
Discovering bursts revisited:

guaranteed optimization of the model parameters

Nikolaj Tatti
HIIT, Aalto University, Finland, nikolaj.tatti@aalto.fi

Abstract
One of the classic data mining tasks is to discover bursts,
time intervals, where events occur at abnormally high rate.
In this paper we revisit Kleinberg’s seminal work, where
bursts are discovered by using exponential distribution with
a varying rate parameter: the regions where it is more
advantageous to set the rate higher are deemed bursty. The
model depends on two parameters, the initial rate and the
change rate. The initial rate, that is, the rate that is used
when there are no burstiness was set to the average rate over
the whole sequence. The change rate is provided by the user.

We argue that these choices are suboptimal: it leads
to worse likelihood, and may lead to missing some existing
bursts. We propose an alternative problem setting, where
the model parameters are selected by optimizing the like-
lihood of the model. While this tweak is trivial from the
problem definition point of view, this changes the optimiza-
tion problem greatly. To solve the problem in practice, we
propose e�cient (1+ ✏) approximation schemes. Finally, we
demonstrate empirically that with this setting we are able
to discover bursts that would have otherwise be undetected.

1 Introduction

Many natural phenomena occur unevenly over time, and
one of the classic data mining tasks is to discover bursts,
time intervals, where events occur at abnormally high
rate. In this paper we revisit a seminal work by Klein-
berg [13] that has been used, for example, in discov-
ering trends in citation literature [3], analyzing top-
ics [17], recommending citations [10], analyzing disas-
ters [4], and analyzing social networks [1] and blogs [15].

Kleinberg [13] discovers bursts by modelling the
time between events with an exponential model with
varying rate parameter. The rate starts at the base
level � and can be raised (multiple times) by a change
parameter ↵, but it cannot descend �. Every time
we raise the parameter, we need to pay a penalty. In
the original approach, the change rate ↵ is given as a
parameter and the base rate is selected to be � = 1/µ,
where µ is the average of the sequence.

We argue that this choice of � is suboptimal: (i)
it does not maximize the likelihood of the model, and,
more importantly, (ii) a more optimized � may reveal
bursts that would have gone undetected.

We propose a variant of the original burstiness prob-
lem, where we are no longer given the base parameter

� but instead we are asked to optimize it along with
discovering bursts. We also consider variants where we
optimize ↵ as well. These tweaks are rather mundane
from the problem definition point of view but it leads
to a surprisingly di�cult optimization problem.

We consider two di↵erent models for the delays: ex-
ponential and geometric. First, we will show that we can
solve our problem for exponential model in polynomial
time, when ↵ is given. Unfortunately, this algorithm
requires O�

n

3
k

4
�
time,1 thus being impractical. Even

worse, we cannot apply the same approach for geometric
model. This is a stark contrast to the original approach,
where the computational complexity is O(nk).

Fortunately, we can estimate burst discovery in
quasi-linear time w.r.t. the sequence length; see Table 1
for a summary of the algorithms. We obtain (1 +
✏) approximation guarantee for the geometric model.
We also obtain, under some mild conditions, (1 + ✏)
approximation guarantee for the exponential model.

In all four cases, the algorithm is simple: we test
multiple values of � (and ↵), and use the same e�cient
dynamic program that is used to solve the original
problem. Among the tested sequences we select the
best one. The main technical challenge is to test the
multiple values of ↵ and � such that we obtain the
needed guarantee while still maintaining a quasi-linear
running time with respect to sequence length.

The remainder of the paper is as follows. We
review the original burstiness problem in Section 2, and
define our variant in Section 3. We introduce the exact
algorithm in Section 4, and present the approximation
algorithms in Section 5–6. In Section 7, we present the
related work. In Section 8, we compare demonstrate
empirically that our approach discovers busts that may
go unnoticed. We conclude with discussion in Section 9.
The proofs are given in Appendix, available in the full
version of this paper.

1Here, n is the sequence length and k is the maximum number
of times the rate can be increased.

Table 1: Summary of algorithms discussed in this paper. Here k is the number of allowed levels, n is the length of
the sequence, µ is the arithmetic mean, and g is the geometric mean, ⌦ is the maximum of the sequence, and ! is
the minimum of the sequence. We assume that ! > 0. Exp(↵,�) is the original problem considered by Kleinberg
[13], and Geo(↵,�) is a minor variation of the problem. The remaining results are the main contribution of this
paper.

