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Abstract

Items in many datasets can be arranged to a natural
order. Such orders are useful since they can provide new
knowledge about the data and may ease further data
exploration and visualization. Our goal in this paper
is to define a statistically well-founded and an objective
score measuring the quality of an order. Such a measure
can be used for determining whether the current order
has any valuable information or can it be discarded.

Intuitively, we say that the order is good if depen-
dent attributes are close to each other. To define the or-
der score we fit an order-sensitive model to the dataset.
Our model resembles a Markov chain model, that is,
the attributes depend only on the immediate neighbors.
The score of the order is the BIC score of the best model.
For computing the measure we introduce a fast dynamic
program. The score is then compared against random
orders: if it is better than the scores of the random or-
ders, we say that the order is good. We also show the
asymptotic connection between the score function and
the number of free parameters of the model. In addi-
tion, we introduce a simple greedy approach for finding
an order with a good score. We evaluate the score for
synthetic and real datasets using different spectral or-
ders and the orders obtained with the greedy method.

1 Introduction

Seriation, discovering a linear order for the attributes,
is a popular topic in data mining. The motivation for
ordering the attributes comes from the fact that many
datasets have an inherent order, for example, the loca-
tion of genes in gene amplification data. In fields such as
paleontology [1] or archaeology [2] discovering the order
(age) of the sites is a fundamental question. There are
many benefits once the order has been discovered. The
data can visualized as a binary matrix for further anal-
ysis. Also, the complexity of certain data mining algo-
rithms, for example discovering tiles [3], can be reduced
when we restrict ourselves to the discovered order.

In this paper, we study measuring the quality of

a given attribute order. Such a measure will help us
to determine whether the order at hand is genuinely
significant. We propose an intuitive and novel method
for measuring the quality. In our approach an order is
good if the attributes that are dependent of each other
are close in the given order.

Example 1. Assume that we have a dataset with 5
items, a1, . . . , a5, in which the value of attribute ai is
generated from the value of the previous attribute ai−1
by copying it and flipping it with a (small) probability.
We may now conclude that here the original order is
good. Whereas, for example, an order a1, a4, a3, a5, a2
is bad since the attributes a1 and a2 are far away from
each other.

Our measure is a generalization of the idea given in
the example. Given a dataset and an order we build a
model that depends on the order. Our construction will
be such that model is simple and has good likelihood
if the dependent attributes are close. As a measure for
goodness of the model we will use Bayesian Information
Criteria (BIC) which favors simple models that fit data
well. It turns out that we can find the model with the
best BIC score through a fast dynamic program.

Also, our model can be seen as a Markov Random
Field (MRF) model in which the the items depend only
on their immediate neighbors (see, for example, [4] for
introduction to MRF) .

We compare the score of the discovered model
against the scores of random orders, for example, we
consider the probability that a random order will have
a better score than the score of the given model. The
probability is close to 0, if the order under investigation
has an exceptionally good score.

We study the asymptotic behavior of the score and
show that asymptotically it is an increasing function of
the number of free model parameters. Such a behavior is
natural since we favor simple models yet surprising since
the BIC penalty, the term through which the degree of
freedom affects the score, vanishes as the number of data
points grows.



The rest of the paper is organized as follows. The
preliminaries are given in Section 2 and the model itself
is defined in Section 3. We explain the dynamic program
for finding the best in Section 4. In Section 5 we consider
spectral and greedy methods for inducing the order. In
Section 6 we compare the score with random orders. We
discuss the asymptotic behavior in Section 7. Section 9
is devoted to the related work and in Section 8 we
describe our empirical results. Finally, we conclude the
paper with a discussion in Section 10.

2 Preliminaries and Notation

In this section we introduce the preliminaries and nota-
tion that we will use in subsequent sections.

A transaction t ∈ {0, 1}K is a binary vector of
length K. A binary dataset is a collection of N
transactions having the length K. We can easily
visualize the dataset as a binary matrix of size N ×K.
We use the notation of |D| = N to express the number
of transactions in D. An attribute ai, i = 1, . . . ,K, is a
random Bernoulli variable representing the ith element
in a random transaction. We set A = {a1, . . . , aK} to
be the collection of all attributes.

Assume that we are given a distribution p defined
over a space of binary vectors {0, 1}K . Let X =
{x1, . . . , xL} ⊆ A be the collection of attributes. Let

v = {0, 1}L be a binary vector of length L. We
use the notation p(X = v) to mean the probability
p (x1 = v1, . . . , xL = vL).

Given a binary dataset D we define qD, an empirical
distribution to be

qD(A = v) =
|{t ∈ D; t = v}|

|D|
.

We assume that there is a specific linear order
induced on the attributes. Such an order can be
identified with a permutation function o mapping from
(1, . . . ,K) to (1, . . . ,K). To ease the notation we
often assume that o is the identity permutation, that
is o(i) = i. Let X be a collection of attributes, we
say that X is an item segment if X contains only
consecutive attributes. For example, ao(1)ao(2)ao(3) is
an item segment, however, ao(1)ao(2)ao(4) is not since
ao(3) is missing.

The entropy of an item segment X w.r.t. to the
distribution p, denoted by H(X; p), is

H(X; p) = −
∑
v

p(X = v) log p(X = v) ,

where the usual convention 0× log 0 = 0 is used. All the
logarithms in this paper is of base 2. We will shorten
H(A; p) into H(p). We also write H(X;D) to mean
H(X; qD).

