiles, in order to be incorporated as knowledge in
our maximum entropy model.

4.1 Data Model Specification

In this section, we describe two approaches to construct multi-relational schemas
S(U ,R) from binary transaction data D. Whenever an element D(r, ei) has
value 1, this denotes that entity ei appears in row r of D. As an example, when
considering text data, an entity would correspond to a word or concept, and a
row to a document in which this word occurs. (Thus, note that when consid-
ering text data we currently model occurrences of entities at the granularity
of documents. Admittedly, this is a coarse modeling in contrast to modeling
occurrences at the level of sentences, but it suffices for our purposes.)
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(U1), which results the Doc–Entity model on the left. See Figure 4 for a toy example.

Entity-Entity  
model 

Doc-Entity model Binary data matrix D 

Fig. 4 Toy example of how to construct our two data models from a binary matrix D.

Entity–Entity Model. In the Entity–Entity data model, each binary rela-
tion in R stores the entity co-occurrences in data matrix D between two entity
domains. More specific, for each R = R(Ui, Uj) in R, (e, f) ∈ R for e ∈ Ui,
f ∈ Uj , and e and f appear at least once together in a row in D. The right-
hand side of Figure 3 illustrates this data model for the example transactional
binary data matrix D depicted in the middle.

Example 1 We illustrate how to construct this model using the toy exam-
ple depicted in Figure 4. We show the Entity–Entity model (right) for the
toy data matrix D (middle). The binary data matrix D consists of 4 docu-
ments (rows) over 7 entities (columns) which belong to two entity domains:
Organizations and Persons. We observe entities Robinson and Grant of entity
domain Persons appear together with entities Nasdaq and CNN of domain
Organizations in document Doc2 in D (marked with red squares). For the cor-
responding Entity–Entity model this hence induces the four relation instances
(Robinson,Nasdaq), (Robinson,CNN ), (Grant ,Nasdaq) and (Grant ,CNN )
(also marked with red square) in the Persons-Organizations relation on the
right-hand side of the figure. Analogue, the person entity Jack and organiza-
tion entity FBI (marked with yellow squares) appear together in document
Doc4, which induces the relation instance (Jack ,FBI ) (marked with yellow
square) in the bottom-right corner of Persons-Organizations relation.

Doc–Entity Model. In the Doc–Entity data model, we treat the rows in
D as a special entity domain, UD, in the multi-relational schema S(U ,R).
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More in particular, rows in D are considered the common interconnecting
entity domain relating the rest of the other entity domains, and leads to a
‘unidirectional’ schema—unlike, say the schema shown in Fig. 2. In this data
model, each binary relation in R contains the entity occurrence information of
each entity domain in binary data matrix D. For every R = R(UD, Ui) in R,
(r, e) ∈ R for r ∈ UD, e ∈ Ui, and transaction r contains entity e in the data
matrix D, D(r, ek) = 1. Figure 3 illustrates the concepts of the Doc–Entity
(left) model for the given data matrix D (middle).

Example 2 Let us also illustrate the Doc–Entity model using the toy data de-
picted in Figure 4. We show the Doc–Entity model (left) for the given data ma-
trix D (middle). As D consists of two entity types (Persons and Organizations)
the Doc–Entity model consists of two relations, i.e., Document-Organization
and Document-Person—which contain the exact same entity occurrence in-
formation as left (marked with brown square) and right (marked with green
square) hand sides of data matrix D.

Here, every pair of biclusters naturally shares a common domain, the doc-
uments UD. Hence, any pair of biclusters B = (Ei, ED) and C = (Fj , FD)
here redescribe each other iff B ∼ϕ,D C. Further, in practice we only consider
chaining biclusters that share a single domain, and hence for this model have
that the bag of domain indices associated with the chain consists of only D’s.

4.2 When is What Model Applicable?

The choice of whether to use the Entity–Entity versus the Doc–Entity model
carries many ramifications. At first glance, it might appear that a bicluster
in the Entity–Entity model must be equivalent to a bicluster chain (of two
biclusters) in the Doc–Entity model. To see why this is not so, consider what
it means to be a bicluster in each of these models. In the Entity–Entity model,
a bicluster (Ei, Ej) captures two sets of entities that co-occur, but the co-
occurrence could be derived from many different documents. In contrast, in
the Doc–Entity model, a bicluster chain relating entity sets Ei and Ej must
do so using the same or a significantly overlapping set of documents. It is
hence instructive to view the Entity–Entity model as a ‘multiple source of
evidence’ model, whereas the Doc–Entity model is a ‘common domain’ model.
The former better integrates disparate sources of evidence, each of which may
not be significant in itself. The latter provides stronger evidence for inference
and is consequentially stricter in evidence integration. As we will show in our
results, both models have uses in intelligence analysis.

4.3 Background Model Definition

Next, to discover non-trivial and interesting bicluster chains, we need to in-
corporate some basic information about the multi-relational schema S(U ,R)
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into the model. As such basic background knowledge over D we use the col-
umn marginals, and the row marginals per entity domain. To this end, follow-
ing Tatti and Vreeken (2012) we construct a tile set Tcol consisting of a tile
per column, a tile set Trow consisting of a tile per row per entity domain, and
a tile set Tdom consisting of a tile per entity domain but spanning all rows.
Formally, we have

Tcol = {(UD, e) | e ∈ U,U ∈ U \ {UD}} ,

Trow = {(r, U) | r ∈ UD, U ∈ U \ {UD}} , and

Tdom = {(UD, U) | U ∈ U \ {UD}} .

We refer to the combination of these three tile sets as the background tile set
Tback = Trow ∪ Tcol ∪ Tdom . Given the background tiles Tback , the background
MaxEnt model Pback can be inferred using Iterative Scaling (see Sect. 3.3).