Problem guarantee running time

Exp(↵,�) exact O(nk)
Exp(↵) exact O�

n

3
k

4
�

Exp(↵) SOL� n log g (1 + ✏)(OPT � n log g) O�
✏

�1
nk

2 log↵
�

Exp SOL� n log g (1 + ✏)(OPT � n log g) O�
✏

�2
nk

3 log2(⌦/!)
�

Geo(↵,�) exact O(nk)
Geo(↵) SOL (1 + ✏)OPT O�

✏

�1
nk log log n

�

Geo SOL (1 + ✏)OPT O�
✏

�2
nk log(nµk/✏) log log n

�

2 Preliminaries

In this section, we review the setting proposed by Klein-
berg [13], as well as the dynamic program used to solve
this setting.

Assume that we observe an event at di↵erent time
points, say t0, . . . , tn. The main idea behind discovering
bursts is to model the delays between the events, s

i

=
t

i

� t

i�1: if the events occur at higher pace, then we
expect s

i

to be relatively small.
Assume that we are given a sequence of delays

S = s1, . . . , sn. In order to measure the burstiness
of the sequence, we will model it with an exponential
distribution, p

exp

(s;�) = � exp(��s). Larger � dictates
that the delays should be shorter, that is, the events
should occur at faster pace.

The idea behind modelling burstiness is to allow
the parameter � fluctuate to a certain degree: We start
with � = �, where � is a parameter. At any point we
can increase the parameter by multiplying with another
parameter ↵. We can also decrease the parameter by
dividing by ↵. We can have multiple increases and
decreases, however, we cannot decrease the parameter
below �. Every time we change the rate from x to y,
we have to pay a penalty, ⌧(x, y; �), controlled by a
parameter �.

More formally, assume that we have assigned the
burstiness levels for each delays L = `1, . . . , `n, where
each `

i

is a non-negative integer. We will refer to
this sequence as the level sequence. For convenience,
let us write `0 = 0. Then the score of burstiness
q
exp

(L, S;↵,�, �) is equal to

nX

i=1

� log p
exp

�
s

i

;�↵`i
�
+ ⌧(`

i�1, `i; �) .

The first term—negative log-likelihood of the data—
measures how well the burstiness model fits the se-

quence, while the second term penalizes the erratic be-
havior in L. Ideally, we wish to have both terms as
small as possible. To reduce clutter we will often ignore
� in notation, as this parameter is given, and is kept
constant.

We will use the penalty function given in [13],

⌧(x, y) = max(y � x, 0)� log n,

where n is the length of the input sequence. Note that
⌧ depends on � and n but we have suppressed this from
the notation to avoid clutter.

We can now state the burstiness problem.

Problem 2.1 (Exp(↵,�)). Given a delay sequence S,
parameters ↵, �, �, and a maximum number of levels
k, find a level sequence L = `1, . . . , `n, where `

i

is an
integer 0 `

i

 k, minimizing q
exp

(L, S;↵,�, �).

Two remarks are in order: First of all, the origi-
nal problem definition given by Kleinberg [13] does not
directly use k, instead the levels are only limited im-
plicitly due to ⌧ . However, in practice, k is needed by
the dynamic program, but it is possible to select a large
enough k such that enforcing k does not change the op-
timal sequence [13]. Since our complexity analysis will
use k, we made this constraint explicit. Secondly, the
parameter � is typically set to 1/µ, where µ = 1

n

P
s

i

is the average delay.
We also study an altenative objective. Exponen-

tial distribution is meant primarily for real-valued de-
lays. If the delays are integers, then the natural coun-
terpart of the distribution is the geometric distribution
p
geo

(s;�) = (1 � �)�s. Here, low values of � dictate
that the delays should occur faster. We can now define

q
geo

(L, S;↵,�, �) =
nX

i=1

� log p
geo

(s
i

;�↵`i)+⌧(`
i�1, `i) .

Note that in q
exp

we use ↵ > 1 while here we use ↵ < 1.
We can now define a similar optimization problem.

Problem 2.2 (Geo(↵,�)). Given an integer delay se-
quence S, parameters ↵, �, �, and a maximum number
of levels k, find a level sequence L = `1, . . . , `n, where `i
is an integer 0 `

i

 k, minimizing q
geo

(L, S;↵,�, �).

We can solve Problem 2.1 or Problem 2.2 using the
standard dynamic programming algorithm by Viterbi
[18]. O↵-the-shelf version of this algorithm requires
O�

nk

2
�
time. However, we can easily speed-up the

algorithm to O(nk); for completeness we present this
speed-up in Appendix A.

3 Problem definition

We are now ready to state our problem. The di↵erence
between our setting and Problem 2.1 is that here we
are asked to optimize �, and possibly ↵, along with the
levels, while in the original setting � was given as a
parameter.

We consider two problem variants. In the first
variant, we optimize � while we are given ↵.

Problem 3.1 (Exp(↵)). Given a delay sequence S,
parameters ↵, �, and a maximum number of levels k,
find a level sequence L = `1, . . . , `n, where `

i

is an
integer 0 `

i

 k, and a parameter �, minimizing
q
exp

(L, S;↵,�, �).

