Quantifying Controversy on Social Media

Kiran Garimella^{*}, Gianmarco De Francisci Morales[#], Aristides Gionis^{*}, Michael Mathioudakis*

*Aalto University/HIIT, [#]Qatar Computing Research Institute

{kiran.garimella,aristides.gionis,michael.mathioudakis}@aalto.fi, gdfm@acm.org

A demo of this research will appear at CSCW 2016.

Details available at: https://users.ics.aalto.fi/kiran/controversy

Problem Detect controversial topics on Social Media **Topic** : one hashtag **Controversy** : users split into two sides

Motivation

- Discovering controversial topics in the wild, with no prior knowledge, and no domain expertise
 - Quantifying the controversy intensity
- Compare the degree of controversy across networks
 - Can we generalize on the graph structure?

Results

- Random walk measure works the best
 - Sentiment variance works!
- Identifying controversies is not easy

Methodology

Approaches

Random walk : How likely a random user on either side is to be exposed to authoritative content from the opposite side. **Betweenness :** How does the distribution of betweenness on the cut differ from other random edges in the graph. Embedding : How separated are the two sides in a low dimensional embedding.

Sentiment Variance : Variance of content sentiment on both

sides.

Limitations

- Not applicable to multi-sided controversies
- Dependance on graph partitioning method
 - Controversy measures not to scale

Future Directions

- Track evolution of controversies automatically
 - Automatic stance identification
 - **Balanced news recommendation**