Example 3 Using again the toy data of Figure 4, a tile in Tcol would be
({Doc1 ,Doc2 ,Doc3 , Doc4}, {Nasdaq}), a tile in Trow would be ({Doc1},
{Nasdaq ,CNN ,FBI }), and a tile in Tdom would be ({Doc1 ,Doc2 ,Doc3 ,Doc4},
{Nasdaq ,CNN ,FBI }).

4.4 Assessing the Quality of a Bicluster Chain

To assess the quality of a given bicluster chain C with regard to our background
knowledge, we need to first convert it into tiles such that we can infer the
corresponding MaxEnt model. Below we specify how we do this conversion for
each of our two data models.

Entity–Entity Model: For each bicluster B ∈ C in a chain C, with B =
(Ei, Ej), we construct a tile set TB , consisting of |Ei| |Ej | tiles, as follows

TB = {(rows(X;D), X) | X = {ei, ej} with (ei, ej) ∈ B} , (3)

where rows(X;D) is the set of rows that contain X in D. The tile set that
corresponds to a bicluster chain C is then TC =

⋃
B∈C TB .

Example 4 Considering the example Entity–Entity bicluster B = ({Robinson,
Grant}, {Nasdaq ,CNN }) in Figure 4, the entity Robinson from Person do-
main and entity Nasdaq from Organization domain appear together in Doc2
in the data matrix D. Thus, rows({Robinson,Nasdaq};D) = {Doc2}, and
the related tile would be ({Doc2}, {Robinson,Nasdaq}). Following the similar
logic, the tile set TB corresponding to the example bicluster B would be

TB = {({Doc2}, {Robinson,Nasdaq}),
({Doc2}, {Robinson,CNN }),
({Doc2}, {Grant ,Nasdaq}),
({Doc2}, {Grant ,CNN })} .
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Doc–Entity Model: For the Doc–Entity model, we only have to construct
a single tile TC to represent a bicluster chain C, with

TC =

( ⋃
(ED,Ei)∈C

ED ,
⋃

(ED,Ei)∈C

Ei

)
, (4)

where each ED is a set of documents, ED ⊆ UD, each entity set Ei ⊆ Ui, and
B = (ED, Ei) is a bicluster in chain C. Note that unions are well defined in
Eq. 4 since ED are subsets of UD, the domain corresponding to the transac-
tions, while the domains of Ei together consistute the items of the dataset.
Trivially, the tile set corresponding to the bicluster chain C is TC = {TC}.

Example 5 Considering the example bicluster chain C = {({Doc1 ,Doc2},
{Nasdaq ,CNN }), ({Doc2 ,Doc3}, {Robinson,Grant})} in the Doc–Entity model
in Figure 4 as an example, the tile representing this bicluster chain for the
Doc–Entity model is

TC = ({Doc1 ,Doc2 ,Doc3}, {Nasdaq ,CNN ,Robinson,Grant}) .

4.5 Measuring Relative Quality

To determine the relative quality of a bicluster chain Ci ∈ C in a set of bi-
cluster chains C—for example, to rank results—we propose to calculate its
relative importance: how much novel information does Ci provide in contrast
to our background knowledge and the rest of the chain? We will do this by
inferring two probability distributions using MaxEnt, and then calculating the
divergence between these distributions.

More formally, we first infer a MaxEnt model Pfull based on all available in-
formation. That is, Pfull is based on Tback∪TC , where TC = {TC1 , TC2 , . . . , TCK

}
and K = |C|. Next, we infer a second MaxEnt model PCi based on all informa-
tion except Ci; that is, we infer PCi

based on Tback and TC\Ci
= {TC1

, TC2
, . . . ,

TCi−1
, TCi+1

, . . . , TCK
}. Finally, we measure the divergence between these two

models. To this end, we choose the Kullback-Leibler (KL) divergence (Cover
and Thomas, 2006), that is KL(Pfull || PCi ), as it is well understood, and fits
our setup both in goal as well as with regard to ease of computation. In theory,
however, other divergence measures could be considered.

5 Searching For Good Chains

In this section, we will describe the strategy to find interesting bicluster chains
from multi-relational dataset schema. In theory, to discover a set of interesting
bicluster chains C we could exhaustively explore the search space and evaluate
each and every bicluster chain. Clearly, however, the number of possible biclus-

ter chains is prohibitively large; their number is in the order of O(
∏|R|
i=1 |Bi|)

where Bi is the set of biclusters, which are eligible to form bicluster chains,
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Algorithm 1: Greedy Inference of Bicluster Chains
input : background MaxEnt model Pback ;

Ball = {Bi} where Bi is a set of biclusters from Ri in R;
K, the desired number of bicluster chains.

output: set of bicluster chains C.
1 C ← ∅;
2 while (|C| < K) do
3 Rstart ← mostBiclusterRelation(R);
4 B∗start ← findStartBicluster(Rstart);
5 C ← B∗start ;
6 B ← eligibleBiclusters(Ball , C);
7 while |B| 6= 0 do
8 B∗ ← arg max

B∈B
sglobal (B);

9 C ← addToChain(C, B∗);
10 B ← eligibleBiclusters(Ball , C);

11 end
12 Pback ← UpdateMaxEntModel(Pback , C);
13 C ← C ∪ {C};
14 end
15 C ← SortChains(C);

from relation Ri in R. This number explodes if either the number of relations
|R|, or the number of candidate biclusters |Bi| is non-trivial. Moreover, the
search space does not exhibit structure (e.g. monotonicity) that we can exploit
for efficient search. Hence, we resort to heuristics.

We employ a simple iterative greedy search, that, as we will see, works well
in practice. First we define how to greedily choose bicluster candidates making
use of our MaxEnt model. Given a bicluster B, we generate a corresponding
set of tiles TB . This conversion is different between our two data models.