In the second variant, we optimize both ↵ and �.

Problem 3.2 (Exp). Given a delay sequence S, a
parameter �, and a maximum number of levels k, find
a level sequence L = `1, . . . , `n, where `i is an integer
0 `

i

 k, and parameters ↵ and �, minimizing
q
exp

(L, S;↵,�, �).

While this modification is trivial and mundane from
the problem definition point of view, it carries several
crucial consequences. First of all, optimizing � may
discover bursts that would otherwise be undetected.

Example 3.1. Consider a sequence given in Figure 1,
which shows a sequence of 500 delays. The burst between
100 and 400 is generated using exponential model with
� = 1/2, the remaining delays are generated using
� = 1. We applied Viterbi with ��1 equal to the average
of the sequence, the value used by Kleinberg [13], and
compare it to � = 1/2, which is the correct ground level
of the generative model. The remaining parameters were
set to ↵ = 2, � = 1, and k = 1. We see that in the
latter case we discover a burst that is much closer to
the ground truth.

Our second remark is that if ↵ and � are given,
one can easily discover the optimal bursts using Viterbi .

0 100 200 300 400

0

5

10

ground truth
� = 1/µ

� = exact

Figure 1: A toy data set S with a burst between 100
and 400. Low values indicate short delays, bursts. The
indicated regions are (i) the ground truth, (ii) bursts
discovered with � = 1/µ, where µ is the average delay,
and (iii) bursts discovered with � set to the exact value
of the generative model.

0.1 0.2 0.3 0.4 0.5 0.6

700

750

800

parameter �

sc
o
re

Figure 2: Score p
exp

(S,L⇤;↵,�, k) as a function of �,
where ↵ = 2, k = 4, and L

⇤ is the optimal level sequence
for the given parameters. Low values are better.

The optimization becomes non-trivial when we need to
optimize ↵ and � as well. To make matters worse, the
score as a function of � is non-convex, as demonstrated
in Figure 2. Hence, we can easily get stuck in local
minima.

Next, we introduce discrete variants of Exp(↵) and
Exp.

Problem 3.3 (Geo(↵)). Given an integer delay se-
quence S, parameters ↵, �, and a maximum number of
levels k, find a level sequence L = `1, . . . , `n, where `i is
an integer 0 `

i

 k, and a parameter �, minimizing
q
geo

(L, S;↵,�, �).

Problem 3.4 (Geo). Given an integer delay sequence
S, a parameter ↵, and a maximum number of levels
k, find a level sequence L = `1, . . . , `n, where `

i

is an
integer 0 `

i

 k, and parameters ↵ and �, minimizing
q
geo

(L, S;↵,�, �).

Despite being very similar problems, we need to
analyze these problems individually. We will show
that Exp(↵) can be solved exactly in polynomial time,
although, the algorithm is too slow for practice. This
approach does not work for other problems but we will
show that all four problems can be (1+✏)-approximated
e�ciently.

Before we continue, we need to address a patho-
logical case when solving Exp: the problem of Exp is
illdefined if the delay sequence S contains a zero. To see
this, assume that s

i

= 0. Then a level sequence `
i

= 1,
and `

j

= 0, for j 6= i, with ↵ = 1 and � = 1 leads to
a score of �1. This is because p

exp

(s
i

;�↵) = 1 and
the remaining terms are finite. This is why we assume
that whenever we deal with Exp, we have s

i

> 0. If we
have s

i

= 0, then we can either set ↵ manually by using
Exp(↵) or shift the delays by a small amount.

4 Exact algorithm for Exp(↵)

In this section we present an exact polynomial algorithm
for solving Exp(↵). Unfortunately, this algorithm
is impractically slow for large sequences: the time
complexity is O�

n

3
k

4
�

and the space complexity is
O�

n

3
k

3
�
. Thus, it only serves as a theoretical result.

More practical algorithms are given in the next sections.
In order to solve Exp we introduce a more compli-

cated optimization problem.

Problem 4.1 (BndBurst). Given a delay sequence
S = s1, . . . , sn, a parameter ↵, budget parameters d

and m, and a maximum number of levels k, find a level
sequence L = `1, . . . , `n, with 0 l

i

 k, minimizing

nX

i=1

↵

li
s

i

such that

X

i

max (`
i

� `
i�1, 0) = d and

X

i

`

i

= m .

We will show that this problem can be solved in
polynomial time. But before, let us first show that
Exp and BndBurst are intimately connected. See
Appendix B for the proof.

Proposition 4.1. Assume a delay sequence S, and
parameters ↵ and �, and an upper bound for levels k.
There are budget parameters d k(n+1)/2 and m kn

for which the level sequence L solving BndBurst also
solves Exp(↵) along with

� =
nP

i

s

i

↵

`i
.

