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ABSTRACT

Self-Organising Maps (SOMs) have been successfully
applied to content-based image retrieval (CBIR). In this
study, we investigate the potential of PicSOM, an image
database browsing system, applied to quad-polarised
ALOS PALSAR images. Databases of small images were
artificially created, either from a single satellite image
for object detection, or two satellite images when con-
sidering change detection. Polarimetric features were ex-
tracted from the images to allow image indexing. By
querying the databases, it was possible to detect target
classes, as well as changes between the two images. Re-
sults open a full range of applications, from structure de-
tection to change detection, to be embedded in a same
operative system. The framework may be particularly
suitable for long-term monitoring of strategic sites.

Key words: content-based information retrieval, self-
organising maps, high resolution satellite images, polari-
metric spaceborne SAR, change detection.

1. INTRODUCTION

Three latest generation SAR satellites have been
launched - ALOS PALSAR, TerraSAR-X and Radarsat-
2. The availability of dual-polarisation and fully polari-
metric data, instead of earlier single-polarisation data,
will enable a deeper analysis of backscattering processes
and thereby pave the way for many new applications of
spaceborne SAR data. At the same time, these satellite
missions generate a huge amount of data at a higher reso-
lution than previous spaceborne SAR sensors.

Current Earth Observation archiving systems typi-
cally support queries by sensor type, acquisition date,
imagery coverage or a combination of them. Concur-

rently, security-concerned applications relying on satel-
lite imagery often demand repeated or continuous mo-
nitoring, and intelligent access to the extracted informa-
tion. There is therefore a growing interest in the remote
sensing community to access databases directly by the
information contained in images. Content-based image
retrieval (CBIR) allows management of large image
archives [1–6], as well as satellite image annotation and
interpretation [2, 7–9].

Our work extends and improves the potential of PicSOM,
a CBIR system based on Self-Organising Maps (SOMs),
for remote sensing image analysis [10]. In the PicSOM
image database browsing system [11], several thou-
sands of images are mapped onto Self-Organising Maps
(SOMs) [12], through the extraction of image descriptors
including textural and color features. After the SOMs
are trained, the user can visually query the database and
the system automatically finds images similar to those se-
lected. This approach has been successfully applied to
databases of conventional images [13, 14] as well as man-
made structure and change detection in high-resolution
satellite optical images [10].

This article presents our latest experiments with PicSOM
on a spaceborne polarimetric ALOS PALSAR dataset.
The key idea of our study, first presented at ESA-EUSC
2005 conference [15], is to artificially generate a database
of small images (or imagelets) from each full satellite
image to be analysed. PicSOM can be trained on that
virtual database, then queried for finding objects of inte-
rest. Imagelets can be extracted for the detection of man-
made structures or other targets, or to detect changes if
two scenes are available.

The data consists of two fully polarimetric scenes ac-
quired in March and May 2007 over Kuortane, in cen-
tral Finland. Typically, a scene was divided into seve-
ral thousands of imagelets of size 16 × 16 pixels. We
have extended PicSOM to include widely used polari-
metric features (e.g. co-polarised and cross-polarised ra-



tios, among many others). Polarimetric features extracted
pixel by pixel were grouped into imagelet-wise feature
vectors in several ways, including averaging and his-
tograms by vector quantisation. Evaluation of the meth-
ods for feature selection were provided using classifica-
tion images. Change detection was also performed and
evaluated versus a reference change map and ground truth
of clearcuts obtained from the local forest administra-
tion of Kuortane. Potential applications of this work are
high-resolution satellite image annotation, or monitoring
of sensitive areas for undeclared human activity, both in
an interactive way.

2. DATA AND PRE-PROCESSING

2.1. Satellite imagery

Two quad-polarised ALOS PALSAR images were ac-
quired on 29th March 2007 and 14th of May 2007 over
Kuortane, in central Finland (62◦48’33”N, 23◦30’50”E).
The off-nadir angle was 21.5 degrees and incidence an-
gle 24 degrees. The fully polarimetric scenes cover an
area of 35km wide and 70km long. The were incoher-
ently averaged into 6-look images in the Stokes matrix
domain. Although Kuortane area is relatively flat (eleva-
tion 38-230 m), the original scenes were rectified using a
Digital Elevation Model. Rectified 6-look data had a re-
solution of 25m in both azimuth and range. The refined
Lee speckle filter [16] was applied with window size 3x3
pixels to reduce noise.