3 Order-sensitive Model

In this section we define our model that is based on
the order of the attributes. Informally, our approach
is based on generalizing simple markov chain model
demonstrated in Example 1. We generalize this by
allowing the item ai to depend on several previous items.
However, we require that if ai depends on aj , then it also
must depend on all items between aj and ai. Thus, our
model will be simple if the dependent items are close to
each other.

In order to make the preceeding discussion more
formal, assume that we are given a cover of item
segments C = {C1, . . . , CL}, that is,

⋃
i Ci = A. We

assume that there is no Ci, Cj ∈ C such that Ci ⊂ Cj ,
that is, C is an antichain. We also assume that C is
ordered based on the first attribute of each segment Ci.
We define seg(o) to be the family of all such collections.
Given the collection C we define a model M(C) to be a
collection of distributions that can be expressed as
(3.1)

p(A) =

∏L
i=1 p(Ci)∏L−1
i=1 p(Si)

= p(C1)

L−1∏
i=1

p(Ci+1 − Ci | Si) ,

where Si = Ci+1 ∩ Ci. That is, the attributes in
Ci − Ci−1 depend only on their immediate neighbors,
Ci ∩ Ci−1.

Example 2. Assume that C = {{a1} , . . . , {aK}}, that
is, each segment is simply a singleton. Then the
attributes according to any distribution p ∈ M(C) are

independent, p(A) =
∏K

i p(ai).
The distribution p used to generate data in Exam-

ple 1 can be written as

p(a1)p(a2 | a1) · · · p(a5 | a4) =

∏4
i=1 p(aiai+1)∏4

i=2 p(ai)
.

Hence, p ∈M({a1a2, a2a3, a3a4, a4a5}).
The other extreme is that C contains only one

segment containing all items, C = {A}. In this case the
distribution maximizing the likelihood is the empirical
distribution, qD(A). More generally, if C is an ordered
partition of A, that is, Ci ∩ Ci−1 = ∅, then the
distribution p ∈ M(C) has independent components Ci,
p(A) =

∏
p(Ci). Hence we can view the general model

as a generalization of a partition of A by allowing the
segments to overlap.

Given a dataset D we define p∗ to be the the
unique distribution from M(C) such that p∗(Ci = t) =
qD(Ci = t) for any Ci ∈ C and any binary vector t of
length |Ci|. We wish to show that p∗ maximizes the
log-likelihood of D. To see this, let p ∈ M(C). Let us



write Si = Ci ∩ Ci+1. Then we have

log p∗(D)− log p(D)

= |D|
L∑

i=1

∑
t

p∗(A = t) log
p∗(Ci = tCi

)

p(Ci = tCi
)
.

The last equation is the (scaled) Kullback-Leibler
divergence between p∗ and p It is always non-negative
and is 0 if and only if p = p∗. Hence p∗ maximizes the
likelihood.

Let us compute the the log-likelihood of D given a
distribution p∗ ∈ M(C), that is, the distribution maxi-
mizing the likelihood. Let Si = Ci ∩ Ci+1. A straight-
forward calculation reveals that the log-likelihood can
be rewritten as a sum of entropies,

log p∗(D) =
∑
t∈D

log p∗(A = t)

= −|D|
L∑

i=1

H(Ci;D) + |D|
L−1∑
i=1

H(Si;D) .

(3.2)

Our goal is to find a collection C for which the model
provides high likelihood. The problem is that the model
with the highest likelihood would be always for the
collection C = {A}, for which the optimal distribution
is simply the empirical distribution. To keep it from
this behaviour we will use Bayesian Information Criteria
(BIC) to punish more complex models over the simple
ones [5]. Hence, our goal is to minimize the BIC cost
function,

− log p∗(D) +
log |D|

2
deg(C) ,

where deg(C) is the number of free parameters in
the model M(C). To compute the number of free
parameters, let us consider the right side of Eq. 3.1.
The first component p(C1) can be parameterized with
a real vector of length 2|C1| − 1. Similarly, the ith
component can be parameterized with a vector of length
2|Ci|−|Si−1|−1. Since the ith component depends on the
values of Si−1 we need parameters for each combination
of values of Si−1. There are 2|Si−1| such values. The
total number of free parameters is then equal to

deg(C) = 2|C1| − 1 +

L∑
i=2

2|Si−1|
(

2|Ci|−|Si−1| − 1
)

=

L∑
i=1

2|Ci| − 1−
L−1∑
i=1

2|Si| − 1.

(3.3)

In order to compute the BIC score we can combine
Eqs. 3.2–3.3 in the following way. We define a score
s(C) for an item segment C to be

s(C) = |D|H(C;D) +
log |D|

2

(
2|C| − 1

)
.

Similarly, given a collection C = {C1, . . . , CL} of
item segments we define

(3.4) s(C) =

L∑
i=1

s(Ci)−
L−1∑
i=1

s(Si) ,

that is, s(C) is the sum of the negative likelihood of the
optimal distribution in M(C) and the BIC penalty term.
Given an order o we define s(o) to be the score of the
best possible model,

s(o) = min (s(C) | C ∈ seg(o)) .

