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In this work, we consider the Bayesian optimization (BO) approach for parametric tuning of complex chaotic systems.
Such problems arise, for instance, in tuning the sub-grid scale parameterizations in weather and climate models. For
such problems, the tuning procedure is generally based on a performance metric which measures how well the tuned
model fits the data. This tuning is often a computationally expensive task. We show that BO, as a tool for finding
the extrema of computationally expensive objective functions, is suitable for such tuning tasks. In the experiments, we
consider tuning parameters of two systems: a simplified atmospheric model and a low-dimensional chaotic system. We
show that BO is able to tune parameters of both the systems with a low number of objective function evaluations.
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1. INTRODUCTION

In climate and numerical weather prediction (NWP) models, accurate simulation and prediction depends upon the
selection of optimal tuning parameters. A typical case is the tuning of closure parameters in climate models which
describe processes that are imprecisely modeled due to the restrictive grid used for solving the differential equa-
tions (Järvinen et al., 2010; Schirber et al., 2013). Similarly, the tuning of parameters which control the stochastic
physics components in ensemble prediction systems is a non-trivial task (Leutbecher and Palmer, 2008). Designing
efficient procedures for tuning such model parameters is a topic of active research (see, e.g., Annan and Hargreaves,
2007; Hakkarainen et al., 2013; Hauser et al., 2012; Neelin et al., 2010; Solonen et al., 2012).

The tuning procedure is generally based on a performance metric which measures how well the tuned model fits
the data. For example, in numerical weather prediction (NWP), tuning is done by optimizing measures related to
forecast skill, while in climate models, tuning is based on optimization criteria which often compare some summary
statistics (spatial and temporal averages) of the model simulation to observed statistics. Evaluating the performance
metrics is computationally expensive, since it requires complex model simulations over the observation period.

One of the major difficulties of the tuning process is the high computational cost of the optimization procedure: for
every candidate value of the tuning parameters, one has to perform computationally heavy simulations of a complex
physical model. Another difficulty is that in many cases the objective function is noisy, that is two evaluations of the
likelihood function with the same parameter values may generally lead to distinct function values. For example, when
the goal is to optimize ensemble prediction systems (see, e.g., Solonen and Järvinen, 2013), a stochastic mechanism
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is often used for ensemble member selection, which introduces randomness in the function evaluation. Another
possible source of noise is the chaoticity of the tuned model. Small perturbations of the model parameters can result
in significantly different simulation trajectories and therefore significant differences in the computed likelihood.

In this paper, we study the methodology called Bayesian optimization (BO) in the problem of parametric tuning
of chaotic systems. In BO, the parameter values where the objective function is evaluated are carefully chosen so that
we learn as much as possible about the objective function. As a result, the optimum can often be found with a small
number of function evaluations. We discuss both deterministic and noisy tuning objectives.

We perform two studies: first, we consider parametric tuning of a simplified atmospheric model with a noiseless
objective function. The tuned model is a two-layer quasi-geostrophic model with four tuned parameters which define
the model error covariance of the corresponding data assimilation system. Second, we consider parametric tuning of a
chaotic system with a noisy likelihood function. We use the parameterized Lorenz 95 model as a test model, similarly
to previous studies. The goal is to explore the suitability of the BO methodology for parametric tuning of full scale
climate and weather models. In the examples considered in this paper, the likelihood formulation is more relevant
for (but not limited to) parametric tuning of NWP systems, as it is essentially built around the accuracy of short-term
forecasts.

There are other approaches besides BO to accelerate computations with objective functions that are expensive to
evaluate. Various surrogate modeling techniques attempt to describe the parameter-to-output dependence with empir-
ical approximative models that are cheap to evaluate. Techniques range from polynomial chaos expansions (Marzouk
and Xiu, 2009) to Gaussian processes (GP) models (Rasmussen and Williams, 2006), which are also applied in the
BO method. In BO, instead of first building a surrogate model and then fixing it for further calculations, the goal is to
design the points where the objective function is evaluated on the fly so that the potential of the new point in improving
the current best value is maximized. That is, BO is directly built for solving optimization problems efficiently, not to
represent the objective function efficiently in a selected region of the parameter space.

The BO method resembles classical response surface techniques for experimental optimization (Box and Draper,
1987), where local quadratic models are used to guide a sequence of experiments to obtain an optimal response. BO
uses GP, which is more flexible in describing the behavior of the underlying objective. Also, BO uses a different way
for selecting the next point where the objective function is evaluated. We use the GP based BO because it has been
shown that it is a very efficient and flexible approach (see, e.g., Lizotte et al., 2012), especially, for computationally
heavy to compute models (see, e.g., Brochu et al., 2010a).

The outline of the paper is as follows. In Sect. 2, we present the basic ideas behind the Bayesian optimization. In
Sect. 3, we formulate the likelihood for a complex system represented as a state-space model. In Sect. 4, we consider
the case of parametric tuning of a simplified atmospheric model with a noiseless objective function. In Sect. 5, we
demonstrate parametric tuning of a chaotic system with a noisy likelihood. We conclude in Sect. 6.

2. BAYESIAN OPTIMIZATION

The goal of Bayesian optimization is to find the extrema of black-box functions, f : Rn → R that are expensive to
evaluate (see, e.g., reviews by Brochu et al., 2010a; Snoek et al., 2012). Here, f which is also called the objective
function typically does not have a closed form solution. In BO, the objective function is modeled as a random function
whose distribution describes our knowledge of the function, given a set of function evaluations {θi, f(θi)}i=1,...,t.
The posterior distribution over f is handled using the standard Gaussian process methodology which allows for
evaluating the mean and variance of objective function values f(θ) in any location θ at any optimization step t.
This information is used to propose a new input location θt+1 which has the largest potential to improve the current
best value of the objective function. In the following, we assume that the objective function is being maximized.

