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Abstract—Local pattern mining methods are fragmented
along two dimensions: the pattern syntax, and the data types on
which they are applicable. Pattern syntaxes considered in the
literature include subgroups, n-sets, itemsets, and many more;
common data types include binary, categorical, and real-valued.
Recent research on pattern mining in relational databases has
shown how the aforementioned pattern syntaxes can be unified
in a single framework. However, a unified understanding of how
to deal with various data types is lacking, certainly for more
complexly structured types such as time of day (which is circular),
geographical location, terms from a taxonomy, etc.

In this paper, we introduce a generic approach for mining
interesting local patterns in (relational) data involving such struc-
tured data types as attributes. Importantly, we show how this can
be done in a generic manner, by modelling the structure within a
set of attribute values as a partial order. We then derive a measure
of subjective interestingness of such patterns using Information
Theory, and propose an algorithm for effectively enumerating
all patterns of this syntax. Through empirical evaluation, we
found that (a) the new interestingness derivation is relevant and
cannot be approximated using existing tools, (b) the new tool, P-
N-RMiner, finds patterns that are substantially more informative,
and (c) the new enumeration algorithm is considerably faster.

I. INTRODUCTION

Motivation. Local pattern mining, including itemset mining
and variants [1], n-set mining [2], subgroup discovery [3],
and multi-relational pattern mining [4], [S], has traditionally
been rooted in categorical (or even binary) data. Some of these
local pattern mining approaches have been extended in various
ways to include ordinal, interval (e.g. real-valued), or otherwise
structured data. For example, extensions of itemset mining for
real-valued data has led to approaches akin to biclustering,
and subgroup discovery methods that allow discovery of rules
based on attribute-value inequalities are available.

This work is fragmented and often ad hoc, in the sense
that other kinds of structure (e.g., taxonomy terms, time-of-
day intervals on a circular 24-hour clock, geographical regions
on the globe, etc.) may not be approachable in the same way
and may necessitate fundamentally different approaches. The
purpose of this paper is to provide an elegant and encompass-
ing framework to deal with attributes of any of the structured
types listed above and more, and this in a relation setting
(i.e., applicable to data as it resides in relational databases).
To illustrate the breadth and nature of the contributions, we
provide two motivating examples.

Example 1: Consider a dataset of Foursquare' check-in

times of a number of users. Such a dataset has the potential
of elucidating particular lifestyle patterns shared by a number
of Foursquare users. To formalise and then find such patterns,
it is tempting to specify a time resolution and discretise the
data. However, it is unclear which discretisation level to use,
and whether to take it uniform throughout the day. In fact, the
optimal discretisation could vary for various lifestyle patterns.

An alternative approach could be to take the mean and
possibly higher-order statistics of the check-in times for each
user, and find patterns in this summary description. This
approach would suffer from two problems: first, computing
averages of circular quantities is ambiguous (e.g. is the mean
of 6am and 6pm midnight or noon?), and second, it ignores
much of the information in the data.

The method developed in this paper, when applied to this
data, deems as most interesting a pattern that reveals that 1.6%
of all users check in frequently in the 6am-7am interval and
again in the 10.10am-10.50am interval. Here, the interval sizes
are tuned automatically to maximise interestingness.

While the first example illustrates how the contribution in
this paper advances the state-of-the-art even for a single rela-
tion (between users and check-in times), the second example
shows the full power on data in a relational database.

Example 2: Consider a relational database involving users,
who have rated books (with an integer from 1 to 5), which
are tagged with a number of genres organised in a taxonomy.
Applied to this dataset, the method proposed in this paper
identifies interesting patterns in the form of sets of books that
have been rated by the same set of users in a similar way (say,
in the 3-5 interval), which may all belong to a particular set
of genres (say, fantasy and action).

This second example illustrates the ability of the proposed
method to identify patterns that span several types of entities
(users, ratings, books, genres), including structured ones with
e.g. ordinal values or values that are organised in a taxonomy.

Contributions. The work in this paper is most easily explained
as an extension of the N-RMiner algorithm for mining local
patterns in relational databases [6], towards structured entity
types. However, given the generality of the N-RMiner pattern
syntax, this immediately results in a method that includes
itemset mining, n-set mining, and subgroup discovery for
structured data types as special cases. To do this, we overcome
the following challenges.

Thttps://foursquare.com/
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Figure 1. Example schema of users and check-in times. Additionally, we
know the age and profession of the users. There are three relationship types:
there are relationships between (1) users and check-in times, (2) users and
ages, and (3) users and professions.

e We formalise the problem and a matching pattern syntax,
in a manner as generic as possible (Sec. II). To achieve
this, we adopt an abstract formalisation in terms of a
partial order over the structured values. For example, with
the time-of-day and book ratings, the partial order is over
the intervals, where one is ‘smaller’ than another if it is
included in it. For taxonomy terms, one taxonomy term
is smaller than another if it is a specialisation of it.

e We formalise the interestingness of such patterns. This is
a non-trivial contribution over the approach applicable for
the N-RMiner pattern syntax (Sec. III).

e We provide an algorithm for efficiently enumerating all
such patterns. This is a non-trivial extension of the
algorithmic approach used in N-RMiner (Sec. IV).

II. PROBLEM FORMALISATION

Notation. We formalise a relational database as a tuple
D = (E,t,R,R, ). Here, E denotes the set of entifies, and
t: E — {1,...,k} is a function that gives the type of an
entity (assuming k types). R denotes the set of all relationship
instances in the database, while R C {1,...,k} x {1,...,k}
denotes the set of tuples of entity types whose entities may
have relationships, according to the schema of the database.
The elements of R will be referred to as the relationship types.
So far, this is identical to the formalisation in [5].