It is easy to see that minimizing the score produces
simple models having high likelihood of the data. Note
that if the dependent attributes are close to each other,
the segments will be short. Hence the BIC punishment
will be small. However, if the dependent attributes are
far away, then the segments must be long and the BIC
penalty is far greater. Hence, our score favors orders in
which dependent attributes are close to each other.

Example 3. Assume that we have a dataset D given
by

(3.5) D =


1 1 1 0 0
1 0 1 0 0
0 0 0 1 1
1 0 1 1 1
0 0 0 0 1

 .
Assume also that our model is C = {ab, bcd, de}. We
have S1 = C1 ∩ C2 = b and S2 = C2 ∩ C3 = d. The
entropies for the segments are

H(C1) = 1.52, H(C2) = 2.32, H(C3) = 1.52,

H(S1) = 0.72, and H(S2) = 0.97.

Hence the final score is

s(C) =5× (1.52 + 2.32 + 1.52− 0.72− 0.97)

+
log 5

2
(3 + 7 + 3− 1− 1) = 31.13.

We will finish this section by discussing the con-
nection between the order and Bayesian networks. Our
model can be seen as a Bayesian network, where item
ai is a parent of aj , if and only if i < j and ai and



a1 a2 a3 a4 a5 a6 a7︸ ︷︷ ︸
C1

C2︷ ︸︸ ︷
︸ ︷︷ ︸

C3

C4︷ ︸︸ ︷

Figure 1: A toy example of an order-sensitive model.
The model can be viewed as a special type of Bayes
Network.

aj belongs to the same segment (see Figure 1 for an
example).

If we interpret our model as a Bayesian net-
work, then it is easy to see that p∗(ai | par(ai)) =
qD(ai | par(ai)). In other words, the distribution p∗

is the maximum-likelihood estimate of the correspond-
ing Bayesian network. In fact, the factorization of the
BIC score in Eq. 3.4 is equivalent to the factorization
obtained by performing a junction tree decomposition
(see [4]) to the network. However, interpreting the
model as a Bayesian network is somewhat misleading,
since our model does not change if we reverse the order
of the items.

4 Finding the Optimal Model

In this section we demonstrate how we can find the
collection of item segments having the minimal score
s(C). We do this by constructing a dynamic program.
Furthermore, we demonstrate how we can prune a
large amount of long segments, and thus reducing the
required execution time. In addition, we discuss how to
efficiently compute the entropy using a particular tree
structure.

4.1 Forming the Dynamic Program Our goal is
to find a collection C for which the score s(C) is the
smallest possible. We achieve this by using dynamic
program and solving subproblems. In order to do this
we set f(i, j) to be the best collection of segments
covering the attributes {ai, . . . , aK} such that the first
segment has the attribute aj The optimal collection
would be then f(1, 1).

To compute the values of f we use the following
order:

f(K,K), f(K − 1,K), f(K − 1,K − 1), . . .

. . . , f(1,K), . . . , f(1, 1).

To compute f(i, j) we first note that either f(i, j) has
X = ai · · · aj as its first segment or f(i, j) = f(i, j + 1).
Let H be the optimal collection having X as the first
segment. The second segment of H must cover j + 1

and must start at k = i+ 1, . . . , j + 1. Hence, we have

H = arg min
i<k≤j+1

s(X ∪ f(k, j + 1)) .

Once we have discovered H we can set

f(i, j) = arg min (s(H) , s(f(i, j + 1))) .

The details of the algorithm are given in Algorithm 1.

Algorithm 1: Dynamic program solving the
optimal collection of segments.

1 for i = K, . . . , 1 do
2 f(i,K)← ai · · · aK ;

3 for i = K − 1, . . . , 1 do
4 for j = K − 1, . . . , i do
5 X ← ai · · · aj ;
6 H ← X ∪ f(i+ 1, j + 1);
7 for k = i+ 2, . . . , j + 1 do
8 if s(H) < s(X ∪ f(k, j + 1)) then
9 H ← X ∪ f(k, j + 1);

10 f(i, j)← arg min (s(H) , s(f(i, j + 1)));

11 return f(1, 1);

4.2 Pruning Long Segments The running time for
Algorithm 1 is O

(
K3
)
. In this section we introduce

a pruning condition and reduce the running time to

O
(
K min (K, log |D|)2

)
. This improvement is crucial

since log |D| is typically much smaller than K.
We begin by asserting the necessary criteria for a

segment occurring in the optimal collection.

Lemma 4.1. Let X, Y be segments of length N having
N − 1 mutual items. If

(4.6) s(X ∪ Y ) ≥ s(X) + s(Y )− s(X ∩ Y ) ,

then there is a collection without X ∪ Y having an
optimal score.

Proof. Let C be a collection with the optimal score.
Assume that X ∪ Y ∈ C. Assume that X and Y are
not included in some Si, that is, the only set in C that
contains X or Y is X ∪ Y . We can build an alternative
collection by replacing X ∪ Y with separate X and Y .
The impact on the score is that we replace the term
s(X ∪ Y ) with the terms s(X) + s(Y )− s(X ∩ Y ). The
assumption now implies that this alternative model will
have a better or an equal score. Assume now that X is
one of the Si but Y is not. Then if we replace X ∪ Y



with Y we replace the terms s(X ∪ Y )− s(X) with the
terms s(Y ) − s(X ∩ Y ). The assumption now implies
that the new has a better or an equal score. The case
is similar for Y .