The search of the new point where the objective function has to be evaluated is done by optimizing a comple-
mentary function called acquisition function, that measures the potential to improve the current best point. The two
statistics often utilized in designing acquisition functions are the predictive mean and the predictive variance of f at
possible location θ. In designing new points where the function is evaluated, one typically has to choose between
two extremes: sampling from locations of high predicted mean value (exploitation strategy) and locations of high
uncertainty value (exploration strategy). BO provides a tool that is able to automatically trade off between exploration

International Journal for Uncertainty Quantification



Bayesian optimization in parametric tuning of chaotic systems 3

and exploitation, which often yields a reduced number of objective function evaluations needed (Lizotte et al., 2012).
It can also prove useful for objective functions with multiple local optima, and noise in the objective function can be
handled in a straight-forward manner.

Even though BO was introduced in the seventies (Mockus et al., 1978), the methodology has been under active
development in the recent years due to its successful application to a number of machine learning problems (Boyle,
2007; Brochu et al., 2010a; Frean and Boyle, 2008; Hutter et al., 2013; Lizotte, 2008; Osborne et al., 2009; Snoek
et al., 2012). To our knowledge, BO has not been studied in connection with parameter tuning in complex dynamic
models.

BO is a methodology that suits very well to the problem of complex system tuning. First, evaluation of the
objective function in this task requires computationally expensive model simulations, typically requires several days
to complete. Second, the sampling region of the parameters is often unknown and it is manually selected using expert
knowledge. Third, the gradient information is unavailable and direct optimization is infeasible.

2.1 Gaussian processes

The Gaussian processes (GP) methodology is the key element of BO, as it is an elegant tool for describing distributions
over unknown functions (Rasmussen and Williams, 2006). In this methodology, the prior distribution over f is chosen
such that the function values fθ = [f(θ1), . . . , f(θt)] are assumed to be normally distributed:

fθ | η ∼ N (fθ|0,Kf ) (1)

where the mean is typically taken to be zero and the covariance matrix Kf is constructed such that its ijth element
is computed using covariance function k(θi,θj |η) that depends on θi, θj and hyperparameters η. The covariance
function k is the key element of the GP modeling: it encodes our assumptions about the behavior of function f , such
as its smoothness properties.

In our experiments, we use the squared exponential covariance function which is one of the most common covari-
ance functions:

k(θi,θj ;η) = σ2f

D∏
d=1

exp

(
−

(θ
(d)
i − θ

(d)
j )2

2 l2d

)
, (2)

where ld are the parameters defining the smoothness of the function in each dimension and σ2f is the scaling parameter
which specifies the magnitudes of the function values. Both belong to hyperparameters η.

At every iteration of the BO algorithm, the properties of the unknown function f are learned by adapting the
hyperparameters η to fit well the observed data {θi, f(θi)}i=1,...,t. This is typically done by maximizing the log
marginal likelihood of the hyperparameters η:

log p(fn|θ,η) = −1

2
fTn (Kf + Σ)−1fn −

1

2
log |Kf + Σ| − n

2
log 2π . (3)

where fn are the observed values of the objective function. They are assumed to be noisy such that fn = f(θ)+ε, ε ∼
N (0,σ2n). Σ is the covariance matrix of the noise in the objective function, which is often parameterized as σ2nI and
estimated in the optimization procedure as well. Thus η consists of the following hyperparameters {σf , ld,σn}. Note
that σn is considered a hyperparameter and optimized only when the observed values of the objective function are
noisy. Then, GP is used to evaluate the predictive distribution over the function values f(θnew) at any new location
θnew. Assuming that the observed values of the objective function are noisy and the noise is Gaussian, the predictive
distribution is normal:

p(f(θnew)|fn,η) ∼ N
(
µ(θnew),σ2(θnew)

)
(4)

with the mean and variance given by

µ(θnew) = kT
new (Kf + Σ)

−1
fn (5)

σ2(θnew) = k(θnew,θnew)− kT
new (Kf + Σ)

−1
knew , (6)
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where knew = [k(θnew,θ1), . . . , k(θnew,θt)]
T . For more details on training GP, see, for example, the book by Ras-

mussen and Williams (2006).

2.2 Acquisition functions

The acquisition functions are used to search for a new location θnew which has the highest potential to improve the
best value of the objective function obtained so far, denoted by

µ+ = max
t
µ(θt) .

At each BO iteration, the new sample is chosen to maximize the value of the acquisition function:

θnew = arg max
θ

g(θ) ,

where
g(θ) = g(µ+,µ(θ),σ(θ)) .

High values of the acquisition function correspond to regions where the expected value µ(θ) of the objective function
value is high or where the prediction uncertainty σ(θ) is high or both. Deciding which areas have the largest potential
is known as the exploration vs exploitation trade off (see, e.g., Jones, 2001).

The choice of possible acquisition criteria is quite large with developments still taking place (see, e.g., Brochu
et al., 2010b; Lizotte et al., 2012). Here, we illustrate two of the most popular acquisition functions called probability
of improvement (Kushner, 1964) and expected improvement (Mockus, 1989). The probability of improvement (PI) is
formulated as

gPI(θ) = Φ (∆/σ(θ)) (7)

∆ = µ(θ)− µ+ − ξ (8)

where µ(θ) and σ(θ) are defined in Eq. (5) and Eq. (6), respectively. Φ(·) is the normal cumulative distribution
function. When ξ = 0, gPI(θ) is simply the probability of improving the best value µ+ by taking a sample at location
θ. The problem with using ξ = 0 is that PI favors locations that have even a slight improvement over the current best
µ+. This means that in this setting PI has a higher tendency to exploit rather than explore and it practically always
gets stuck at a local optimum (Lizotte et al., 2012). The parameter ξ > 0 allows for tuning PI in order to reduce this
problem. However, the choice of ξ is always subjective, although it has a great impact on the performance. For a
detailed study of the effect of ξ, we recommend the work of Lizotte et al. (2012).

gEI(θ) =
〈
fθ − µ+

〉
(9)

= ∆Φ (∆/σ(θ)) + σ(θ)φ (∆/σ(θ)) (10)

where 〈·〉 denotes expectation, ∆ is defined in Eq. (8) and φ(·) is the normal probability density function. The EI
criterion is derived as the expected difference between the function value in a new location f(θ) and the current best
µ+. Thus, EI aims at maximizing f by the biggest margin and yields optimization which is less prone to getting stuck
in a local optimum. Nevertheless, using a tuning parameter ξ > 0 allows for control of the exploration vs exploitation
trade-off (Lizotte et al., 2012).

