574 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

Self Organization of a Massive Document Collection

Teuvo KohonenFellow, IEEE Samuel KaskiMember, IEEEKrista Lagus, Jarkko Salojarvi, Jukka Honkela,
Vesa Paatero, and Antti Saarela

Abstract—This article describes the implementation of a system to organize a document collection, e.g., as a graph or a hierar-
that is able to organize vast document collections according to chical structure.

textual similarities. It is based on the self-organizing map (SOM) e present article describes an organization in which the
algorithm. As the feature vectors for the documents statistical d t ted int tWo-di . 1(2-D
representations of their vocabularies are used. The main goal in ocuments are represented as points on a two-dimensional (2-D)

our work has been to scale up the SOM algorithm to be able to deal Plane and the geometric relations of the image points of the doc-
with large amounts of high-dimensional data. In a practical exper- uments represent their similarity relations. Such representations
iment we mapped 6 840 568 patent abstracts onto a 1002 240-nodegre called maps.

SOM. As the feature vectors we used 500-dimensional vectors of  paeyment maps add value to text retrieval by providing
stochastic figures obtained as random projections of weighted . . -
word histograms. a meaningful visual background for portraying the results

o . of searches. The background helps in making sense of the
Index Terms—bata mining, exploratory data analysis, knowl- rayjeved matches, as well as provides cues for selecting the
edge discovery, large databases, parallel implementation, random tint ti In additi index the i
projection, self-organizing map (SOM), textual documents. mqs n ergs Ing ones. n.a iion, one may Incex the mage
points by information derived from the document collection
and the indexing can be utilized to perform further searches on

|. INTRODUCTION the collection.
A. From Simple Searches to Browsing of Self-Organized Data ©Organized collections of data also facilitate a new dimension
Collections in retrieval, namely, the possibility to locate pieces of relevant or

similar information that the user was not explicitly looking for.

L OCATING documents on the basis of keywords anguch tasks and methods constitute a field of their own called

simple search EXPressions 1s a commonplacg ta;k nov(g%loratory data analysis or knowledge discovery in databases,
days. However, formulating effective search queries is rath en colloquially called data mining

difficult and scanning through the lists of search results that are
in no apparent m_eanlngful order may be very t|re§om_e. B. Scope of This Work
A more user friendly method for data exploration is exem- ] . .
plified in the so-called hypertext approach where links are pro_There exist several classical methods in exploratory data anal-
vided between a document and other related data. In the wofkis [1] and multivariate analysis that are able to form illustrative
wide web these links are often created manually by individudtD Projections of distributions ofitemsin high-dimensional data
users, and the quality of linking varies greatly over documenfgaces. One of them is multidimensional scaling (MDS) [2]{7]
The quality can be improved with extensive human labor 1 its frequently applied versionis called Sammon’s projection
constructing organized collections such as the YAHOO, a Hil- For large amounts of data items these mappings are compu-
erarchical directory of Internet resources. tationally heavy. Therefore, considerable interest might be de-
It would be of immense help if the document collections an¢pted to the neural-network methods, e.g., the self-organizing
databases could laitomaticallyorganized in some meaningfulmap (SOM) [9]-[11] that approximate an unlimited number of
way. In particular, interactive exploration of a document coiPPut data items by a finite set of models. A further advantage
lection, where the user looks at individual documents one agghieved by the SOM mapping is that unlike in, say, multidimen-
time, would be greatly aided by ordering of the documents agionalscaling, the SOM canfirstbe computed using any represen-
cording to their contents. The context of the other related dd@five subset of old inputdata and new inputitems can be mapped
uments residing nearby would then help in understanding tplsaight into the_most similar models without recomputation of
true meaning of the individual texts and in finding the inforthe whole mapping.
mation of highest interest. Furthermore, interpreting the resultsAnY of the basic projection methods also can be used to or-
of searches would become easier if the results were alre&tRize textual data items, such as documents, if their contents
grouped according to the similarity of content, instead of ré€ described statistically as some kind of metric feature vec-
turning matches as a list of hits. There exist many possibiliti€a's- For instance, if the collection of words used in a document
is described as a histogram, the latter can serve as the input fea-
. . _ ture vector on the basis of which the document collection can
Manuscript received June 16, 1999; revised November 15, 1999 and FebrLﬁg .
2.2000. organized.
_The authors are with the Neural Networks Research Centre, Helsinki Univer-We have developed a SOM-based methodology that can be
sity of Technology, Espoo, Finland. used as a tool especially in exploring document collections
Publisher Item Identifier S 1045-9227(00)04036-4. . . . .
but also in various searching tasks. In this method called the
Ihttp://www.yahoo.com). WEBSOM, a textual document collection is organized onto
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a graphical map display that provides an overview of thgheret is the index of the regression step and the regression

collection and facilitates interactive browsing. The browsinig performed for each presentation of a samplecoflenoted

can be focused by locating first some interesting documents xft). The scalar multiplieh. () ;(t) is called the neighborhood

the map using content addressing. function and it is like a smoothing kernel over the grid. Its first
Since 1991, attempts have been made to apply the SOM $ubscripte(x) is defined by (2), that ism, () (%) is the model

the organization of texts, based on word histograms regardedealed the winner) that matches best viift). The comparison

the input vectors [12]-[14]. In order to avoid their dimensionalimetric is usually selected as Euclidean. For other metrics, the

ties from growing too large, the vocabularies were limited maferm of (1) will change accordingly. If the samplg§t) are sto-

ually. However, to classify masses of natural texts one must whastic and have a continuous density function, the probability

avoidably refer to a rather large vocabulary, say, 50 000 wordsr having multiple minima in (2) is zero. With discrete-valued

There exist at least three possibilities to reduce the dimensimariables, however, multiple minima may occur. In such cases

alities of the histogram vectors, without essentially losing accane of them can be selected at random for the winner.

racy in classification: 1) representation of the histogram vectorsThe neighborhood function is often taken as the Gaussian

by their eigenvectors (the latent semantic indexing described in )

Section 11I-B); 2) clustering of words into semantic categories, heee),i(2) = alt) exp <_ llri — reeoll ) 3)

as was done in our earlier WEBSOM publications [15]-[21] and ’ 202(t)

3) reductlon_ of t_he dlmen5|onal!ty of_ the histogram vectors byv?hereo < a(t) < 1is the leaming-rate factor which de-
random projection method, as in this work.