We can solve BndBurst with a dynamic program.
In order to do this, let us define a table o, where an entry
o[i, j, a, b] is the optimal score of the first i symbols of
the input sequence such that

`

i

= j,

iX

x=1

max (`
x

� `
x�1, 0) = a, and

iX

x=1

`

x

= b .

In case, there is no level sequence satisfying the con-
straints, we set o[i, j, a, b] =1. Due to Proposition 4.1,

we can limit a k(n+ 1)/2 and b kn. Consequently,
o contains O�

n

3
k

3
�
entries. We can compute a single

entry with

o[i, j, a, b]

= ↵

j

s

i

+min
j

0
o[i� 1, j0, a�max(0, j � j

0), b� j] .

(4.1)

The computation of a single value thus requires O(k)
time. So computing the whole table can be done in
O�

n

3
k

4
�
. Moreover, if we also store the optimal j0 as

given in Equation 4.1, for each cell, we can recover the
level sequence responsible for every o[i, j, a, b].

Proposition 4.1 now guarantees that we can solve
Exp by comparing the level sequences responsible for
o[n, j, a, b], where j = 0, . . . , k, a = 0, . . . , (k + 1)n/2,
and b = 0, . . . , kn.

5 Approximating discrete burstiness

In this section we will provide a (1 + ✏)-approximation
algorithms forGeo(↵) andGeo. The time complexities
are stated in Table 1.

5.1 Approximating Geo(↵) Note that if we knew
the optimal �, then Geo(↵) reduces to Problem 2.2,
which we can solve in O(nk) time by applying Viterbi .
The idea behind our approximation is to test several val-
ues of �, and select the best solution among the tested
values. The trick is to select values densely enough
so that we can obtain (1 + ✏) guarantee while keeping
the number of tests low, namely O�

✏

�1 log log n
�
. The

pseudo-code of the algorithm is given in Algorithm 1.

Algorithm 1: GeoAlpha(S,↵, �, k, ✏)

1 µ 1
n

P
i

s

i

;
2 if µ = 0 then return L = (0, . . . , 0) ;
3 ⌘ µ/(µ+ 1);
4 c 1;
5 while ⌘c µ/(µ+ 1/n) do
6 � ⌘

c;
7 L Viterbi(S,↵,�, �, k, p

geo

);
8 c c/(1 + ✏);

9 return the best observed L;

Next we state that the algorithm indeed yields
an (1 + ✏)-approximation ratio, and can be executed
in O�

✏

�1
nk log log n

�
time. The proofs are given in

Appendix C–D.

Proposition 5.1. Let S be an integer delay sequence,
and let ↵, �, and k be the parameters. Let L

⇤, �⇤ be

the solution to Geo(↵). Assume ✏ > 0. Let L, � be the
solution returned by GeoAlpha(S,↵, �, k, ✏). Then

q
geo

(S,L;�) (1 + ✏)q
geo

(S,L⇤;�⇤) .

Proposition 5.2. The computational complexity of
GeoAlpha is O�

✏

�1
nk log log n

�
.

5.2 Approximating Geo We now turn to approxi-
mating Geo. The approach here is similar to the pre-
vious approach: we test multiple values of ↵ and invoke
GeoAlpha. The pseudo-code for the algorithm is given
in Algorithm 2.

Algorithm 2: ApproxGeo(S, �, k, ✏)

1 L GeoAlpha(S, 0, �, k, ✏);
2 µ 1

n

P
i

s

i

;
3 ⌘ 1/(1 + nk);
4 � µ/(µ+ 1/n);
5 c 1;

6 while ⌘c �✏/k do
7 ↵ ⌘

c;
8 L GeoAlpha(S,↵, �, k, ✏);
9 c c/(1 + ✏);

10 return the best observed L;

Next we establish the correctness of the method
as well as the running time. The proofs are given in
Appendix E–F.

Proposition 5.3. Let L

⇤, ↵⇤, �⇤ be the solution to
Geo. Assume ✏ > 0. Let L, ↵, � be the solution
returned by ApproxGeo(S, �, k, ✏). Then

q
geo

(S,L;↵,�) (1 + ✏)q
geo

(S,L⇤;↵⇤
,�

⇤) .

Proposition 5.4. The computational complexity of
ApproxGeo is

O�
nk log log n(log n+ log µ+ log k � log ✏)✏�2

�
.

6 Approximating continuous burstiness

In this section we will provide a (1 + ✏)-approximation
algorithms for Exp(↵) and Exp. The time complexities
are stated in Table 1.

6.1 Approximating Exp(↵) In this section we in-
troduce an approximation algorithm for Exp(↵). The
general approach of this algorithm is the same as in
GeoAlpha: we test several values of �, solve the result-
ing subproblem with Viterbi , and select the best one.
The pseudo-code is given in Algorithm 3.