Figure 1 illustrates a one-dimensional maximization procedure using BO. We start with three function evaluations
and show the sampled points, the GP fits (with the red line) and the posterior uncertainty (with the pink filled areas).
The acquisition functions are shown along below the subplots of the objective function. The new location (marked
with a magenta vertical line) is chosen so that it maximizes the acquisition function. As the optimization proceeds, we
collect more samples and finally find the maximum of the objective function. One can notice that, compared to PI, EI
favors exploration as it samples from regions with higher uncertainty. The objective function approximation obtained
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with EI improves much faster compared to PI. EI is also able to find the global maximum earlier. In this case, one
could argue that using a larger value of ξ in PI could result in more exploration and faster optimization. However,
choosing the right ξ value for PI is generally difficult. In our experimental study, we use the EI acquisition function
(ξ = 0) with BO for parametric tuning of the example models. A detailed study about the effect of ξ on EI is given
in Lizotte et al. (2012).

As stated earlier, the acquisition function is maximized at every step of BO in order to find a sample with the
best potential. The acquisition function typically has multiple local optima (see Fig. 1) and the ability to find the
global optimum of the acquisition function is extremely important for the efficiency of BO. Thus, global optimization
procedures are typically used, which can be computationally demanding. Nevertheless, this procedure is usually
far cheaper computationally because the global optimization only evaluates the GP and does not touch the objective
function, which is computationally the most expensive part. Any global optimization method can be used in this task.
In this work we have used the DIRECT method by Jones et al. (1993). DIRECT stands for dividing rectangles, this
method is based on derivative-free optimization (see, e.g., Rios, 2013).
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FIG. 1: One-dimensional demonstration of Bayesian optimization. The objective function f is shown with the black
line. The circles represent sampled values of the objective function {f(θi)}i=1,...,t. The red line is the prediction
mean µ(θi) and pink fill color is the uncertainty σ2(θi) (±2 standard deviation). The vertical magenta lines show the
new sample locations θt+1 proposed by BO so as to maximize the acquisition function. Note that all the horizontal
axes show sample locations θ. The first and third column correspond to the PI (7) acquisition function. The second
and fourth column correspond to the EI (9) acuisition function.

3. FILTERING METHODS FOR LIKELIHOOD EVALUATION

In tuning chaotic systems, we use the approach where the likelihood is computed using filtering techniques (Hakkarainen
et al., 2012). Note that the likelihood from the filtering techniques is the objective function f . In section 3.1, we ex-
plain the inter-connection between the estimation of the filtering likelihood and BO. The tuned system is represented
as a state-space model

sk =M(sk−1) + Ek (11)
yk = K(sk) + ek, (12)

where sk is the state of the model, yk is the observation vector,M is the forward model which can be implemented by
a solver of partial differential equations and K is the observation operator. Ek and ek are noise terms which account
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for model imperfection and observation noise. In climate science applications, model parameters θ usually appear in
the formulation ofM or/and they can govern the distribution of the model error term Ek.

Filtering methods evaluate the likelihood by sequentially estimating the dynamically changing model state sk for
a given observation sequence y1:k = {y1, . . . ,yk}. Filters work by iterating two steps: prediction and update. In the
prediction step, the current distribution of the state is evolved with the dynamical model to the next time step. The
predictive distribution is given by the integral

p(sk|y1:k−1,θ) =

∫
p(sk|sk−1,θ)p(sk−1|y1:k−1,θ)dsk−1 . (13)

As this integral generally does not have a closed form solution, it is usually approximated in one way or another. This
yields different filtering techniques such as extended Kalman filter, ensemble Kalman filter, particle filter and so on.

The state distribution is updated using a new observation yk using the Bayes rule:

p(sk|y1:k,θ) ∝ p(yk|sk,θ)p(sk|y1:k−1,θ). (14)

This posterior is used inside the integral Eq. (13) to obtain the prior for the next time step.
The likelihood p(y1:n|θ) of the model parameters can be computed from the quantities evaluated in the filtering

procedure:

p(y1:K |θ) = p(y1|θ)

K∏
k=2

p(yk|y1:k−1,θ) , (15)

where p(yk|y1:k−1,θ) is calculated based on the marginal posterior of the states:

p(yk|y1:k−1,θ) =

∫
p(yk|sk,θ)p(sk|y1:k−1,θ)dsk .

Our goal is to search for parameters that maximize this likelihood f(θ) = p(y1:K |θ) in Eq. (15).
Extended Kalman filter (EKF) is a filtering technique in which the integrals are approximated by linearization of

the forward modelM and the observation operatorK around the current state estimate. Assuming that the observation
error is normally distributed with zero mean and covariance matrix Rk, the linearization yields:

p(y1:n|θ) ∝ exp

(
−1

2

n∑
k=1

rTk
(
Cy

k(θ)
)−1

rk + log |Cy
k(θ)|

)
(16)

Cy
k(θ) = Kk

(
MkCest

k−1M
T
k + Qk(θ)

)
KT

k + Rk (17)

where rk = yk − K(spk) are the prediction residuals, Mk and Kk are the linearization of M and K operators,
respectively, Cest

k−1 is the estimated covariance of p(sk|y1:k,θ) at time k − 1 and | · | denotes the matrix determinant.
When the dimensionality of the tuned model is too large, the extended Kalman filter suffers from memory issues.

