
The Zope Book

Covers Zope 2.5

By Amos Latteier and Michel Pelletier

Copyright © 2000 by New Riders Publishing

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

http://www.opencontent.org/openpub/

Table of Contents
Introduction...1

 Why Should I Read this Book?...1
 How the Book Is Organized..1

 Part I: Introducing Zope...1
 Part II: Creating Web Applications with Zope..2
 Part III: Developing Advanced Web Applications with Zope...3

 Conventions Used in This Book...3
 This book uses the following typographical conventions:...3

Chapter 1: Introducing Zope...4
 What Is Zope?...4
 Powerful Collaboration...5
 Simple Content Management..5
 Web Components..5
 Zope History...6
 Who Can Benefit from Zope?...6
 How Can You Benefit From Zope?..6
 What Zope Gives You..7
 Zope Alternatives..8
 Zope Community..8

Chapter 2: Using Zope..9
 Downloading Zope..9
 Installing Zope..9

 Installing Zope for Windows...9
 Downloading Linux and Solaris Binaries..9
 Getting Zope in RPM and deb format...10
 Compiling Zope from Source Code...10

 Starting Zope...10
 Starting Zope On Windows...11
 Starting Zope on UNIX..11

 Logging In...11
 Controlling Zope with Management Interface..12
 Using the Navigator..12
 Using The Workspace...13
 Understanding Users in Zope..13
 Creating Users...14
 Changing Logins...15
 Creating Objects..15
 Moving Objects...16
 Undoing Mistakes...17
 Undo Details and Gotchas..18
 Administering and Monitoring Zope..18
 Using the Help System...19
 Browsing and Searching Help..20
 Starting with the Zope Tutorial...21

Chapter 3: Using Basic Zope Objects...22
 Using Zope Folders...22

 Managing Folder Contents...23
 Importing and Exporting Objects..23

Table of Contents
Chapter 3: Using Basic Zope Objects

 Temporary Folders...24
 Using Zope Page Templates...25

 Page templates are powerful for a few reasons:..25
 Creating Zope Page Templates..25
 Editing Zope Page Templates..25
 Uploading Zope Page Templates...25

 Using Zope Documents...26
 DTML Documents...26
 Creating DTML Documents..26
 Editing DTML Documents..26
 Uploading an HTML File..28
 Viewing DTML Documents..28
 Calling Through the Web..28
 Calling from Another Object...29
 Reviewing Changes to Documents..29

 Remote Editing with FTP, WebDAV, and PUT...30
 Uploading Documents and Files with WS_FTP..30
 Editing Zope Objects with Emacs...31
 Editing DTML Documents with WebDAV...32

 Using Zope Files...33
 Uploading Files..33
 Editing Files...34
 Viewing Files...34

 Using Zope Images...34
 Viewing Images with HTML...35
 Viewing Images Through the Web..35

 Using Object Properties..36
 Coding Logic with Scripts..37
 Using Methods..39
 Comparing DTML Documents and Methods...41
 Using Sessions..41

 Session Configuration..42
 Using Session Data..42

 Using Versions..43
 Versions and ZCatalog...45

 Improving Performance with Caching..46
 Adding a Cache Manager..46
 Caching a Document..47

 Virtual Hosting Objects..48
 Sending mail with MailHost...48

Chapter 4: Dynamic Content with DTML ...50
 Who is DTML For?..50
 What is DTML Good for?...50
 When Not to Use DTML..51
 DTML Tag Syntax..52

 Using DTML Tag Attributes...52
 Inserting Variables with DTML..53
 Processing Input from Forms..54
 Dynamically Acquiring Content...55

Table of Contents
Chapter 4: Dynamic Content with DTML

 Using Python Expressions from DTML...57
 DTML Expression Gotchas...58

 The Var Tag..59
 Var Tag Attributes...59
 Var Tag Entity Syntax...60

 The If Tag...60
 Here's an example condition:...60
 Name and Expression Syntax Differences...61
 Else and Elif Tags..61

 Using Cookies with the If Tag..62
 The In Tag...63

 Iterating over Folder Contents...63
 In Tag Special Variables..65

Chapter 5. Using Zope Page Templates..67
 Zope Page Templates versus DTML..67
 How Page Templates Work..67
 Creating a Page Template...68
 Simple Expressions...69
 Inserting Text..69
 Repeating Structures...70
 Conditional Elements..71
 Changing Attributes..72
 Creating a File Library with Page Templates...72
 Remote Editing with FTP and WebDAV...75
 Debugging and Testing...76
 XML Templates..77
 Using Templates with Content...78
 Conclusion..78

Chapter 6: Creating Basic Zope Applications..79
 Building Applications with Folders..79

 Calling Objects on Folders with URLs..79
 The Special Folder Object index_html..80

 Building the Zope Zoo Website..80
 Navigating the Zoo..80
 Adding a Front Page to the Zoo...82
 Improving Navigation..83
 Factoring out Style Sheets...85
 Creating a File Library...86
 Building a Guest Book...88
 Extending the Guest Book to Generate XML..92

 The Next Step...93

Chapter 7: Users and Security...94
 Introducing Security..94

 Logging in and Logging Out of Zope..94
 Authentication and Authorization..94

 Authentication and Managing Users...95
 Creating Users in User Folders..95

Table of Contents
Chapter 7: Users and Security

 Editing Users..96
 Defining a User's Location..96
 Working with Alternative User Folders...97
 Special User Accounts...97

 Authorization and Managing Security..100
 Working with Roles...101
 Defining Roles...101
 Understanding Local Roles..102
 Understanding Permissions..102
 Defining Security Policies...103
 Security Policy Acquisition...104

 Security Usage Patterns..104
 Security Rules of Thumb...104
 Global and Local Policies..105
 Delegating Control to Local Managers..105
 Different Levels of Access with Roles..106
 Controlling Access to Locations with Roles..107

 Performing Security Checks...107
 Advanced Security Issues: Ownership and Executable Content..108

 The Problem: Trojan Horse Attacks..108
 Managing Ownership...109
 Roles of Executable Content..110
 Proxy Roles..110

 Summary...111

Chapter 8: Variables and Advanced DTML..112
 How Variables are Looked up..112
 DTML Namespaces..113

 DTML Client Object..114
 DTML Request Object...115
 Rendering Variables..117

 Modifying the DTML Namespace..117
 In Tag Namespace Modifications..117
 The With Tag...117
 The Let Tag..118

 DTML Namespace Utility Functions..119
 DTML Security...121

 Safe Scripting Limits...122
 Advanced DTML Tags...122
 The Call Tag...122
 The Comment Tag..123
 The Tree Tag...123
 The Return Tag...126
 The Sendmail Tag...126
 The Mime Tag...127
 The Unless Tag...128
 Batch Processing With The In Tag...129
 Exception Handling Tags..131

 The Raise Tag..131
 The Try Tag...131

Table of Contents
Chapter 8: Variables and Advanced DTML

 Conclusion..134

Chapter 9. Advanced Page Templates..135
 Advanced TAL..135

 Advanced Content Insertion..135
 Advanced Tag Repetition..136
 Advanced Attribute Control...137
 Defining Variables...138
 Omitting Tags..139
 Error Handling...139
 Interactions Between TAL Statements..140
 Form Processing..142

 Expressions...143
 Built−in Variables..143
 String Expressions...144
 Path Expressions..144
 Not Expressions...145
 Nocall Expressions..146
 Exists Expressions...146
 Python Expressions..147

 Macros...150
 Using Macros...150
 Macro Details...151
 Using Slots...152
 Customizing Default Presentation...153
 Combining METAL and TAL...153
 Whole Page Macros...154