Entity–Entity Data Model. When considering the Entity–Entity model,
we generate the tile set TB according to the definition in Equation (3).

Doc–Entity Data Model. When considering the Doc–Entity model, the bi-
cluster B already represents the tile and hence we use TB = {B}.

Next, we measure how much information TB gives with regard to the back-
ground model Pback . We define the following score,

sglobal(B) = KL(PB ||Pback ) , (5)

where PB is the MaxEnt model inferred on both tile sets Tback and TB . As
this score measures the amount of information B adds with regard to the full
data, we refer to this score as the global score. The larger sglobal(B) is, the
more new information B contains—and, we say, the more likely B is a good
candidate to form an interesting bicluster chain.

Next, we explain our search strategy for mining interesting bicluster chains.
Algorithm 1 illustrates the algorithm. Starting from the relation in R that has
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the most biclusters (Line 3), say Rstart , we choose the bicluster B∗start from
Rstart as starting bicluster for a bicluster chain such that the score defined in
Equation (5) is maximized (Line 4), that is,

B∗start = arg max
B⊆Rstart

sglobal(B) .

Given a starting bicluster B∗start that serves as the first bicluster in our chain C,
we proceed as follows. From all relations in R not yet covered by a B ∈ C, we
select the set of biclusters B ⊂ Ball that we can add to C. That is, we consider
every B(Ei, Ej) ∈ Ball over relation R(Ui, Uj) for which a) the current chain
C does not already include a bicluster over relation R(Ui, Uj), and b) which
are redescriptions of either the first bicluster Bfirst ∈ C, or the last bicluster
Blast ∈ C in chain C. We extend C with the most informative bicluster B∗ ∈ B,
with

B∗ = arg max
B∈B

sglobal(B) .

We then iterate; we re-calculate the set of eligible biclusters B (Line 10), and
continue to find the next bicluster B∗ to add to C. The search stops when the
chain cannot be extended further, i.e., when B is empty.

During this search process, we need to score every candidate bicluster B ∈
B. When using sglobal this implies we have to infer a MaxEnt model for each
and every candidate, which is computationally expensive. Moreover, sglobal

evaluates a candidate globally, whereas typically most information is local :
only few entries in MaxEnt distribution will be affected by adding B into the
model. Making use of this observation, to reduce the computation cost of the
chain search procedure, we define the score slocal(B) that measures the local
surprisingness of a tile set as

slocal(B) = −
∑
T∈TB

∑
(i,j)∈σ(T )

log p∗((i, j) = D(i, j)) , (6)

where p∗((i, j) = D(i, j)) is the MaxEnt probability defined by the background
model. Compared with the previous score defined in Equation (5), this local
score does not require re-infer MaxEnt model for each bicluster B ∈ B, and
will hence greatly reduce the time needed by the search.

Once a chain C is completed, we update the background MaxEnt model
Pback to not re-discover C or chains with close resemblance again (Line 12).1 We
repeat the search process until we have completed finding the top-K bicluster
chains, where K is specified by the user. Finally, the set of bicluster chains
C mined from the multi-relational dataset is reordered based on the quality
measure defined in Section 4.5 (Line 15).

1 Note that, to save computation, we do not update the MaxEnt model after adding each
B∗. However, in line with the local score, we know that adding a bicluster typically only
changes the distribution locally, and as we never re-visit the same relation R in a single
chain C the information by Bi is unlikely to influence much the informativeness of Bi+1.
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Table 1 Dataset Statistics

Number of
Documents

Number of
Entities

Doc–Entity Entity–Entity

Dataset %1s min %1s max %1s

Synthetic 1k 1000 1000 0.01 — 0.05 0.01 0.05
Synthetic 2k 2000 2000 0.01 — 0.05 0.01 0.05
Synthetic 3k 3000 3000 0.01 — 0.05 0.01 0.05
Synthetic 5k 5000 5000 0.01 — 0.05 0.01 0.05
Synthetic 10k 10000 10000 0.01 — 0.05 0.01 0.05

Atlantic Storm 111 716 0.0179 0.0261 0.0608
Crescent 41 284 0.0425 0.0357 0.136
Manpad 47 143 0.0299 0.0385 0.0714

Computation Complexity To mine a single chain, at worst case we evaluate
every eligible bicluster in every Ri ∈ R against our MaxEnt model—i.e., every

bicluster in B =
⋃|R|
i=1 Bi. That is, we have a worst case complexity of O(v ·|B|),

where v is the time needed to evaluate the surprisingness of a single bicluster
and depends on whether global or local score is used. When using the global
score, Eq. (5), v is characterized by the convergence time of the MaxEnt model
PB when evaluating bicluster B. When using the local score, Eq. (6), v statis-
tically relies on the average size of the biclusters under consideration (which
implicitly depends on the density of data matrix D). To mine K bicluster
chains, the number of bicluster evaluations is O(K · |B|). While constructing
the chain, determining whether a bicluster is an admissible redescription takes
O(1) time. All combined, the computation complexity of the greedy search
process is O(v ·K · |B|). Using the global score we have to re-infer the Max-
Ent model for every eligible bicluster B, while for the local score only after
completing a chain.

6 Experiments

We describe experimental results over both synthetic and real datasets. For
real datasets, we focus primarily on datasets from the domain of intelligence
analysis, although as stated in the introduction, our framework is broadly
applicable to many relational data mining contexts. The focuses of our exper-
imental investigations are to answer the following questions:

i. Can the proposed framework discover planted bicluster chains from multi-
relational datasets? (Section 6.1)

ii. How does the framework’s runtime scale with increasing size and density
of the dataset? (Section 6.2)

iii. Does the approach help reveal plots hidden in real data? (Section 6.3)

iv. How does the proposed framework perform against a baseline method?
(Section 6.4)

v. Can our approach foster human-in-the-loop knowledge discovery? (Sec-
tion 6.5)
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Fig. 5 Recall (left) and Precision (right) scores for the Entity–Entity model on Synthetic
data of N = 1000 by M = 1000, of l = 5 different types of 200 entities each.