If X and Y are both included in some Si, then by
simply removing X∪Y we replace the terms s(X ∪ Y )−
s(X)−s(Y ) with −s(X ∩ Y ). This completes the proof.

We can use the lemma to prune a large number
of segments from dynamic program. In fact, if the
segment is long enough, then the lemma is automatically
guaranteed.

Proposition 4.1. Let X, Y be segments of length N
having N − 1 mutual items. If

N ≥ log |D| − log log |D|+ 2,

then s(X ∪ Y ) ≥ s(X) + s(Y )− s(X ∩ Y ).

The idea behind the proof is that the BIC penalty
for long segments is too large when compared to the
gain from obtained from the likelihood.

Proof. Let us write V = X ∩ Y and W = X ∪ Y and
Z = X−Y . By using the definition of the score function
we can rewrite the inequality in Eq. 4.6 as

2N−2 log |D|
≥ |D| (H(X) +H(Y )−H(V )−H(W )) .

(4.7)

To guarantee this inequality we will bound the right side
from above. Let A and B be two sets of items. Basic
properties of the entropy state that H(A) + H(B) ≥
H(A ∪B) ≥ H(A). This immediately implies that
H(Y )−H(W ) ≤ 0 and that

H(X)−H(V ) = H(V ∪ Z)−H(V )

≤ H(V ) +H(Z)−H(V ) = H(Z) ≤ 1.

The last inequality is true since, by definition, Z =
X−Y contains only one item and the entropy of a single
Bernoulli variable is 1, at maximum. This implies that
the right side of Eq. 4.7 is bounded by |D|. Hence we
have the sufficient condition

2N−2 log |D| ≥ |D|.

By taking the logarithm we obtain the assessment of the
proposition.

The proposition tells us that we can safely ignore
any segments of length log |D| − log log |D| + 3 ∈
O (log |D|), or longer. Thus, by modifying Line 2 in
Algorithm 1 we can ignore computing f(i, j) if j − i
is large enough. This speeds up the execution time

of Algorithm 1 to O
(
K min (K, log |D|)2

)
which can

be very effective for datasets with many attributes but
small number of transactions.

4.3 Computing Entropy Efficiently In our exper-
iments the bottleneck is the entropy calculation. Con-
sequently, it is to optimize the computation to be as
fast as possible. In this section we will show that in our
case, computing entropy for a single segment can be in
essentially O(|D|) time.

Assume that we want to compute entropy H(C;D)
for a given item segment C. To compute this we first
partition the transaction into groups {T1, . . . , TL}, such
that transactions t and u belong to the same group Ti if
and only if tC = uC . Then it follows directly from the
definition that

H(C;D) = −
L∑

i=1

|Ti|
|D|

log
|Ti|
|D|

.

Constructing the partition for a single item segment
from a scratch can be done in O(|C||D|) time by a radix
sort. We can, however, speed up the total execution
time by computing the entropies of several segments
simultaneously. More precisely, if we are given indices
s and e such that s < e, then Algorithm 2 will output
entropies for segments as · · · aj , where s ≤ j ≤ e.

Algorithm 2: Algorithm for computing en-
tropies H(as), H(asas+1), . . . , H(as · · · ae).
1 T1 ← D;
2 for j = s, . . . , e do
3 foreach Ti in the partition do
4 U ← ∅;
5 foreach t ∈ Ti, tj = 1 do
6 Remove t from Ti and add to U ;

7 if Ti = ∅ then Remove Ti from the
partition;

8 if U 6= ∅ then Add U to the partition;

9 H(as · · · aj)← −
∑L

i=1
|Ti|
|D| log |Ti|

|D| ;

The execution time of Algorithm 2 is O((e − s +
1)|D|) but it will compute entropies for e−s+1 segments
simultaneously. We use this algorithm to cache all the
needed entropies before we invoke the dynamic program
in Algorithm 1. We need only K calls of Algorithm 2,
one call for each s = 1, . . . ,K.

5 Inducing the Order

So far we have assumed that we are given an order and
we have focused on measuring the quality of that order.
In this section, we will consider different techniques for
inducing the order from the data.



5.1 Fiedler Vector Approach Assume for the mo-
ment that we are interested in a model that have seg-
ments only of size 2. We are interested in finding the
order that produces the best model. We define C, the
mutual information matrix of size K ×K to be

Cij = H(ai) +H(aj)−H(aiaj) .

Discovering the best order reduces to Traveling
Salesman Problem which is a computationally infeasible
problem [6].

We will use a popular technique in which the order
is constructed from a Fiedler vector [7]. To be more
precise, let the Laplacian of C be L = diag(C) − C,
where diag(C) is a diagonal matrix containing the sums
of the rows of C. The Fiedler vector f(C) is the
eigenvector of L of the second smallest eigenvalue. The
order induced by this vector is simply the order of
indices of the sorted entries of the vector. If we were
to permute the attributes, then entries in the Fiedler
vector are shuffled with the exactly same permutation.
Thus, the fiedler order is not affected by the original
order of the attributes. We will justify our choice by
showing that the Fiedler vector does return the best
order in some cases. To be more specific, assume for
a moment that the attribute ai depends only on its
immediate neighbor ai−1. In other words, we assume
that the data is generated from a model constructed
from the segments {ai−1ai | i = 2, . . . ,K}. If that is
the case, then the mutual information matrix C has a
special property: the entries of C are decreasing as we
move from the diagonal towards the corners. That is,

(5.8) max
(
Ci(j+1), C(i−1)j

)
< Cij , for i < j,

and similarly for the lower triangular part of C. Such
a matrix is called R-matrix [8]. The following theorem
states that for R-matrices, the Fiedler vector finds the
correct order.