. . . creases monotonically with the regression steps IR? and
The present article describes the final phases of a major y 9 P

iy € IR? are the vectorial locations on the displ id
. : ) play grid,
project that was launched in 1995. After several phases a(\frfd #(t) corresponds to the width of the neighborhood func-

development it was decided, in the summer of 1997, that Oﬁ n, which is also decreasing monotonically with the regression

should make an experiment to demonstrate the up Scalab'l'%ps. In practice, for computational reasdns ;() is trun-

of the SOM method. While about 5000 documents were stsl A
Cated wherj|r; — r.(x)|| exceeds a certain limit.

mapped in our first publications in 1996 [15]-{18], we finally I% has been thought that the SOM algorithm might be deriv-

increased the database to qbout?OOO OO.O document.s [22].' zi\qe from some objective function that describes the average
many sources of freely available information of this size exis

In order for our work to lead to a useful application, we decide piantization error. In a recent study [23] it was shown that &
PP ’ . _different point density of the model vectors is thereby obtained.
to use the corpus of all the patent abstracts that were availap]

on CD ROM'’s or other electronic media. This corpus consisteg?hls work we use the original SQM aIgothm, which is com-
putationally the lightest of all variants. This aspect was most
of U.S., Japanese, and European patents. SRR . .
It would have been interesting to compare the u scalabili?eCISNe in this very large implementation.
9 P b Yinan attempt to accelerate the computation of the SOM, the

of our method with other algorithms and variants of the SOI\ﬂiatch map principle [24] has turned out to be computationally

However, as it took two years for our group to develop th\?ery effective. The implementation of the present method is
final software for our method, it was not possible for us to con-

. . . ased on the batch map.
struct alternative search methods of the same dimension fo

. . . drAssuming that the convergence to some ordered state is true,
benchmarking. To make our system operate in real time an : X
We require that the expectation valueswof(¢ + 1) andm,;(¢)

fit medlum-S|zeq compgters, we alsp had to develop SEVeRaL + . o must be equal. In other words, in the stationary state
shortcut computing solutions that obviously cannot be used wit

other methods. we must have
Vi,  Elew,i(t) [x(t) —mi(t)]} =0 4)

Where E{-} means the expectation value over
For simplicity, consider thak. ), ; can be regarded as time

Il. SELF-ORGANIZING MAP

The SOM [11] is an unsupervised-learning neural-netwo

method that produces a similarity graph of input data. It consists ", . : .
of a finite set of models that approximate the open set of inp'lT%’a”ant (at the last steps of iteration (1) at least). In the special

data, and the models are associated with nodes (neurons) that are vvthtere %N ehhjvi a f![mt;z nurlnbzr f(batch) of #ite) W't_?
arranged as aregular, usually 2-D grid. The models are produi%aze; 0 which (4) has to be solved for g, we can write

by a learning process that automatically orders them on the

grid along with their mutual similarity. Z hotue, (1)
The original SOM algorithm is a recursive regression process. L T
Regression of an ordered set of model vectarss IR"™ into the m; = h— (5)
space of observation vectaxse IR™ can be made recursively zt: ex)
as

This is not yet an explicit solution fam} because the sub-
m;(t + 1) = m;(t) + hex),i(t) [x(¢) —m;(1)] (1) scripte(x) on the right-hand side still depends () and all

2With a small amount of input data in relation to the map size, it may happen
that at some models the denominator of (5) becomes zero. This corresponds to
the left side of (4) being zero, so (5) must not be applied for such models at such

o(x) = arg miin {llx — mgl]} () aniteration step, but the old value of; must be retained.
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them?. However, we can solve (5) iteratively. Starting with even
coarse approximations for tha}, (2) is first utilized to find
the indexes:(x) for all the x(¢). On the basis of the approx-
imateh, (), ; values, the improved approximations for thg

are computed from (5), which are then applied to (2), whereafte
the computed(x) are substituted to (5), and so on. The optimal
solutionsm; are usually obtained in a few iteration cycles, after
the discrete-valued indexeéx) have settled down and are no
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Text documents

{

1. Construction of document vectors

- Preprocess text
- Construct document vector as weighted word histogram
- Reduce dimensionality by random mapping

longer changed in further iterations. (The convergence proof ¢
a slightly different batch map has been presented in [25].)

In the following we formulate the batch-map SOM principle
in such a way that it is reduced to two familiar computational
steps, namely, that of the classical vector quantization [26]—[2€
and that of smoothing of numerical values over a 2-D grid. The
particular implementation in this work is based on these steps

Let V; be the set of allk(¢) that havem? as their closest 3
model. This set s called the Voronoi set. The number of sample { - estimate larger map based on smaller one
x(t)fllng o V; s calle. i s i st

Step 1) Initialize than} by any proper methad )

Step 2) For a finite sefx(¢)} of data samples, compute one

step of vector quantization whexg is regarded as the
average of the(t) overV;:

> x(®)

Document vectors

2. Construction of large map

- Initialize models of smallest SOM
- Teach small map
- Repeat until desired map size:

Largest map

3. Construction of user interface

Vi ® — x(t)eV; 6 - Select labels automatically to characterize map regions
thooXe = n: (6) - Create necessary parts for the operation of the interface
‘ (e.g. map images, HTML files, databases)
Step 3) Carry out one smoothing step
. User interface
Z ny hjin
m] = — @)

4. Alternative operations of user interface

T = °
E njhji
J

Alternate Steps 2) and 3) until thea can be regarded as
stationary.