As an example, consider the schema illustrated in Figure 1.
There are four entity types: User (1), Check-in times (2),
Profession (3), and Age (4). The numbering is arbitrary. The
set F contains all entities of all types. The set of allowed
relationships is R = {(1,2),(1,3),(1,4)} and R contains all
actual instances of such relationships.

In the Check-ins data (Figure 1), Age, Check-in times, and
Profession could all be structured attributes; the values of Age
are numerical, Check-ins times are numerical but without full
order, and Profession has hierarchical structure. One could be
interested in finding patterns in such data not only including
an exact age such as 32, but also intervals such as [25-35]. The
set of all such intervals can be modelled as a partial order. An
example of such a partial order is given in Figure 2.

Hence, we consider one additional element in the data
model: a partial order > that represents implication of relation-
ships across entities of the same type. That is, e = f means
that if any entity g is related to f, i.e., (f,g) € R, then g is
also related to e:

Ve,f, g€ E:e= fA(g,f) ER= (g9,e) € R.

Only implications between entities of the same type are al-
lowed: e = f = t(e) = t(f). We assume that R contains both
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Figure 2. Partial order of all intervals that are supersets of {1}, {2}, {3},
and {4}. The partial order corresponds to the superset relation.

the relationship instances between the basic entities present in
the database, as well as all relationship instances implied by
>~. Where possible, we do not store implied edges explicitly.
Hence, we assume R contains all relationship instances only
for notational convenience.

Pattern Syntax. Our aim is to find sets of entities that have
surprisingly many relationships. We will refer to a set of
entities and the relationship instances among them as a pattern.
The approach that we take is to first enumerate all possibly
interesting patterns, and then rank them according to their
interestingness. We define a pattern as potentially interesting
if it is complete, connected, maximal, and proper.

Definition 1: An entity set F' C E is complete iff

v(tl,tQ) (S R,Vei,ej S F,t(ei) = tl,t(ej) =19 :
(ei,ej) eR.

Definition 2: An entity set F' C E is connected iff

Ve,f € Fie# f:(e,f) € RV 3g € F,{e, g} connected

N f, g} connected.
Definition 3: An entity set F' C E' is maximal iff

Be € E: FU{e} is complete and connected.

Definition 4: An entity set F' C E is proper iff
Vec F.feE f=e:feF.

That is, a pattern F' is complete iff all relationship instances
between entities in F' that are allowed by the database schema
are also present. A pattern F' s.t. |F'| > 2 is connected iff there
is a path between any two entities in F' using only entities in
F. Any F s.t. |F| < 1is connected. A pattern F is maximal iff
no entity can be added without breaking completeness. Proper
means that all super entities of any entity in F' are also in F.

We refer to sets that are complete, connected, and proper
as complete connected proper subsets (CCPSs), and to sets
that are also maximal as maximal CCPSs. In Section IV, we
will show that we can enumerate all maximal CCPSs using
the so-called fixpoint-enumeration algorithm. The number of
such maximal CCPSs may be large though, so in a second
step we score and rank them according to an appropriate
interestingness measure.



In short, we add a properness constraint and the pattern
syntax is otherwise equivalent to [5], [6]. Our implementation
and theory also support n-ary relationships, but we do not dis-
cuss this further in order to prevent unnecessary complications
in the exposition. One could also mine approximate patterns
by discarding the completeness constraint. This would lead to
an increased computational complexity, but the increase has
been shown to be manageable [7]. For simplicity, we do not
consider approximate patterns in this paper.

III. INTERESTINGNESS

General Approach. Although we limit the output to maxi-
mal CCPSs, the number of patterns can be—and often is—
exponential in the number of entities. Therefore, it is vital to
have a mechanism for identifying the most interesting CCPSs.
To achieve this, we build upon the framework for interesting
pattern mining introduced by De Bie [8], [9]. This framework
is based on modelling the user’s prior belief state about the
data by means of a Maximum Entropy (MaxEnt) distribution,
subject to any stated prior beliefs the user may hold about
the data. This distribution is referred to as the background
distribution. The interestingness of a pattern is then formalised
by contrasting the pattern with this background distribution, as
the ratio of two quantities:

e the self-information of the pattern, defined as minus the
logarithm of the probability that the pattern is present
under the background distribution, and

e the description length of the pattern, which should for-
malise the amount of effort the user needs to expend to
assimilate the pattern.

Given the dependence of this measure on the background
distribution, which may in principle differ for different users,
this interestingness measure is a subjective quantity.

In [5], this framework is used successfully to formalise
the interestingness of Complete Connected Subsets (CCSs),
without the properness requirement that lies at the core of the
contributions in this paper. The properness requirement, how-
ever, creates an opportunity as well as a non-trivial challenge. It
allows to describe single patterns that capture information that
previously could only be presented in a set of patterns. Such
patterns reduce the description length. On the other hand, it is
harder to compute the self-information of a pattern. We briefly
discuss these issues in the next paragraphs, before discussing
the latter in greater detail in Sec. III-B.

Description Length. The description length of a CCS pattern
is formalised as an affine function of the number of entities | F|
in F. More specifically, with |E| the total number of entities
in the database [5]:

1-— 1
DescriptionLength(F') = |F|log <p>-|-|E log (1) ,
p —-p

where p € (0, 1) is a parameter that trades off the cost between
describing the presence of an entity in the pattern F' (cost
log(p)) and describing its absence (cost log(1 — p)).

However, to convey a CCPS pattern to the user, only the
minima of F' need to be described. Indeed, the presence of
the entities that are larger is implied; explicitly describing
these would be redundant. Thus, the above expression needs

to be modified by replacing |F'| with the number of minima
in F. This leads to a smaller description length than would
be required if the partial order >~ would be unknown or
unaccounted for.