Another problem is that linearization is often too cumbersome for highly complex models. In such scenarios, more
sophisticated techniques like stochastic ensemble Kalman filters (EnKF) are often used for filtering.

The basic idea of EnKF is that the posterior distribution of the states is approximated using sample statistics,
which are computed using a relatively small number of ensemble members propagated by the model at every assim-
ilation step. Stochastic filters involve random perturbations of the model states and observations, which introduces
randomness in the likelihood evaluation. More details on EnKF can be found, for example, in Evensen (2007).

3.1 BO for parametric tuning of chaotic systems using filtering likelihood

The evaluation of the likelihood requires running a data assimilation process for a computationally expensive model.
Thus, each function evaluation is expensive and there can be noise in the likelihood, for instance, the noise caused by
stochastic filtering techniques.

BO facilitates the optimization process by using a GP-based model as a surrogate of the tuned chaotic system, as
shown in Fig. 2. Thus, in addition to the original tuning problem, that is the estimation of the parameters of a chaotic
system, BO also requires the estimation of the parameters of the surrogate model.
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Chaotic
system Filter

GP based surrogate model

θ y f(θ)

η

FIG. 2: A schematic illustration of the models tuned using BO. The chaotic system and filtering method combined
together represent a data assimilation process. θ is the input (parameters), y are observations and f(θ) is the output
(log-likelihood function values) of the system. Pairs of input-output (data) are used to learn a GP based surrogate
model. There are two estimation processes at play during BO: first is the estimation of the model parameters with the
filtering likelihood technique. Second is a meta-estimation process which optimizes the GP based surrogate model. η
represents hyperparameters of the GP model.

4. PARAMETRIC TUNING OF AN ATMOSPHERIC MODEL WITH “NOISELESS” LIKELIHOOD
EVALUATIONS

In the following experiment, we tune a model of synoptic-scale chaotic dynamics. The likelihood is evaluated using
the extended Kalman filter (EKF), which results in noiseless likelihood evaluations.

4.1 A two-layer quasi-geostrophic model

The quasi-geostrophic (QG) model simulates atmospheric flow for the geostrophic (slow) wind motions (see, e.g.,
Fisher et al., 2011). The chaotic nature of the dynamics generated by the QG model is shown in Vannitsem and
Nicolis (1997). In our case, the system consists of two atmospheric layers and the geometrical domain of the model
is specified by a cylindrical surface. The two atmospheric layers can interact through the interface between them (see
left side in the Fig. 3). The system is simulated on a uniform grid for each atmospheric layer where the geometric
structure of the model dictates periodic latitudinal boundary conditions and the values at the top and bottom of the
cylindrical domain are set to pre-defined constant values.

When the geometrical domain of the two-layer QG model is mapped onto a plane, as shown in the right side in
the Fig. 3, the two atmospheric layers are indicated as the top layer and the bottom layer with U1 and U2 denoting the
mean zonal flows in the top and the bottom atmospheric layers, respectively. The orography in the model is such that
there is a hill formation which affects the flow in the bottom atmospheric layer. This model generates features such
as baroclinic instability common to operational weather models. Therefore, it can be used for the data assimilation
process in numerical weather prediction (NWP) systems. The model dynamics are governed by the potential vorticity
equations

D1

Dt
(
∇2ψ1 − F1 (ψ1 −ψ2) + βy

)
= 0, (18)

D2

Dt
(
∇2ψ2 − F2 (ψ2 −ψ1) + βy + Rs

)
= 0, (19)

where ψi denotes the model state vector called stream function and index i specifies the top atmospheric layer (i = 1)
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and the bottom layer (i = 2). Di denotes the substantial derivatives for latitudinal wind ui and longitudinal wind vi:

Di·
Dt =

∂·
∂t

+ ui
∂·
∂x

+ vi
∂·
∂y

.

Parameters Rs andβ denote dimensionless orography component and the northward gradient of the Coriolis parameter
f0.

The relationship between the model physical attributes and parameters F1 and F2 in Eqs. (18) and (19) is defined
by

F1 =
f2
0L

2

ǵD1
, F2 =

f2
0L

2

ǵD2
, ǵ = g

∆θ

θ̄
,

Rs =
S (x, y)

υD2
, β = β0

L

U
,

where D1 and D2 are the depths of the two layers, ∆θ defines the potential temperature change on the layer interface,
θ̄ is the mean potential temperature, g is acceleration of gravity, υ = U

f0L
is the Rossby number associated with the

defined system, S(x, y) is dimensional orography, and S(x, y) and β0 are dimensional representations of Rs(x, y)
and β, respectively. We used the implementation of the two-layer QG-model developed by Bibov (2011).
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Land
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Top layer

Figure 5. Geometrical layout of the two-layer quasi-geostrophic model. Left: Schematic representation of the two model layers on a rotating
cylinder. Right: The model layout at one of the longitudes.
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Figure 6. The illustration of the surface of the objective function estimated during BO for tuning the QG model. Each subplot corresponds to
a surface obtained by varying two parameters and keeping the other two parameters fixed. The circles represent the sampled locations: initial
(magenta) and obtained during optimization (white). The black cross indicates the maximum of the likelihood function. Note the logarithmic
scale for parameter σ. See text for a more thorough explanation.

FIG. 3: Illustration of the two-layer quasi-geostrophic (QG) model. Left: schematic representation of the two atmo-
spheric layers on a rotating cylinder. Right: the model layout at one of the longitudes.

