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Filter bubble...
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Motivation



|deological segregation, polarization, biased views
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Bursting the filter bubble...
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Problem Statement
- Input:

social graph content graph

(A) (C)
- Learn the shared latent space between A and C
- Discover ideology-popularity latent dimensions

- Estimate ideology and popularity scores for users and content
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Proposed Methodology



Orthogonal Non-negative Matrix Factorization
as Co-Clustering Model [Ding et al]

X ~ [U][H][V"] — e
[

association
between row and
column clusters

Input matrix clustering of
(e.g., user —item) rows of X



Combining Link and Content
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Combining Link and Content
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Learning Shared Latent Space
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Learning Hidden Manifolds in The Data
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ATr(UTL,U) + ATr(VILV)
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Latent factors have a probabilistic interpretation
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Latent factors have a probabilistic interpretation
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Latent factors have a probabilistic interpretation
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Latent factors have a probabilistic interpretation

Latent factors U and V

degree to which user i

belongs to ideology j \ J

degree to which content i
belongs to ideology j

Each row of U and V can be represented as a two dimensional vector {x, y)
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Estimating Ideological Leaning

latent dimension 2 (y)

1__

Each row of U and V can be
represented as a vector (x, y) in
the two dimensional space

-

Ia’Eent dimension 1 (x) 1
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Fvaluation



Dataset

Twitter Streaming APl (2011 - 2016)
- 7000 users
- 19 million tweets

Three controversial topics
- Gun control
- Abortion
- Obamacare

Ground Truth
- 500 news media channels
- Bayesian point estimate using
large annotated data set [Barbera et al]
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Estimated Ideology scores of high quality
across the ideology spectrum (including center)
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|deological Latent Space
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Motivation
(Revisiting)



We now have access to ideological position of all the users and content
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(2) User guided recommendations

(1) Bridge the Gap
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Summary

* Combines Link and Content Graph
* Jointly Matrix Factorization
e Shared Multidimensional Latent Space

IFD framework
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Learning Hidden Manifolds in The Data

Manifold assumption

If two data points x;, x; are close to each other in the input space
then their projections in the new basis u;, u; are also close.

J=lA —UHUT||Z +||IC —UHVT||4 +ATr(UTL,U) + ATr(VTLV)

\/

Graph regularization constraints [Cai et al]

where
 L,, L, are graph laplacians of the row and column affinity matrices of X
 Tr(-)istrace of the matrix
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Optimization Problem

IFD (ldeology Factor Decomposition)
J= A —UHUT||2 +||IC —UHVT||2+ATr(UTL,U) + ATr(VTLV)

Constraints
- Bi-orthogonality (UTU =1 ; VTV =1)
- Non-negativity (U, ; Hy, s Hg 5 Vi)

Solution
- Derive multiplicative update rules for U, V, H,, and H

- Iterative update algorithm
- Locally optimal solution "



Estimating Ideological Leaning

The latent factors U and V have a probabilistic interpretation:
* Ujj : degree to which user i belongs to ideology
* Vj; : degree to which content i belongs to ideology j

1__
f Each row of U and V can be represented
5 as a two dimensional vector (x, y)
S . 0 arctan(z)
E |deology: 1(xX,y)=—2= =
< o.1) gy:  nY) =5 = 5
I 0
& 0 T _ 2 2
. Popularity: p(x,y) = /x2+y
0 latent dimension 1 (x) 1
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Estimating |[deological Leaning

latent dimension 2 (y)
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