 Caching Templates..155
 Page Template Utilities...156

 Batching Large Sets of Information...156
 Miscellaneous Utilities..158

 Conclusion..158

Chapter 10: Advanced Zope Scripting...159
 Zope Scripts..159
 Calling Scripts...159

 Calling Scripts From the Web...160
 Calling Scripts from other Objects..161
 Passing Parameters to Scripts..163

 Script Security...167
 The Zope API..167
 Using Python−based Scripts...168

 The Python Language..168
 Creating Python−based Scripts..169
 String Processing...171
 Doing Math..172
 Binding Variables..172
 Print Statement Support...173
 Security Restrictions..174
 Built−in Functions...174

Table of Contents
Chapter 10: Advanced Zope Scripting

 Using External Methods...175
 Processing XML with External Methods...179
 External Method Gotchas..180

 Using Perl−based Scripts..181
 The Perl Language...181
 Creating Perl−based Scripts...181
 Perl−based Script Security...182

 DTML versus Python versus Perl...182
 Remote Scripting and Network Services..183

 Using XML−RPC..183
 Remote Scripting with HTTP..184

 Conclusion..186

Chapter 11: Searching and Categorizing Content...187
 Getting started with Mass Cataloging...187
 Search and Report Forms..189
 Configuring Catalogs..190

 Defining Indexes..190
 Defining Meta Data...191

 Searching Catalogs..192
 Searching with Forms..192
 Searching from Python..193

 Searching and Indexing Details..194
 Searching Text Indexes..194
 Vocabularies..194
 Searching Field Indexes...195
 Searching Keyword Indexes..200
 Searching Path Indexes..200

 Advanced Searching with Records...201
 Keyword Index Record Attributes...201
 Field Index Record Attributes..201
 Text Index Record Attributes..202
 Path Index Record Attributes...202
 Creating Records in HTML...203

 Stored Queries...203
 Automatic Cataloging...204
 Conclusion..210

Chapter 12: Relational Database Connectivity..211
 Using Database Connections..212
 Using Z SQL Methods..215

 Calling Z SQL Methods...218
 Providing Arguments to Z SQL Methods..219

 Dynamic SQL Queries..221
 Inserting Arguments with the Sqlvar Tag..221
 Equality Comparisons with the Sqltest Tag...222
 Creating Complex Queries with the Sqlgroup Tag..223

 Advanced Techniques...224
 Calling Z SQL Methods with Explicit Arguments..224
 Acquiring Arguments from other Objects...225

Table of Contents
Chapter 12: Relational Database Connectivity

 Traversing to Result Objects..226
 Binding Classes to Result Objects...227
 Caching Results...229
 Transactions...230

 Summary...230

Chapter 13: Scalability and ZEO..231
 What is ZEO?..231
 When you should use ZEO...232
 Installing and Running ZEO...233
 How to Run ZEO on Many Computers..234
 How to Distribute Load..235

 User Chooses a Mirror...235
 Using Round−robin DNS to Distribute Load..236
 Using Layer 4 Switching to Distribute Load...238
 Dealing with a Single Point of Failure...238
 ZEO Server Details..239

 ZEO Caveats...242
 Conclusion..243

Chapter 14: Extending Zope..244
 Creating Zope Products...244
 Creating A Simple Product...245
 Creating ZClasses...248

 Creating Views of Your ZClass...251
 Creating Properties on Your ZClass..252
 Creating Methods on your ZClass...254
 ObjectManager ZClasses...257
 ZClass Security Controls...257
 Controlling access to Methods and Property Sheets..258
 Controlling Access to instances of Your ZClass...259
 Providing Context−Sensitive Help for your ZClass..259

 Using Python Base Classes...260
 Distributing Products..261

Appendix A: DTML Reference..263
 call: Call a method..263

 Syntax..263
 Examples..263
 See Also...263

 comment: Comments DTML..263
 Syntax..263
 Examples..264

 functions: DTML Functions...264
 Functions..264
 Attributes...267
 See Also...267

 if: Tests Conditions...267
 Syntax..267
 Examples..267

Table of Contents
Appendix A: DTML Reference

 See Also...268
 in: Loops over sequences..268

 Syntax..268
 Attributes...268
 Tag Variables...269
 Examples..271

 let: Defines DTML variables..272
 Syntax..272
 Examples..272
 See Also...273

 mime: Formats data with MIME..273
 Syntax..273
 Attributes...273
 Examples..274
 See Also...274

 raise: Raises an exception...274
 Syntax..274
 Examples..275
 See Also...275

 return: Returns data...275
 Syntax..275
 Examples..275

 sendmail: Sends email with SMTP...275
 Syntax..275
 Attributes...276
 Examples..276
 See Also...276

 sqlgroup: Formats complex SQL expressions..276
 Syntax..276
 Attributes...277
 Examples..277
 See Also...278

 sqltest: Formats SQL condition tests..278
 Syntax..278
 Attributes...278
 Examples..279
 See Also...279

 sqlvar: Inserts SQL variables..279
 Syntax..279
 Attributes...280
 Examples..280
 See Also...280

 tree: Inserts a tree widget..280
 Syntax..280
 Attributes...280
 Tag Variables...281
 Tag Control Variables..282
 Examples..282

 try: Handles exceptions...282
 Syntax..282

Table of Contents
Appendix A: DTML Reference

 Attributes...283
 Tag Variables...283
 Examples..283
 See Also...284

 unless: Tests a condition...284
 Syntax..284
 Examples..284
 See Also...284

 var: Inserts a variable..284
 Syntax..284
 Attributes...285
 Examples..286

 with: Controls DTML variable look up..286
 Syntax..287
 Attributes...287
 Examples..287
 See Also...287

Appendix B: API Reference...288
 moduleAccessControl..288

 AccessControl: Security functions and classes..288
 classSecurityManager...288
def getSecurityManager()..289

 moduleAuthenticatedUser..289
 classAuthenticatedUser...289

 moduleDTMLDocument..290
 classDTMLDocument(ObjectManagerItem, PropertyManager)..290

 moduleDTMLMethod..292
 classDTMLMethod(ObjectManagerItem)..292

 moduleDateTime..294
 classDateTime...294

 moduleExternalMethod..305
 classExternalMethod...305

 moduleFile...306
 classFile(ObjectManagerItem, PropertyManager)..306

 moduleFolder...308
 classFolder(ObjectManagerItem, ObjectManager, PropertyManager)................................308

 moduleImage..308
 classImage(File)..308

 moduleMailHost..309
 classMailHost..309

 moduleObjectManager...310
 classObjectManager..310

 moduleObjectManagerItem...311
 classObjectManagerItem..311

 modulePropertyManager..314
 classPropertyManager...314

 modulePropertySheet...315
 classPropertySheet..315

 modulePropertySheets...318

Table of Contents
Appendix B: API Reference

 classPropertySheets..318
 modulePythonScript...318

 classPythonScript(Script)..318
 moduleRequest...321

 classRequest..321
 moduleResponse..324

 classResponse...324
 moduleScript..326

 classScript...326
 moduleSessionInterfaces..326

 Session API..326
 classSessionDataManagerErr..326
 classBrowserIdManagerInterface...326
 classBrowserIdManagerErr..328
 classSessionDataManagerInterface..328

 moduleTransienceInterfaces..329
 classTransientObject...329
 classMaxTransientObjectsExceeded..332
 classTransientObjectContainer...332

