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Access to Diverse Information Around World …
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Filtered and Cherry Picked Content …
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(Retweet or Follow other users) (Retweet a news article)



User and Content Ideology
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Motivation
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Ideological segregation, polarization, biased views

Liberal Side Conservative side
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Bursting the filter bubble…

Liberal side Conservative side

(1) Recommend content
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Bursting the filter bubble…

(1) Recommend content
from other side

(2) Bridge the Gap

Ideology stance is not enough 

Influence (popularity) 
of users and content matters



Problem Statement
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Problem Statement
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- Learn the shared latent space between A and C
- Discover ideology-popularity latent dimensions
- Estimate ideology and popularity scores for users and content

- Input:

social graph
(A)

content graph
(C)



Proposed Methodology
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Orthogonal Non-negative Matrix Factorization 
as Co-Clustering Model [Ding et al]

clustering of 
rows of X

clustering of 
columns of X

association 
between row and 
column clusters

𝑋 ≈ [𝑈][𝐻][𝑉𝑇]
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Input matrix 
(e.g., user – item)



Combining Link and Content 

𝐽 = 𝐴 − 𝑈𝐻𝑢𝑈
𝑇

𝐹
2 + 𝐶 − 𝑈𝐻𝑠𝑉

𝑇
𝐹
2

user-user 
matrix 

user-content 
matrix 
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Shared Latent Space:

- A and C are related via users 
- row datatype of matrix A is the same as rows of C
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Joint Matrix 
factorization

Shared Latent Space:

- A and C are related via users 
- row datatype of matrix A is the same as rows of C



Learning Shared Latent Space

𝐽 = 𝐴 − 𝑈𝐻𝑢𝑈
𝑇

𝐹
2 + 𝐶 − 𝑈𝐻𝑠𝑉

𝑇
𝐹
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user-user 
matrix 

Joint Matrix 
factorization

Shared latent factors 
(U and V)

user-content 
matrix
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Shared Latent Space:

- A and C are related via users 
- row datatype of matrix A is the same as rows of C



𝐽 = 𝐴 − 𝑈𝐻𝑢𝑈
𝑇

𝐹
2 + 𝐶 − 𝑈𝐻𝑠𝑉

𝑇
𝐹
2 + 𝜆 𝑇𝑟 𝑈𝑇𝐿𝑢𝑈 + 𝜆 𝑇𝑟(𝑉𝑇𝐿𝑠𝑉)

Learning Hidden Manifolds in The Data

27

User Manifold and content Manifold
are tied together

- Users connected in social graph tend to be 
ideologically similar

- Ideologically similar users share similar 
content (and ideologically similar content is 
shared by similar users)



Latent factors have a probabilistic interpretation
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Latent factors have a probabilistic interpretation
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Latent factors have a probabilistic interpretation

Each row of 𝑈 and V can be represented as a two dimensional vector 〈𝑥, 𝑦〉
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𝑈𝑖𝑗

𝑉𝑖𝑗

𝑈 𝑉

degree to which content i
belongs to ideology j

degree to which user i
belongs to ideology j

Latent factors U and V



Estimating Ideological Leaning

Each row of 𝑈 and V can be 
represented as a vector 〈𝑥, 𝑦〉 in 
the two dimensional space
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Evaluation
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Dataset
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Twitter Streaming API (2011 - 2016)
- 7000 users
- 19 million tweets

Three controversial topics
- Gun control
- Abortion 
- Obamacare

Ground Truth 
- 500 news media channels
- Bayesian point estimate using 

large annotated data set [Barbera et al]



• Graph partitioning (Retweet/Follows)

• NMF [Lee & Seung]

Link

(user-user)

• ONMTF [Ding et al]

• DMCC [Gu et al]

Content

(user-content)

• IFD / IFD-NGR [Proposed method]

• BIAS WATCH [Lu et al]

• KULSHRESTHA [Kulshrestha et al]

Combined

(link+ content)

Baselines
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No ideology scores



• Graph partitioning (Retweet/Follows)

• NMF [Lee & Seung]

Link

(user-user)

• ONMTF [Ding et al]

• DMCC [Gu et al]

Content

(user-content)

• IFD / IFD-NGR [Proposed method]

• BIAS WATCH [Lu et al]

• KULSHRESTHA [Kulshrestha et al]

Combined

(link+ content)

Baselines

37

Matrix Factorization 
based approaches

No ideology scores
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Matrix Factorization 
based approaches

No ideology scores 
for media channels 

No ideology scores
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Estimated Ideology scores of high quality 
across the ideology spectrum (including center)
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Liberal Conservative



Ideological Latent Space

More Interactive Visualizations at http://bit.ly/FilterBubbleDemo
41



Motivation
(Revisiting)
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(1) Bridge the Gap
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We now have access to ideological position of all the users and content



(2) User guided recommendations

(1) Bridge the Gap
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Summary
IFD framework

• Combines Link and Content Graph

• Jointly Matrix Factorization 

• Shared Multidimensional Latent Space 

Compared to Baselines IFD Estimates 

• Ideology and Popularity Scores

• Twitter Users and Media Channels 

• High Quality
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THANK YOU
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If two data points 𝑥𝑖, 𝑥𝑗 are close to each other in the input space 

then their projections in the new basis 𝑢𝑖, 𝑢𝑗 are also close.

Manifold assumption

where
• 𝐿𝑢, 𝐿𝑠 are graph laplacians of the row and column affinity matrices of X
• 𝑇𝑟(⋅) is trace of the matrix

𝐽 = 𝐴 − 𝑈𝐻𝑢𝑈
𝑇

𝐹
2 + 𝐶 − 𝑈𝐻𝑠𝑉

𝑇
𝐹
2 + 𝜆 𝑇𝑟 𝑈𝑇𝐿𝑢𝑈 + 𝜆 𝑇𝑟(𝑉𝑇𝐿𝑠𝑉)

Graph regularization constraints [Cai et al]

Learning Hidden Manifolds in The Data

47



Optimization Problem

𝐽 = 𝐴 − 𝑈𝐻𝑢𝑈
𝑇

𝐹
2 + 𝐶 − 𝑈𝐻𝑠𝑉

𝑇
𝐹
2 + 𝜆 𝑇𝑟 𝑈𝑇𝐿𝑢𝑈 + 𝜆 𝑇𝑟(𝑉𝑇𝐿𝑠𝑉)

Solution
- Derive multiplicative update rules for 𝑈, 𝑉, 𝐻𝑢 and 𝐻𝑠

- Iterative update algorithm 
- Locally optimal solution

Constraints
- Bi-orthogonality (𝑈𝑇𝑈 = 𝐼 ; 𝑉𝑇𝑉 = 𝐼 )
- Non-negativity (𝑈+ ; 𝐻𝑢+

; 𝐻𝑠+
; 𝑉+)
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IFD (Ideology Factor Decomposition)



Estimating Ideological Leaning

The latent factors U and V have a probabilistic interpretation:

• 𝑈𝑖𝑗 : degree to which user i belongs to ideology j

• 𝑉𝑖𝑗 : degree to which content i belongs to ideology j

Each row of 𝑈 and V can be represented 
as a two dimensional vector 〈𝑥, 𝑦〉

Ideology: 𝑖(𝑥, 𝑦) =
𝜃

𝜋 /2
=

arctan
𝑦

𝑥

𝜋 /2

Popularity:     𝜌 𝑥, 𝑦 = 𝑥2 + 𝑦2
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Estimating Ideological Leaning
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