Information Content. In the following section, we argue that
the background distribution can be fitted in the exact same
way as in [5]. However, how to compute the probability that
a given pattern is present—and thus its self-information—
is not trivial. The difficulty stems from the fact that the
presence of relationship instances is now dependent, owing
to the partial order relation over the entities. Nonetheless,
Sec. III-B describes how the probabilities can still be computed
effectively by using the inclusion-exclusion principle.

A. The background distribution

In [5], interestingness is formalised under the assumption
that users have prior beliefs on the number of entities of a
specific type to which a given entity is related. It is argued
that this is often a good assumption, and the experiments in
the current paper also support that.?> This assumption leads to
a tractable distribution, under which the relationship instances
are independent with probabilities that can be found by solving
an efficiently solvable convex optimisation problem.

This background distribution factorises over the different
relationship types, such that the self-information can be de-
composed into a sum of different contributions, each one
of which corresponds to the relationship instances for one
particular relationship type. That is also the case in the present
paper, such that in the rest of this exposition it suffices to
imagine just a single relationship type.

What is new is that we implicitly make a further assump-
tion on the user’s knowledge state, namely that the user knows
the partial order =, and hence the fact that if ¢ = f A (g, f) €
R, then (g,e) € R. This creates hard-to-handle dependencies
between the presence of relationship instances. In practice,
data will often only contain relationship instances between
minimal entities. In this case, the background distribution can
be fitted on the set of minimal entities without worrying about
the dependencies, in exactly the same way as done in [5].

In particular, we assume prior beliefs on the number of
relationship instances each (minimal) entity is involved in, for
every relationship type. The distribution of maximum entropy
subject to these prior belief constraints is then used as the
background distribution. As shown in [5], this background
distribution is a product of Bernoulli distributions, with one
factor for each possible relationship instance. In other words:
for each possible relationship instance (e, f), the distribution
gives us a probability p. s that (e, f) is present in the data.

This background distribution defines the probabilities p(c, 1)
of relationship instances between minimal entities e and f.
Given this, it is possible to compute the probability p(. sy of
any relationship instance (e, f), whether minimal or not, as
the probability of presence of any of the relationship instances
(e, f') withe = € and f > f’ and e’ and f’ minimal. Indeed,
the presence of any such (¢’, f’) would imply the presence of
(e, f). How this probability is computed, and how it can be

20f course, exploring other types of prior beliefs is an important line of
further work.



used to compute the overall probability of a CCPS pattern
given the background distribution, is the subject of Sec. III-B.

More generally, for data that includes relationship instances
between non-minimal entities, let us define a partial order >
over the relationship instances as follows: (e, f1) == (e2, f2)
iff e; > f; and es > fo. Then, we suggest fitting the
background distribution as before on the minimal relationship
instances only. This includes the approach from the previous
paragraph as a special case.

This model is imperfect, as the user should be aware of
negative dependencies between the presence of a relationship
instance as a minimal one: if (ez, f2) is a minimal relationship
instance, then (eq, f1) with (e, f1) == (e2, f2) and (es, f3)
with (es, f3) =® (es, f2) cannot be minimal relationship in-
stances. Yet, we argue that in this case, assuming independence
is nonetheless still a good approximation.?

B. The self-information of a CCPS

Given a pair of entities (e, f) such that (¢(e),t(f)) € R
(i.e., they may be related according to the database schema), let
us denote the event that (e, f) € R as A 5) (A for Absent).
The probability of this event under the background distribution
can be computed as:*

P(Ae.p) = 11

(e, f"):(e, fl=r (e, f")

(1 — p(e’,f’))'

The presence of a CCPS pattern F' corresponds to the event
defined by the complement of the union of all events A y)
with e, f € F and (t(e),t(f)) € R. Hence, the union of all
these events corresponds to the event where at least one of
the relationship instances is missing. The complement of the
union of absence events implies the presence of the pattern.
Defining T as Tr = {(e, f)le, f € F, (t(e),t(f)) € R}, the
set of pairs of entities in F', this means that the probability
of a pattern is given as 1 — P (U(e7f)eTFA(e7f)). Note that
it suffices to consider only the minimal relationship instances
from T, as ~A(c y) implies A ) for any ' = e, f' = f.

Directly computing this probability is nontrivial, given the
dependencies between the events A, ry. Fortunately, we can
use the inclusion-exclusion principle to compute it as follows:

Pl U Aen|=D2 EDIP L () Aey

(e.f)ETF ICTr (e,f)er

Now, the probability of the intersection of events A y)

3The intuition is as follows. In practice the probabilities for relation-
ship instances under the background distribution are small. Additionally,
for two events with small probabilities p and g, the probability of their
union is between p + g (in the case of perfect negative dependence) and
1—(1—p)(1—q) = p+q— pq (in the case of independence), which differs
by only pg, such that assuming independence results in at most a second order
error in the probabilities.

4As pointed out in Sec. III-A, this expression is exact for databases where
relationship instances involve only minimal pairs, and a good approximation
in practice in other cases. Note also that only minimal relationship instances
have positive probability, and hence non-minimal instances can be ignored.

can be computed straightforwardly as:’

Pl () Aep | = 11

(e.f)el (e, f):(e.f)zr (e f)

L=peer -

Hence, we can compute the probability of the presence of
a pattern. The self-information is then given as the negative
logarithm of this probability:

SelfInformation(F') = —log | 1 — P

U Aen

(e,/)ETF

IV. ENUMERATION ALGORITHM

Last but not least, we study how to efficiently enumerate
all maximal CCPSs. Like previous work on mining interesting
patterns in relational data [5], [6], [7], our algorithm is based
on the fixpoint-enumeration algorithm by Boley et al. [10].
Although that algorithm already exists, it should be noted that
it is a meta-algorithm, which does not directly work on the
data. The fixpoint-enumeration algorithm takes as input a set
system and a closure operator that together define the problem
setting and the output (definitions given below).