 moduleUserFolder..334
 classUserFolder...334

 moduleVocabulary...335
 classVocabulary..335

 moduleZCatalog...335
 classZCatalog..335

 moduleZSQLMethod...338
 classZSQLMethod..338

 moduleZTUtils...339
 ZTUtils: Page Template Utilities...339
 classBatch...339

 modulemath...340
 math: Pythonmath module..340

 modulerandom...340
 random: Pythonrandom module..341

 modulesequence...341
 sequence: Sequence sorting module..341
def sort(seq, sort)...341

 modulestandard..342
def structured_text(s)...342
def html_quote(s)...342
def url_quote_plus(s)...343
def dollars_and_cents(number)..343
def sql_quote(s)..343
def whole_dollars(number)..343
def url_quote(s)..343
 classDTML...343
def thousand_commas(number)...344
def newline_to_br(s)..344

 modulestring..344
 string: Pythonstring module..344

Table of Contents
Appendix C: Zope Page Templates Reference...345

 TAL Overview..345
 TAL Namespace..345
 TAL Statements...345
 Order of Operations...345
 See Also...346

 attributes: Replace element attributes...346
 Syntax..346
 Description...347
 Examples..347

 condition: Conditionally insert or remove an element..347
 Syntax..347
 Description...347
 Examples..348

 content: Replace the content of an element..348
 Syntax..348
 Description...348
 Examples..348
 See Also...348

 define: Define variables..349
 Syntax..349
 Description...349
 Examples..349

 omit−tag: Remove an element, leaving its contents...349
 Syntax..349
 Description...349
 Examples..350

 on−error: Handle errors..350
 Syntax..350
 Description...350
 Examples..351
 See Also...351

 repeat: Repeat an element...351
 Syntax..351
 Description...351
 Repeat Variables..352
 Examples..352

 replace: Replace an element..353
 Syntax..353
 Description...353
 Examples..353
 See Also...354

 TALES Overview...354
 TALES Expression Types...354
 Built−in Names..354
 See Also...355

 TALES Exists expressions..355
 Syntax..355
 Description...355
 Examples..356

 TALES Nocall expressions...356

Table of Contents
Appendix C: Zope Page Templates Reference

 Syntax..356
 Description...356
 Examples..356

 TALES Not expressions...356
 Syntax..356
 Description...357
 Examples..357

 TALES Path expressions..357
 Syntax..357
 Description...357
 Examples..358

 TALES Python expressions..358
 Syntax..358
 Description...358
 Examples..360

 TALES String expressions..360
 Syntax..360
 Description...360
 Examples..360

 METAL Overview..361
 METAL Namespace..361
 METAL Statements...361
 See Also...361

 define−macro: Define a macro...362
 Syntax..362
 Description...362
 Examples..362
 See Also...362

 define−slot: Define a macro customization point...362
 Syntax..362
 Description...363
 Examples..363
 See Also...363

 fill−slot: Customize a macro...363
 Syntax..363
 Description...363
 Examples..363
 See Also...364

 use−macro: Use a macro...364
 Syntax..364
 Description...364
 Examples..364
 See Also...364

Appendix D: Zope Resources...365
 Zope Web Sites...365
 Zope Documentation...365
 Mailing Lists...365
 Zope Extensions..365
 Python Information...365

Introduction
Welcome to The Zope Book. This book is designed to introduce you to Zope and its uses. Zope is an
open−source web application server. If you are interested in writing web pages, programming web scripts,
using databases, managing content, or doing a collaborative web development task, then you should read this
book.

Why Should I Read this Book?

This book is meant to appeal to both current Zope users and people new to Zope:

You don't need to be a programmer to read this book, or to use Zope.•
You should have some idea of how the web works; including a basic understanding of HTML and
URLs.

•

You should know what a web browser and a web server are and should have some idea of how they
communicate.

•

The first part of the book explains to you how you use Zope through its web managment interface to manage
dynamic content. The concepts in these chapters are are fundamental Zope concepts that show you how to use
Zope to publish content on the web.

Some later sections of the book cover advanced topics such as relational databases, scripting with various
programming languages, and XML. These chapters don't teach relational databases, programming, or XML,
they simply show you how to use these technologies with Zope.

How the Book Is Organized

The organization of the book is presented below, as well as a brief summary of each chapter.

Part I: Introducing Zope

These chapters get the reader up and running with Zope. You learn about basic Zope objects and idioms.

Chapter 1: Introducing Zope

Chapter 1 explains what Zope is and who it's for. It describes in broad strokes what you can do with Zope.
You also learn about the differences between Zope and other web application servers.

Chapter 2: Using Zope

Chapter 2 covers the most important Zope concepts. By the end of this chapter you should be able to use Zope
to create and manage simple yet powerful web applications.

Chapter 3: Using Basic Zope Objects

Chapter 3 introduces objects, which are the most important elements of Zope. In it we cover what an object is
in general, and then we introduce the basic Zope objects: folders, DTML documents, DTML methods, files,
and images.

Chapter 4: Dynamic Content with DTML

Chapter 4 introduces DTML, Zope's tag−based scripting language. In it we describe DTML's use for
templating and scripting and its place in relation to other ways to script Zope. We cover DTML syntax and the
three most basic tags, var, if and in. After reading this chapter you'll be able to create dynamic web pages.

Chapter 5: Using Zope Page Templates

Chapter 5 introduces Zope Page Templates, a new tool to create dynamic HTML. This chapter shows you
how to create and edit page templates. It also introduces basic template statements that let you insert dymanic
content.

Chapter 6: Creating Basic Zope Applications

Chapter 6 walks the reader through several real−world examples of building a Zope application. It provides
plenty of examples showing how to use Zope objects and how they can work together to form basic
applications.

Part II: Creating Web Applications with Zope

These chapters provide a more in depth look at advanced Zope topics. They cover the material necessary to
build real web applications with Zope.

Chapter 7: Users and Security

Chapter 7 looks at how Zope handles users, authentication, authorization, and other security−related matters.
Security is central to Zope's design and should be central to the web applications that you create with Zope.

Chapter 8: Variables and Advanced DTML

Chapter 8 takes a closer look at DTML. It covers DTML security and the tricky issue of how variables are
looked up in DTML. It also covers advanced uses of the basic tags covered in Chapter 3 and the myriad
special purpose tags. This chapter will turn you into a DTML wizard.

Chapter 9: Advanced Page Templates

Chapter 9 goes into more depth with templates. This chapter teaches you all the template statements and
expression types. It also covers macros which let you reuse presentation elements. By the end of this chapter
you'll know all there is about page templates.

Chapter 10: Advanced Zope Scripting

Chapter 10 covers scripting Zope with Python and Perl. In it we cover how to write business logic in Zope
using more powerful tools than DTML. It discusses the idea of scripts in Zope, and focuses on Python and
Perl−based Scripts. This chapter shows you how to add industrial−strength scripting to your site.

Chapter 11: Searching and Categorizing Content

Chapter 11 shows you how to index and search objects with Zope's built−in search engine, the Catalog. It
introduces indexing concepts and discusses different patterns for indexing and searching. Finally it discusses
meta−data and search results. This chapter shows you how to create a powerful and easy to use information
architecture.

Introduction 2

Chapter 12: Relational Database Connectivity

Chapter 12 describes how Zope connects to external relational databases. It shows you how to connect to and
query databases. It also covers features which allow you to treat relational data as though it were Zope objects.
Finally, the chapter covers security and performance considerations.

Part III: Developing Advanced Web Applications with Zope

The final part of the book deals with advanced topics. You learn how to scale your web application and extend
Zope itself.