Kuortane area is dominated with small areas of different
land cover types [17]. There are a few built-up areas but
these mostly belong to discontinuous fabric of individual
single family houses. Built-up areas contain lots of ma-
ture trees. The dominant soil type is glacial drift, but sand
areas exist also. Coniferous forest on mineral soil is the
dominating forest type, second type being mixed forests
on mineral soil.

In the March scene, the lakes were covered with ice and
some floating water on top of it. The ice was totally melt
in the May scene. Fig. 1 shows the Pauli decomposition
of the May image of Kuortane. In this image, power
scattered by single or odd-bounce targets (HH + V V )
is represented in blue (associated with surface scattering
- e.g. water or fields), double bounce (HH − V V ) in red
or white (built-up areas) and volume scattering (HV ) in
green (vegetated areas).

2.2. Database preparation

The whole scenes were considered as the study area.
PicSOM image retrieval system typically requires seve-
ral thousands of images in a database in order to pro-
duce relevant indexing. Each image was thus cut into
9241 non-overlapping small images or imagelets, of size
16× 16 pixels (only imagelets containing actual data and

Fig. 1. Pauli decomposition of rectified PALSAR May
image over Kuortane, Finland. c©JAXA and METI 2006

no null value resulting from registration procedure were
kept). After the splitting into imagelets, the amount of
contents in each image is reduced, from many classes in
the study scene (bare soil, buildings, forest...) to only a
few in each imagelet.

In order to evaluate methods quantitatively [18], a refe-
rence image was created by classifying each SAR image
with PolSARpro [19] supervised classifier, using 5 land-
cover classes {water, field, forest, marsh, urban}. Corine
Land Cover 2002 data was used to delineate training
areas. Average classification accurracy was 80% for both
scenes, but it was significantly lower for the urban class
(buildings). This is probably because the scenes contain
rather sparsely inhabited areas or relatively small buil-
dings. In addition, a reference change image was created
using AutoChange [20], an automatic change detection
software originally developed for forestry.

3. METHODS

The PicSOM system used in this study has originally
been developed for content-based image retrieval (CBIR)
research [13, 14, 21]. It is based on using the Self-
Organising Map (SOM) [12] as an efficient indexing
structure for the images. We show how this same tech-
nique might also be applied in the semi-automated, inter-
active analysis of satellite images.



3.1. Self-Organising Maps

The Self-Organising Map (SOM) [12] is a neurally-
motivated unsupervised learning technique, forming a
nonlinear mapping of a high-dimensional input space to
a typically two-dimensional grid of neural units. During
SOM training, the model vectors in its neurons get values
which form a topology-preserving mapping: neighboring
vectors in the input space are mapped into nearby units in
the SOM grid. Patterns mutually similar in respect to a
feature are closely located on the SOM surface. Training
is initialised with random values of model vectors mi for
each map unit i. For each input sample x(t), the “win-
ner” or best-matching map unit (BMU) c(x) is identified
on the map by the condition

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖ , (1)

where ‖ · ‖ is commonly the Euclidean metric. After fin-
ding the BMU, a subset of the model vectors constituting
a neighborhood centered around node c(x) are updated
as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)) . (2)

with h(t; c(x), i) a decreasing “neighborhood function”
of the distance between the i-th and c(x)-th nodes on the
map grid. Training is iterated over the available samples,
and h(t; c(x), i) is allowed to decrease in time to guaran-
tee convergence of prototype vectors mi. After training,
all input samples x are once more mapped to the SOM,
each in its BMU. Every SOM unit is then assigned a vi-
sual label from the imagelet whose feature vector was the
nearest to the model vector.

3.2. PicSOM for content-based image retrieval

The PicSOM system [11] implements two essential CBIR
techniques, query by examples (QBE) and relevance
feedback. These methods can be used for interactive re-
trieval of any type of visual or non-visual content.