We first introduce the fixpoint-enumeration algorithm, af-
ter which we introduce notation and formalise our practical
problem of enumerating maximal CCPSs as a problem of
enumerating all fixpoints in a set system. We prove that the
introduced set system is strongly accessible, which is required
for the fixpoint enumeration to be applicable, and present a
suitable closure operator. Finally, we analyse the computational
complexity.

The Enumeration Algorithm. The fixpoint-enumeration al-
gorithm can efficiently enumerate all fixpoints in a strongly
accessible set system (E,F), where E is a set of objects
called the ground set and F C P(E) a family of sets. The
fixpoints are defined by a closure operator o. The output of
the algorithm is valid if and only if the set system satisfies
certain criteria [10]. The algorithm is very simple:

(1) Start with the empty set as the current set: F':= {0}.

(2) Compute the closure of the current set: F' := o(F'). This
closure is one of the fixpoints to return.

(3) If 3G 2 F : G € F, then pick any element f € G\ F :
FU{f} € F and recurse from (2) to one branch where every
set contains f and one branch where no set contains f. If there
is no such superset then this branch ends.

Iff the set system (E,F) is strongly accessible, then all
sets in F can be found by adding elements one by one while
traversing only over sets in F. The closure operator defines
the fixpoints, which should be interpreted as the subset of sets
from F that we would like to enumerate.

Enumerating CCPSs. The set of all CCPSs forms a set system
(E,F) where the ground set E is the set of entities and F is
the set of valid patterns, defined as

F ={F € P(E) : F connected A F' complete A F' proper}.

SNote again that only minimal relationship instances (e’, f’) need to be
considered, since non-minimal relationship instances have zero probability.



The fixpoint-enumeration algorithm can be used to enumerate
all closed patterns from this set system, and it is efficient if
we can define an appropriate closure operator. Ultimately, we
are interested in enumerating the maximal CCPSs, while F
contains all CCPSs.

Strong Accessibility. For the fixpoint-enumeration algorithm
to be applicable, the set system must be strongly accessible.
This is the case iff

VF € F\{0}:3ee€ F:F\{e} € F,and (1)
VEF e FFCF :3ec F'\F:FUle}eF. (2

Theorem 1: (E,JF) is strongly accessible.

Proof: We prove each of the two properties separately, but
first we introduce some notation for convenience. Let (F, >)
denote the set F' partially ordered by >=. We write that an entity
e € F is minimal in (F, =) iff Af € F,e # f,e = f. Likewise
an entity e € F is maximal in (F, =) iff Af € Fe # f, f = e.

The first property states that for every CCPS F', there
should be an entity e € F' that can be removed such that
we obtain another CCPS F' = F \ {e}. We prove this by
narrowing down candidates by looking in turn at completeness,
properness, and finally connectedness:

(DVF e F\{0}:3e€ F:F\{e} € F, because

— Removing an entity never violates completeness.

— Any e € F,e minimal in (F,>) can be removed without
breaking properness, and Je € F, ¢ minimal in (F,>)
—If3Je, f € F,e = f, f minimal in (F,>), then F\{f} € F,
because F' \ {f} is complete and proper (see two previous
statements) and since F' is connected, for any (f,g) € R also
(e,g9) € R (since e = f), thus F'\ {f} is also connected.

— If Je, f € F,e = f, f minimal in (F, =), then Ve € F :
e minimal in (F, >). Hence, removal of any entity would not
break completeness or properness. Then, we could model the
entities of F' as nodes in a graph and the relationship instances
between entities in F' as its edges. Since F' is connected, that
graph is also connected. Any connected graph has a spanning
tree and it is possible to remove any leaf node from that
spanning tree without breaking connectedness of the graph.

The second property states that for any pair of CCPS
F,F' € F,F C F', there is an entity e € F’ \ F that can
be added to F' to lead to another CCPS F U {e} € F. We
prove this property by considering all entity types of entities
that are in /” and not in F', and then we condition on whether
F is the empty set or whether it already contains some entities.

Q) VF,F' € F,F C F':3ee€ F'\F: FU{e} € F, because
— Let t(F) = {t;|t; = t(e),e € F}. For every type t; €
t(F'\F),3e e F'\ F : t(e) = t;,e maximal in (F'\ F,>),
since F’\ F is finite.

— If F = (), then for Ve € F'\ F,t(e) = t;, e maximal in (F’\
F,=): FU{e} e F.

— If F D (), then because every entity type has one or more
maximal elements and F’ is connected, there is a type adjacent
to or present in F' which includes an entity e maximal in (F"\
F,>) and then F'U{e} is complete, connected and proper. W

The Closure Operator. Strong accessibility implies that we
can efficiently enumerate all fixpoints in JF in a single traversal
over the set system without considering any set twice [10]. A
trivial choice for the fixpoints would be all sets in F'; in which

case o(F) = F,VF € F. However, in the worst case the
number of CCPSs |F| is an exponential in |E|, while there is
only one maximal CCPS. Hence, we would like to choose the
set of fixpoints such that it includes all maximal CCPSs and as
few other CCPSs as possible. It is not possible to choose the
closure operator such that we enumerate only maximal CCPSs,
because a CCPS may have multiple maximal extensions.