Chapter 13: Scalability and ZEO

Chapter 13 covers issues and solutions for building and maintaining large web applications, and focuses on
issues of management and scalability. In particular, the Zope Enterprise Option (ZEO) is covered in detail.
This chapter shows you the tools and techniques you need to turn a small site into a large−scale site, servicing
millions of visitors.

Chapter 14: Extending Zope

Chapter 14 covers extending Zope by creating your own classes of objects. It discusses ZClasses, and how
instances are built from classes. It describes step by step how to build a ZClass and the attendant security and
design issues. Finally, it discusses creating Python base classes for ZClasses and describes the base classes
that ship with Zope. This chapter shows you how to take Zope to the next level, by tailoring Zope to your
needs.

Conventions Used in This Book

This book uses the following typographical conventions:

Italic
Italics indicate variables and is also used to introduce new terms.

Fixed width
Fixed width text indicates commands, hyperlinks, and code listings.

Introduction 3

Chapter 1: Introducing Zope
This chapter explains what Zope is and who it's for. It describes in broad strokes what you can do with Zope.
You also learn about the differences between Zope and other web application servers.

What Is Zope?

Zope is a framework for building web applications. A web application is a computer program that users access
with a web browser over the Internet. You can also think of a web application as a dynamic web site that
provides not only static information to users but lets them use dynamic tools to work with an application.

Web applications are everywhere, and web users work with them all the time. Common examples of web
applications are sites that let you search the web, like Yahoo, collaborate on projects, like SourceForge, or
communicate with other people over e−mail, like HotMail. All of these kinds of applications can be
developed with Zope.

So what do you get when you download Zope? You actually get a lot of things. Zope consists of several
different components that work together to help you build web applications. Zope comes with:

A Web server
Zope comes with a built in web server that serves content to you and your users. Of course, you may
already have an existing web server, such as Apache or Microsoft IIS and you may not want to use
Zope's. Not to worry, Zope works with these web servers also, and any other web server that supports
the Common Gateway Interface (CGI).

A Web based interface
When you build web applications with Zope, you use your web browser to interact with the Zope
management interface. This interface is a development environment that lets you do things like create
web pages, add images and documents, connect to external relational databases and write scripts in
different languages.

An object database
When you work with Zope, you are mostly working with objects that are stored in Zope's object
database. Zope's management interface provides a simple, familiar way to manage objects that
resembles the way many common file managers work.

Relational integration
You don't have to store your information in Zope's object database if you don't want to, because Zope
works with other relational databases such as Oracle, PostgreSQL, Sybase, MySQL and many others.

Scripting language support
Zope allows you to write web applications in a number of different languages, like Python, Perl, and
Zope's own Document Template Markup Language (DTML).

These are just some of the compelling features that have made Zope so popular for developing web
applications. Perhaps Zope's best feature of all is its friendly, open source license. This means that not only is
Zope free of cost for you to download, but you are also free to use Zope in your own products and
applications without paying royalties or usage fees. Zope's open source license also means that all of the
"source code" for Zope is available for you to look at, understand, and extend. Zope does not lock you into a
proprietary solution that could hold you and your web users hostage.

From a business perspective, there are three key ideas to understanding what Zope can do for you: powerful
collaboration, simple content management, and web components. The following sections are mostly oriented
towards business people making decisions about Zope, so if you are interested in jumping right in, skip to the
next chapter, Using Zope.

http://www.python.org/
http://www.perl.org/

Powerful Collaboration

Years ago, Zope's core technologies were designed by Zope Corporation for an Internet Service Provider that
provided web pages for newspapers. These newspapers in turn wanted to provide web pages for their
customers. To scale in this environment, Zope was designed to safely delegate control to different groups of
users at any level in the web site. Safely delegating control means considering these things:

Presenting information in an easy to understand way. Most people understand clicking on folders
better than issuing database commands, so Zope uses an interface that resembles a simple file
manager, like Microsoft Windows Explorer and other popular file managers.

1.

Command line tools can be difficult to use and people are generally more comfortable using web
browsers, so Zope was designed to be used almost exclusively through a web browser.

2.

Collaborative environments require tools to allow users to recover from their mistakes and to work
without interfering with each other, so Zope has Undo, Versions, and other tools to help people work
safely together.

3.

These features make Zope an ideal environment for programming and authoring web content by groups and
sub−groups of users.

Simple Content Management

Many web applications are traditionally built in three layers. Data and other information is stored in databases,
the programs that drive the behavior of the application are stored in files in one location, and the HTML and
other layout and presentation information is stored somewhere else.

While this has advantages, it also has disadvantages. Different kinds of tools and expertise must be used to
work with the different components. All the different components may need to have their own kind of security
and maintenance concerns. Many of these kinds of tools are not manageable from a web browser or from
simple command line or GUI tools like FTP.

In Zope, all of these components are brought together into one coherent system. All require a common set of
services: security, web−based management, searching, clustering, syndication and others. By bringing
together all of these concepts into one manageable system, Zope enables you to use one set of skills and one
set of tools to develop complex web applications. In addition, centralizing our model means Zope can more
easily work with other external tools, like relational databases, GUI web editors, and other systems that can
inter−operate with Zope.

Web Components

The Web is a growing, dynamic platform. The web has evolved enough standards and APIs that creators of
services, products, and technology can think in terms of the web as an architectural model to develop their
applications around, instead of just a means of distributing static HTML documents to users.

Evidence of this is sprouting up in many locations. Microsoft's .NET architecture envisions a world of web
components running on remote systems, providing specific services to applications around the world.
Frontier, by UserLand Software, pioneered a simple web services protocol called XML−RPC to allow web
components to communicate with each other (Zope also works with XML−RPC, which is discussed in
Chapter 10, "Advanced Zope Scripting"). With web components, the model of a person sitting in front of the
browser is no longer the only model of the web.

Chapter 1: Introducing Zope 5

Zope History

In 1996 Jim Fulton, the CTO of Zope Corporation and Python guru, was drafted to teach a class on CGI
programming, despite not knowing much about the subject. Jim studied all of the existing documentation on
CGI on his way to the class. On the way back from the class, Jim considered what he didn't like about
traditional CGI based programming environments: its fragility, lack of object−orientation, and how it exposes
web server details. From these initial musings, the core of Zope was written on the plane flight back from the
class.

Zope Corporation went on to release three open source software packages to support web publishing, Bobo,
Document Template, and BoboPOS. These package were written in Python. They have evolved into core
components of Zope providing the web ORB (Object Request Broker), DTML scripting language, and object
database. Zope is still mostly written in Python with a few performance−critical sections in C.

Back then, Zope Corporation had developed a commercial application server based on their three open source
components. This product was called Principia. In Novermber of 1998, investor Hadar Pedhazur convinced
Zope Corporation to open source Principia. This became Zope, which was given its own home at Zope.org.

Who Can Benefit from Zope?

It takes a lot of people working together to create web services. To manage and coordinate these people on
large−scale sites can be a difficult task. We've identified some common roles in this scenario to be aware of:

Consumers use the site to locate and work with useful content.•
Business Users create and manage the site's content.•
Site Designers create the site's look and feel.•
Site Developers program the site's services.•
Component Developers create software intended for distribution.•
Administrators keep the software and environment running.•
Information Architects make platform decisions and keep track of the big picture.•

Zope is a platform upon which Site Developers create services to be turned over to Site Designers and
Business Users, and Component Developers distribute new products and services for Zope users world wide.

Zope can install Zope products that are focused on different audiences. For instance, Squishdot is a popular
weblog, written in Zope, that is useful right out of the box. Squishdot users won't necessarily see that Zope is
underneath. Other Zope products, such as Zope Corporation's Content Management Framework, take the
same approach, targeting audiences that need not know of Zope's existence underneath.