In interactive QBE, the system presents in a visual in-
terface some images to the user, who then marks a sub-
set of them as relevant to the query. This relevance in-
formation is fed back to the system, which seeks more
similar images and returns them in the next query round.
In PicSOM, multiple SOMs are used in parallel, each
created with a different low-level visual feature. The
different SOMs and their underlying feature extraction
schemes impose different similarity functions on the ima-
ges, allowing PicSOM to adapt to different retrieval tasks.

Relevance feedback has been implemented by using the
parallel SOMs. Each image presented in PicSOM is
graded by the user as either relevant or non-relevant. All
these relevance grades are then projected to the BMUs
of the graded images on all SOM surfaces. Maps where
there are many relevant images mapped in same or nearby
SOM units agree well with the user’s conception on the
relevance and semantic similarity of the images.

The relevance information placed in the SOM units is
spread also to the neighboring units. Each image is given
a total qualification value obtained as a sum of the qua-
lification values from its BMUs from the different fea-
ture SOM surfaces. Those yet unseen images which have
the highest qualification values will then be shown to the
user on the next query round. In PicSOM, features that
fail to coincide with the user’s conceptions always pro-
duce lower qualification values than those descriptors that
match the user’s expectations. More can be found in [10].

As an illustrative example obtained from a satellite opti-
cal image, Fig. 2 displays a SOM created from the texture
feature [10]. The water regions are mapped into two se-
parate areas due to the different textures of the calm and
wavy water surfaces, to bottom right and top left corners
of the map, respectively. This demonstrates how PicSOM
organises imagelets in the database according to a spe-
cific feature.

Fig. 2. Organisation of the imagelets by their texture con-
tent on a 16×16 SOM surface - original image : Quick-
bird from western Finland, September 2005 [10]

3.3. Feature extraction

Features have to be extracted from the imagelets to al-
low their indexing by the Self-Organising Map. The ori-
ginal PicSOM features were developed for RGB optical
images. Features used in CBIR usually describe generic
image properties, like color distribution, texture or shapes
[9].

In the case of polarimetric radar imagery, meaningful po-
larimetric features have to be considered instead. First
the polarimetric features were extracted for each pixel of
the full size radar images. Then for each imagelet, the
pixel-wise features were grouped in three different ways
to form feature vectors representing the imagelet.



3.3.1. Pixel-wise features

Six groups of polarimetric features were extracted from
imagelets [18] (citations below refer to example of pre-
vious polarimetric studies with those features for a given
application) :

BACKSCATTER : the 3 backscattering coefficients
in HH, HV and VV polarisations [22–24].

HH-VV : amplitude of correlation between HH and
VV channels [23, 24] and phase difference between
HH and VV [22, 23].

LOGRATIOS : ratio HV/VV in dB [24], co-
polarised and cross-polarised ratios [25].

RATIOS : co-polarisation ratio γ [22] and depolari-
sation ratio δ [22, 23]

H-A-α : entropy/anisotropy/α angle from the
Cloude-Pottier decomposition [26]

TOUZI : 4 discriminators related to the degree of
polarisation and extracted from the Mueller matrix
[27]

In case of Cloude-Pottier decomposition and Touzi dis-
criminators, the features were extracted from 6-look data
in moving windows of 3x3 pixels.

The features were computed for each pixel and stored
for later use. In previous studies features were not nor-
malised : we tested normalisation of each vector com-
ponent to zero mean and unit variance, expecting an
improvement comparing to unscaled vectors, especially
with the high dynamic range of input PALSAR images.

3.3.2. Imagelet-wise feature vectors

In the experiments we wanted to study how the six ba-
sic feature groups could be used most efficiently for
analysing the content of the imagelets. Pixel-wise fea-
tures were grouped into imagelet-wise feature vectors in
three different ways :

• the pixel-wise feature values were averaged over the
256 pixels in each imagelet,

• the pixel-wise feature values were averaged per 8×8
pixel blocks - 4 blocks per imagelet,

• histograms were created to describe the distribution
of the feature vector values more precisely.