Unlike with GeoAlpha, ExpAlpha does not yield an
unconditional (1 + ✏)-approximation guarantee. The

Algorithm 3: ExpAlpha(S,↵, �, k, ✏)

1 µ 1
n

P
i

s

i

;
2 � 1/µ;
3 while � � 1/(↵k

µ) do
4 L Viterbi(S,↵,�, �, k, p

exp

);
5 � �/(1 + ✏);

6 return the best observed L and �;

key problem is that since exponential distribution is
continuous, the term p

exp

(s;�) may be larger than 1.
Consequently, � log p

exp

(s;�), as well as the actual
score q

exp

, can be negative. However, if the delay
sequence has a geometric mean larger or equal than 1,
we can guarantee the approximation ratio.

The proofs for the next two propositions are given
in Appendix G–H.

Proposition 6.1. Assume a delay sequence S, and
parameters ↵ and �, and an upper bound for levels
k. Let �⇤ and L

⇤ be the solution to Exp(↵(↵)). Let

g = [
Q

i

s

i

]1/n be the geometric mean. Assume ✏ > 0.
Let L, � be the solution returned by ExpAlpha. Then

q
exp

(S,L;�)�n log g (1+✏)(q
exp

(S,L⇤;�⇤)�n log g) .

Moreover, if g � 1, then

q
exp

(S,L;�) (1 + ✏)q
exp

(S,L⇤;�⇤) .

Note that if the geometric mean g is less than 1,
then we still have a guarantee, except now we need to
shift the score by a (positive) constant of �n log g.

Proposition 6.2. The computational complexity of
ExpAlpha is O�

✏

�1
nk

2 log↵
�
.

6.2 Approximating Exp We now turn to approxi-
mating Exp. The approach here is similar to the previ-
ous approach: we test multiple values of ↵ and invoke
ExpAlpha. The pseudo-code for the algorithm is given
in Algorithm 4.

Algorithm 4: ApproxExp(S, �, k, ✏)

1 ↵ (max s
i

)/(min s
i

);
2 c 2k

p
1 + ✏;

3 while ↵ � 1 do
4 L ExpAlpha(S,↵, �, k, ✏/2);
5 ↵ ↵/c;

6 return the best observed L;

Next we establish the correctness of the method
as well as the running time. The proofs given in
Appendix I–J.

Proposition 6.3. Assume a delay sequence S, a pa-
rameter �, and an upper bound for levels k. Let ↵⇤, �⇤

and L

⇤ be the solution to Exp. Let g = [
Q

i

s

i

]1/n be
the geometric mean, and let = n log g. Assume ✏ > 0.
Let L, ↵, � the solution returned by ApproxExp. Then

q
exp

(S,L;↵,�)� (1 + ✏)(q
exp

(S,L⇤;↵⇤
,�

⇤)�) .

Moreover, if g � 1, then

q
exp

(S,L;↵,�) (1 + ✏)q
exp

(S,L⇤;↵,�⇤) .

Proposition 6.4. Let ⌦ = max s
i

and let ! =
min s

i

. The computational complexity of ApproxExp is
O�
✏

�2
nk

3 log2(⌦/!)
�
.

6.3 Speeding up Exp(↵) Our final step is to de-
scribe how can we speed-up the computation of Exp(↵)
in practice. The following proposition allows us to ig-
nore a significant amount of tests.

Proposition 6.5. Assume a delay sequence S, and
parameters ↵ and �. Let � be a parameter, and let L be
the optimal solution for Exp(↵,�). Define

�

0 =
nP

i

s

i

↵

`i
.

Let �⇤ be the optimal parameter to Exp(↵). Then either

�

⇤ min(�,�0) or �

⇤ � max(�,�0) .

Proposition 6.5 allows us to ignore some tests: Let
�

i

be the parameters tested by ExpAlpha, that is, �
i

=
µ

�1(1 + ✏)�i. Assume that we test �
i

, and compute �0

as given in Proposition 6.5. If �0
> �

i

, we can safely
ignore testing any �

j

such that �
i

< �

j

< �

0. Similarly,
if �0

< �

i

, we can safely ignore testing any �
j

such that
�

0
< �

j

< �

i

.
The testing order of �

i

matters since we want
to use both cases �

0
< �

i

and �

0
> �

i

e�ciently.
We propose the following order which worked well in
our experimental evaluation: Let t be the number of
di↵erent �

i

, and let m be the largest integer for which
2m t. Test the parameters in the order

0, 2m, 2m�1
, 23(m�1)

, . . . , 1, 3, 5, 7, . . . ,

that is, we start with 0 and increment by 2m until
we reach the end of the list. Then we decrease m

by 1, and repeat. During the traverse, we ignore the
parameters that were already tested, as well as the
redundant parameters.