How Can You Benefit From Zope?

We've looked at the Zope philosophy and architecture, now let's survey some of of the applications of Zope.
All sites solve different problems, but many sites tackle a set of common issues daily. Here are some of the
main uses of Zope:

To Present Dynamic Content
You want to tailor your web site's presentation to its users, integrate information in databases and
provide users with searching. You'd also like to make your web site automate and facilitate your
business processes. Can your web site react intelligently to visitors in order to provide a compelling
experience? Zope allows you to make every page dynamic. It comes with facilities for
personalization, integrating information in databases and searching.

Chapter 1: Introducing Zope 6

http://www.zope.org/
http://cmf.zope.org

To Manage your Web Site
A small web site is easy to manage, but a web site that serves thousands of documents, images and
files needs to provide powerful management tools. Can you manage your site's data, business logic
and presentation all in one place? Can you keep up with your content, or is it getting out of hand?
Zope gives you simple and powerful tools for handling gigabytes of web content. You can manage
your logic, presentation and data all from your web browser.

To Secure Your Web Site
When you deal with more than a handful of web users, security becomes very important. It is crucial
to organize users and be able to safely delegate tasks to them. For example, folks in your engineering
department may need to be able to manage their web pages and business logic, designers may need to
update site templates, and database administrators need to manage database queries. Can your system
handle thousands of users, perhaps linked to your existing LDAP or other user databases with flexible
security rules? Zope allows you to scale your site to thousands of site managers and millions of
visitors. You can simply control security policies and safely delegate control to others.

To Provide Network Services
Right now most web sites serve users, but soon web sites will need to serve remote computer
programs and other web sites. For example, you'd like to make your news items automatically
available to wire service web sites. Or maybe you want to make products for sale on your site
automatically searchable from a product comparison site. Can you leverage your existing data and
business logic to create network services or will you have to start over from scratch? Zope's built−in
support for networking makes every Zope site a network service. Your business logic and data can be
accessed over the web via HTTP and XML−RPC.

To Integrate Diverse Content
Your content is strewn all over the place, in relational databases, files, web sites, FTP archives, XML.
Can you unify your data into one coherent application? Does your system support web standards so
that you can integrate content from legacy systems and new systems that you will add in the future?
Zope supports web standards allowing you to use your existing data, infrastructure and filesystems.

To Provide Scalability
So you struck it rich and now you're getting more hits than you ever imagined. Now you need to
handle a dramatically greater level of traffic than before. Can you move your site to a different
database and server platform and spread the load across multiple servers? Can your web site grow to
handle your success? Zope allows your web applications to scale across as many machines as
necessary to handle your load. Zope makes it possible to maintain a small site that can turn into a
huge site overnight based on its "ZEO" technology (see Chapter 13, "Scalability and ZEO" for more
details).

What Zope Gives You

Let's take a closer look at the Zope features that allow you to build and manage dynamic web sites.

Unique Management Environment
The first thing you'll notice about Zope is that it lets you manage your site's data, logic, and
presentation right in your web browser. This means that Zope is easy to use and is remotely
administrable. Zope lets you collaborate with others to interactively develop your web site.

Built−in Tools
Zope comes with site management tools, a web server, a search engine, database connectivity,
security and collaboration services, and more. Out of the box, Zope gives you everything you need to
build a powerful web site.

Open Standards Support
Zope excels at gluing together diverse data because of its support for open standards. Zope supports
Internet standards including SQL, ODBC, XML, DOM, FTP, HTTP, FastCGI, XML−RPC, SOAP,
and more.

Chapter 1: Introducing Zope 7

Open Source Licensing
With Zope you don't just get an application, you get the source and a community. Since Zope is open
source you are not held hostage by a single vendor; you're free to use, distribute and adapt Zope to fit
your needs. Zope also benefits from an active user and developer community. The community
improves Zope's support, audits Zope's security, fixes bugs, and adds features.

Extensibility
Zope can be extended in many directions. Third party applications can be easily created and
distributed. The Zope community has produced hundreds of Zope add−ons for everything from credit
card processing to web discussions.

Zope Alternatives

There are many tools available to help you build web applications. Early in the history of the web, simple web
applications were built almost exclusively with CGI programs written in Perl or other languages. Now there
are a host of options ranging from open source frameworks like PHP, to commercial options such as Allaire's
Cold Fusion, Java application servers, and Vignette's Story Server.

Zope offers a unique mix of features, some similar to, and some very different from, features offered by other
web application tools. Zope is easy to use, open source, powerful, and provides support for many different
kinds of applications. Here is a short list of common web tool drawbacks and Zope's advantages:

Some tools do not offer a simple file manager like user interface, and are hard to use. Zope has a
simple user interface.

•

Some tools require complex configuration. Zope is easy to install and requires no configuration before
you begin using it.

•

Some tools require using unfamiliar and proprietary development tools. Zope works with any
standards−compliant web browser and no other tools will be required to use this book.

•

Some tools don't scale as well as Zope does to handle large numbers of developers and users. Zope
has a consistent, powerful user management system that can scale to many users with unique, easily
managed privileges.

•

Finally most closed−source, commercial tools don't let you extend, customize, and redistribute them.
Zope is open source.

•

Zope Community

Zope was one of the first tools of its kind to become open source. Since opening up the code to Zope, the user
base has grown tremendously.

The Zope community consists of Zope users and developers. Many of the community members are
professionals such as consultants, developers and web masters, investing their time and money into supporting
Zope. Others are students and curious hackers, learning how to use a cool new tool. The community gets
together occasionally at conferences but spends most of its time discussing Zope on the many Zope mailing
lists and web sites. You can find out more about the many Zope−related mailing lists at
http://www.zope.org/Resources/MailingLists.

Now that you've learned about Zope's features and history, it's time to start using it. In the next chapter you'll
learn how to get up and running with Zope. Since Zope is free, you can download the latest version, and begin
working immediately.

Chapter 1: Introducing Zope 8

Chapter 2: Using Zope
This chapter gets you up and running with Zope. It guides you through installing and running Zope. This
chapter covers the most important Zope concepts. By the end of this chapter you should be able to use Zope to
create and manage simple yet powerful web applications.

Downloading Zope

The first steps to using Zope are to download and install it. Zope is available for free from the Zope.org web
site. The most recent stable version is always available from the Download section of Zope.org.

Zope is currently available as a binary for Windows, Linux and Solaris. This means that you can just
download and install it without having to compile any programs. For other platforms you must download the
source and compile Zope. Zope can be compiled and run on almost any Unix−like operating system. As a
general rule of thumb, if Python is available for your operating system and you have a C compiler, then you
can probably use Zope.

Installing Zope

You will install Zope differently depending on your platform. If you are running a recent version of Linux,
you may already have Zope installed. You can get Zope in both binary and source forms. There are also
several different binary formats available.

Installing Zope for Windows

Zope for Windows comes as a self−installing .exe file. To install Zope, double click on the installer. The
installer walks you through the installation process. Pick a name for your Zope installation and a directory to
install it in. Click Next and create a new Zope user account. This account is called the initial user. This creates
an account that you can use to log into Zope for the first time. You can change this user name and password
later if you wish.

If you are using Windows NT or Windows 2000, you can choose to run Zope as a service. Running Zope as a
service is a good idea for a public server. If you are just running Zope for personal use don't bother running it
as a service. Keep in mind that if you are running Windows 95, Windows 98, or Windows ME (Millenium
Edition), you cannot run Zope as a service.