The feature vector histograms were generated as follows.
A Self-Organising Map (SOM) of size WxH map units
was initialised. One pixel was then randomly picked from

the full size image and its feature vector value was used
to adapt the SOM. This random selection and adaptation
was iterated 10 million times to obtain a trained SOM.
The SOM was then used as a codebook or vector quan-
tiser, the tesselation regions of which were used as bins
in histogram creation. For each imagelet, the 256 pixel-
wise feature vectors were mapped to their nearest map
units on the SOM and the total number of hits in each unit
or bin constituted the imagelet-wise histogram feature.
For comparing the similarity of the histogram features we
used the Euclidean distance between them. In the expe-
riments we varied the WxH-size of the SOM used in the
histogram feature calculation in order to find an optimal
number of histogram bins.

In addition to polarimetric features vectors, a xy-
coordinate feature was carried along the whole analysis
process. The xy-coordinate feature allowed to keep track
of the position of any imagelet within the full image (as
row/column indexes), and completed the framework for
change detection.

3.3.3. SOM training on feature vectors

In PicSOM, several SOMs are trained in parallel (one
per feature). Each feature vector was used 100 times in
training (Eqs. (1) and (2)). The map sizes were set to
64×64 units for the visual features SOMs, and 125×125
for the coordinate SOM. There were on the average
9241/4096 ≈ 2.25 imagelets mapped in each map unit of
the visual SOMs, and exactly one image location on the
coordinate map (units mapping to locations on the regis-
tration canvas of the original image were not considered
in the SOM).

3.4. PicSOM for target detection

The visual querying presented in early works [10] was
not carried out with the PALSAR data, as 16x16 pixel
imagelets of Pauli decomposition were not suitable for
visual querying based on image content. PicSOM sys-
tem could however be used to perform automatic detec-
tion of target classes. The qualification value assigned
to each imagelet by the PicSOM system is a discrimi-
nation value, which indicates the likeliness that the spe-
cific imagelet belongs to that semantic class (label) [10].
Imagelets can be sorted by decreasing order of similarity
to a given class, and a threshold can then be set to re-
trieve the imagelets most similar to that semantic class.
This was done for the 5 semantic classes, and combined
to ”greedy” sequential forward selection of features.

3.5. Content-based unsupervised change detection

We devised a method for finding pairs of imagelets, one
from March image and the other from May, which dif-
fered the most in the sense of some of the extracted fea-



tures. Only the true changes in the imagelet’s content
would then give rise to such a striking change in the fea-
ture vector’s value that its projection on the SOM surface
is moved to a substantially different location. The sub-
stantiality of the change can therefore be measured as the
distance between the best matching units (BMUs) of the
different months’ feature vectors on a same SOM.

Imagelet pairs were ordered by descending pair-wise
BMU distance on a given feature SOM – the higher the
distance, the more substantial change in content occurred.
A fixed number of imagelet pairs were then regarded
as the locations where the most substantial changes had
taken place. Several feature SOMs can be used simulta-
neously, in which case the pair-wise BMU distances on
different SOMs were normalised then combined [10].

4. RESULTS AND DISCUSSION

We divided both SAR images into two parts : the up-
per part and the lower part. One of the four parts was
then in turn used as a training set for creating the models
for the 5 landcover classes. By using all the remaining
three parts for three different tests, we could obtain per-
formance measures for both intra-image and inter-image
generalisation ability. For the latter, we could further
distinguish between cases where the training and testing
data were from same or different location. In the case of
same location we were also able to perform unsupervised
change detection between the two images as in [10].

4.1. Performance evaluation of features in retrieval
tasks

The results of our first experiment showed that the
TOUZI and BACKSCATTER features were the two
best ones for both the average and histogram feature
types - Tab 1. The mutual order of TOUZI and
BACKSCATTER was dependent on the landcover class
studied. BACKSCATTER seemed to be the best feature
for detecting fields and especially water. However, these
two classes were often mixed with each other in the re-
trieval tasks, so other features should be used to sepa-
rate them. TOUZI was another good feature overall, and
best one for detecting marshes. From the five landcover
classes the urban class was found to be the most difficult
one to retrieve, as expected. H-A-α seemed to work rela-
tively well for retrieving the urban class.

Our main interest was, however, to find out whether the
histogram method or the average method was superior.
The results showed that in four cases out of six the his-
togram method was better.