- Browsing the nodes

- Content-addressable search:
- create document vector of search document in the
same way as at stage 1. above
- retum best-matching map locations
- Keyword search: visualize results of an indexed search
on the map

Ill. STATISTICAL MODELS OFDOCUMENTS

In automatic classification, the documents must be describe
by a set of features. If the purpose were to assign the documents
into prescribed classes, the selection of the features could ¥t
optimized for maximum classification accuracy (cf., e.g., [30]).
The goal in our work, however, was unsupervised classificatiphiases have been explained, e.g., in Honéed. [37]. Certain
in which the classes are not knoapriori.# The documents can reasons expounded below, however, recently led us to abandon
only be clustered according to their detailed topical similaritie)e semantic maps and to encode the word histograms by the

It has been demonstrated that the SOM can map free-tagwly developed projection methods. The results reported in
natural-language documents as well, if their textual contents &€ present article are totally based on these new develop-
describable by some statistical models such as word histograf#@nts, which has given us a reason to call the present system
or their compressed forms [12]-[14], [31]-[35]. In a series dhe WEBSOM2. An overview of the WEBSOM2 system is
earlier works we replaced the word histograms by histograréiepicted in Fig. 1.
formed over word clusters using self-organizing semantic Below we first review some attempts to describe the textual
maps [36]. This system was called the WEBSOM. Its lat@ontents of documents statistically.

Overview of the construction and operation of the WEBSOM?2 system.

3t has been shown that a random choice forthe is possible. However,
faster convergence is obtained if the initial values ofhg are even roughly

ordered [29]. In the basic vector-space model [38] the stored documents

4We do, however, monitor the classification accuracy with respect to the maigfa represented as real vectors in which each component corre-
patent classes (subsections) in order to be able to compare the different al

[go- . .
rithms. Such accuracy, however, is only used as an indirect relative measure%pndS to the frequency of occurrence of a particular word in
comparing different algorithms. the document.

A. The Primitive Vector-Space Model



KOHONEN et al.: SELF ORGANIZATION OF A MASSIVE DOCUMENT COLLECTION 577

Obviously, one should provide the different words with such TABLE |

i ir cianifi H ina. CLASSIFICATION ACCURACIES OF
vye|ghts that reflect thelr S|gn|f|canc<_a Or. power of dlscnmmaDOCUMENTS, IN PER CENT, WITH DIFFERENT PROJECTIONMATRICES R.. THE
tion between the topics. For the weighting of a word one carnkgures on THELAST Row ARE AVERAGES FROMFIVE TEST RUNS WITH
use one of the well-known inverse document frequency (IDF)- DIFFERENT RANDOM ELEMENTS OF THEMATRIX

based weighting schemes (IDF is the inverse of the number of

. . Accuracy | Standard deviation due to
documents in which the word _o_ccu_rs). If, _however,_ the docu- different randomization of R
ments hc_ave some topical classmcatlon_ which contains reIevar_ 'Vector space model 60.6 -
information, the words can also be weighted according to theirLst 60.4 -
Shannon entropy over the set of document classes (see Se Normally distributed R || 59.1 0.4

tion V-B for a detailed description). The latter method was used

in this work in order to utilize the additional information con- . ) L

tained in the patent classification. It can be shown that the similarity of pairs of projection vec-
The weighted word histogram can be viewed as the featdfS (%i-X;), measured by the inner products, is the same on

vector describing the document. The main problem of tﬁge average as the similarity of the pairs of corresponding orig-

vector-space model is the large vocabulary in any sizaffl document vectorén;, n;), and the error thereby made is

collection of free-text documents or the vast dimensionality gfversely proportional tar [41]. It was demonstrated experi-

the model vectors that must be kept in main memory. The Si%entally [41] for d|mgq5|or1allt|es oh eXFeed'”Q 100 (cf. also

of the vocabulary can, of course, be reduced by automatica-ﬁ?ble 1) that the classification accuracy is practically as go_od as

or manually selecting a subset containing the most importfijh the vector-space method while, with the decreasing dimen-

words according to some criterion. It is, however, a difficuﬁ"ona“ty of_the document ve_ctors, the time needed to classify a

problem to find a suitable subset of words that still represenqgcument Is decreased radically.

the essential characteristics of the documents. .
D. Histograms on the Word Category Map

B. Latent Semantic Indexing (LSI) In our original version of the WEBSOM [20], the reduction

In an attempt to reduce the dimensionality of the documepik the'dimensionality of the document vectors was carried.out
vectors without essentially losing information contained in th letting the words of free natural text be clustered onto neigh-
full vocabulary, one often first forms a matrix in which eact0ring grid points of another special SOM. The input to such a
column corresponds to the word histogram of a document a{fgrd category map [20] consisted of triplets of adjacent words
there is one column for each document. After that, the spafghe text taken over a moving window, whereupon each word
spanned by the column vectors is decomposed into an ordefefhe vocabulary was represented by a unique random vector.
set of factors by a matrix-computation method called the sin- -atér we abandoned the word category map in order to elimi-
gular-value decomposition (SVD). The decomposition has thate thg more or less haphazard process in which the words were
property that the last factors have minimal influence on the mg@tegorized and consequently an even better accuracy of docu-
trix. When they are omitted the document vector formed fromef‘t cl.assmcauon was gch|eved by the straightforward random
the histogram of the remaining factors then has a much smalfspiection of the word histograms.
dimensionality, while as much as possible is retained of the orig-
inal histograms. This method is called latent semantic indexié
(LS) [39].

Validation of the Random Projection Method by Small-Scale
reliminary Experiments

_ _ Before describing the new encoding of the documents [44]
C. Randomly Projected Histograms used in this work, some preliminary experimental results that

We have shown earlier that the dimensionality of the doglotivate its idea must be presented. Table | compares the three
ument vectors can be reduced radically by a much simpRiojection methods discussed above in which the model vectors,
method than the LSI, by the random projection method [203XCept in the first case, were always 315-dimensional. For our
[40], [41], without essentially losing the power of discriminafinal implementation we selected the dimensionality of 500 (cf.
tion between the documents. Experimental results that provgction V-B) which was still computationally feasible, whereas
this will be given below in Section IlIl-E and in Table I. Onin our preliminary experiments reported in this section we still
the other hand, the computation of the random projectioH§ed 315-dimensional vectors, for historical reasons, to be able
is orders of magnitude lighter than LSI as will be discussd@ compare these results with our earlier works where 315-di-
in Section 1lI-B . Consider the original document vectofmensional vectors were also used.