Interestingly enough, this approach cannot be ap-
plied directly to the discrete version of the problem.
First of all, the technique for proving Proposition 6.5
cannot be applied directly to the score function for the
geometric distribution. Secondly, there is no closed for-
mula for computing the discrete analogue of �0 given in
Proposition 6.5.

7 Related work

Discovering bursts Modelling and discovering bursts
is a very well-studied topic in data mining. We will
highlight some existing techniques. We are modelling
delays between events, but we can alternatively model
event counts in some predetermined window: high count
indicate burst. Ihler et al. [11] proposed modelling such
a statistic with Poisson process, while Fung et al. [5]
used Binomial distribution. If the events at hand are
documents, we can model burstiness with time-sensitive
topic models [12, 14, 20]. As an alternative methods
to discover bursts, Zhu and Shasha [21] used wavelet
analysis, Vlachos et al. [19] applied Fourier analysis, and
He and Parker [9] adopted concepts from Mechanics.
Lappas et al. [16] propose discovering maximal bursts
with large discrepancy.

Segmentation A sister problem of burstiness is a
classic segmentation problem. Here instead of penaliz-
ing transitions, we limit the number of segments to k.
If the overall score is additive w.r.t. the segments, then
this problem can be solved in O�

n

2
k

�
time [2]. For cer-

tain cases, this problem has a linear time solution [6].
Moreover, under some mild assumptions we can obtain
a (1 + ✏) approximation in linear time [8].

Concept drift detection in data streams: A
related problem setting to burstiness is concept drift
detection. Here, a typical goal is to have an online al-
gorithm that can perform update quickly and prefer-
ably does not use significant amount of memory. For an
overview of existing techniques see an excellent survey
by Gama et al. [7]. The algorithms introduced in this
paper along with the original approach are not strictly
online because in every case we need to know the mean
of the sequence. However, if the mean is known, then
we can run Viterbi in online fashion, and, if we are only
interested in the burstiness of a current symbol, we need
to maintain only O(k) elements, per �.

8 Experimental evaluation

In this section we present our experiments. As a baseline
we use method by Kleinberg [13], that is, we derive the
parameter � from µ, the mean of the sequence. For
exponential model, � = µ

�1; we refer to this model
as ExpMean. For geometrical model, � = µ/(µ + 1);
we refer to this approach as GeoMean. Throughout
the experiments, we used ✏ = 0.05 and � = 1 for our
algorithms.

Experiments with synthetic data: We first
focus on demonstrating when optimizing � is more
advantageous than the baseline approach.

For our first experiment we generated a sequence
of 500 data points. We planted a single burst with a
varying length 50–250. The burst was generated with

p
exp

(·; 1), while the remaining sequence was generated
with p

exp

(·; 2). We computed bursts with ExpMean and
ExpAlpha, the parameters were set to k = 1, ↵ = 2. The
obtained level sequence was evaluated by computing the
hamming distance,

P
i

|`
i

� `⇤
i

|, where `⇤
i

is the ground
truth level sequence. We repeated each experiment 100
times.

We see from the results given in Figure 3 that the
bursts discovered by ExpAlpha are closer to the ground
truth, on average, than the baseline. This is especially
the case when burst becomes larger. The main reason
for this is that short bursts do not a↵ect significantly
the average of the sequence, µ, so consequently, µ is
close to the base activity level. As the burst increases,
so does µ, which leads to underestimating of �.

50 100 150 200 250

0

20

40

60

80

100

ExpAlpha

ExpMean

length of the implanted burst

h
a
m
m
in
g
d
is
ta

n
c
e

Figure 3: Hamming distance between the ground truth
and the discovered level sequence as a function of the
length of the planted burst. Low values are better.

50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

ExpAlpha

ExpMean

sequence length

n
o
rm

a
li
z
e
d

h
a
m
m
in
g

Figure 4: Hamming distance, normalized by the se-
quence length, between the ground truth level sequence
and the discovered level sequence as a function of the
sequence length. Low values are better.

Our next experiment is similar, expect now we
vary the sequence length, n, (50–500) and set the
burst length to be n/3. We generated the sequence as
before, and we use the same parameters. In Figure 4
we report, 1

n

P
i

|`
i

� `⇤
i

|, the number of disagreements
compared with the ground truth, normalized by n. Each
experiment was repeated 300 times.

We see that for the shortest sequences, the number

of disagreement is same for both algorithm, around 0.2–
0.25. This is due that we do not have enough samples
to override the transition penalty ⌧ . Once the sequence
becomes longer, we have more evidence of a burst, and
here ExpAlpha starts to beat the baseline, due to a
better model fit.