4.2 Experimental setup

The described QG-model is used to formulate a synthetic problem of chaotic system tuning. The data used in the
tuning process are generated by a QG model resolved on a dense 120× 62 grid with the following parameters:

– layer depths are D1 = 6 km and D2 = 4 km

– distance between the grid points is 100 km.

This is our true system which is only used for generating the data.
The tuned system is a model which is governed by the same equations but it is resolved on a sparser grid 40 ×

20 with the distance between grid points to be 300 km. This truncation of the grid size is a common practice in
actual climate model testing. Thus, bias is being added to our tuning model because the fast processes affecting the
observations on the finer scale will remain unmodeled.

The tuned system is represented as a state-space model Eqs. (11) and (12) where the forward modelM is imple-
mented by a solver of Eqs. (18) and (19). The state is the 1600-dimensional vector of the stream function values in
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every point on the grid (2 × 40 × 20). In our scenario, the tuned quantity is the covariance matrix Qk of the model
error term Ek which is assumed to be normally distributed:

Ek(θ) ∼ N(0,Q(θ)) . (20)

The model error covariance matrix Q(θ) is parameterized such that its ijth element is given by

τ2δij + σ2qρij exp

(
−

x2
ij

2α2

)
, (21)

where δij equals 1 when i = j and 0 otherwise. Component exp
(
− x2

ij

2α2

)
represents the covariance function which

models the dependency of the correlation on the distance between points: xij is the distance between points i and
j projected on the same layer and α is a tuning parameter. ρij defines correlations between the two layers and it is
equal to 1 if i and j are in the same layer and ρij = ρ = exp(−γ2) otherwise (thus the actual tuning parameter is γ).
Parameter σ2q is the scaling parameter and τ is the nugget term often used to assure numerical stability.

Thus, there are four tuning parameters in total. The parameterization in Eq. (21) assures the positive-definiteness
of Q for any combinations of the tuned parameters, which is important for the stability of BO. This corresponds to
describing the model error as a Gaussian process with a covariance function separable in x and γ domains. In order
to use a valid covariance function (see e.g., Banerjee, 2005; Gneiting, 2013), we computed the distance xij in the
three-dimensional space, not on the cylinderical surface.

In the experiments, we assume that noisy observations of the simulated stream function are available at 50 ran-
domly selected grid points every six hours. Thus, the observation operator K in Eq. (12) simply selects some of the
elements of the state vector as being observed. The standard deviation of the iid Gaussian noise added to the simulated
ψ values is σy = 0.1. The same value was used to form the covariance matrix of the observation noise in the tuned
system in Eq. (12). The observation sequence contained 400 time instances.

We evaluate the likelihood using the extended Kalman filter, as described in Sect. 3.

4.3 Experimental results

We used BO with the EI acquisition function for tuning the parameters of the model error covariance matrix. Initially,
we draw samples using the Latin hypercube sampling Lizotte et al. (LHS, see, e.g., 2012) in the region α ∈ [10 500],
σ2q ∈ [0.01 0.81], ρ ∈ [0.61 0.97] and τ2 ∈ [0.25 0.81]. The initialization consists of (n = 10 × 4 + 1) points (see
pg. 473, Jones, 1998). In practice, we worked with the logarithm of the tuned parameters.

Figure 4 presents the results of BO using EI with ξ = 0. Here, we plot the approximation of the objective function
using the mean of GP fitted after 200 iterations over all the data (initial 41 samples and BO 200 samples). Since there
are four tuning parameters, each subplot presents the surface of the objective function when parameters α and log(σq)
are varied and the other two parameters ρ and τ are fixed (see the corresponding fixed values above each subplot). The
squares represent the samples used at the stage of initial sampling while the circles represent the samples gathered
during the optimization procedure. Note that the locations of the samples are approximate: they are projected to the
nearest plane corresponding to one of the subplots.

Figure 5 shows the behavior of BO at each iteration of the algorithm starting from the initial data. In Fig. 5, each
point on the cross-marked line is computed by

Lt = log (f(θt)−max(µ∗, f∗)) , (22)

where f∗ is the maximum (log-likelihood function value) and µ∗ is the GP mean value corresponding to the maximum
found using BO in this experiment. The solid line shows max(L1:t): the maximum obtained upto the current iteration
t. Here, max(µ∗, f∗) = µ∗. We observe that the number of log-likelihood function values required by the BO
method to find the best point was 152. Here, we fixed the total number of iterations to 200. While other optimization
performance criteria can be used as well (see, e.g., Huang et al., 2006, p. 457).
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FIG. 4: The illustration of the surface of the objective function estimated during BO for parametric tuning of the
QG model. Each subplot corresponds to a surface obtained by varying two parameters and keeping the other two
parameters fixed. The (magenta) squares and (white) circles represent the sampled locations. Initial marked by the
squares and the ones obtained during optimization marked by the circles. The (red) cross mark indicates the maximum
of the likelihood function. Note the logarithmic scale for parameter σq . See text for a more thorough explanation.

This experiment shows that BO with the EI acquisition function is able to find the maximum of the posterior
computed with GP while overcoming the local optima corresponding to small values of α. These values can be seen
more clearly in the top four subplots (first row) of the Fig. 4. The exploration property of the method enables us to
find the optima in a region away from where we draw the initial samples. Therefore, we can see from Fig. 5 that the
best value found upto the current iteration gradually improves over time.

5. PARAMETRIC TUNING OF A CHAOTIC SYSTEM WITH “NOISY” LIKELIHOOD EVALUATIONS

In the following example, we simulate a scenario of tuning a large-scale chaotic system in which the evaluation of
likelihood Eq. (15) using the extended Kalman filter is infeasible and therefore a stochastic EnKF is used. This results
in noisy evaluations of the likelihood. As a tuned system we use a parameterized Lorenz 95 model.
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FIG. 5: BO applied to the parametric tuning of two-layer quasi-geostrophic model. The lines illustrate behavior of
BO at each iteration of the algorithm starting from the initial data. Each point on the cross marked (black) line Lt is
computed using (22). The solid (red) line shows max(L1:t): the maximum obtained upto the current iteration t. See
text for more details.