(weighted histogramh; € IR" and a rectangular random For the material in this smaller scale preliminary experiment
matrix R, the elements in each column of which are assumed'§ used 13 742 patents from the whole corpus of 6 840 568 ab-

normally distributed vectors having unit length. Let us form thgfracts available to us. The patents were sampled at random but
document vectors as the projectiogse IR, wherem < n: ~ an equal number of patents from each of the 21 subsections of
the patent classification system were included.
x; = Rn,. (8) When the texts were preprocessed, as will be explained
5 o __later in Section V-A, the remaining (automatically extracted)
It has recently been suggested that the random projection [42] or similar bul isted of 1814 d df D
methods [43] could be used for reducing the computational complexity of yocabulary consisted o words or word forms. Document

LSl as well. maps consisting of 1344 units were computed of the document
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TABLE 1l is formed and, if the word resides in the hash table, those ele-
CLASSIFICATION ACCURACIES OF i
DOCUMENTS IN PER CENT, WITH DIFFERENT PROJECTIONMATRICES R.. THE me.nts of thex array that are foun.d by the (say, five) .addreS$
FIGURESARE AVERAGES FROMFIVE TESTRUNS WITH DIFFERENTRANDOM  POINters stored at the corresponding hash table location are in-
ELEMENTS OF THEMATRIX cremented by the weight value of that word. The weighted ran-

domly projected word histogram obtained in the above way may

Accuracy | Standard deviation due to h .
different randomization of R be Optlona"y n_ormz?\llzed. ) .
Normally distributed R 59.1 0.4 The computm_g time needed to fo_rm the histograms in the
Thresholding to +1 or —1 59.4 0.2 above way in this small-scale experiments was about 20% of
5 ones in each column 58.2 0.3 that of the usual matrix-product method. This is due to the fact
3 ones in each column 56.8 0.2 that the histograms and their projections contain plenty of zero
2 ones in each column 55.4 0.3 elements

The computational complexity of the random projection with

collection, each document was mapped onto one of the gRAINtersis onO(NI)+O(n), whereN is the number of docu-
points of each map, and all documents that represented"&Nts/ is the average number of different words in each docu-
minority class at any grid point were counted as classificatidR€Nt andn is the original dimensionality. Her€(n) is due
errors . to the construction of the hash table a@N!) is the com-
The classification accuracy of 60.6% reported on the first rofi€Xity of computing the actual projections, assuming that the
of Table | refers to a classification that was carried out with tH&Shing operation takes constant time. In contrast, the compu-
classical vector-space model with full 1344-dimensional hifational complexity of the LSI is known to b@(Vid), where
tograms as document vectors. In practice, this kind of clasdils the resuItmg dimensionality. Both estimates hold for short
fication would be orders of magnitude too slow for large teXEXS (Sparse histogram vectors).
collections.
Dimensionality reduction with LSI resulted in almost the
same accuracy as the full histograms. This is reported on thelV. RAPID CONSTRUCTION OFLARGE DOCUMENT MAPS
second row. The accuracy obtained with random projection,the SOM algorithm is capable of organizing even a ran-
in which the factorial decomposition of LSI need not bgom|y initialized map. However, if the initialization is regular
computed, was still close to the other two. and closer to the final state [29], the asymptotic convergence
. o ) of the map can be made at least an order of magnitude faster.
F. Co.nstructlon of Random Projections of Word Histograms ge|ow we introduce several speed-up methods by which, first,
by Pointers a reasonable approximation for the initial state is formed and,
Consider now that we want to simplify the projection matrithen, the stationary state of the SOM algorithm is reached
R in order to speed up computations. We can do this by threstffectively by a combination of various shortcut methods.
olding the matrix elements or using sparse matrices. Such ex-
periments are reported next in Table I1. The following rows havd Fast Distance Computation

the following meaning: second row, the originally random ma- |n word histograms there are plenty of zeros and, if the pointer

trix elements were thresholded -l or —1; third row, exactly method of random projection is used, the zeros are still predom-
five randomly distributed ones were generated in each columant in the projected document vectors.

whereas the other elements were zeros; fourth row, the numbesgince the document vectors are normalized, they can be

of ones was three; and fifth row, the number of ones was tWapped onto the SOM according to their inner products with
respectively. the model vectors. Since the zero-valued components of the
These results are now supposed to give us the idea that if Wegtors do not contribute to inner products, it is possible to
upon formation of the random projection, reserve a memogypuylate the indexes of the nonzero components of each input
array such as an accumulator for the document ve<t@n- vector and, thereafter, consider only those components when
other array for the weighted histogram and permanent ad- computing the distances.
dress pOinterS from all the locations of th&':lrray to all such Re'ated, more Comp|ex methods have been proposed for com-
locations of thex array for which the matrix element @& is  pyting Euclidean distances between sparse vectors [45]. How-
equal to one, we could form the product very fast by followingyer, the model vectors must then be stored in the original high-

the pointers and summing up fothose components of the  gimensional format for which we have no memory capacity: we
vector that are indicated by the oneskf must use low-dimensional models.

In the method that was actually used we do not project ready

histograms, but the pointers are already used with each w@d Estimation of Larger Maps Based on Carefully Constructed
in the text in the construction of the low-dimensional docume’maller Ones

vectors. When scanning the text, the hash address for each Worgeveral suggestions for increasing the number of nodes of the

8In this experiment our goal was to organize a given data set into a struct8®M during its construction (cf., e.g., [46]) have been made.
from which the documents can be retrieved easily. Therefore, the measuredpge new idea presented below is to estimate good initial values
curacies refer to classification of the original data. Note that this task is different .
from the pattern recognition task, in which the goal is to classify new items aﬁg’,r the model vectors of a very large map on the basis of asymp-
after learning, no attention is paid to the training data. totic values of the model vectors of a much smaller map.
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Training .
vectors Pointers

new winner

winner

Fig. 2. lllustration of the relations of the model vectors in a spassedlid /\J\/
lines) and densel( dashed lines) grid. Only partial grids are shown in the figure.