Experiments with real-world data: We consid-
ered two datasets: The first dataset, Crimes, consists of
17 033 crimes related to narcotics in Chicago between
January and October, 2015. The second dataset, Mine,
consists of 909 fatalities in U.S. mining industry dat-
ing from 2000, January.2 This data is visualized in Fig-
ure 6. In both datasets, each event has a time stamp: in
Crimes we use minutes as granularity, whereas in Mine
the time stamp is by the date. Using these time stamps,
we created a delay sequence.

We applied ApproxExp, ExpAlpha, and ExpMean to
Crimes. We set k = 4, and for ExpAlpha and ExpMean
we used ↵ = 2. Since Crimes contains events with 0
delay, we added 1 minute to each delay to avoid the
pathological case described in Section 3. The obtained
bursts are presented in Figure 5. We also applied
ApproxGeo, GeoAlpha, and GeoMean to Mine. Here we
set ↵ = 1/2 and k = 4, however the algorithm used only
3 levels. The obtained bursts are presented in Figure 7.

In Mine, the results by GeoAlpha and GeoMean are
the same. However, we noticed that the results di↵er
if we use di↵erent ↵. The biggest di↵erence between
ApproxGeo and GeoAlpha is the last burst: GeoAlpha
(and GeoMean) set the last burst to be on level 2,
while ApproxGeo uses level 1. The reason for this is
that ApproxGeo selects ↵ to be very close to 0, that is,
much smaller than 1/2, the parameter used by the other
algoritms. This implies that when going one level up,
the model expects the events to be much closer to each
other.

In Crimes, ApproxExp and ExpAlpha discover
burstier structure than ExpMean. ExpAlpha uses 4
di↵erent levels. Interestingly enough, in this level se-
quence, we spent most of the time at level 1, and we de-
scended to level 0 for 3 short bursts. In other words, in
addition to finding crime streaks, ExpAlpha also found
three short periods when narcotics related crime rate
was lower than usual. ApproxExp also spends most of
its time on level 1 but often descends on level 0, while
also highlighting one burst in early January.

Number of Viterbi calls: Next, we study relative
e�ciency when compared Viterbi . Since all 4 approxi-
mation schemes use Viterbi as a subroutine, a natural
way of measuring the e�ciency is to study the number
of Viterbi calls. We report the number of calls as a

2Both datasets are available at http://data.gov/.

OctSepAugJulJunMayAprMarFebJan

1
2
3

1
2
3
4

1
2

ApproxExp

ExpAlpha

ExpMean

date

Figure 5: Discovered bursts in Crimes dataset.

00 01 02 03 04 05 06 07 08 0910 111213 14 15

0

20

40

60

year (from 2000)

d
a
y
s
w
/
o
fa
ta

li
ty

Figure 6: The delay sequence Mine, as well as the
discovered bursts.

00 01 02 03 04 05 06 07 08 0910 111213 14 15

1
2

1
2
3

1
2
3

ApproxExp

ExpAlpha

ExpMean

year (from 2000)

Figure 7: The delay sequence Mine, as well as the
discovered bursts.

function of ✏ for datasets Mine and Crimes in Figure 8.
Here, we did not use the speed-up version of ExpAlpha.

We see that the behaviour depends heavily on the
accuracy parameter ✏: for example, if we use ✏ = 0.5,
then GeoAlpha uses 17 calls while ApproxGeo uses 561
calls; if we set ✏ = 2�9, then GeoAlpha needs 3453 calls
while ApproxGeo needs 32 810 406 calls. This implies
that we should not use extremely small ✏, especially if
we also wish to optimize ↵. Nevertheless, the algorithms
are fast when we use moderately small ✏.

E↵ect of a speed-up: Finally, we compare the
e↵ect of a speed-up for ExpAlpha described in Section 6.
Here we used both datasets Mine and Crimes to which
we apply ExpAlpha with k = 5 and ↵ = 2. We vary
✏ from 2�13 to 1/2 and compare the plain version vs.
speed-up in Figure 9.

We see in Figure 9 that the we gain significant
speed-up as we decrease ✏: At best, we improve by two
orders of magnitude.

2�0 2�1 2�2 2�3 2�4 2�5 2�6 2�7 2�8 2�9

25

210

215

220

225

G

e

o

A

l

p

h

a

A

p

p

r

o

x

G

e

o

parameter ✏

te
st
s

Mine

2�0 2�1 2�2 2�3 2�4 2�5 2�6 2�7 2�8 2�9

25
210
215
220
225

E

x

p

A

l

p

h

a

A

p

p

r

o

x

E

x

p

parameter ✏

te
st
s

Crimes

Figure 8: Number of Viterbi calls as a function of ✏.
Both x and y-axis are logarithmic. We set k = 4,
↵ = 0.5 for ExpAlpha, and ↵ = 2 for ExpAlpha. Here,
we did not use the speed-up version of ExpAlpha.