We derive a suitable closure operator from its requirements;
an operator o : F — F is a closure operator for the fixpoint-
enumeration algorithm iff VF, G € F, o is

extensive: F' C o(F),
idempotent: o(o(F)) = o(F), and
monotonic: F C G = o(F) C o(Q).

Firstly, extensivity is straightforward to guarantee, we
choose o(F') such that it never removes entities from F'.
Secondly, due to idempotency, we require that the closure of
a maximal CCPS is the maximal CCPS itself, otherwise it is
not a fixpoint and will not be in the output. Thirdly, suppose
that the set F' has two supersets that are maximal CCPSs:
F' F" D F,F' # F”. Since they are maximal, they both
contain an entity that is not in F, nor in the other maximal
CCPS. Extensivity combined with monotonicity forces us to
choose o(F) such that it does not add any entities that are
missing from any superset G 2 F,G € F.

Hence, we define the closure as follows. Let the set of com-
patible entities be Comp(F') = {e € E|F'U{e} is complete},
i.e., all entities that can still be added to I, and let the set of
augmentation entities be Aug(F) = {a € A|F U {a} € F},
i.e., all entities that can be added while leading to a valid
CCPS. Then we define the closure operator as in [5]:

o(F) ={e € Aug(F)| Comp(F Ue) = Comp(F)}.

This operator is extensive and monotonic, but not idem-
potent. Without idempotency, we would still enumerate all
maximal CCPSs, but more non-maximal CCPSs. We achieve
idempotency by repeating the closure operator until o(F') = F'.
The repetition can be done efficiently by considering only
entities that have just become part of Aug(F).

In [5], it is assumed that the dataset does not contain any
entity e that is related to all entities of a neighbouring type,
because then all other entities could be in its set of compatible
entities (Comp({e}) = E), hence o(0) D {e}, while e need
not be part of every CCS. Thus, this assumption is required
for the closure operator to be monotonic.

In the current setting, entities that are fully connected to a
neighbouring type would not be uncommon and this assump-
tion is not reasonable. For example, there could be a catch-
all entity in a hierarchical attribute. Hence, we additionally
define o () = 0. Alternatively, one could redefine Comp as
Comp(F) = {e € E|3G D FU{e},G € F}, but we leave
that to future work. Due to space constraints, we omit the proof
that this o is a closure operator.

Final Remarks. The fixpoint-enumeration algorithm enumer-
ates all fixpoints, i.e., any set that results from computing the
closure operator. We are only interested in maximal CCPSs,
so we output only those. They are easily identified during the



mining process as they are fixpoints where no entity could be
added (Sec. II, Definition 3).

Finally, we allow a user to put any number of constraints on
the set of patterns in the form “any pattern should include at
least X entities of type Y ”. We implement this by continuously
computing upper bounds during the mining process, such that
we can prune any branch where the constraints cannot be
satisfied any more. A similar approach is followed in [5].

The source code for P-N-RMiner can be found at
https://bitbucket.org/BristolDataScience/p-n-rminer.

Computational Complexity. As stated previously, the number
of maximal CCPSs can be exponential in |F|. Since P-
N-RMiner exhaustively enumerates all maximal CCPSs, the
worst-case complexity of P-N-RMiner is also exponential in
|E|. Unfortunately, we are not aware of an upper bound on
the number of maximal CCPSs, nor do we know the exact
worst-case complexity of our algorithm.

It has been shown that the delay time between finding
two closed CCSs using the fixpoint-enumeration algorithm is
O(|E[®) [5]. The algorithm used here is almost the same,
except that computing the set of augmentation entities Aug
also involves checking the properness constraint. However,
the complexity of that is still O(|E|), hence the delay time
is equivalent. It is not known whether there is a polynomial
delay time for maximal CCPSs.

V. CASE STUDIES

The framework and theory presented in the previous sec-
tions give rise to several empirical questions, which we aim to
address in this section through three case studies. Our primary
contribution is the formalisation of a more general pattern
syntax, hence the primary question that we need to verify
experimentally is:

1) Can we find patterns that are more interesting?

Our secondary contribution is the derivation of an interest-
ingness score that accounts for the dependence between rela-
tionship instances of structured attributes. Hence, the second
question is:

2) Is the new interestingness score relevant?

Thirdly, we present a novel enumeration algorithm. Given
the appropriate input, the enumeration algorithm from [6]
would output the same maximal CCPSs. However, we claim
P-N-RMiner is faster, because it can capitalise on the partial
order structure. Hence, the third question is:

3) Is the new enumeration algorithm faster?

We aim to answer the first two questions in the following
case studies, and also showcase the type of patterns that one
can find using the method introduced in this paper. The third
question we discuss in Section VI.

Foursquare Check-Ins. First we return to the Foursquare
Check-ins data discussed in the introduction. This data was
gathered by Cheng et al. [11] from several online social media
but mostly (> 50%) from Foursquare, and consists of user-
ids, check-in times, and venues. The data consists of 225K
users and 22M recorded check-ins. Data such as this could be
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Figure 3. Two examples of density estimation and mode location finding for
the check-ins data.

useful to identify patterns of mobility of people, busy times of
certain services, etc. Ordinarily, we would represent this data
using three entity types and triary relationship instances; user
x checks in at time ¢ into venue y. To make this example as
simple as possible, we omit the information about venues.

In this case, we are interested in finding patterns in the
check-in times across users such as “many users check in
somewhere both between 8.30 and 9.30 in the morning and be-
tween 11.30 and 12.30 around noon”. Such patterns cannot be
identified by running P-N-RMiner on the data directly, because
relationship instances carry no weights (or any information
about their probability). Hence, users that check in frequently
and are tracked over a long period of time will have checked
in somewhere at many times of the day.