Her,e(ngn,/(“z(s?all be int/e(:rg)olated in_ terms of the three closest sparse modgﬁ%. 3. Finding the new winner in the vicinity of the old one, whereby the old
m; "0, my’te), andmy "), respectively. winner is directly located by a pointer. The pointer is then updated.

Consider first a rectangular 2-D SOM array with Z'D.mput;[nj’(s), andmy’(®) are the three codebook vectors closest to

vectors. If the probability density function (pdf) of the input ;4. : : ,
. . : r'\* in the signal space (but not on the same line). With
were selected as uniform in a rectangular domain and zero ouit- :
L . - . o andg;, solved from (9) for each nodeseparately we obtain the

side it, there is a characteristic shrink of the distribution of theanted interoolation-extrapolation formula as
model vectors with respect to the borders of the support of tWe P P
pdf, whereas inside the array the model vectors can be assumed . 4y (s) (s) (s)
as uniformly distributed (cf., e.g., [11, Fig. 3.3(a)]). For an ar- ™» — @1 +AhmT 4 (1 - = fomy”. - (10)
bitrary number of grid points in the SOM array, rectangular q\rl

. . . . tice that the indexe’s, ¢, 7, and refer to topologically iden-
hexagonal, the amount of this shrinkage can easily be esumattecaal lattice points in (9) and (10). The interpolation-extrapola-

Consider then that the input has an arbitrary higher dime: - : .
sionality and an arbitrary pdf which, however, is continuous al ﬁ)n coefficients for 2-D lattices depend on their topology and

: . . e neighborhood function used in the last phase of learning. For
smooth. Even then, the relative shrinkage and the relative local .
: I o est results the stiffness of both the sparse and the dense map
differences of the new model vectors are qualitatively similar %ﬁo Id be the same. i.e.. the relative width of the final neigh-
in the uniform case (cf., e.g., [11, Fig. 3.7]). u » 1€, Ve Wi ' '9

Consider again a pdf that is uniform over a 2-D rectangngPrhOOdS’ when referred to the diameter of the array, should be

area. This same area is how approximated by either the seFSPaI'
vectors{m;’( € IR?}, orby{m;(*) € R?}, where the super-
scriptd refers to the dense lattice, andb the sparse lattice, re-
spectively. If the three sparse vectans' *), m;’(*), andm;,’(*) 1) Addressing Old WinnersAssume that we are somewhere
do not lie on the same straight line, then in the 2-D signal plaitethe middle of the training process, whereupon the SOM is al-
any dense vectan,’(¥ can be approximated by the linear exready smoothly ordered although not yet asymptotically stable.
pression Assume that the model vectors are not changed much during one
iteration of training. When the same training input is used again
my," @ = qmy® 4 B,m;" + (1 — ap, — B,)mi/ (9)  some time later, it may be clear that the new winner is found
at or in the vicinity of the old one. When the training vectors
where «;, and 3, are the interpolation-extrapolation coefgre then expressed as a linear table, with a pointer to the corre-
ficients. This is a 2-D vector equation from which the tw@ponding old winner location stored with each training vector,
unknown scalarsy, and 3 can be solved. For illustration of the map unit corresponding to the associated pointer is searched
the relations of the codebook vectors, see Fig. 2. for first, and then a local search for the new winner in the neigh-
Consider then another nonuniform but still smooth pdf in Borhood around the located unit will suffice (Fig. 3). After the
space of arbitrary dimensionality and the two SOM lattices withew winner location has been identified, the associated pointer
the same topology but with different density, as in the ideal ejr the input table is replaced by the pointer to the new winner
ample. When the true pdf is arbitrary we may not assume thgation. This will be a significantly faster operation than an ex-
lattices of true codebook vectors to be planar. Nonetheless W& stive winner search over the whole SOM. The search can
can perform a local linear estimation of the true codebook vefrst be made in the immediate surrounding of the said location
torsm!” e R" of the dense lattice on the basis of the trugnd only if the best match is found at its edge is searching con-
codebook vectormgs), m,(»s), and mgj) € R™ of the sparse tinued in the surrounding of the preliminary best match until the
lattice, using the same interpolation-extrapolation coefficientginner is one of the middle units in the search domain.
as in (9). In order to ensure that the matches are globally best, a full
In practice, in order that the linear estimate be most accurasearch for the winner over the whole SOM can be performed
the respective indexés 4, 7, andk should be such thah,/¢*), intermittently.

C. Rapid Fine-Tuning of the Large Maps
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TABLE Il
COMPARISON OF THENEW SHORTCUT METHODS WITH THE TRADITIONAL SOM ALGORITHM. THE FIGURES ARE AVERAGES FROMFIVE TEST RUNS WITH
DIFFERENT RANDOM MATRICES USED IN THE ENCODING OF THEDOCUMENTS AND THE ERROR MARGINS ARE STANDARD DEVIATIONS

Classification accuracy (%) | Quantization error | Time (s)

Traditional SOM 58.2 £ 0.2 0.799 + 0.001 2550 + 40
Shortcut methods 58.0 £ 0.2 0.798 + 0.002 241 + 3.5

Koikkalainen [47], [48] has suggested a similar speed-igpmmon adaptive scale for all of the components of a model
method for a search-tree structure. vector, representing each component with eight bits only. If the

2) Initialization of the Pointers:When the size (number of dimensionality of the data vectors is large, the statistical accu-
grid nodes) of the maps is increased stepwise during learniragy of the distance computations is still sufficient, as shown in
using the estimation procedure discussed in Section 1V-B, tharlier studies [49]. The sufficient accuracy can be maintained
initial pointers for all data vectors after each increase can Haring the computation if a suitable amount of noise is added
estimated quickly by utilizing the formula that was used in into each new value of a model vector before quantizing it.
creasing the map size, (10). The winner is the map unit for which
the inner product with the data vector is the largest, and so the Performance Evaluation of the New Methods

inner products can be computed rapidly using the expression 1) Numerical Comparison with the Traditional SOM Algo-