For each feature and each class, the 10 and 100 most re-
levant imagelets were retrieved and considered truly rele-
vant if the target class was present in the reference image.
The higher the number of truly relevant imagelets, the
better the feature or feature combination was - Tab 1.

4.2. Feature selection to improve overall accuracy

In a second experiment we wanted to study which com-
bination of the individual features studied earlier could
produce the best total average precision in the PicSOM
system. For feature selection, we used the ”greedy” se-
quential forward selection algorithm. The results showed
that a proper combination of the best-performing features
performed usually better than any of the individual fea-
tures. This was especially true on the number of truly re-
levant images retrieved with feature selection compared
to any feature alone.

Tab 1 shows the average precision values obtained with
the best features for a given target class, and consid-
ering several testing schemes. Under each target class
row is indicated the number of imagelets containing that
class in the reference images and the percentage of to-
tal imagelets. The columns ”same”, ”diff”, and ”cross”
refer to cases where the test set is either the other half
of the same image, the same half of the other image, or
the other half of the other image, respectively, than the
training set. These are repeated four times, i.e. for the
different permutations of the training set, and then avera-
ged. The mean average precision over these three cases
is shown in column ”mean avg. precision”. When loo-
king at the columns ”same”, ”diff”, and ”cross”, results
suggest that for a given feature vector, all testing schemes
returned similar results, underlining the robustness of the
method. For each target class in Tab 1, the feature vector
providing the best mean average precision and the high-
est number of relevant imagelets for 10 or 100 retrieved
imagelets are shown in bold. It is clear that feature selec-
tion tends to improve the results, for all classes but water
in our experiments.

4.3. PicSOM for unsupervised change detection

In the last experiment, we replicated for polarimetric
SAR images our earlier studies on optical images in using
SOMs for unsupervised change detection [10]. 50, 100,
150 and 300 most relevant imagelets regarding to changes
were considered and the results were visually compared
to the reference change images.

Compared to the clearcut ground truth, the
BACKSCATTER plain feature produced the best
result. The stands that have been cut between March and
May 2007 around Kuortane represented tiny areas that
were challenging to detect with the imagelet method.
A significant part of the 50 most relevant imagelets for
the BACKSCATTER feature matched some locations
of actual clearcuts. It was understandable as the HV
backscattering coefficient is strongly linked to biomass
index even at L-band. However not all the clearcuts were
retrieved, as the imagelet-based approach only retrieve
wide changes.

Histograms of LOGRATIOS and POLRATIOS were the
best features to retrieve changes over water bodies,



Table 1. Average precision of the best features versus reference classification images, within several training schemes.
The columns ”rel@10” and ”rel@100” refer to the numbers of relevant imagelets found on average among the 10 and
100 first retrieved imagelets given a feature vector.

class type mean avg. precision same diff cross rel@10 rel@100 feature
field global avg 0,758 0,771 0,754 0,751 9,25 86,25 BACKSCATTER
21% 4-zone avg 0,730 0,733 0,735 0,722 8,08 83,50 BACKSCATTER
928 histogram 0,864 0,878 0,849 0,866 9,83 95,42 BACKSCATTER

feature sel. 0,864 0,878 0,851 0,861 9,83 97,83
forest global avg 0,987 0,986 0,987 0,987 10,00 99,67 POLRATIOS
82% 4-zone avg 0,985 0,987 0,983 0,985 9,92 99,17 H-A-α
3769 histogram 0,993 0,995 0,992 0,991 10,00 99,83 TOUZI

feature sel. 0,995 0,996 0,994 0,994 10,00 100,00
marsh global avg 0,461 0,443 0,465 0,475 6,00 43,50 TOUZI
0,8% 4-zone avg 0,432 0,424 0,439 0,433 6,83 41,58 TOUZI
108 histogram 0,569 0,563 0,579 0,567 7,75 54,67 TOUZI

feature sel. 0,633 0,713 0,590 0,594 8,25 55,50
urban global avg 0,336 0,317 0,357 0,333 4,42 12,50 H-A-α
0,3% 4-zone avg 0,389 0,382 0,401 0,385 4,58 12,75 H-A-α
19 histogram 0,291 0,301 0,324 0,241 3,83 10,83 H-A-α

feature sel. 0,428 0,402 0,468 0,412 4,92 15,33
water global avg 0,877 0,946 0,844 0,841 10,00 64,25 BACKSCATTER
2% 4-zone avg 0,881 0,902 0,865 0,875 10,00 67,08 BACKSCATTER
77 histogram 0,527 0,746 0,471 0,363 7,25 42,92 BACKSCATTER

feature sel. 0,754 0,938 0,656 0,669 9,00 57,92
overall global avg 0,684 0,693 0,681 0,677 7,93 61,23