5.1 Parameterized Lorenz 95 model

The model generating the data is the classical Lorenz 95 model (Lorenz, 1995; Wilks, 2005) whose dynamics is given
by

dxk

dt
= −xk−1(xk−2 − xk+1)− xk + F − hc

b

Jk∑
j=J(k−1)+1

zj , (23)

dzj
dt

= −cbzj+1(zj+2 − zj−1)− czj +
c

b
Fz +

hc

b
x1+b j−1

J c
(24)

where k = 1, . . . ,K and j = 1, . . . , JK. We use values K = 40, J = 8, F = Fz = 10, h = 1 and c = b = 10. In
this model, the evolution of the slowly changing state variables xi is affected by fast variables zj and vice versa.

The tuned model is designed such that only the evolution of the slow variables is modeled and the net effect of the
fast variables is represented with a deterministic component, such that

dxk

dt
= −xk−1(xk−2 − xk+1)− xk + F − g(xk,θ), (25)

and g(xk,θ) is selected to be a polynomial g(xk,θ) =
∑d

i=0 θix
i
k, similarly to Hakkarainen et al. (2012). In our

experiments, we use the polynomial of order d = 1 which corresponds to slope θ1 and intercept θ0. The forcing term
remains unchanged, that is F = Fz = 10.

5.2 Experimental setup and likelihood formulation

The data is generated from the Lorenz 95 model Eqs. (23) and (24) with the discretization interval ∆t = 0.0025. The
state of the system is represented by a 40-dimensional vector of the slow variables xk. We assume that noisy observa-
tions of the slow variables are available at 24 locations each day (one day corresponds to 0.2 time units). The last three
state variables from every set of five states are picked and thus we observe the states 3, 4, 5, 8, 9, 10, . . . , 38, 39, 40.
The standard deviation of the iid Gaussian noise added to the simulated xj values is (0.1σclim)2, where σclim = 3.5
corresponds to a climatological standard deviation.
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The tuned model is the parameterized Lorenz 95 model Eq. (25) simulated with the discretization interval ∆t =
0.025 using 50, days of observations. The tuned system is formulated as a state-space model Eqs. (11) and (12)
with a diagonal covariance matrix Q = σ2l I with σ2l fixed to 0.0065, the value found to be optimal in our previous
studies (Hakkarainen et al., 2012). Thus, the two tuned parameters are slope θ0 and intercept θ1 of the polynomial
parameterization Eq. (25).

The objective function is the likelihood Eq. (15) computed via stochastic EnKF with 100 ensemble members (see,
Hakkarainen et al., 2012) for details. Since we use a version of EnKF that involves random perturbations, the likeli-
hood evaluations are noisy. Noisy likelihood introduces difficulties in standard methods that try to explore or optimize
the likelihood surface.

5.3 Experimental results

We present at first the results of a single run of BO with the EI acquisition function (ξ = 0). Initially, we draw samples
using the LHS design (Lizotte et al., 2012) in the region 4.0 ≤ θ0 ≤ 7.0 and 0.57 ≤ θ1 ≤ 0.8. The initialization
consists of (n = 10 × 2 + 1) points (see pg. 473, Jones, 1998). These samples are represented with the squares in
Fig. 6b. Figure 6b shows the GP mean approximation over all the data (initial 21 samples and BO 150 samples). The
samples obtained using BO are shown with the circles and the cross mark indicates the found optimum. The found
optimal values of the parameters are θ0 = 1.99 and θ1 = 0.07. The standard deviation value (σn) of the estimated
noise in the total collected data was 482, which is rather large compared to the variability of the systematic component
of the objective function. Figure 6a shows a scatter of uniformly random sampling of 1000 likelihood evaluations.

In Fig. 7b, we show the region closer to the optimum. We also perform uniformly random sampling in this smaller
region and the scatter of 1000 samples is shown in Fig. 7a. At the found optimum the standard deviation of the noise is
around 200. Note that we worked with the logarithm of the tuned parameters and the likelihood function is evaluated
using the parameter values in the normal scale.
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FIG. 6: (a) The scatter plot of the objective function values calculated on uniform random samples. (b) Single result
of BO with EI for parametric tuning of the Lorenz 95 model using the EnKF likelihood. The (magenta) squares and
(blue) circles represent the sampled locations. Initial marked by squares and the ones obtained during optimization
marked by the circles. The (red) cross mark indicates the found maximum of the likelihood function. The contours
represent the objective function approximation at the last iteration of BO.

Secondly, we present the results of the 200 experiments performed using BO for the parmeterized Lorenz 95
model. Each time the initial points were drawn using the LHS design in the same region 4.0 ≤ θ0 ≤ 7.0 and
0.57 ≤ θ1 ≤ 0.8. For the objective metric, the desired log-likelihood value is obtained by evaluating the likelihood
function for different parameter values in an evenly spaced two-dimensional grid over the region 1.95 ≤ θ0 ≤ 2.05
and 0.07 ≤ θ1 ≤ 0.11. This is the region where the optimum value is highly likely to be. The likelihood function was
evaluated over the grid 200 times and the average log-likelihood function value was selected for each grid point. The
maximum of these selected values was then set as the desired log-likelihood value f∗d . We computed the root mean
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FIG. 7: The same result as in Fig. 6 but in a smaller region near the optimum. The BO samples in (b) are shown with
circles whose gray-scale colors represent the evaluated objective function values. The (red) cross mark indicates the
maximum.

square deviation by

RMS =
1

Tf∗d

√√√√ T∑
t=1

‖f∗t − f∗d ‖2 , (26)

where the total number of likelihood function evaluations T = 171, and f∗t is the maximum of the average log-
likelihood function value upto the current iteration t obtained from BO experiments. For BO, the RMS value was 2.62
and the average standard deviation in the log-likelihood function values obtained from BO experiments normalized
by f∗d was ±11.76.