If you decide to uninstall Zope later you can use the Unwise.exe program in your Zope directory.

Downloading Linux and Solaris Binaries

Download the binary for your platform and extract the tarball:

 $ tar xvfz Zope−2.4.0−linux2−x86.tgz

In this example, you are downloading version 2.4.0. This may not be the most recent version of Zope when
you read this, so be sure and get the latest stable version of Zope for your platform.

This will unpack Zope into a new directory. Enter the Zope directory and run the Zope installer script:

 $ cd Zope−2.4.0−linux2−x86
 $./install

http://www.zope.org
http://www.zope.org/Products
http://www.python.org

The installer will print information as it installs Zope. Among other things, it will create a initial user account.
You can change the initial user name and password later with the zpasswd.py script (see Chapter 7, "Users and
Security").

The installer will configure Zope to run as your UNIX userid. If you prefer to run Zope as another userid, you
can use the −u command line switch and specify the user you want to configure Zope to run as. There are
many books out there with more information on userids and UNIX administration in general you should check
out if you want to do anything fancy. For now things will work fine if you just install Zope to runs as your
userid by not specifying any extra command line options.

For more information on installing Zope see the installation instructions in doc/INSTALL.txt and find out more
about the installer script by running it with the −h help switch:

 $./install −h

Getting Zope in RPM and deb format

Zope Corporation doesn't make Zope available in RPM format, but other people do. Jeff Rush regularly
packages Zope as RPMs. For more information check out his web page
(http://www.taupro.com/Downloads/Zope/). Zope is also available in the Debian Linux deb package format.
You can find Zope deb packages at the Debian web site site. Generally the latest Zope releases are found in
the unstable distribution.

Compiling Zope from Source Code

If binaries aren't available for your platform, then chances are you can compile Zope from the source. To do
this, install Python from the sources for your platform and make sure you have a C compiler. You can get
Python from the Python.org web site. Although we try and use the most recent Python for Zope, often the
latest Python version is more recent than the version we "officially" support for Zope. For information on
which version of Python you need to compile Zope with, see the release notes on the Web page for each
version. Zope 2.4 requires Python 2.1. Zope 2.3 and earlier versions used Python 1.5.2.

Download the Zope source distribution and extract the tarball:

 $ tar xvfz Zope−2.4.0−src.tgz

This unpacks Zope into a new directory. Enter the Zope directory and run the Zope installer script:

 $ cd Zope−2.4.0−src
 $ python wo_pcgi.py

The installer compiles Zope and sets up your installation. The installer prints information as it runs, including
the initial user name and password. It's important to write down that information so you can log into Zope. For
more information see the installation instructions in the file doc/INSTALL.txt. You can change the initial user
account later with the zpasswd.py script (see Chapter 7, "Users and Security").

Starting Zope

Depending on your platform, you run Zope with different commands. Whatever your platform, you can either
run Zope manually, or automatically. When running Zope manually, you simply tell Zope when to start and
when to stop. When running Zope automatically, Zope will start and stop when your computer starts and
stops.

Chapter 2: Using Zope 10

http://www.taupro.com/Downloads/Zope/
http://www.taupro.com/Downloads/Zope/
http://packages.debian.org/zope
http://www.python.org

Starting Zope On Windows

The installer creates a Zope directory with a batch file called start.bat. Double click the start.bat icon. This
will open a window that includes logging information. On this window you find out what port Zope is
listening on. You can now log into Zope with a web browser.

If you are running Zope as a service, you can start and stop Zope via the Services control panel. Zope will
write events to the event log so that you can keep track of when your service starts and stops. If you run Zope
as a service you must know what port Zope is running on, since you will not have direct access to its detailed
logging information.

Zope comes with its own web server. When you start Zope, its web server starts. If you wish you can connect
Zope to your existing web server such as IIS, but this is beyond the scope of this book. The Zope
Administrator's Guide covers this kind of material.

Starting Zope on UNIX

Run the start script:

 $./start &

Zope will start running and will print logging information to the console. You should see information telling
you what port Zope is listening on. You can now log into Zope with a web browser.

Zope comes with its own web server. When you start Zope, its web server starts. If you wish you can connect
Zope to your existing web server such as Apache, but this is beyond the scope of this book. The Zope
Administrator's Guide covers this kind of material.

The start script can also be edited to start Zope with many different options. How to customize your Zope
startup is also described in the Administrator's Guide.

Logging In

To log into Zope you need a web browser. Zope's interface is written entirely in HTML, therefore any
browser that understands modern HTML works. Mozilla, and any 3.0+ version of Microsoft Internet Explorer
or Netscape Navigator will do.

To log into the management interface point your web browser to Zope's management URL. The management
URL for Zope is Zope's base URL with /manage appended. Assuming you have Zope installed on your local
machine serving on the default port 8080, the management URL is:

 http://localhost:8080/manage

This URL usually works, but you may need to login to a different machine than the one we show you here. To
find out exactly which URL to use, look at the logging information Zope prints as it starts up. For example:

 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer Medusa (V1.18) started at Mon Aug 7 16:00:53 2000
 Hostname: peanut
 Port:8080

 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer FTP server started at Mon Aug 7 16:00:53 2000

Chapter 2: Using Zope 11

http://www.zope.org/DocProjects/AdminGuide
http://www.zope.org/DocProjects/AdminGuide
http://www.zope.org/DocProjects/AdminGuide
http://www.zope.org/DocProjects/AdminGuide

 Authorizer:None
 Hostname: peanut
 Port: 8021
 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer Monitor Server (V1.9) started on port 8099

The first log entry indicates Zope is running on a machine named peanut and that the web server is listening
on port 8080. This means that the management URL is http://peanut:8080/manage. Later in the book we'll
look at the other servers referred to in the logging information.

After you enter Zope's management URL in your browser, your browser will prompt you to log into Zope by
providing a user name and password. Type in the initial user name and password created during the install
process. If you don't know the initial user name and password, then shut Zope down by closing its window,
and change the initial user password with the zpasswd.py script and restart Zope. See Chapter 7, "Users and
Security" for more information about configuring the initial user account.

Controlling Zope with Management Interface

After you successfully login you see a web page of the Zope management interface, as shown in Figure 2−1.

Figure 2−1 The Zope management interface.

The Zope management interface lets you control Zope within your web browser.

Using the Navigator

The Zope management interface is broken into three frames. With the left frame you navigate around Zope
much like you would navigate around a file system with a file manager like Windows Explorer. This frame is
called the Navigator, and is shown in the left frame of Figure 2−1. In this frame you see the root folder and all
of its subfolders. The root folder is in the upper left corner of the tree. The root folder is the "top" of Zope.
Everything in Zope lives inside the root folder.

Chapter 2: Using Zope 12

Some of the folders have plus marks to the left of them. These plus marks let you expand the folders to see the
sub−folders that are inside.

Above the folder tree Zope shows you login information in a frame. In this screen shot you can see that you
are currently logged in as "manager". When you log in to Zope you will use the initial user account and you
will see the name of this account in place of "manager".

To manage a folder, click on it and it will appear in the right−hand frame of the browser window. This frame
is called the workspace.

Using The Workspace

The right−hand frame of the management interface shows the object you are currently managing. When you
first log into Zope the current object is the root folder, as shown in the right frame of Figure 2−1. The
workspace gives you information about the current object, and lets you change it.

Across the top of the screen are a number of tabs. The currently selected tab is highlighted in a lighter color.
Each tab takes you to a different view of the current object. Each view lets you perform a different
management function on that object.

In Figure 2−1, you are looking at the Contents view of the root folder object.