All the experiments described were conducted on a Xeon 2.0 Ghz machine
with 528 GB memory. Performance results were obtained by averaging over
10 independent runs. We give the basic statistics of the datasets we use in
Table 1. We make the implementation and real datasets publically available
for research purposes.2

6.1 Synthetic Data

To evaluate against known ground truth and with control over the data char-
acteristics, we generate synthetic data. The synthetic datasets are param-
eterized as follows. The binary data matrix D consists of N rows and M
columns, or entities, which we divide into l different domains. For the Doc–
Entity data model, we then have U = {UD, U1, U2, . . . , Ul} and R = {Ri =
R(UD, Ui) | i = 1, 2, . . . , l}. For the Entity–Entity data model, we set the
dataset schema S(U ,R) to contain l − 1 inter-entity relationships such that
Ri = R(Ui, Ui+1), i = 1, 2, . . . , l − 1. That is, two adjacent inter-relationships
Ri and Ri+1 share a common entity domain Ui+1. These relationships can be
extracted from D based on entity co-occurrences.

To verify whether our proposed framework can indeed discover true bi-
cluster chains, we generate the synthetic datasets as follows. The binary data
matrix D is first constructed with N = 1000 and M = 1000, with l = 5 entity
domains of τ = 200 entities each. As ground truth, α bicluster chains across
all the binary relations Ri ∈ R are constructed. The rows and columns of each
bicluster in the chain are randomly sampled from the domains that Ri ∈ R
involves. A Jaccard coefficient of ϕ = 0.75 is maintained between the adjacent
biclusters in the chain. In this experiment, we varied α from 1 to 3. Then,
these bicluster chains are planted into the binary data matrix D. Finally, for
each entry in D that is not covered by the planted true bicluster chains, we
sample its values from a Bernoulli distribution with parameter β′ dependent

2 http://dac.cs.vt.edu/projects
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Fig. 6 [Lower is better] Negative log-likelihood scores of the data under the MaxEnt model,
for Synthetic data of 1000-by-1000, of 5 different types of entities with 200 entities per
type, and 5 planted bicluster chains. The relation density is β = 0.03. The decrease of the
(negative) log-likelihood indicates the MaxEnt model is more certain about the data.

on Ri—which allows us to control the density β of the binary relations. In this
set of experiments, the binary relation density β was varied from 0.01 to 0.05.

To discover the planted chains from the synthetic data, we first consider
the global score as defined in Equation (5). As input to our algorithm we first
mine candidate biclusters by applying the lcm algorithm (Uno et al, 2005)
to each binary relation—note that any bicluster mining algorithm for binary
data is applicable. When constructing the chains, we use a Jaccard coefficient
threshold of ϕ = 0.75 to determine whether two biclusters are approximate
redescriptions, and as we are aiming to recover all platned bicluster chains we
set K = α. We find that for each of the scenarios described above our approach
correctly recovers all planted bicluster chains.

Figures 5 shows the recall and precision with regard to entities—the pro-
portion of entities of the planted chains discovered by our approach, resp. the
proportion of entities in the discovered chains also in the planted chains—for
Entity–Entity modeling. We observe that precision decreases slightly with in-
creased density, which stems from cliques being less detectable in more dense
data. Due to the random data generation process, and the greedy search, we
may observe effects that recall locally increases for higher density. Overall the
trend we observe corresponds with intuition: for higher density data it is more
difficult to find correct chains, as dense areas are more likely to be created
at random. For the Doc–Entity model, the results are perfect, in that both
precision and recall are always 1 over all parameter settings, as our framework
finds the exact planted true bicluster chains in each of these scenarios. (As
these figures are visually not very interesting, we omit them.)

To further investigate how well our approach works in general, and to
evaluate both the global and local scores, we run our method on synthetic
data as above, planting 5 bicluster chains. We show in Figure 6 the (negative)
log-likelihood scores of this data under the MaxEnt models per discovered
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Fig. 7 Time to infer the MaxEnt model (left) resp. time to search for chains (right) on
Synthetic data over 5 entity domains, 1 planted chain, and of differing density β.

chain. We calculate the likelihood as follows

−
∑

(i,j)∈D

log p∗T ((i, j) = D(i, j)) . (7)

We find that the chains discovered using both the global and local scores
very closely match the true chains, and hence do the likelihood scores. More-
over, for both scores the likelihood converges at the true number of chains; this
means both that we can determine whether all significant bicluster chains have
been discovered, as well as that standard model selection techniques, such as
BIC (Schwarz, 1978) or MDL (Rissanen, 1978) are applicable for automatically
identifying the correct number of chains in the data.

As a negative result, we report that for Synthetic data with a relation
density β > 0.1, we discover only partial chains; likely the (relatively small)
planted biclusters do not sufficiently stand out from the dense background.
We did not encounter this problem for real data, as they are typically (very)
sparse.

6.2 Runtime and Scalability

To evaluate the scalability of our method with regard to different data charac-
teristics, we applied our approach on synthetic datasets of 1000 up to 10 000
rows and columns, and varying the relation densities β from 0.01 to 0.05. We
keep the number of entity domains and planted bicluster chains fixed at 5 and
1, respectively. We first evaluate only using our global score.