(@ T () () T () rithm: In this section we have introduced several methods for
x'my = axtm 4 At my 4 (1= ag = f)xtmg speeding up the computation of large SOM’s. We will next
(11) verify that the quality of the resulting maps is comparable to
the maps constructed with the traditional SOM algorithm.
Here d refers to model vectors of the large map andf the The smaller scale tests were carried out on the same collection
sparse map, respectively. Expression (11) can be interpretedf$3 742 patent abstracts that was used in Section llI-E. We
the inner product between two three-dimensional (3-D2 vectoghall use two performance indexes to measure the quality of the
[an; Br; (1 — ap — B)]F and [meES); meES); me,f)]T maps: the average distance of each input from the closest model
irrespective of the dimensionality af If necessary, the winner vector, called the average quantization error, and the separability
search can still be sped up by restricting the winner searchabdifferent classes of patents on the resulting map, called the
the area of the dense map that corresponds to the neighborhdadsification accuracy. The classes were the 21 subsections of
of the winner on the sparse map. This is especially fast if onlge patent classification system.
a subset (albeit a subset that covers the whole map) of all thaVe computed two sets of maps, one with the traditional SOM
possible tripletg¢, j, k) is allowed in (10) and (11). algorithm, and the other using the new methods, respectively,
3) Parallelized Batch Map Algorithm:The batch map algo- and compared their quality. In computing both sets we used pa-
rithm introduced in Section Il facilitates a very efficient paralletameter values that in preliminary experiments had been found
implementation. At each iteration we first compute the pointéo guarantee good results.
¢(t) to the best matching unit for each inpxfz). If the old The model vectors of the maps in the first, traditionally com-
value of the pointer can be assumed as being close to the fipated set were initialized by values spaced evenly on the sub-
value, as is the case if the pointer has been initialized properlysrace spanned by the two dominant eigenvectors of the data set
obtained in the previous iteration of a relatively well-organizef29]. The map was then computed using the SOM algorithm,
map, we need not perform an exhaustive winner search as ¢&-and (1). The total number of iterations was about 150 per
cussed above. Moreover, since the model vectors do not changap unit and both the width and the height of the neighborhood
at this stage, the winner search can be easily implementeckéarnel decreased more rapidly at first and more slowly toward
parallel by dividing the data into the different processors inthe end of learning.
shared-memory computer. For the second set of maps, small maps consisting of 84 units
After the pointers have been computed, the previous valugsre first computed with the SOM algorithm, again using about
of the model vectors are not needed any longer. The means 150 iterations per map unit. The final large maps were then es-
as defined by (6), can be computed as recursive expressionsmaated based on these small ones, the pointers to the winning
nodes defined by the pointer&) associated with the(t), and, units from each input sample were initialized, and five iterations
therefore, extra memory is not needed to keep the old valuesobthe batch Map algorithm were carried out.
them; when computing their new values. As can be seen from Table Ill, the quality of the resulting
Finally, the new values of the model vectors can be computathps is comparable, but the time needed for the shortcut
based on (7). This computation can also be implemented in parethods is only about one tenth of that of the traditional
allel and done within the memory reserved for the model vealgorithm. The time has been measured with a SGI 02000
tors if a subset of the new values of the model vectors is heldéomputer without parallelization of any programs.
a suitably defined buffer. 2) Comparison of the Computational Complexitiyor very
4) Saving Memory by Reducing Representation Acclarge maps, the difference inthe computation times is even more
racy: The memory requirements can be reduced significantigarked than in Table I, but can only be deduced from the com-
by using a coarser quantization of the vectors. We have usepuational complexities given in Table IV.
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TABLE IV T, _——
COMPUTATIONAL COMPLEXITY OF THE METHODS HERE N DENOTES THE X i
NUMBER OF DATA SAMPLES, M THE NUMBER OF MAP UNITS IN THE SMALL F o
MAP, AND d THE DIMENSIONALITY OF THE INPUT VECTORS IT HAS BEEN . = vl ¥ -
ASSUMED THAT THENUMBER OF MAP UNITS IN THE FINAL MAP |S CHOSEN - " gl o
TO BE PROPORTIONAL TO THENUMBER OF DATA SAMPLES = g
Computational complexity | - :
Traditional SOM O(dN?) ot
Shortcut methods || O(dM?) + O(dN) + O(N?) e
" ", .
L g4

The complexity of computation of the traditional SOM al-
gorithm isO(dN?), since the complexity of each full winner
search iS?(dN), and the number of iterations should be a mul- Chemistry Building
tiple of the number of map units to guarantee sufficient statis- .
tical accuracy of the resulting map.

In the complexity of the new method, the first te,dM ?),
stems from the computation of the small map. The second term,
O(dN), results from the VQ step (6) of the batch map algo-
rithm in which the winners are sought only in the vicinity of
the old winners, as described in Section IV-C1. Here it has been
assumed that a search in a neighborhood having a size indepen- "
dent of ¥V is sufficient. The last term in the computational com- F il
plexity, O(N?), refers to the estimation of the pointers, cf. Sec- -+
tion IV-C2 and the smoothing step, (7) of the batch map compu- g
tation. The initialization of the pointers can actually be carried ﬁ
outinO(N?/M) time, since abouV /M units of the larger map Engines ar pumps Electricity
need to be searched for each input. In the smoothing step an av-
erage over the neighbors of each map unit is computed and 'IEH 4. Distribution of four sample subsections of the patent classification
is desired to keep the stiffness of the map approximately cafystem on the document map. The gray level indicates the logarithm of the
stant when the number of map units is increased, the size of f@ber of patents in each node.
neighborhood should always be the same fraction of the number

r & .

of map units. _ o converted to their base form using a stemmer [50]. The words
It may thus be estimated, taking into account the speed up kcurring less than 50 times in the whole corpus, as well as a

ready obtained in the random projection, that the total speed-dg of common words in a stopword list of 1335 words were re-
factor in construction of large maps is of the order of the djggyed. The remaining vocabulary consisted of 43 222 words.

mensionality of the original input vectors, which in our largestina)ly, we omitted the 122 524 abstracts in which less than five
experiment was about 50 000. words remained.