Theorem 5.1. (Theorem 3.3 in [8]) Let C be such
that the property in Eq. 5.8 holds. Then the Fiedler
vector f(C) will have fi > fj whenever i < j.

Motivated by this result we consider in this paper
4 different approaches for computing the order.

1. mi = f(C) uses the order obtained from the Fiedler
vector of the mutual information matrix.

2. m2 = f(C ′), where C ′ij = Cij except when Cij ≤
log |D|/2|D| in which case C ′ij = 0. The motivation
behind this approach is as follows. The mutual
information Cij can be viewed as a difference
of the log-likelihoods. The first model is the

independence modelM1 and has the log-likelihood
−H(ai)−H(aj). The second modelM2 is the full
contingency table model and has the log-likelihood
−H(aiaj). Here the idea is that instead of always
comparing M2 against M1, we first select the one
model that is more probable. If we selectM2, then
the difference is the mutual information. If, on the
other hand, we select M1, then the difference will
be 0. If we use BIC score as a criteria for selecting
the model, thenM1 will have a better score if and
only if Cij ≤ log |D|/2|D|. In other words, if Cij

is too small compared to the BIC penalty, then we
treat ai and aj as independent, and set the mutual
information to be 0.

3. co = f(DTD), that is, the Fiedler vector of the co-
occurrence matrix. Such orders have been used for
minimizing the Lazarus effects, that is, 0s occurring
between 1s [8].

4. cs = f(V DTDV ), where V is a diagonal matrix,

such that, Vii = (DTD)
−1/2
ii , that is, cs is the order

obtained from the cosine similarity matrix.

For calculating the Fiedler order we use the algo-
rithm given in [8]. We should point out that the Fiedler
order is unique if there is only one Fiedler vector (up to
normalization). However, it is often the case that there
are several vectors and hence several orders. In that
case the Atkins’ algorithm returns a set of all possible
orders represented by a PQ-tree. This set of orders may
be large (it can contain all possible orders) so in practice
we will sample orders from this set in our experiments.
Luckily, sampling orders from a set represented by a
PQ-tree is trivial.

5.2 Greedy Local Search In addition to the afore-
mentioned spectral methods we will consider a simple
greedy descent approach. Assume that we are given
an order o. For each i = 2, . . . ,K, we consider orders
which are obtained from o by swapping o(i) and o(i−1).
Among such orders we select the one that has the lowest
score, say b. If the score s(b) is lower than the original
s(o), then we replace o with b and repeat the step, other-
wise we stop the search and output o. The pseudo-code
is given in Algorithm 3.

6 Comparing to Random Orders

The score of a model alone is not sufficient alone and
it needs to be compared against some baseline. In this
section we will consider two different approaches for the
post-normalization.

Let o be the order of the attributes. Let I be
the collection of item segments corresponding to the



Algorithm 3: GreedyOrder, A simple hill-
climbining algorithm for improving the order o.

1 while changes do
2 b← o;
3 foreach i = 2, . . . ,K do
4 u← o;
5 Swap u(i− 1) and u(i);
6 if s(u) < s(b) then
7 b← u;

8 o← b;

9 return o;

independence model, I = {{a1} , . . . , {aK}}. Our first
attempt is to compare the scores s(o) and s(I), that is,
how good the score is against the independence model.
This approach, however, has a drawback. Consider
a dataset with two clusters such that the probability
of having 1 is high in the first cluster and low in
the second cluster. Assume also that the inside a
cluster the attributes are independent and have the
same probability of having 1. Such a dataset has a
curious property. The best score for any order is lower
than the score for the independence model. However,
since data is symmetric, the best scores for all orders
should be equal.

The discussion above suggests a more refined ap-
proach, that is, we should compare the score of the given
order against the scores of random orders.

Instead of defining a measure just for a single order
we define a measure for a set of orders. The reason for
this is that Atkins’ algorithm (see Section 5.1) may not
return a single order but a set of orders represented as
a PQ-tree.

Let us assume that we are given a set of orders O.
Let o be a random order from O selected uniformly.
Also let u be a random order from the set of all
possible orders U . We define the measure to be the
the probability that s(o) is higher than s(u), that is,

l(O) = P (s(o) > s(u)) + P (s(o) = s(u)) /2.

If the set O consists of orders with exceptionally low
scores then the l(o) will be close to 0. If the orders have
the same score as random orders, then l(O) will be close
to 1/2. If we are given a single order o, we write l(o) for
l({o}).

In practice, we estimate the measure by sampling
orders o and u. A problem with the measure l(o) is
that in the case when it is close to 0, the number of
samples should be really large in order to get an estimate
different from 0. Hence, we define a second, smoother,

measure based on estimation with normal distributions.
In order to do that, let µ1 = E [s(o)] and µ2 =

E [s(u)] be the means of the scores and let σ2
1 =

E
[
s(o)

2
]
−µ2

1 and σ2
2 = E

[
s(u)

2
]
−µ2

2 be the variances.