Hence, we preprocess the data by computing kernel density
estimates for each user, using a Gaussian kernel with a width of
one hour and then locating the modes of their check-in times,
with 10-minute precision. Two examples are visualised in
Figure 3. As aresult, instead of 22M check-ins, the relationship
instances correspond to 684K modes, 3 per user on average.
This way, more data ensures that our patterns will become
more accurate.

We are interested in discovering patterns that possibly in-
clude time intervals and not just specific times. As possibilities,
we considered asking P-N-RMiner to try intervals up to one,
one and a half, and two hours. The reason we consider several
options is because the more intervals there are, the more
difficult the computational problem is. We identified for each
interval size the largest subsampled data that we could run in
less than 8 hours®, using a reasonable constraint on minimum
number of users in any CCPS, each time cutting the data size
in half. We found these sample sizes to be 278 (879 users), 27°
(440 users), and 27'° (220 users), with minimum constraints
of 0, 10, and 10 users in all patterns.

Neither of the settings yields substantially more interesting
patterns than another. The ‘up to 2-hour intervals’ adds least
information to the other two; more than half of the top-100
patterns for that setting contain only intervals that are shorter
than 1.5 hours and are thus also present in those results, and
the interestingness scores are < 0.815, while the top-65 for ‘<
1-hour’ and the top-26 for ‘< 1.5-hours’ have higher scores;
up to 0.861 and 0.855 respectively. Notice that such scores are
not straightforward to interpret, because whether such a score

SUnfortunately our current implementation does not use any parallelisation,
so it runs only in a single thread.
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Figure 4. Relational schema of the Amazon Book Ratings data.

is low or high completely depends on the data at hand. For
example, the pattern ranked 4" for ‘< 2-hours’ is interesting.
It contains three intervals and reads: 4.5% of the users checked
in frequently between [1.10am—2.30am], [4.30pm-6.30pm], as
well as [8.30pm-9.30pm].

The overall most informative pattern that we identify is:
1.6% of the users checked in frequently between [6am—7am),
as well as [10.20pm—10.50pm]. This means that, compared to
the number of users that check in frequently between those
intervals, there is a surprisingly large set of users that checks
in frequently during both intervals. This pattern was found in
the subsample of 879 users using intervals up to one hour
in duration. Interestingly, in that case computing the results
without constraints took 2 hours 20 minutes, but all except one
pattern in the top-700 (ranked 269) have at least ten users, a
result that can be computed in roughly half the time (1h13m).

To confirm that handling intervals is relevant, we identified
the top pattern that does not include any intervals; it is ranked
892M, 2962, and 10138™, for the three cases respectively.
This shows beyond any doubt that patterns with intervals are
more interesting. We also test the relevance of the new in-
terestingness score, by comparing the ranking of P-N-RMiner
against N-RMiner on data augmented such that they produce
the same patterns. We find that Kendall’s tau is 0.337 and
0.352, respectively (N-RMiner did not finish in time on the
third dataset), which highlights that accounting for the partial
order when computing interestingness is highly relevant.

Amazon Book Ratings. As a second case study, we down-
loaded a snapshot of Amazon product reviews from SNAP’.
This dataset contains around 500K products, 8M reviews with
ratings from 1 to 5, and 2.5M product category memberships.
From this we selected all reviews about books and uniformly
sub-sampled 1% of the customers.

Every book has multiple category memberships which are
given as paths in the Amazon product category hierarchy.
From this we extracted the relationship between books and
categories and the hierarchy itself, keeping two levels below
the category Book — Subject. The dataset that we obtain has
the structure shown in Figure 4 and consists of 22,003 books,
9,855 customers, 417 hierarchically structured book subjects,
as well as 36,415 ratings and 53,403 subject memberships.

We ran P-N-RMiner on this dataset with constraints of at
least 6 books and 20 customers. As an example, we present the
most highly-ranked pattern. This contains 23 customers and 8
books, all of which are different versions of the book “Left
Behind: A Novel of the Earth’s Last Days”, a rating [1-5] and
the subjects Fiction and Christianity. To our surprise, we found
that most of the patterns in the result are like this; different
versions of the same book (hard cover, audiobook, etc.).

Inspection of the raw data led us to the hypothesis that this
happens because reviews are copied across different versions
of the same book. Unfortunately, the text of reviews was not
crawled, so it is not straightforward to identify reviews for
different items that are equivalent. We attempted to tackle
this problem by keeping only one such version of a book by
looking for reviews that have the same date, rating, and user.
However, after removing duplicates using this procedure, it
appears that little structure remains in the data.

We also ran N-RMiner on the same dataset, augmenting
it with all the implied relationship instances. We see that
the same pattern is now ranked at the 21 position. This is
because N-RMiner does not take into account the dependencies
between the intervals and, as a result, intervals are by definition
more highly connected and relationship instances containing
intervals are more probable. This confirms that our new
derivation of the interestingness score is indeed relevant.

Fisher’s Iris Data. The Iris data® has been pervasively used
in machine learning and pattern recognition text books. The
data consists of 150 measurements of plants. Each has four
numerical attributes and a class label (one of three species).
In Section II, we have shown that P-N-RMiner can be used to
mine tiles and frequent patterns. However, it can also be used
to mine subgroups and subspace clusters, which we highlight
in this case study.

Subgroup discovery is a form of pattern mining where a
user chooses a target attribute and the aim is to find rules that
predict high values of this attribute (or rules that predict frue
if the attribute is binary). For the Iris data, this means that we
would like to find rules based on the four numerical attributes
that predict a specific class label. We model the data as five
entity types. We discretise each numerical attribute to ten
different values using equal spacing and include intervals up to
six adjacent values. This substantially reduces the computation
time, while hardly affecting the patterns.