We first investigate the time needed to infer the MaxEnt model, and the
time to search for chains (Figure 7) for datasets of resp. 1000, 2000, and 3000
rows and columns. The figure shows that these aspects are stable with regard
to relation density. Figure 8 (left) shows that, as expected, computation mostly
depend on the size of the data, and that less time is needed to rank the final
chains for more dense. In Figure 8 (right) we summarize the total run time
of our approach. Most importantly, in Figure 9 we show that the local score
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Fig. 8 Time to rank discovered chains (left) resp. total run-time (right) on Synthetic data
of 5 entity domains, 1 planted chain and of differing density β.
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Fig. 9 Scalability comparison between the global and local scores on Synthetic data of
density β = 0.03, over 5 entity domains, for resp. α = 1, 2, and 3 planted chains.

is more than one order of magnitude faster than the global score; while it
generally attains results of equally high quality.

Overall run times are reasonable and within the order of minutes. Moreover,
the framework allows for trivial parallelization, e.g., over calculating the scores
for all candidates (Line 8 in Algorithm 1).

6.3 Real Data

Next we investigate the performance on real data. To be able to evaluate the
discovered chains qualitatively we consider three intelligence analysis datasets:
AltanticStorm (Hughes, 2005), Manpad, and Crescent (Hughes, 2005). The
task for these datasets is to discover the plots of any imminent threat, arms
dealing, or possible terrorist attacks. Note the highly unstructured nature of
knowledge discovery in these datasets. We pre-process these datasets in three
steps: (i) co-reference resolution, i.e., resolving entities refering to the same
object (e.g., a proper noun upon introduction of the entity and a pronoun at a
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• Abdellah  Atmani, who works for 
Holland Orange Shipping Lines, 
helps  in smuggling the biological 
agents to the Caribbean from 
Morocco. 

• Jose Escalante and Arze received 
training together before in Havana, 
Cuba. Carlos Morales has been 
suspected of associations with 
Cuban intelligence.  All these three 
involve transferring biological agents 
from Bahamas to USA. 

• Fahd al Badawi, Boris Bugarov, 
Adnan Hijazi, Jose Escalante and 
Saeed Hasham coordinate with 
each other to recruit Al Qaeda 
field agents to transport biological 
agents to USA via Holland Orange 
Shipping Lines. 

Fig. 10 Top-ranked bicluster chains and related plots for the AtlanticStorm dataset. The
bottom chain was found using the Entity–Entity model, the top two using the Doc–Entity
model. Entities in bold (red) are part of the true solution.

later reference), (ii) entity extraction and classification into categories, using
the standard NLP tool AlchemyAPI,3 and (iii) transforming the data into our
Doc–Entity and Entity–Entity data models. To select candidate biclusters in
the chain construction process, we here use a Jaccard coefficient of ϕ = 0.5,
which ensures a wide variety of chains can be discovered from the noisy real
datasets.

Figure 10 shows the top few bicluster chains found by our proposed frame-
work on the AtlanticStorm dataset. The two small bicluster chains at the top,
from the Doc–Entity data model, reveal connections between three persons:

3 http://www.alchemyapi.com/
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• Mark Davis, who lives at 2462 Myrtle Ave. in 
Queens, NYC, and works at Empire State 
Vending Service (ESVS), services the vending 
machines at New York Stock Exchange 
(NYSE). 

• Bagwant Dhaliwal, who lives at 2462 Myrtle 
Ave. in Queens, NYC and is employed by 
ESVS, fought with Taliban in 1990-1992. 

• Hani al Hallak manages a carpet store in 
North Bergen, NJ, and has a phone with 
number 732-455-6392. 

• Several recent calls were made to Hani al 
Hallak’s phone from 718-352-8479, 
which is associated with the address 
2462 Myrtle Ave. in Queens, NYC. In 
most recent call from 718-352-8479, the 
caller said he would pick up the carpet 
on 25 April, 2003. 

• A fire happened at Hani al Hallak’s  
carpet shop, where C-4 is discovered in 
the basement.  

• Mark Davis is also known as Hamid 
Alwan, a Suadi national, who received 
explosives training in Sudan and 
Afghanistan. 

Fig. 11 Top-ranked bicluster chain and related plots for the Crescent dataset. Entities in
bold (red) are part of the true solution.

Carlos Morales, Arze and Jose Escalante, and the connections between the
person Abdellah Atmani and the company Holland Orange Shipping Lines.
These two bicluster chains lead us to the central plots of the AtlanticStorm
dataset: namely, that Jose Escalante, Arze, Carlos Morales and Abdellah At-
mani are involved in transferring biological agents to United States. The large
bicluster chain at the bottom of Fig. 10, discovered using the Entity–Entity
data model, reveals the connections among the persons Fahd al Badawi, Boris
Bugarov, Jose Escalante, Adnan Hijazi and Saeed Hasham and the organiza-
tions of Holland Orange Shipping Lines and Al Qaeda, which identifies the
plot of these five persons to recruit Al Qaeda members to transport biological
agents to the USA via Holland Orange Shipping Lines.

The bicluster chain in Figure 11 is the top one discovered from the Crescent
dataset under the Entity–Entity data model. This bicluster chain shows the
connections among three persons (Mark Davis, Hani al Hallak and Bagwant
Dhaliwal), two Companies (Empire State Vending Services (ESVS) and New
York Stock Exchange (NYSE)), and an address (Myrtle Ave. in Queens, New
York City). It turns out one plot related to a terrorist action in Crescent
dataset is Mark Davis, who has received explosive training before, and Bagwant
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Table 2 Recall scores on three real datasets for three different chain discovery methods.
For these datasets the plots do not form coherent chains, and hence we report and discuss
the precision, and the subtle issues regarding this, in Section 6.4.

Our Approach

Dataset BigCluster InfPair InfCluster

Atlantic Storm 0.32 0.16 0.32
Crescent 0 0.29 0.86
Manpad 0.14 0.21 0.36

Dhaliwal, who fought with Taliban in 1990-1992, will pick up C-4 bombs from
Hani al Hallak on April 25, 2003, and plan to install the C-4 onto vending
machines at NYSE. Thus, the bicluster chain shown here helps to uncover this
hidden plot in the Crescent dataset.