Let Xi be a random normal variable distributed as
N(µi, σi), for i = 1, 2. We define

r(O) = − logP (X1 > X2) = − log Φ

(
µ1 − µ2√
σ2
1 + σ2

2

)
,

where Φ is the cumulative density function for the
standard normal distribution N(0, 1). In practice we
estimate the means and the variances by sampling the
orders from the sets O and U . We should make clear
that r(O) should not be treated as an estimate for
− log l(O). The distribution of the scores for random
scores is not normal even if the number of data points
increases to infinity. Nevertheless, the measure r(O) has
desired properties. It is large if the scores of orders in
O are significantly better. If the scores are as good as
random, then r(O) is close to − log 1/2 = 1.

The value l(o) gives us means to test whether the
order o is significantly better than the random order.
However, if the order is induced from the dataset, for
example, using the spectral methods, we may overfit
the data. To illustrate the problem consider the cluster
data discussed above. In this data no order should
be significant. However, since dataset is finite there
are small variations in the scores. Now consider the
algorithm that finds the order with the best score. The
measure l(o) of such order will always be 0. We remedy
this problem with cross validation, that is, we split the
data into two random datasets. We will learn the order
from the first dataset and compute the measure from
the second.

7 Asymptotic Analysis

Assume that we know the distribution p from which
data is generated. What is then the appropriate
definition for a score of a linear order? In this section we
will define such a score, which we denote deg(opt(o, p)),
and show that s(o) is directly connected to this score as
the number of transactions goes to infinity.

Let p be a distribution from which data is generated.
Assume that we are given an order o and let

opt(o, p) = arg min
C
{deg(C) ; C ∈ seg(o) , p ∈M(C)} ,

that is, opt(o, p) ∈ seg(o) is the set of item segments
with the smallest number of freedom such that p ∈
M(opt(o, p)). Such a set exists, since p ∈M({A}).

Example 4. We continue Example 1 given in Sec-
tion 1. The optimal set of segments for the order



a1 · · · a5 is O1 = {a1a2, a2a3, a3a4, a4a5}. On the
other hand, the optimal set of segments for the order
a1a4a3a5a2 is O2 = {A} since there is no other way to
include a1 and a2 into the same segment. The degrees
are deg(O1) = 9 and deg(O2) = 31.

The preceding example demonstrates that if the de-
gree of opt(o, p) is low, then the order is good. This sug-
gests that the orders in which the dependent attributes
are close will have a low degree of freedom, hence there
should be a connection between deg(opt(o, p)) and s(o).
We will now state the main result of this section that
states essentially that asymptotically s(o) is an increas-
ing function of deg(opt(o, p)). The proof of the theorem
is given in Appendix [9].

Theorem 7.1. Let p be a distribution from which D
is generated such that p(A = t) > 0 to any t. Let
o1 and o2 be two orders such that deg(opt(o1, p)) <
deg(opt(o2, p)). Then the probability of s(o1) < s(o2)
converges to 1 as |D| approaches infinity.

Note that r(o) and l(o) are both increasing func-
tions of s(o). Hence, the theorem states that eventually
both measures are increasing functions of deg(opt(o, p)).
Such a behavior is reasonable yet surprising since the
BIC penalty vanishes from s(o) as the amount of data
increases. The reason for such behavior is that the dif-
ference between the BIC penalty terms will outweight
the difference between the likelihoods.

8 Experiments

In this section we will describe our empirical results1.
We begin by showing with synthetic datasets that our
measures do give the expected results. Measures l(o)
and r(o) are high for datasets in which there are no
particular order structure. On the other hand, measures
are small for datasets in which there is a clear order
structure. We continue by studying the asymptotic
behavior of the score as described in Section 7.

We also tested the spectral methods with real-world
datasets and show that all these datasets do have an
order structure. Finally, we study how well the greedy
method improves the scores of the spectral orders.

Since Atkins’ algorithm for discovering spectral
orders returns PQ-tree which may correspond to several
spectral orders, we sampled 1000 random orders from
PQ-tree. However, if the number of orders represented
by PQ-tree was less than 1000 we computed all the
orders.

1Implementation is available at http://adrem.ua.ac.be/

implementations

8.1 Synthetic datasets For testing purposes we
considered 4 different generated datasets. Each dataset
had 20 attributes and 2000 of rows. Each dataset was
split into two subsets, each having 1000 rows. The first
part of the data was used for finding the spectral orders
and the second part for actually computing the score.
The measures l(o) and r(o) were computed by compar-
ing them with 1000 random orders.

Our first dataset, Ind, contains independent at-
tributes. The second data, Clust, contains two clusters,
each of 500 rows. The attributes within the cluster are
independent. The probability of 1 was set to 3/4 in the
first cluster and 1/4 in the second cluster. Our third
dataset, Path, was generated such that attribute ai was
generated from ai−1 by adding 1/4 amount of noise, that
is, P (ai = 0; ai−1 = 1) = P (ai = 1; ai−1 = 0) = 1/4.
The first attribute a1 was generated by a fair coin flip.
Our last dataset is similar, Npath, to Path except that
3/4 were used as the amount of noise. Note that the at-
tributes in Path are positively correlated whereas the
consecutive attributes in Npath are negatively corre-
lated. Our expectation is that Ind and Clust have no
extraordinary order whereas in Path and Npath the gen-
erating order is the most natural one.