4-zone avg 0,683 0,685 0,685 0,680 7,88 60,82
histogram 0,649 0,696 0,643 0,606 7,73 60,73
feature sel. 0,735 0,785 0,712 0,706 8,40 65,32

mainly corresponding to ice melting between March and
May. Those features are ratio of backscattering coef-
ficients combinations, which change when ice melts -
copolarisation and depolarisation ratios have been used
in [22, 23] for sea ice classification.

Fig. 3 shows the reference change image obtained with
AutoChange, that was used to visually assess the rele-
vance of imagelet selection. We are aware that using the
same data for building the reference change image and
carrying out change detection experiments is not ideal,
but we did not have any other reference data that could
have been used for that purpose in dates reasonably close
to the acquisition dates of the PALSAR images. It is also
to be noticed that changes in water areas do not appear in
the AutoChange reference change image.

Fig. 4 shows the resulting selection of 300 most relevant
images for change detection using all 25x20 histogram
features. The changes in fields on top-left corner and bot-
tom of the image were well retrieved, as well as changes
in main water bodies (melting ice, not appearing in the
reference change image).

The results of these experiments verified that our change
detection technique is also applicable to SAR data even
though the higher noise level of SAR data has some ne-
gative effect on its accuracy. Imagelet-based structure

detection does not provide direct delineation of objects
of interest (contrary to pixel-based methods), but it can
highlight in a full scene locations with potentially inte-
resting structures or contents.

SOMs that have been trained using previous images can
be used in the analysis of new imagery. This approach
may be applied in supervised monitoring of strategic
sites, i.e. novelty or change detection with two or more
images. Such a system could point out locations in the
full image where there may be potentially interesting
structures, present, appearing or disappearing, and that
match features defined visually by the user. One of the
many advantages of PicSOM for polarimetric SAR data
analysis is its ability to integrate various features, and per-
form a selection of relevant ones based on user queries.
The same framework allows for classification, structure
detection, and change detection - in both supervised or
unsupervised ways.

5. CONCLUSIONS

We have presented how a content-based image retrieval
system, PicSOM, can be used with polarimetric SAR
images for tasks like target class retrieval, as well as
change detection. The approach relies on the decompo-



Fig. 3. Reference change image between March and May
obtained with AutoChange on polarimetric PALSAR data

sition of a satellite image into several thousands small
images or imagelets, to generate an image database from
which the user can query, visually and intuitively. Polari-
metric feature groups were extracted and used to trained
Self-Organising Maps. Various strategies for grouping
pixel-wise features into feature groups were used, and the
histogram approach turned out to improve results com-
pared to simple pixel averaging. Improvements can be
made in the polarimetric feature grouping strategy.

The same framework allows for detection of a specific
content of interest, as well as change detection. The ver-
satility of PicSOM will allow several applications to be
embedded in a same operative and interactive system,
only to be differentiated by the type of query. One of
the many possible applications of this work is long term
monitoring of human activity around strategic sites.
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[8] Schröder, M. Interactive learning in remote sensing
image databases. In Proc. IEEE Intern. Geoscience
and Remote Sensing Symposium IGARSS’99, 1999.

[9] Ferecatu, M., Boujemaa, N., and Crucianu, M. Ac-
tive relevance feedback for interactive satellite ima-
ges retrieval. In Proc. ESA-EUSC Workshop on
Image Information Mining - Theory and Applica-
tion to Earth Observation, Frascati, Italy, October
2005. ESA WPP-257 (Nov. 2005).

[10] Molinier, M., Laaksonen, J., and Häme, T. De-
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