At the top of the workspace, just below the tabs, is a description of the current object's type and URL. On the
left is an icon representing the current object's type, and to the right of that is the object's URL.

In Figure 2−1 "Folder at /" tells you that the current object is a folder and that its URL is /. Note that this
URL is the object's URL relative to Zope's base URL. So if the URL or your Zope site was
http://mysite.example.com:8080, then the URL of the "Folder at /myFolder" would be
http://mysite.example.com:8080/myFolder.

As you explore different Zope objects, you find that the URLs (as displayed in the management screen), can
be used to navigate between objects.

For example, if you are managing a folder at /Zoo/Reptiles/Snakes you can return to the folder at /Zoo by
clicking on the word Zoo in the folder's URL.

In the frame at the top of the management interface, your current login name is displayed, along with a
pull−down box that lets you select:

Preferences
Here, you can set default preferences for your Zope session, you can even set to hide the top frame.

Logout
Selecting this menu item will log you out of Zope.

Quick Start Links
These are quick links out to Zope documentation and community resources.

Understanding Users in Zope

Zope is a multi−user system. You've already seen how you can log into Zope via the management interface
with the initial user name and password. Zope supports other kinds of users:

Chapter 2: Using Zope 13

Emergency User
The emergency user is rarely used in Zope. This account is used for creating other user accounts and
fixing things if you accidently lock yourself out.
The emergency user is both very powerful and very weak. It is not restricted by most security
controls. However, the emergency user can only create one type of object: Users. Using the
Emergency User to repair your Zope system in the case of accidental lock−out is discussed in the
Administrator's Guide.

Manager
The Manager is the Zope workhorse. You will need to log in with the Manager account to do most of
the work involved with building Zope web sites. The initial user is a Manager, and you can create as
many Manager accounts as you need.

Others
You can create your own kind of users that fit into groups, or are responsible for carrying out a role
that you define. This is explained more in Chapter 7, "Users and Security", which discusses Zope
security and users.

Creating Users

Managers can create Zope users in a unique kind of folder called a User Folder.

User folder icons look like folders with a person on them. User folders always have the name acl_users, as
shown in Figure 2−1.

Click on the acl_users folder in the root folder to enter it. User folders contain User objects. You can create
new users and edit existing users. Click the Add button to create a new user, as shown in Figure 2−2.

Figure 2−2 Adding a new user.

Fill out the form to create a new user. In the Name field put your chosen user name. Choose a password and
enter it in the Password and (Confirm) fields. Leave the Domains field blank. This an advanced feature and is

Chapter 2: Using Zope 14

http://www.zope.org/DocProjects/AdminGuide

discussed in Chapter 7, "Users and Security". Select the Manager role from the Roles select list. Then click
the Add button.

Congratulations, you've just created a manager account. Zope will show you this new manager account inside
the user folder. Later you can change or delete this user if you wish.

Changing Logins

To change your login select Logout from the top frame of the management interface. You will be prompted to
login again. To change logins, enter a new user name and password.

To logout select Logout from the top frame of the management interface and cancel the new login. You
should see a message telling you that you are logged out. If you try to access the Zope management interface
after you are logged out, you'll be prompted to log in again. You can also logout of Zope by quitting your web
browser.

Creating Objects

The Zope management interface represents everything in terms of objects and folders. When you build web
applications with Zope, you spend most of your time creating and managing objects in folders. For example,
to make a new manager account you create a user object in a user folder.

Return to the root folder by clicking on the top left folder in the Navigator frame.

To add a new object to the current folder select an object from the pull−down menu in the right frame labeled
"Select type to add...". This pull−down menu is called the product add list.

For example, to create a folder, select Folder from the product add list. At this point, you'll be taken to an add
form that collects information about the new folder, as shown in Figure 2−3.

Chapter 2: Using Zope 15

Figure 2−3 Folder add form.

Type "zoo" in the Id field, and "Zope Zoo" in the Title field. Then click the Add button.

Zope will create a new folder in the current folder. You can verify this by noting that there is now a new
folder named zoo inside the root folder.

Click on zoo to enter it. Notice that the URL of the folder is based on the folder's id. You can create more
folders inside your new folder if you wish. For example, create a folder inside the zoo folder with an id of
arctic. Go to the zoo folder and choose Folder from the pull−down menu. Then type in "arctic" for the folder
id, and "Arctic Exhibit" for the title. Now click the Add button. You always create new objects in the same
way:

Go to the folder where you want to add a new object.1.
Choose the type of object you want to add from the pull−down menu.2.
Fill out an add form and submit it.3.
Zope will create a new object in the current folder.4.

Notice that every Zope object has an id that you need to specify in the add form when you create the object.
The id is how Zope names objects. Objects also use their ids for their URLs.

Chapter 3, "Using Basic Zope Objects", covers all of the basic Zope objects and what they can do for you.

Moving Objects

Most computer systems let you move files around in directories with cut, copy and paste. The Zope
management interface has a similar system that lets you move objects around in folders by cutting or copying
them, and then pasting them to a new location.

To experiment with copy and paste, create a new folder in the root folder with an id of bears. Then select
bears by checking the check box just to the left of the folder. Then click the Cut button. Cut removes the
selected objects from the folder and places them on a clipboard. The object will not, however, disappear from
its location until it is pasted somewhere else.

Now enter the zoo folder by clicking on it, and then enter the arctic folder by clicking on it. You could also
have used the Navigator to get to the same place. Now, click the Paste button to paste cut object(s) into the
current folder. You should see the bears folder appear in its new location. You can verify that the folder has
been moved by going to the root folder and noting that bears is no longer there.

Copy works similarly to cut. When you paste copied objects, the original objects are not changed. Select the
object(s) you want to copy and click the Copy button. Then navigate to another folder and click the Paste
button.

You can cut and copy folders that contain other objects and move many objects at one time with a single cut
and paste. For example, go to the zoo folder and copy the arctic folder. Now paste it into the zoo folder. You
will now have two folders inside the zoo folder, arctic and copy of arctic. If you paste an object into the same
folder where you copied it, Zope will change the id of the pasted object. This is a necessary step, as you
cannot have two objects with the same id in the same folder.

To rename the copy of arctic folder, select the folder by checking the check box to the left of the folder. Then
click the Rename button. This will take you to the rename form as shown in Figure 2−4.

Chapter 2: Using Zope 16

Figure 2−4 Renaming an Object

Type in a new id "mountains" and click OK. Zope ids can consist of letters, numbers, spaces, dashes
underscores and periods, and are case−sensitive. Here are some legal Zope ids: index.html, 42, and Snake−Pit.

Now your zoo folder contains an arctic and a mountains folder. Each of these folders contains a bears folder.
This is because when we made a copy of the arctic folder it also copied the bears folder that it contained.

If you want to delete an object, select it and then click the Delete button. Unlike cut objects, deleted objects
are not placed on the clipboard and cannot be pasted. In the next section we'll see how we can retrieve deleted
objects.

Zope will not let you cut, delete, or rename a few particular objects in the root folder. These objects include
Control_Panel, standard_html_header, standard_html_footer, and standard_error_message. These important
objects are necessary for Zope's operation. Also, these operations don't work in some cases. For instance, you
can't paste a user object into a regular folder.

If you are having problems with copy and paste, make sure that you have enabled cookies in your browser.
Zope uses cookies to keep track of the objects that you cut and copy.

Undoing Mistakes

Any action in Zope that causes objects to change can be undone, via the Undo tab. You can recover from
mistakes by undoing them.