6.4 Baseline Comparisons

Though there exist studies on the general topic of ‘finding plots’, e.g.,Shahaf
and Guestrin (2010, 2012); Hossain et al (2012b); Kumar et al (2006); Hossain
et al (2012a), we consider a quite distinct problem setting for which to the
best of our knowledge no existing approach is applicable. (See Section 7 for a
complete discussion of related work.) To demonstrate the effectiveness of our
approach, we hence compare to two baselines.

The first baseline method, BigCluster, follows Algorithm 1 to find biclus-
ter chains yet iteratively chooses to extend the chain with the largest bicluster
instead of determining subjective interestingness using MaxEnt. As a second
baseline we consider a simplified version of our method, we consider InfPair,
which performs like InfCluster but iteratively finds the most informative
entity pair to add to the chain, as opposed to the most informative bicluster.

We apply the three methods to each of the three real datasets, and consider
the recall with regard to entities and the precision with regard to chains—
the proportion of the discovered chains related to the dataset solution—for
the top-3 discovered chains. We use this definition here, as unlike for the
synthetic data in these real datasets the ‘plots’ do not (necessarily) from one
coherent chain. (See Section 8 for a more in-depth discussion of the difficulties
of evaluating our problem setting.) We first discuss the recall scores, which we
give in Table 2. Overall, our main approach InfCluster consistently identifies
the best chains. With its simplified variant InfPair in second place this shows
that a good bicluster chain is not simply the combination of large biclusters—
and that surprisingness is an important aspect to obtain interesting results.
As we only consider the top-3 chains discovered in a single iteration, precision
is a less interesting metric here—the scores possible per dataset are resp. 0,
1
3 , 2

3 , and 1. Averaged over the three datasets, we find that BigCluster has
a precision of 0.33, InfPair a precision of 0.78, and InfCluster a precision
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• Homer W., who is a member 
of Aryan Brotherhood of 
Colorado, sells the weapons 
to John H., who is a member 
of Al-Queda, in Colorado. 

• Arnold C. (Abu H.)., who 
was a suspect of the 9/11 
attack and spent time in 
Afghanistan, rents a U-
Hual truck and drives it 
from Boulder, Colorado to 
Los Angeles.  He probably 
transports the weapons. 

• Ralph T., who is a member 
of Aryan Militia, bought 
weapons and sells them to 
George W. (Muhammad 
J.) who is a member of Al-
Queda. 

• Ralph T. meets Kamel J. 
in Atlanta, Georgia, and 
Kamel J. drives a truck 
from Atlanta to St. Paul, 
Minnesota. He probably 
transports weapons. 

𝐶2 : 𝐶1: 

𝐶3:  . . . 

𝐶1
′: 

𝐶1 

User 
Feedback 

𝐶2 

𝐶3 

Fig. 12 Iterative mining on the Manpad Dataset. Entities in bold (red) are part of the
true solution. The top two bicluster chains were selected by the analyst from the top-ranked
discovered chains, and then incorporated as background knowledge, leading to discovery of
a new bicluster chain at the bottom revealing a sub-plot in the dataset.

of 0.56. The difference between InfPair and InfCluster is explained by
InfPair considering much smaller biclusters than InfCluster. Considering
both precision and recall InfCluster performs best with a wide margin.

6.5 Case Study for Iterative Human-in-the-Loop Data Mining

Having verified the quality of our framework and InfCluster in particular,
we now investigate its performance for iterative human-in-the-loop discovery
of interesting bicluster chains in a small case study. To this end we consider
the Manpad dataset and ask an in-house domain expert to analyze the data
with our tool. We give the key results for the first iterations in Figure 12.

We mined the top-3 of bicluster chains and presented these to the expert,
whom selected those she finds interesting; here, the two top-ranked bicluster
chains, depicted at the top of the figure are the two top-ranked chains dis-
covered in the first iteration, were selected. After identifying that these two
bicluster chains reveal the plots of two separate arms dealings in Boulder,
Colorado and Atlanta, Georgia, and that the weapons are transported to Los
Angeles in California and St. Paul in Minnesota for potential terrorist at-
tacks, the analysts add these two chains back into the model as part of the
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Fig. 13 Recall (left) and precision (right) of true plot entities vs. number of iterations for
resp. the Manpad, AtlanticStorm, and Crescent datasets. Please note that in the right panel
the lines of Manpad and Crescent datasets overlap.

background knowledge, and further investigate the dataset to discover other
related plots. With the updated background information, our framework re-
computes the bicluster chains, and discovers as the top-ranked bicluster chain
the one shown at the bottom of Figure 12, revealing a plot involving another
arm dealing between the persons John H. and Homer W. in Colorado.

As the iterative discovery process continues, the intelligence analyst finds
more and more entities involved in the plots of the intelligence dataset. We
give the recall with regard to important entities and precision with regard
to chains over the first four iterations in Figure 13 for each the Manpad, At-
lanticStorm and Crescent datasets. From the figure we see that the recall of
important entities steadily increases with further iterations, indicating that
more and more of the entire plots are discovered. Note that while desirable, it
is not realistic to expect 100% recall—unless the plot is trivial, stands out very
strongly from the background knowledge, and no other significant structures
are present in the dataset. Investigating the relatively modest recall scores
for Crescent we find these are due to key structure of the data is reported in
the first few iterations that is unrelated to the plot yet unexplained by the
background knowledge.

7 Related Work

In this section we survey related work. In particular, we discuss work related
with regard to mining biclusters, surprising patterns, iterative data mining,
mining multi-relational datasets, and finding plots in data.

