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1 Introduction

The per-core CPU performance has remained almost same over the last ten years. Even tough
recent Haswell and Broadwell micro-architectures benefit from advanced vector extensions (AVX),
the speedup achieved is rather modest [4, 6]. A better way to achieve the speedup is to run the
programs in parallel. Clearly, graphical processing units (GPUs) with thousands of cores provide a
cost-effective solution for executing algorithms which can scale. However, GPUs are built specifically
for the purpose of processing graphics and do not have hardware support for advanced instructions
like most CPUs do. Due to lack of hardware support, using GPUs for general-purpose computa-
tion requires special modification in the code and a complete knowledge of the GPU architecture
[5]. However, engineering documentation available for GPUs is very limited; they often entail un-
known hardware behavior, which is not disclosed by the hardware manufacturers. In this situation,
micro-benchmarking the hardware along with additional fine-grain benchmarks provide a way to
determine the hardware characteristics and identify the potential performance penalties. In this ar-
ticle, we review the techniques used for micro-benchmarking GPUs and discuss experimental setup
for determining the hardware characteristics.

2 Micro-benchmarking

Micro-benchmarking is a process of determining the hardware characteristics by creating artificial
workloads, using a very small and specific piece of code. From over two decades, scientists have been
trying to devise better approaches for micro-benchmarking the computer hardware. Among these,
clearly, pointer chasing is one of the most successful and widely used approaches to benchmark the
computer hardware [1, 2, 7, 8]. In this section, we discuss about micro-benchmarking, using pointer
chasing and fine-grain pointer chasing approaches.

2.1 Pointer chasing

Pointer chasing is a systematic micro-benchmarking approach for obtaining the hardware charac-
teristics. In this approach, the array elements are initialised with the index of the next memory
access and the distance between two consecutive memory accesses is called stride size. The latency
of memory access is the time difference in clock-cycles, between the memory access issue and the
availability of data in the processor register. In pointer chasing experiment, the complete array is
traversed sequentially to record the average memory access latency. The latency of memory access
mainly depends on the stride size, which varies across experiments [8]. Furthermore, the character-
istics of the hardware can be deduced from the access latency data and it is discussed in Section 3.

Micro-benchmarking using pointer chasing was introduced by Saavendra et al. [7, 8] for bench-
marking CPUs. Furthermore, pointer chasing method was successfully used for benchmarking GPUs
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by Wong et al. [9] and Meltzer et al. [3]. Micro-benchmark experiments using pointer chasing are
based on the following three assumptions:

1. The cache replacement policy is least recently used (LRU).

2. All cache-sets have same size.

3. In memory address, the bits that identify the cache set are immediately followed by the bits
that identify the offset.

However, these assumptions do not hold for most recent GPU micro-architectures. Some GPUs
indeed have different cache-set size; in addition, cache replacement policy is not LRU [1, 2]. To
overcome the limitations of pointer chasing, Mei et al. [1] have introduced the fine-grain pointer
chase approach to benchmark GPUs, which does not consider the assumptions made by Saavedra et
al. [7, 8].

2.2 Fine-grain pointer chasing

Fine-grain pointer chasing is a more advanced micro-benchmarking approach, in which every mem-
ory access latency is recorded and analysed, this approach is feasible in most modern GPUs because
of the presence of relatively larger shared-memory, which can be used to store the sequence of mem-
ory access latencies, without interfering the normal data access operations [1]. Furthermore, the
hardware characteristics can be deduced from the sequence of memory access latencies and the la-
tency pattern, and it is discussed in Section 3. It is important to note that, the fine-grain pointer
chasing stores every memory access latency, whereas pointer chasing only stores the average memory
access latency of the complete array.

The shared-memory of GPUs is not sufficient to perform the fine-grain pointer chase for arrays
larger than the shared-memory size [1]. However, fine-grain pointer chase approach can be extended
by piecewise linear construction to record memory access latency for array size larger than shared-
memory size. In this approach, the memory access latency of array elements with-in the range of
the shared-memory is recorded in each iteration. Furthermore, experiment is repeated piecewise in
a sliding-window model, to get the comprehensive memory access latency data of complete array.

3 Determining hardware characteristics

In this section, we discuss the experimental setup introduced by Mei et al. [1], to determine hardware
characteristics of the GPUs using fine-grain pointer chasing approach. It has four steps:

1. Determine the cache-size C. Set stride-size s = 1, initialize array size N = 1 and increase N
gradually at the granularity of 1, until the memory access latency increase. Cache-size is the
maximum value of N before memory access latency increase.

2. Determine the cache-line-size b. Set s = 1, begin with N = C + 1 and increase N gradually at
the granularity of 1. When N < C + b + 1, the number of cache misses are close. However, if
N is increased to C + b + 1, there is a sudden increase in the number of cache-misses, despite
the fact that N is increased by 1.

3. Determine the number of cache-sets T . Set s = b, N = C and increase N at the granularity of
b. Every increment of N causes cache-miss of a new cache-set. For N > C +(T −1)b, all cache
sets are missed. Finally, number of cache-sets T can be deduced from cache miss pattern.

4. Determine the cache replacement policy from the cache miss pattern obtained from step 2 and
step 3.

4 Conclusion

The rapid increase in the computational capability of GPU hardware, along with recent improve-
ments in its programmability, have made GPU hardware a promising platform for computation-
ally demanding tasks in a wide variety of application domains. Recent GPU architectures provide
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tremendous memory bandwidth and computational horsepower. However, bandwidth comes at the
cost of latency and a sophisticated memory system. Understanding the hardware characteristics
and sophisticated memory system of GPUs is necessary when one seeks to overcome the perfor-
mance bottlenecks and optimize an algorithm for near-peak-bandwidth performance. For GPUs,
the engineering documentation available on memory hierarchy is very limited. In this situation,
micro-benchmarking the hardware together with additional fine-grain benchmarks provide an ap-
proach to optimization. Furthermore, fine-grain benchmark helps us to understand the memory
system and memory access patterns of the GPUs.
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