Figure 8 shows the average behavior of BO at each iteration of the algorithm starting from the initial data (21
points). In Fig. 8, each circle is computed by

Ct = log (f(θt)−max(f∗b , f
∗
c , f

∗
d )) , (27)

where f∗b is the maximum (best log-likelihood function value) obtained from the 200 BO experiments and f∗c is
the maximum (best log-likelihood function value) obtained from 200 runs of the benchmark method (see details in
Sect. 5.4). Each point on the plus marked line is the average value of the 200 samples of Ct and the solid line shows
its maximum max(C1:t): the maximum obtained upto the current iteration t. Here, max(f∗b , f

∗
c , f

∗
d ) = f∗b , hence,

a small nugget 0.1 is added in Eq. (27) before taking the logarithm in order to avoid computing log(0). The dashed
line is the desired log-likelihood value f∗d which is plotted using Eq. (27). We explain the results and the comparison
between BO and the benchmark method with respect to the objective metric in Sect.5.4.

5.4 Results of comaprison with the benchmark method

In this section, we present the experiments of the parametrized Lorenz 95 model for comparison of BO with the
covariance matrix adaptation evolution strategy (CMA-ES) (see e.g., Hansen et al., 2009; Hansen and Ostermeier,
2001, 1996). CMA-ES is a powerful evolutionary (search) algorithm for difficult real-valued optimization problems.
CMA-ES uses an iterative procedure to compute a covariance matrix, formulated as the inverse Hessian matrix (typi-
cally used in a quasi-Newton method). Unlike quasi-Newton methods, CMA-ES does not use or requires to compute
gradients. CMA-ES can easily handle problems that have local optima and a noisy objective function.

With CMA-ES, we performed 200 runs, similarly to BO. Each time the initialization points were drawn uniformly
randomly in the region 4.0 ≤ θ0 ≤ 7.0 and 0.57 ≤ θ1 ≤ 0.8. Unlike BO, CMA-ES does not require the log-
likelihood function values at the initialization points because it uses this region only to compute a single mean point
around which it starts generating the first population. The initial standard deviation (step-size) required by CMA-ES
can also be computed with the initial points by the method itself. Hence, we do not provide an initial standard deviation
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FIG. 8: Parametric tuning of the Lorenz 95 model. The solid (red) and the dot marked (magenta) lines illustrate the
average behavior of BO and CMAES (benchmark method), respectively. A total of 200 experiments are performed
using each method with random initializations of the initial parameter values in the same region in each experiment.
This results in 200 × 171 likelihood function evaluations for each method. Each grey color circle Ct is computed
using (27). Each point on the plus marked (black) line is the average value of the 200 samples of Ct and the solid
(red) line shows its maximum max(C1:t): the maximum obtained upto the current iteration t, for BO. The dot marked
(magenta) line shows the same for CMAES method. The dashed (blue) line is the desired log-likelihood value in the
objective metric (see text for details).

(step-size). CMA-ES generated a population size of 7 during each algorithmic iteration. After initialization, CMA-ES
does require evaluating of the likelihood function for each member in the population at every algorithmic iteration.
The method returns the mean and the median (sorted) of the log-likelihood function values at each iteration. In Fig. 8,
the dot marked line shows the average behavior of CMA-ES at each iteration of the algorithm. The RMS value was
2.82 and the average standard deviation in the log-likelihood function values obtained from CMA-ES experiments
normalized by f∗d was ±11.7. This shows that the performance gap between BO and CMA-ES is small, BO is able to
maximize over the likelihood function faster and this is the edge it has when it is used for computationally expensive
objective functions.

5.5 Accuracy of the tuned parameters

For the Lorenz 95 case, we test the goodness of the optimization scheme by computing the forecast accuracy, similarly
as in Hakkarainen et al. (2012). We use a two-dimensional grid of the parameter space and compute the average
forecast error for different parameter values. The average forecast error was computed using a 6 day forecast starting
every 24h for 100 days. The average forecast error can be written as

Favg(θ) =
1

NKσ2clim

N∑
i=1

‖M6(xtrue
i , θ)− xtrue

i+6 ‖2 , (28)

where N = 100, K = 40 and σclim = 3.5. The notation M6(xtrue
i ) means a 6 day prediction launched from

the true state xtrue
i with the parameter values θ. The relationship between the average forecast error and the tuned

parameters is shown in Fig. 9(a). The contour surface represents the forecast error computed with Eq. (28). The
squares indicate the parameter values used to initialize the BO method. The circles show the locations corresponding
to samples obtained from BO. The cross indicates location of the maximum obtained using BO. Note that the result
of BO shown in Fig. 9 is the same as discussed in section 5.3.

Similarly, the relationship between the EnKF likelihood function and the tuned parameters is shown in Fig. 9(b).
The contour surface represents the EnKF log-likelihood function values obtained using a 50 days simulation length of
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the model. The contours are drawn using the values computed on the same two-dimensional grid as in Fig. 9(a). Note
that the contour lines are curly due to noisy values obtained with the EnKF likelihood function. The circles and cross
mark correspond to the same result as shown in Fig. 9(a).
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FIG. 9: (a) The contour surface represents the forecast error computed with (28). The contours are drawn using the
error values computed on an evenly spaced two-dimensional grid. The (magenta) squares show the parameter values
used to initialize the BO method. The (blue) circles show the locations corresponding to samples obtained from BO.
The (red) cross indicates location of the maximum obtained using BO. The simulation length of the model used for
the BO experiment was 50 days. (b) The contour surface represents the EnKF log-likelihood function values obtained
using a 50 days simulation length of the model. The contours are drawn using the values computed on the same two-
dimensional grid as in (a). Note that the contour lines are curly due to noisy values obtained with the EnKF likelihood
function. The squares, circles and cross mark correspond to the same result as shown in (a) on the left.