We then ran P-N-RMiner with a constraint that all patterns
have to include a class label. The top pattern for each class
is visualised in Figure 5. Interestingly, all top patterns include
values for all four numerical attributes, indicating that they
are all informative for the class label and the set of points that
they describe. The first pattern that omits an attribute is ranked
120" and is equivalent to the second most informative pattern
in the data (and second most informative for class 1), except
that it omits sepal width. Figure 5 visually confirms that sepal
width is the least informative feature for that pattern.

Subspace clustering is a form of pattern mining that is
unsupervised. The goal is to discover clusters in the data, but
unlike traditional clustering, the goal is not to provide a full
partitioning of the data, and there is no requirement to use all
variables. Our framework has roughly the same aim, and could
as such be considered a relational (exhaustive) approach to
subspace clustering. Like in the case of the check-ins data, our
framework enables identification of patterns that are otherwise
unattainable using existing methods.

To find subspace clusters in the data, we ran P-N-RMiner
without constraints on the Iris data without the class la-
bels. As output we find 25,365 patterns. The top pattern

7https://snap.stanford.edu/data/amazon-meta.html

8https://archive.ics.uci.edu/ml/datasets/Iris



7 A 34 34
61 2.5 25
< 54 - o c 2| c 2|
(@) @ o &M o kel o
iC)4f e m o ;1'57 i o & ;1.57 ° @
=3 ® o = @ e o B T ° & o
= o og 8| = °c g #|o
S‘J g‘-) 14 ® Dq_J 14 N
2 4 ®» ¢ om © oo - - o @
1] o o|l@meew oo 0.5 8 & o 0.5 - & 3
° olgge g% o, [ N
0 : : ‘ 0 : : : ‘ 0 ‘ ‘ ‘
1 2 3 4 5 1 2 3 4 5 0 2 4 6 8
45 Sepal width 7. Sepal width 3. Petal length
®
o o 6 - 25
® 8
£35] °o ® & o < S @ c 2l
.‘g °© o o o [° & g’ 4] @ @ @ | 5
] |8 _@ el © g -« ° o o @ o 245/ oo
g 3 ry ® ’_| 'Y < 31 ® o f_E 1.5 o ;o & w @
[) | o & & d © ] | N & °
o 25 o ® % 5 o o - o o a 1 @ ® o
2] ° e @ 1 « o ® @& |o 0.5 o . ¢
4 @ © » |°
1.5 : : ‘ 0 : : ‘ 0 ‘ ‘ ‘
4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
Sepal length Sepal length Sepal length
Figure 5. Visualisation of the full Iris data, projected for each pair of features. Colors depict class labels and the boxes represent the top subgroup pattern for

each class, as discovered by P-N-RMiner. Incidentally, each most informative pattern includes all four attributes.

is: pl = [1.295-1.885], pw [0.22-0.7], sl = [4.84-5.2],
sw = [3.08—4.04], with an interestingness score of 1.4744. So,
it is similar to the top pattern predicting class 1 (see Figure 5),
except that the intervals for sepal length and sepal width
are slightly more narrow. The first subspace cluster occurs at
rank 347 and is quite specific already: pl = [1.295-1.885],
pw = [0.22-0.7], sl = [4.48-5.2], with an interestingness score
of 1.1040, again omitting sepal width.

As a final remark, we are not suggesting that P-N-RMiner
can replace all existing subgroup discovery and subspace
clustering methods, because P-N-RMiner has high computional
cost owing to the exhaustive search strategy.

VI. SCALABILITY

To test the scalability of the algorithm and study what
we gain by using the attribute structure in the form of the
properness constraint, we again look at the Foursquare check-
ins data. We created 11 versions of the data, each time
throwing away half of the users and their relationship instances
(the check-in modes). We then ran both N-RMiner [6] on
augmented data with the additional entities and relationship
instances, and P-N-RMiner, which then find exactly the same
set of CCPSs.

We are interested also in how the depth of the partial order
of an attribute affects the scalability and potential speed-up
by P-N-RMiner. Hence, we tested runtimes for 6, 9, and 12
levels, i.e., time intervals up to one, one and a half, and two
hours. We exhaustively tested constraints on the number of
users from 10, 20, 40, etc. up to the sample size. We stopped
any experiment that had not finished after 24 hours.

A comparison of runtimes for all cases where N-RMiner
finished succesfully is given in Figure 6. The general trend

is that P-N-RMiner in faster in 71 out of this subset of 100
experiments, and that the speed-up grows as the computation
time grows. The largest observed speed-up is a factor of §;
12.3 vs. 1.5 hours, for the full data, 12 levels, and mining
patterns with at least 81920 users. N-RMiner is mainly faster
(up to a factor of 2) for runtimes shorter than 1 second. Not
shown in the figure is that P-N-RMiner uses substantially less
memory. For example, for the full data with 12 levels, P-N-
RMiner uses 5.5 MB of memory at its peak, while N-RMiner
uses more than 10 GB.

Runtimes of P-N-RMiner for increasing sample sizes are
illustrated in Figure 7. It appears that the number of levels,
i.e., the depth of the partial order, actually only has a small
effect on the runtime—for example, compare the trend of
brown points across the depths. Yet, the number of patterns
in the data explodes much more easily. For depth 12, we can
only enumerate all patterns in the samples that have at most
879 users (0.4% of the data). There appears to be a linear
relationship between the size of the data and the runtime if
the number of patterns is equivalent; for any of the subfigures,
one could fit a straight line through measurements that have
roughly the same number of patterns (i.e., points of the same
color). This relationship holds even when there are no patterns.