7.1 Mining Biclusters

Mining biclusters is an extensively studied area of data mining, and many al-
gorithms for mining biclusters from all sorts of data types have been proposed.
Tibshirani et al (1999) proposed a backward pruning method to find biclusters
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with constant values. While, Califano et al (2000) aimed to find biclusters with
constant values on rows or columns, which they defined as σ-valid ks-patterns.
Segal et al (2001) and Sheng et al (2003) investigated mining biclusters within
a Bayesian framework and using probabilistic relational models. Cheng and
Church (2000) proposed an algorithm to find the δ-biclusters—which is de-
fined by the mean squared residue between rows and columns of the cluster.
Regarding the biclustering algorithms on binary data, Zaki and Hsiao (2005)
proposed an efficient algorithm called Charm-L for mining frequent closed
itemsets and their lattice structure. Uno et al (2005) developed the lcm algo-
rithm that combines the data structures of array, bitmap and prefix trees to
efficiently discover frequent as well as closed itemsets. A comprehensive survey
of biclustering algorithms was given by Madeira and Oliveira (2004).

Bicluster mining, however, is not the primary aim in this paper; instead it is
only a component in our proposed framework. Moreover, the above mentioned
studies do not assess whether the mined clusters are subjectively interesting.

7.2 Mining Surprising Patterns

There is, however, significant literature on mining representative/succinct/sur-
prising patterns (e.g., Kiernan and Terzi, 2008) as well as on explicit summa-
rization (e.g., Davis et al, 2009). Wang and Parthasarathy (2006) summarized
a collection of frequent patterns by means of a row-based MaxEnt model,
heuristically mining and adding the most significant itemsets in a level-wise
fashion. Tatti (2006) showed that querying such a model is PP-hard. Mampaey
et al (2012) gave a convex heuristic, allowing more efficient search for the most
informative set of patterns. De Bie (2011) formalized how to model a binary
matrix by MaxEnt using row and column margins as background knowledge,
which allows efficient calculation of probabilities per cell in the matrix. These
papers all focus on mining surprising patterns from a single relation. They do
not explore the multi-relational scenario, and can hence not find connections
among surprising patterns from different relations—the problem we focus on.

7.3 Iterative Data Mining

Iterative data mining as we study was first proposed by Hanhijärvi et al (2009).
The general idea is to iteratively mine the result that is most significant given
our accumulated knowledge about the data. To assess significance, they build
upon the swap-randomization approach of Gionis et al (2007) and evaluate
empirical p-values. Tatti and Vreeken (2012) discussed comparing the infor-
mativeness of results by different methods on the same data. They gave a
proof-of-concept for single binary relations, for which results naturally trans-
late into tiles, and gave a MaxEnt model in which tiles can be incorporated as
background knowledge. In this work we build upon this framework, translating
bicluster chains (over multiple relations) into tiles to measure surprisingness
with regard to background knowledge using a Maximum Entropy model.
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7.4 Multi-relational Mining

Mining relational data is a rich research area (Dzeroski and Lavrac , editors)
with a plethora of approaches ranging from relational association rules (De-
haspe and Toironen, 2000) to inductive logic programming (ILP) (Lavrac and
Flach, 2001). The idea of composing redescriptions (Zaki and Ramakrishnan,
2005) and biclusters to form patterns in multi-relational data was first pro-
posed by Jin et al (2008). Cerf et al (2009) introduced DataPeeler algorithm
to tackle the challenge of directly discovering closed patterns from n-ary re-
lations in multi-relational data. Later, Cerf et al (2013) refined DataPeeler
for finding both closed and noise-tolerant patterns. These frameworks do not
provide any criterion for measuring subjective interestingness of the multi-
relational patterns.

Ojala et al (2010) studied randomization techniques for multi-relational
databases with the goal to evaluate the statistical significance of database
queries. Spyropoulou and De Bie (2011) and Spyropoulou et al (2014) proposed
to transform a multi-relational database into a K-partite graph, and to mine
Maximal Complete Connected Subset (MCCS) patterns that are surprising
with regard to a MaxEnt model based on the margins of this data. Spyropoulou
et al (2013) extended this approach to finding interesting local patterns in
multi-relational data with n-ary relationships.

Bicluster chains and MCCS patterns both identify redescriptions between
relations, but whereas MCCS patterns by definition only identify exact pair-
wise redescriptions (completely connected subsets), bicluster chains also allow
for approximate redescriptions (incompletely connected subsets). All except for
the most simple bicluster chains our methods discovered in the experiments of
Section 6 include inexact redescriptions, and could hence not be found under
the MCCS paradigm. Besides that we consider two different data models,
another key difference is that we iteratively update our MaxEnt model to
include all patterns we mined so far. Mampaey et al (2012) and Kontonasios
et al (2013) show that ranking results using a static MaxEnt model leads to
redundancy in the top-ranked results, and that iterative updating provides a
principled approach for avoiding this type of redundancy.

7.5 ‘Finding Plots’

Finally, we give an overview of work on discovering ‘plots’ in data. Note that
the key difference between finding plots, and finding biclusters or surprising
patterns is the notion of chaining patterns into a chain, or plot.

Commercial software such as Palantir provide significant graphic and visu-
alization capabilities to explore networks of connections but do not otherwise
automate the process of uncovering plots from document collections. Shahaf
and Guestrin (2012) studied the problem of summarizing a large collection of
news articles by finding a chain that represents the main events; given either a
start or end-point article, their goal is to find a chain of intermediate articles
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that is maximally coherent. In contrast, in our setup we know neither the start
nor end points. Further, in intelligence analysis, it is well known that plots are
often loosely organized with no common all-connecting thread, so coherence
cannot be used as a driving criterion. Most importantly, we consider data ma-
trices where a row (or, document) may be so sparse or small (e.g., 1-paragraph
snippets) that it is difficult to calculate statistically meaningful scores. Story-
telling algorithms (e.g., Hossain et al, 2012b; Kumar et al, 2006; Hossain et al,
2012a) are another related thread of research; they provide algorithmic ways
to rank connections between entities but do not focus on entity coalitions and
how such coalitions are maintained through multiple sources of evidence.