From the results given in Table 1 we see that we
get the expected results. The datasets Ind and Clust
both have high measure values since these datasets have
no extraordinary order. In dataset Path all the orders
have l(o) = 0 suggesting that there is a strong order
structure. The orders given by the spectral algorithms
for Path are all close to the original order. For Npath
we see that the methods CO and CS fail to find a
significant order. The reason for this is that Npath
contains negative correlations. On the other hand,
both MI and M2 find a significant order and produce
significantly small measure values.

8.2 Asymptotic Behavior Our next focus is to
study the asymptotic behavior of the score s(o). Theo-
rem 7.1 implies that asymptotically l(o) is an increasing
function of deg(opt(o, p)), the number of free parame-
ters of the model containing the generative distribution
p. To illustrate behavior we generated 4 datasets us-
ing the same method we used to generate dataset Path.
The datasets contained 10 attributes and varying num-
ber of transactions. We computed 1000 random orders
for which we computed l(o) Since we know the genera-
tive distribution we were able to compute deg(opt(o, p))
directly.

From the results given in Figure 2 we see that the
measure l(o) converges into an increasing function of
deg(opt(o, p)) as the number of transactions increases.
Note that for the first two datasets there are many or-



l(o) r(o)

Data CO CS MI M2 CO CS MI M2

Ind 0.6 0.6 0.6 0.5 0.6 0.6 0.6 1.0
Clust 0.9 0.9 0.7 0.7 0.1 0.2 0.6 0.6
Path 0 0 0 0 36.1 41.8 41.8 41.8
Npath 0.98 0.9 0 0 0.03 0.2 44.4 44.4

Table 1: Measures l(o) and r(o) of the spectral orders obtained from the synthetic datasets. The orders are
explained in Section 5.1.
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Figure 2: Measure l(o) as a function of deg(opt(o)), the number of free parameters. Theorem 7.1 implies that
asymptotically l(o) is a monotonic function of deg(opt(o)). Each plot contain 1000 random orders of a dataset
generated similarly as Path dataset. The number of transactions is indicated in each sublabel. The variable ρ is
the correlation between l(o) and deg(opt(o)).

ders which have the maximal number of free parame-
ters, 1023, yet their measure values are small. Such
behavior is hinted by Proposition 4.1: In such orders
the model opt(o, p) is equal to one segment, contain-
ing all items. Proposition 4.1 states that the necessary
condition to produce this model as the model with the
lowest BIC score we must have an exponential number
of transactions. Note that in the larger datasets we have
enough transactions to convince us that the model with
the worst BIC penalty term is actually the best.

8.3 Spectral Methods with Real Datasets We
continue our experiments with real-world datasets. The
dataset Paleo2 contains information of species fossils
found in specific paleontological sites in Europe [10].
The dataset Courses contains the enrollment records of
students taking courses at the Department of Computer
Science of the University of Helsinki. We took datasets
Anneal and Mushroom from the LUCS/KDD reposi-
tory [11]. A click-stream dataset WebView-1 3 was con-
tributed by Blue Martini Software as the KDD Cup 2000

2NOW public release 030717 available from [10].
3http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.

dat.gz

data [12]. The final dataset, Dna, is DNA copy number
amplification data collection of human neoplasms [13].
Each dataset was split into two, the first part was used
for calculating the order and the second part to calcu-
late the actual score. To compute the measures we also
computed the scores for 1000 random orders. The ba-
sic characteristics and the running times are given in
Table 2.

Name K |D| % of 1s Time

Anneal 73 898 20% 3ms
Courses 98 3506 5% 8ms
Dna 391 4587 1% 24ms
Mushroom 90 8124 25% 44ms
Paleo 139 501 5% 3ms
WebView-1 497 59602 1% 331ms

Table 2: Statistics and running times of datasets used
in experiments. The 4th column is the time needed to
compute a score for one order.

Measure l(o) was 0 for all orders and datasets,
except for Anneal, where l(CO) = l(CS) = 0.03.
This suggests that the almost all found orders were



significantly good. To illustrate this further we plotted
the scores of the random and the spectral orders in a
box plot in Figure 3.

Data CO CS MI M2

Anneal 5.93 6.04 82.96 47.89
Courses 55.47 72.80 54.31 58.72
Dna ∞ ∞ ∞ ∞
Mushroom 39.13 18.69 46.74 54.18
Paleo 129.39 109.39 13.18 131.01
WebView-1 289.08 229.18 561.93 764.20

Table 3: Measure r(o) of the spectral orders obtained
from the real datasets. The orders are explained in
Section 5.1.
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Figure 3: A box plot of the scores of random and
spectral orders. The scores were normalized by dividing
with s(I), the score of the independent model.

Examining Table 3 reveals that the best scores are
achieved with Dna dataset, suggesting that there is a
strong order structure in the dataset. Measures r(o)
becomes infinite due to the finite precision of the floating
point number. Also, the scores of the spectral orders for
the Mushroom dataset are small but so are the scores
of the random orders. This implies that there are lot of
dependencies in the dataset but the order structure is
not that strong. Interestingly enough, either MI or M2
produces the lowest score for 5 datasets. One possible
explanation is that MI and M2 are able to use the
negative correlations and their score is directly related
to the log-likelihood of the model. On the other hand,
the order CS is the best for the Courses dataset and
the order MI fails with Paleo dataset.