VII. RELATED WORK

Exploratory vs. Predictive Patterns. The broad purpose
of the framework presented in this paper is to facilitate
exploration of data in an entirely unsupervised manner. This
distinguishes the framework from other types of local pattern
for multi-relational data mining such as Safarii [4], and more
generally from approaches based on inductive logic program-
ming. These alternative frameworks operate by a user selecting
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when the number of patterns is the same, and the depth of the partial order structure has a limited effect as well.

one or a set of attributes as a target, after which an algorithm
builds rules to predict that target using the full relational data.
Wu et al. [12] introduced a method for finding interesting
chains of biclusters in relational data, which has a similar goal
as our framework. Their approach differs in that they only
consider binary relationships, they employ a heuristic greedy
algorithm to find interesting patterns, and their method does
not account for structure of attributes in any way.

Pattern Syntax. The pattern syntax proposed in this paper is
unique in being both relational and able to deal with structured
attribute types such as ordinal and real-valued attributes, tax-
onomy terms, and more. The proposed pattern syntax, in being
local, owes to the frequent pattern mining literature. Indeed,
the CCS pattern syntax [5], which it generalises, has already
been shown to be a generalisation itself of a local pattern type
in binary databases known as tiles [13], which are essentially
equivalent to frequent itemsets.

Structured Attribute Types. Real-valued and ordinal at-
tributes have also been dealt with before in local pattern
mining, in subgroup discovery and exceptional model mining.
For example, in subgroup discovery, approaches have been de-

veloped to infer subgroup descriptions in terms of intervals for
real-valued attribute types and subsets of categorical attributes.
A notable paper in this regard is [14], where an efficient
algorithm is introduced for finding optimal subgroups using
any convex quality measure. Exceptional model mining, on the
other hand, aims to extend subgroup discovery beyond a single
target attribute [15]. None of these approaches, however, are
as generic as our proposed approach: they are either ad hoc or
remain limited to a very specific types of structured attributes.
The approach of modelling the structure of the attributes as a
partial order is also entirely novel.

Interestingness Formalisations. The formalisation of interest-
ingness of local patterns is a highly active research area, with
most research targeted on itemsets in binary databases. This
makes sense, as the problem is most acute for exploratory data
mining approaches, in the absence of a particular set of target
attributes to be predicted. Many approaches to formalising
interestingness are based on modelling the unexpectedness
of a pattern: the extent to which the pattern presents novel,
surprising, or unexpected information to the user. A recent
survey is [16].



There are three major lines of research aimed at mining
(sets of) interesting local patterns. Constrained randomisation
techniques are based on the assumption that a pattern is more
interesting if it is not present in randomised data [17], [18],
[19]. Methods based on the Minimum Description Length prin-
ciple assume that a pattern is more interesting if provides better
compression [20]. Approaches based on the Maximum Entropy
(MaxEnt) principle assume a pattern is more interesting the
more surprising it is given a MaxEnt-based background model
[8], [9]. Both randomisation and MaxEnt approaches have
been shown to allow for accounting prior knowledge, enabling
subjective interestingness and iterative data mining.

The MaxEnt approach has been shown to be highly flexible
in terms of pattern types [21]. Additionally, it has been
used successfully to quantify interestingness patterns for the
framework that we directly build upon [5]. For these reasons
we used this paradigm to formalise the interestingness of
the patterns in the current paper. Clearly, a direct application
of interestingness as defined in [5] would not have yielded
desirable results, as the dependencies between relationship
instances would be ignored (see also the empirical results).

Enumeration Algorithms. The algorithm derived for enumer-
ating all maximal CCPSs is based on the generic fixpoint-
enumeration algorithm for enumerating all closed sets in a
strongly accessible set system, introduced by Boley et al. [10].
This algorithmic scheme has been used before in the data
mining literature for enumerating maximal CCSs [5], including
extensions to n-ary relations [6] and approximate CCSs [7].
Here, we adhere to the same algorithmic scheme. In order to be
able to use the scheme, we model the structure of attributes as a
partial order, augment the pattern syntax, and add a properness
constraint to the definition of the set of augmentation elements.
As may be apparent, these changes are not trivial, and neither
is the proof that the algorithmic scheme still works.

VIII. CONCLUSIONS

An important obstacle for the adoption of exploratory
data mining techniques in general, and local pattern mining
approaches in particular, is their limited flexibility in terms of
data type to which they can be applied (e.g., only tabular data),
and type of pattern they can generate, e.g. subgroups, itemsets,
n-sets. In reality, however, data is often complexly structured
(as in, e.g., a relational database), and additionally there is
often structure among the different values data attributes may
attain, i.e., attribute values can be ordinal, interval, taxonomy
terms, and more.

Attempts to resolve this inflexibility for specific data and
pattern types are numerous. Yet, we are unaware of any
generic approach that comes close to subsuming the range
of pattern syntaxes considered by the local pattern mining
research community, allowing for data types of a broad range
of structures. The contributions in the present paper may be
an important step in this direction.

Our contributions raise a number of new research chal-
lenges. Ideally, the pattern syntax is tolerant to missing re-
lations to ensure noise resilience, similar to [7]. The inter-
estingness can be made more versatile by considering a more
varied range of prior belief types. Another interesting question
is whether the enumeration algorithm could still be improved.

Our algorithm is similar to the Bron-Kerbosch algorithm for
enumerating maximal cliques in a graph, for which it is known
that the worst case complexity of 0(3”/ 3) is optimal, since it
is equivalent to the number of maximal cliques in a graph [22].
Yet another interesting direction for future work is developing
heuristic algorithms for finding interesting CCPSs directly, in
order to avoid the costly exhaustive search step.

This work was supported by the European Union (ERC Grant
FORSIED 615517) and the EPSRC (Grant EP/M000060/1).
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