8 Discussion

From the results on synthetic as well as real data, we find that our framework is
able to correctly identify highly interesting bicluster chains from unstructured
data. Performance is best for the Doc–Entity model, which is partly due to
the MaxEnt modelling process adhering closer to this setup, as well as that for
the Entity–Entity model it is inherently more complex to find good bi-clusters.
Still, the results on real data for both models provide much insight and useful
information about the plots hidden in the data.

To score the surprisingness of biclusters our current approach requires that
the input data can be transformed into a flat binary table—which we then
model by Maximum Entropy. As here we consider text data as our input for
us this transformation is straightforward and without loss for the Doc–Entity
model. While such transformation into binary data is always possible—we can,
e.g., model the adjacency matrix of (un)directed graphs—the more closely
the modelling follows the input data, the better. It will be interesting to see
whether it is possible to extend our approach to include different MaxEnt
models for different relations. With regard to the Entity–Entity model, we
identify the need for MaxEnt theory to model integer-valued, or count data as
then we can determine the surprisingness of how often entities co-occur. The
recent results by Kontonasios et al (2011, 2013) on modelling continuous valued
data by MaxEnt seems a natural starting point as the model can incorporate
tiles as background knowledge.

While it has very nice theoretic properties, and performs well in practice,
calculating our global objective score is computationally expensive. To this end
we proposed local approximations, which we found to closely approximate the
performance of the global score in practice. To further gain efficiency, one could
evaluate candidates in parallel, as well as parallelize inferring the MaxEnt
models. However, we should also emphasize here that the focus of this paper is
exploratory analysis of multi-relational data, and discovering interesting multi-
relational patterns in particular. In this study our main concern was quality;
follow-up studies can consider scaling our framework up for application to
very large data. With regard to higher quality, we are currently investigating
theory and methods for directly discovering surprising biclusters; that is, to
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take the current MaxEnt model into account when searching for candidate
clusters to add to the chain. Currently, our theory and methods are only
directly applicable to discrete binary data, other data types will have to be
first transformed to our data models. Here, we used standard NLP tools to
transform text into binary relations, without optimizing these towards optimal
detectability of the most interesting bicluster chains. It will make for engaging
future work to investigate how to optimally transform text for analysis using
our framework.

8.1 Doc–Entity vs. Entity–Entity

From the results on the intelligence datasets, we can see that our proposed
framework is capable of identifying important hidden plots with associated
evidence. We observed that if the dataset contains several key entities that are
central to the plot (such as coordinating several activities), the Doc–Entity
data model will help us to identify these. The Entity–Entity data model on
the other hand reveals more the interactions between different types of entities.
Even if some key roles and actions appear only a few times in the data, this
approach has the potential to uncover the evidence leading to such key play-
ers in the dataset. This is mostly because the Entity–Entity model implicitly
puts more on the surprisingness of entities and their coalitions/connections
in the dataset, whereas traditional methods, such as measuring support and
frequency, cannot really capture. As future work, it may be worthwhile to in-
vestigate whether a combination of the two data models is possible, and if this
would provide better results.

8.2 Exploration vs. Exploitation

As real datasets are typically rather complex, they may contain many possible
‘plots’—hence, it is not guaranteed that all the solution entities will naturally
form a single chain without involving other entities. Moreover, for other enti-
ties found by our approach that are not in the solution, they cannot be simply
determined as important or useless. It really depends on whether these enti-
ties are connected to the solution entities. For example, in the bicluster chain
shown in Figure 11, the entities New York Stock Exhange (NYSE) and Empire
State Vending Services (ESVS) appear together with the important persons
Mark Davis, Hani al Hallak and Bagwant Dhaliwal. This gives the analysts
some hints that something suspecious may happen in NYSE or ESVS. It turns
out to be that Mark Davis who is an employee at ESVS and serves vending
machines at NYSE plans to get bombs from Hani al Hallak and Bagwant
Dhaliwal, and installs them in the vending machine of NYSE. This demon-
strates that if such relevant entities (NYSE, ESVS, etc.) appear together with
the important entities in the dataset, they may provide additional information
to the intelligence analysts. But, if appearing individually, they may not draw
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our attention at all. Thus, we could not simply treat such entities as important
or irrelevant entities, which makes the entity precision not be an appropriate
evaluation criterion in our scenario. We identify this as a natural aspect of
data exploration: our method simply identifies what is surprising in the data
with regard to the provided background knowledge, and as long as a discov-
ered chain identifies significant structure—whether about the plot of interest,
or explaining another aspect of the data—we regard it as a good result.

9 Conclusion and Future Work

Our approach to discover multi-relational patterns is a significant step in for-
malizing a previously unarticulated knowledge discovery problem. We have
primarily showcased results in intelligence analysis, however, the theory and
methods we presented is applicable for analysis of unstructured or discrete
multi-relational data in general—such as for biological knowledge discovery
from text. The key requirement to apply our methods is that the data can be
transformed into one of our two data models. That is, data for which ‘entities’
and/or ‘documents’ can be identified. We have presented new data model-
ing primitives, algorithms for extracting patterns, and experimental results on
scalability as well as effectiveness of inference.

Some of the directions for future work include (i) obviating the need to
mine all biclusters prior to composition, (ii) improving accuracy of estimation
when data density becomes larger, (iii) integrating the two data models intro-
duced here, (iv) incorporating weights on relationships, to account for differing
veracities and trustworthiness of evidence. Ultimately, the key to a good tool
for data analysts is to foster human-in-the-loop knowledge discovery which is
one of the key advantages of the methods proposed here.
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