8.4 Improving the Scores with Greedy Search
We conclude our experiments by studying the greedy

method discussed in Section 5.2. We applied the al-
gorithm for the first part of each dataset. As starting
points we used the orders obtained by the spectral meth-
ods. Our hope is that the greedy method improves the
scores of spectral order because it is able to use statis-
tics of higher-order and because spectral orders are only
guaranteed to work with L-matrices (see Section 5.1).

For comparison we sampled up to 50 orders from the
PQ-tree produced by Atkins’ algorithm. Each order was
used as a starting point for the greedy algorithm. We
also tested the greedy method with 50 random starting
orders. The obtained orders were then evaluated by
computing the scores from the second part of the
dataset. The running times varied from 1 second to
1 hour, depending on the size of the dataset.

Name CO CS MI M2 RND

Anneal 5.05 3.39 2.98 3.25 3.41
Courses 2.50 2.02 1.56 2.82 1.68
Dna 7.36 9.26 12.57 8.80 2.31
Mushroom 7.28 9.18 9.91 13.33 7.66
Paleo 0.80 0.98 0.61 0.98 0.58
WebView-1 0.92 1.62 1.20 1.59 0.63

Table 4: Gains of the scores when using the greedy
method compared to the scores of the starting points.
The percentages are computed as 100% − 100% ×
s(o1) /s(o2), where o1 is the final order and o2 is the
starting order.

By comparing the measure r(o) given in Table 5
to the values given in Tables 3 we see that the greedy
method does not perform well alone: when random
orders are used as starting points, the discovered orders
are worse than the spectral orders. However, greedy
method is useful when spectral orders are used as
starting points. From Table 4 we see that the greedy
method improves the scores of the spectral orders up
to 13 percents. The gain of the score depends on the
dataset but less on the spectral method used. The scores
for Courses, Paleo and WebView-1 datasets improve up
to 3 percents where as the biggest gains are with Dna,
and Mushroom datasets where the scores improve by 7
– 13 percents.

9 Related Work

A popular choice for measuring the goodness of an order
is the Lazarus count, the number of 0s between 1s in
a row. If the Lazarus count is 0, then the data is
said to have the consecutive ones property. In some
cases this has a natural interpretation, for example,
in a paleontological data a taxon becomes extant and



l(o) r(o)

Data RND CO CS MI M2 RND

Anneal 0.12 20.1 14.6 104.2 66.9 2.9
Courses 0.10 100.3 110.9 79.8 109.8 3.4
Dna 0.03 ∞ ∞ ∞ ∞ 4.9
Mushroom 0.01 75.2 56.1 100.9 136.1 7.5
Paleo 0.13 181.5 169.7 26.9 196.3 2.8
WebView-1 0 453.7 570.5 871.4 940.0 11.6

Table 5: Measures l(o) and r(o) of the orders obtained using the greedy method with the spectral and random
orders as the starting points. Measure values l(o) for all spectral orders were 0 and are omitted from the table.

then extinct. If the matrix has a consecutive ones
property, then the Fiedler vector of the co-occurrence
matrix returns the correct order [8]. It is an open
question why the spectral method works also with the
noisy data. An alternative approach has been suggested
in [14], where the authors construct a probabilistic
model encapsulating the consecutive ones property.

Ranking or sorting items can be seen as deducing
a linear order for the items. Applications for ranking
are, for example, finding relevant web pages [15, 16] or
ranking database query results [17]. One of the key
differences in these approaches and ours is that in our
case the reversed order is as good as the original. We are
interested in finding the order in which the dependent
attributes are close. This goal is different than finding
the most relevant items.

In some cases, linear orders is too strict a struc-
ture, in such case partial orders (transitive, asymmetric,
and reflexive relation) may be more natural. For exam-
ple, consider the course enrollment data, in which the
same basic course is prerequisite for several advanced
independent courses. Finding partial orders have been
studied for example in [18]. General partial orders seem
to be very complex objects. A simple but yet interesting
subclass of partial orders are bucket orders [17, 19]. A
problem of searching fragments of order, that is finding
a collection of linear orders defined for a subset of items
has been studied in [20].

10 Conclusions

We studied the concept of measuring the goodness of
an order. We say that the order is good if the heavily
dependent attributes are close to each other. In order to
define the score we introduce an order-sensitive model
and then use the BIC score to rank the model. To find
the optimal model we created a dynamic program and

show that it can be evaluated in O
(
K min(K, log |D|)2

)
time. Hence, our method works well even for the
datasets with vast number of items.

We provided asymptotic results showing that the
score is connected the number of free parameters in the
model. We also demonstrate this result empirically with
synthetic data.

We compared the score of the order against the
scores of random orders. We say that the order is good
if the score is exceptionally lower than the score of the
random order. We used two different measures, l(o) the
proportion of random scores having the smaller score
than o, and r(o), the ratio of the score s(o) and the
average score of a random order. One of our future goals
is to develop a more refined measure for comparing the
score against the scores of random orders.

We evaluate the measures with several spectral and
greedy methods. In our experiments we found out that
Fiedler orders of the mutual information matrices (see
Section 5.1) produced better results for our datasets
than the orders based on co-occurrences or cosine dis-
tance. In our experiments, the greedy optimization im-
proved the scores of spectral orders up to 13 percents.

One of our future goals is to extend the current
method for more general partial orders (see Section 9).
Such an extension is not trivial since in general case
finding the best model is a computationally difficult
task.
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