V. THE DOCUMENT MAP OF ALL ELECTRONIC PATENT
ABSTRACTS

For the largest WEBSOM map made so far we selected alo reduce the dimensionality of 43222 of the histograms
data base of 6840568 patent abstracts available in electrofie used the random projection method (Section I1I-C). For the
form and written in English. These patents were granted by tfi@al dimensionality we selected 500 and five random pointers
U.S., European, and Japanese patent offices and stored in @€ used for each word (in the columns of the projection ma-
databases: the “First Page” database (1970-1997) and “PatéxtR). The words were weighted using the Shannon entropy
Abstracts of Japan” (1976-1997). The average length of ea@htheir distribution of occurrence among the subsections of
text was 132 words. The size of the SOM was 1 002 240 mod&ne patent classification system. There are 21 subsections in

B. Formation of Statistical Models

(neurons). the patent classification system in total; examples of such sub-
sections are agriculture, transportation, chemistry, building, en-
A. Preprocessing gines, and electricity (cf. Fig. 4).

The weight is a measure of the unevenness of the distribu-

From the raw patent abstracts we first extracted the titlﬁ%n of the word in the subsections. The weights were calcu-
and the texts for further processing. We then removed nont%t-

. _ ) ed as follows: LetP,(w) be the probability of a randomly
tual information. Mathematical symbols and numbers were COhosen instance of the word occurring in subsectiop, and

verted into special dummy symbols. The whole vocabulary cong the number of subsections. The Shannon entropy thus be-

tained 733179 different words (base forms). All words Wer@omesH(w) — _%, P,(w)log P,(w), and the weightV (w)
- g g >t g ?

7In Section VV we computed the largest map in several stages. The complefiyWord w is defined to beélW (w) = Huax — H(w), where
of each stage is, however, or@(dN) + O(N?). Hpypox = log N,
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Descriptive words: Content addressgable asearch:
cornea, eye, image, light ...laser surgery
on the cornea ...

Main class  Patent
| A61B 3/10A Interference keratometer ® ROTH ECKHARD DIPL PHYS ;

AG61F 9/00A Cutting head for cutting circular areas from the cornea of t
PRQF DR Other classes: 4A61B 17/322B

GOG6F 3/06A Surgical instrument. ® VAN GERVEN JOHANNES THEOD

A61B 3/107A Method for displaying optical properties of corneas & SHIM
] A61B 3/10A Ophthalmic instrument for the anterior segment of the eye.

A61B 3/10A omputer driven optical keratometer and method of evaluati
A61F 2/14A Artificial cornea # L ACOMBE EMMANUEL

AG1F 9/00A Shape controlled laser ablation sysiem for cornea correctioﬂ
27/00B 5B23K 26/00B

Click

AG61F 9/00A

. PATENT ABSTRACT: The laser ablation appts includes
te | @ laser source, an optical ablation system, and an
| ablation region changing device. A cornea shape
imaging device images the desired shape of the
optical zone of the cornea on which is superimposed
the radiation through the optical ablation system.

rehicle enging

Fig.5. Content addressable search was utilized to find information on laser surgery on the cornea of the eye. The best matching locations atecinelésd wi
Zooming on the area reveals a small cluster of map units that contains patent abstracts mostly about the cornea of the eye, and of surgical dpSeateas on
abstracts concerned with the description of interest, i.e., laser surgery on the cornea, are found in the best matching units.

C. Formation of the Document Map smaller subsets of the same document collection. We also mon-
itored the classification accuracy (cf. Section IV-D) after each
The final map was constructed in four successively enlargeghge of computation: several trials and variations for the smaller
stages, at all of which the same 500-dimensional document végaps were made, whereas the fine tuning of the largest map
tors were used as input. The map was increased twice sixtegsuld be carried out only once because it took several weeks.
fold and once ninefold. The smallest, 435-unit map was comhe final classification accuracy was compatible with the results
structed using the original SOM algorithm and 300 000 learninghtained with the smaller maps, whereas the fine structures of
steps. Each of the enlarged, estimated maps (cf. Section IVdRistering manifested themselves best in the largest map.
was then fine-tuned by five batch map iteration cycles. In orderwith the newest versions of our programs the whole process
that the asymptotic form of the map would be smooth and regf computation of the document map takes about six weeks on a
ular enough, we had to use the final neighborhood size whejig-processor SGI 02000 computer. At the moment we cannot
the radius was nine grid spacings. provide exact values of the real processing time since we have
Several choices for the parameter values (map sizes, trainalighe time developed the programs while carrying out the com-
lengths, etc.) during the training process had to be made. Thesgations.
were based on earlier experiences and experiments made usinthe amount of main memory required was about 800 MB.
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Keyword search:
color display

a

GO2F 1/1335 PRODUCTION OF COLOR’FILTER SUBéTRATE FORk LIQVUI
Other classes: G02B 5/20

GO2F 1/1335  LIQUID CRYSTAL DISPLAY DEVICE ® SHIMADA KENICHI | =
GO2F 1/1335 METHOD FOR MODIFYING COLOR FILTER € MATSUI HI

GO2F 1/1335 LIQUID CRYSTAL DISPLAY DEVICE ¢ MANNOUJI TOSHIH
GO2F 1/1335 LIQUID CRYSTAL DEVICE AND ITS PRODUCTION 9 TANA ¥
GO2F 1/1335 COLOR LIQUID CRYSTAL DISPLAY ELEMENT @ KINUGA B

GO02F 1/1335 COLOR FILTER SUBSTRATE AND COLOR LIQUID CRYST4i
classes: GO2B 5/20 ; GO9F 9/00

GO2F 1/1335 COLOR FILTER FOR LIQUID CRYSTAL DISPLAY DEVICE

Click any area on the map to get a zoomed view!
' ilmopis = bloodigroup

o i

b

Descriptive words:
color, print, image, density

Muin class  Patent
GO03B 27/72A PROOF LIGHT ® HULL FRANK A ; ARCHER H
GO03B 27/32A System and method for providing enlarged prints of color