With similar experiments, we tested the sensitivity of EnKF likelihood function and BO method to the simulation
length of the Lorenz 95 model. We performed more experiments with larger number of days. The results of these
experiments are shown in Fig. 10. These plots are similar to Fig. 9(b) except the differences that follow. In Fig. 10(a),
the contour surface represents the EnKF log-likelihood function values obtained using a 100 days simulation length
of the model. The simulation length of the model used for the BO experiment was also 100 days. In Fig. 10(b), the
contour surface represents the EnKF log-likelihood function values obtained using a 500 days simulation length of
the model. The simulation length of the model used for the BO experiment was also 500 days. From these results, we
observed that there is a good agreement between the tuned parameters obtained with BO using the likelihood approach
and the average forecast error when the simulation length is sufficient.

We performed the lead time analysis for the parameters obtained using the BO method. Figure 11 consists of
three subplots corresponding to different simulation lengths (days) of the EnKF likelihood employed with BO. The
BO parameters utilized for computing the lead time in each subplot of Fig 11 correspond to the same points as shown
in Fig. 9(b), Fig. 10(a) and Fig. 10(b), respectively. We observe that the BO optimum in all three cases of 50, 100, and
500 days of EnKF likelihood simulation length has the lowest average forecast errors upto an acceptable lead time.
The lead time analysis shows that the performance of BO is consistent over different lead times. It is also observed
that the average forecast error saturates after a lead time of (5-6) days for some of the parameters, especially, for the
initial points, which correspond to low log-likelihood function values (as shown in Fig. 9 and Fig. 10).

6. CONCLUSIONS

In this paper, we considered Bayesian optimization as a tool for parametric tuning of chaotic systems. We used two
benchmark systems for testing the BO procedure: a simplified atmospheric model and a low-dimensional chaotic sys-
tem. In the two-layer QG-model, the tuning parameters were four variables that constructed a model error covariance
matrix used in the filtering with EKF. In the Lorenz 95 model, the tuning parameters were two variables that were used
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FIG. 10: Similar plots as shown in Fig. 9(b) except the differences that follow. In (a), the contour surface represents
the EnKF log-likelihood function values obtained using a 100 days simulation length of the model. The simulation
length of the model used for the BO experiment was also 100 days. In (b), the contour surface represents the EnKF
log-likelihood function values obtained using a 500 days simulation length of the model. The simulation length of the
model used for the BO experiment was also 500 days.

in the construction of a polynomial parameterization. For both experiments, the learning was based on the filtering
likelihood.

The experiments showed that by using BO we were able to find the optimal solutions. The expensive models were
tuned without the need of any gradient information. For the parametric tuning of Lorenz 95 model, we showed the
performance of BO compared to CMA-ES using an objective metric. The results showed that the performace gap
between BO and CMA-ES was small and that BO was able to maximize the likelihood function faster as compared
to CMA-ES on average. The accuracy of the tuned parameters using the average forecast error showed the goodness
of the optimization scheme. We showed the accuracy of the found parameters with respect to different simulation
lengths of the model used in the EnKF likelihood function. We also showed the performance of the found parameters
with respect to lead time.

The tested technique can be a practical tool in many tuning problems in climate sciences. Possible applications
include parametric tuning of large-scale climate models (Schirber et al., 2013) and ensemble prediction systems (Solo-
nen and Järvinen, 2013). However, there are some known issues when using the BO method for large systems: first,
with the increase in the number of tuning parameters of the model the required number of samples to explore the do-
main would automatically increase. Second, with limited availability of training data due to expensive computational
cost of the model, little is known about the objective function which means the design of the prior becomes more
critical. BO is more suitable for computationally expensive black-box optimization tasks, especially, when the cost
of evaluating the objective function is higher than the cost of fitting a GP. Third, with the exploration vs exploitation
property of acquisition functions, one has to decide on how to handle such parameters. Although, some recent papers
have shown that BO works well in real-world problems for the following dimensions: 12 in Brochu et al. (2010c), 9
in Snoek et al. (2012), or 9 in Brochu et al. (2010b), in general the problem of larger dimensionality still remains an
active research topic, especially, in machine learning.

We see the above mentioned problems as a very interesting direction for researchers, especially, in weather and
climate applications. Applying the BO technique to large-scale models like ECHAM5 is a future direction to con-
sider, for example, this approach can be used for tuning four parameters of ECHAM5 that are related to clouds and
precipitation, as done by Järvinen et al. (2010).

International Journal for Uncertainty Quantification



Bayesian optimization in parametric tuning of chaotic systems 17

0 5 10 15
0

0.5

1

1.5

2

BO with EnKF likelihood (50days)

A
v
e

ra
g

e
 f

o
re

c
a

s
t 

e
rr

o
r

Leadtime

0 5 10 15
0

0.5

1

1.5

2

BO with EnKF likelihood (100days)

A
v
e

ra
g

e
 f

o
re

c
a

s
t 

e
rr

o
r

Leadtime

0 5 10 15
0

0.5

1

1.5

2

BO with EnKF likelihood (500days)

A
v
e

ra
g

e
 f

o
re

c
a

s
t 

e
rr

o
r

Leadtime

 

 

Initial samples

Iterations

Optimum

FIG. 11: Lead time analysis for the parameters obtained using BO method. The BO parameters utilized for computing
the lead time in each subplot here correspond to the same points as shown in Fig. 9(b), Fig. 10(a) and Fig. 10(b),
respectively.
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