9 Concluding remarks

In this paper we presented variants of [13] for discover-
ing bursts: instead of deriving the base rate from µ, the
average delay time between the events, we optimize this
parameter along with the actual burst discovery. We
showed that this leads to better burst discovery, espe-
cially if the bursts are long. We also propose variants,
where we optimize the change parameter ↵, instead of
having it as a parameter.

Despite being a minor tweak, the resulting opti-
mization problems are significantly harder. To solve
the problems, we introduce e�cient algorithms yielding
(1 + ✏) approximation guarantee. These methods are
based on testing multiple values for the base rate, and
selecting the burst sequence with the best score. Despite
being similar problems, discrete and continuous versions
of the problem required their own algorithms. In addi-
tion, we were able significantly speed-up the exponential
model variant by safely ignoring some candidate values

2�1 2�3 2�5 2�7 2�9 2�11 2�13

0

1

2

⇥104

28 394

622

parameter ✏

te
st
s

Crimes

plain

speed-up

2�1 2�3 2�5 2�7 2�9 2�11 2�13

0

1

2

⇥104

28 394

312

parameter ✏

te
st
s

Mine

plain

speed-up

Figure 9: Number of tests needed as a function of ✏.
Speed-up (see, Section 6) vs. vanilla version.

for the base rate.
The approximation algorithms are quasi-linear with

respect to sequence length. However, especially when
we optimize ↵, the algorithms depend also on the
actual values of the sequence, see Table 1. A potential
future work is to improve the algorithms, and develop
polynomially strong approximation schemes. The other
fruitful direction is to develop heuristics that allow us
to ignore large parts of the parameters, similar to the
speed-up we propose for the exponential model variant
of the problem.

References

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
Membership, growth, and evolution. In KDD,
pages 44–54, 2006.

[2] R. Bellman. On the approximation of curves by
line segments using dynamic programming. Com-
munications of the ACM, 4(6), 1961.

[3] C. Chen. Citespace II: Detecting and visualizing
emerging trends and transient patterns in scientific
literature. J. Am. Soc. Inf. Sci. Technol., 57(3):
359–377, 2006.

[4] R. Fontugne, K. Cho, Y. Won, and K. Fukuda.
Disasters seen through flickr cameras. In SWID,
2011.

[5] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu.
Parameter free bursty events detection in text
streams. In VLDB, pages 181–192, 2005.

[6] Z. Galil and K. Park. A linear-time algorithm for
concave one-dimensional dynamic programming.

Inf. Process. Lett., 33(6):309–311, 1990.
[7] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy,

and A. Bouchachia. A survey on concept drift
adaptation. ACM Comput. Surv., 46(4):44:1–44:37,
2014.

[8] S. Guha, N. Koudas, and K. Shim. Approximation
and streaming algorithms for histogram construc-
tion problems. TODS, 31(1):396–438, 2006.

[9] D. He and D. S. Parker. Topic dynamics: An
alternative model of bursts in streams of topics.
In KDD, 2010.

[10] Q. He, D. Kifer, J. Pei, P. Mitra, and C. L.
Giles. Citation recommendation without author
supervision. In WSDM, pages 755–764, 2011.

[11] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event
detection with time-varying poisson processes. In
KDD, pages 207–216, 2006.

[12] N. Kawamae. Trend analysis model: Trend consists
of temporal words, topics, and timestamps. In
WSDM, pages 317–326, 2011.

[13] J. Kleinberg. Bursty and hierarchical structure in
streams. DMKD, 7(4):373–397, 2003.

[14] A. Krause, J. Leskovec, and C. Guestrin. Data
association for topic intensity tracking. In ICML,
pages 497–504, 2006.

[15] R. Kumar, J. Novak, P. Raghavan, and
A. Tomkins. On the bursty evolution of blogspace.
In WWW, pages 568–576, 2003.

[16] T. Lappas, B. Arai, M. Platakis, D. Kotsakos,
and D. Gunopulos. On burstiness-aware search
for document sequences. In KDD, pages 477–486,
2009.

[17] K. K. Mane and K. Börner. Mapping topics and
topic bursts in PNAS. PNAS, 101(suppl 1):5287–
5290, 2004.

[18] A. Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algo-
rithm. IEEE IT, 13(2):260–269, 1967.

[19] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopu-
los. Identifying similarities, periodicities and bursts
for online search queries. In SIGMOD, pages 131–
142, 2004.

[20] X. Wang and A. McCallum. Topics over time:
A non-markov continuous-time model of topical
trends. In KDD, pages 424–433, 2006.

[21] Y. Zhu and D. Shasha. E�cient elastic burst
detection in data streams. In KDD, pages 336–345,
2003.