GO3B 27/32A Exposure control method for photographic printing ®3A1

GO03B 27/80A Method and apparatus for regulation of the amount of pril
GO03C 7/00A Metallic color printing process @ WILLIAMSON JESSE

Fig. 6. The keyword search mode was utilized to find information on color displays. 30 best-matching units were marked on the display with dizele$ the s
which indicates the goodness of the match. As seen from the map display, the matches are distributed into several tight clusters found inidiffecértheeg
map. From two of these clusters the partial contents of a sample matching unit are shown in the insets. Closer inspection of the units reveaspditeret
color and displays. Uni features a considerable number of abstracts about color filters used in building LCD displays, whbreas finds technology related

to displaying colors when printing documents (the Descriptive-words lists were found for each map unit using the automatic keyword selectiotrateited

in [51]). The user who probably did not have printing in mind when formulating the query can then concentrate on the other clusters.

Forming the user interface automatically took an additionbk noted that the subsections overlap partially—the same patent
week of computation. This time includes finding the keywordsay have subclasses which belong to different subsections. The
to label the map, forming the WWW-pages that are used iiasult corresponded well with the accuracies we have obtained
exploring the map, and indexing the map units for keyworid several different runs with smaller maps computed on subsets
searches. of the same document collection. The distribution of patents on

the final map has been visualized in Fig. 4.

D. Results

In order to get an idea of the quality of the organization ol? Exploration of the Document Map

the final map we measured how the different subsections of theThe document map is presented to the user as a series of
patent classification system were separated on the map. WhErML pages that enable the exploration of the map. When
each map node was labeled according to the majority of thkcking a point on the map display with a mouse, links to the
subsections in the node and the abstracts belonging to the otfmeument database enable reading the contents of the docu-
subsections were considered as misclassifications, the resultimgnts. If the map is large, subsets of it can first be viewed by
accuracy (actually, the purity of the nodes) was 64%. It shoutdoming. With the largest maps we have used three zooming
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levels before reaching the documents. To provide guidance to ACKNOWLEDGMENT
the exploration, an automatic method has been utilized for se-

lecting keywords to characterize map regions [51]. These kaf_The authors wish to thank the European Patent Office and the

words, to be regarded only as some kind of landmarks on gtlonal Board of Patents and Registration of Finland for their

map display, serve as navigation cues during the exploration Oqlp with the patent collection, and the Academy of Finland for

the map, as well as provide information on the topics discussfé%anc'aI support.
in the documents on the respective map area.

1) Content Addressable Search: Examplehe interface to REFERENCES
the map has been prowdeq vvﬁh afprm f|eld.|nto which the usertll] 3. W. Tukey, Exploratory Data Analysis Reading, MA: Ad-
cantypeaquery, ora descrlptlon ofinterest, inthe formofashort™ " gison-wesley, 1977.
document. This query is preprocessed and a document vector i8] G. Young and A. S. Householder, “Discussion of a set of points in terms
formedinthe exactsame manner asfor the stored documents priog of their mutual distancespsychometricavol. 3, pp. 19-22,1938.

. . . g ] W. S. Torgerson, “Multidimensional scaling: I. Theory and method,
to construction ofthemap. The resultl_ng vectoristhen compared " psychometricavol. 17, pp. 401419, 1952.
with the model vectors of all map units, and the best matching[4] J. B. Kruskal and M. Wish, “Multidimensional scaling,” Sage Univ.
points are marked with circles on the map display: the better the Paper Series on Quantitative Applications in the Social Sciences, New-
. . . . bury Park, CA, Tech. Rep. 07-011,, 1978.
match, the larger the circle. These locations provide good startings) 3. de Leeuw and W. Heiser, “Theory of multidimensional scaling,”
points for browsing. An example of utilizing the content-address-  in Handbook of StatisticsP. R. Krishnaiah and L. N. Kanal,

able search on the map of seven million patent abstracts is shown gg;_slAGmSterdam' The Netherlands: North-Holland, 1982, vol. 2, pp.

in Fig. 5. With the map of all patent abstracts performing the [6] m. wish and J. D. Carrol, “Multidimensional scaling and its applica-
search takes only a few seconds in total. tions,” in Handbook of StatisticsP. R. Krishnaiah and L. N. Kanal,
2) Keyword Search: ExampIeA more conventional key- Eds. Amsterdam, The Netherlands: North-Holland, 1982, vol. 2, pp.

. .. 317-345.
word search mode has also been provided for finding good;7; F. w. Young, “Multidimensional scaling,” iEncyclopedia of Statistical

starting points for browsing. After building the map, for each SciencesS. Kotz, N. L. Johnson, and C. B. Reads, Eds. New York:

word we indexed the map units that contain the word. Given . Wiléy, 1985, vol. 5, pp. 649-659. -
L. . . [8] J. W. Sammon, Jr., “A nonlinear mapping for data structure analysis,
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index and the best matches are returned and displayed as circlé$j T. Kohonen, “Self-organized formation of topologically correct feature
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An example of performing a keyword search is depicted in" ~ sixih int. Conf. Pattern RecognitioMunich, Germany, Oct. 19-22,
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more traditional searching. When performing a search, the bebtl! 007 Self-Organizing Maps2nd ed. Berlin, Germany: Springer,

matches often contain different kinds of material or differentjy] x. Lin, D. Soergel, and G. Marchionini, “A self-organizing semantic
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; ; Singapore, 1991, pp. 95-100.
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help in selecting the most interesting subset of matches Assembly Conf. Congress Int. Federation Information Documentation
’ 1994.
[15] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen, “Newsgroup explo-
VI. CONCLUSIONS ration with WEBSOM method and browsing interface,” Helsinki Univ.
Technol., Lab. Comput. Inform. Sci., Espoo, Finland, Tech. Rep. A32,

L 1996.
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