Select the zoo folder that we created earlier and click Delete. The folder disappears. You can get it back by
undoing the delete action.

Click the Undo tab, as shown in Figure 2−5.

Chapter 2: Using Zope 17

Figure 2−5 The Undo view.

Select the first transaction labeled /manage_delObjects, and click the Undo button.

This action tells Zope to undo the last transaction. You can verify that the task has been completed by making
sure that the Zoo folder has returned.

Undo Details and Gotchas

Undo works on the object database that Zope uses to store all Zope objects. Changes to the object database
happen in transactions. You can think of a transaction as any change you make to Zope, such as creating a
folder or pasting a bunch of objects to a new place. Each transaction describes all of the changes that happen
in the course of performing the action.

You cannot undo a transaction that a later transaction depends upon. For example, if you paste an object into a
folder and then delete an object in the same folder you might wonder whether or not you can undo the earlier
paste. Both transactions change the same folder so you can not simply undo the earlier transaction. The
solution is to undo both transactions. You can undo more than one transaction at a time by selecting multiple
transactions on the Undo tab and then clicking Undo.

Another problem to be aware of is that you cannot undo an undo. Therefore if you add a folder and then undo
that particular action, you cannot get the new folder back by undoing the undo.

One last note on undo. Only changes to objects stored in Zope's object database can be undone. If you have
integrated data in a relational database server such as Oracle or MySQL (as discussed in Chapter 12,
"Relational Database Connectivity") changes to data stored there cannot be undone.

Administering and Monitoring Zope

The Control Panel is an object in the root folder that controls various aspects of Zope's operation.

Chapter 2: Using Zope 18

Click on the Control_Panel object in the root folder, as shown in Figure 2−6.

Figure 2−6 The Control Panel

To shutdown Zope, click the Shutdown button. Shutting down Zope will cause the server to stop handling
requests and completely exit from memory. You will have to manually start Zope to continue using it. Only
shutdown Zope if you are finished using it, and have the ability to access the server on which Zope is running,
so that you can manually restart it later.

If you are running Zope on UNIX under daemon control or as a service on Windows, you can restart Zope
from the control panel folder. Clicking the Restart button will shut down Zope and then immediately start up a
new instance of the Zope server. It may take Zope a few seconds to come back up and start handling requests.

On the control panel you will also see several links at the bottom of the screen, one of which is Database
Managment, which controls Zope's object database.

Transactions don't go away until you pack the Zope database. This means that you can undo all transactions
except ones that have been removed by packing the database. When you choose to pack the database you can
specify which transactions to remove so that you can for example only remove transactions older than a week.

Using the Help System

Zope has a built in help system. Every management screen has a help button in the upper right−hand corner.
This button launches another browser window and takes you to the Zope Help System.

Go to the root folder. Click the Help button, and you should see what is shown in Figure 2−7.

Chapter 2: Using Zope 19

Figure 2−7 The Help System.

The help system has an organization similiar to the two primary panes of the Zope management interface, it
has one frame for navigation and one for displaying the current topic.

Whenever you click the help button from the Zope management screen, the right frame of the help system
displays the help topic for the current management screen. In this case, you see information about the
Contents view of a folder.

Browsing and Searching Help

Normally you use the help system to get help on a specific topic. However, you can browse through all of the
help content if you are curious, or simply want to find out about things besides the management screen you
are currently viewing.

The help system lets you browse all of the help topics in the Contents tab of the left−hand help frame, as
shown in Figure 2−7. You can expand and collapse help topics. To view a help topic in the right frame, click
on it.

All help on the Zope management screens is located in the Zope help folder. Inside you'll find many help
topics. You'll also find a help folder called API Reference. This folder contains help on scripting Zope, which
is explained further in Chapter 9, "Advanced Zope Scripting".

When you install third−party components they also include help that you can browse. Each installed
component has its own help folder.

Search the help system by clicking on the Search tab and entering one or more search terms. For example, to
find all of the help topics that mention folders, type "folder" into the search form.

Chapter 2: Using Zope 20

Starting with the Zope Tutorial

Zope comes with a built−in tutorial. The tutorial guides you through all the basics of creating and managing
Zope objects. To launch the tutorial, add a Zope Tutorial to the current folder by selecting Zope Tutorial from
the Product add list. Give it an id which is unique in the current folder, such as tutorial. The tutorial comes
with several examples that you can change and copy for your own use.

If you start the tutorial and want to stop using it before you have completed all the lessons, you can later
return to the tutorial. Just go to the help system and find the lesson you'd like to continue with by browsing the
Zope Tutorial help folder. There is no need to re−install the tutorial.

If you are having problems with the tutorial, make sure to enable cookies in your browser. The tutorial uses
cookies to keep track of where your example objects are. Also, if you enable Javascript in your browser, the
tutorial will make sure that the Zope management interface stays in sync with your tutorial lesson.

Now that you have Zope running, it's time to explore the system more thoroughly. You've seen how to
manage Zope through the web and have learned a little about Zope objects. In the next chapter you'll meet
many different Zope objects and find out how to build simple applications with them.

Chapter 2: Using Zope 21

Chapter 3: Using Basic Zope Objects
When building a web application with Zope, you construct the application out of objects. By design, different
objects handle different parts of your application. Some objects hold your content data, such as word
processor documents, spreadsheets and images. Some objects handle your application's logic by accepting
input from a web form, or executing a script. Some objects control the way your content is displayed, or
presented to your viewer, for example, as a web page, or via email. In general Zope objects take three types of
roles:

Content
Zope objects such as documents, images and files hold different kinds of textual and binary data. In
addition to objects in Zope containing content, Zope can work with content stored externally, for
example, in a relational database.

Logic
Zope has facilities for scripting business logic. Zope allows you to script behavior using Python, Perl,
and SQL. "Business logic" is any kind of programming that does not involve presentation, but rather
involves carrying out tasks like changing objects, sending messages, testing conditions and
responding to events.

Presentation
You can control the look and feel of your site with Zope objects that act as web page templates. Zope
comes with a tag based scripting language called the Document Template Markup Language (DTML)
to control presentation.

The word object is a heavily loaded term. Depending on your background, it may mean any number of
different things. In this chapter, you can think of a Zope object as an application component that you can
control and edit using a web browser.

Zope comes with many built−in objects that help you perform different tasks. You can also install third party
Zope objects to expand Zope's capabilities. This chapter explains the most basic objects and how they work.
You can create fully functional Zope sites using the few basic objects that are covered in this chapter.

This chapter is loosely structured around the above three categories, Content, Logic, and Presentation. There
are other kinds of objects in Zope that don't clearly fit into one of these three roles; those are explained at the
end of the chapter.

Using Zope Folders

Folders are the building blocks of Zope. The purpose of a folder is to contain other objects, and to organize
objects by separating them into different groups.

Folders can contain all sorts of objects, including other folders, so you can nest folders inside each other to
form a tree of folders. This kind of folder within a folder arrangement provides your Zope site with structure.
Good structure is very important, as almost all aspects of Zope (from security to behavior to presentation) are
influenced by your site's folder structure.

Folder structure should be very familiar to anyone who has worked with files and folders on their computer
with a file manager program like Microsoft Windows Explorer or any one of the popular UNIX file managers
like xfm, kfm, or the Gnome file manager. The Zope management interface tries to look as much as possible
like these popular programs so that you are familiar with how to organize Zope objects just like you would
organize files on your computer.

Managing Folder Contents

In Chapter 2, "Using Zope" you created objects and moved objects around. In summary, you create objects in
folders by choosing the type of the object you are looking for from the pull−down menu at the top of the
folder's Contents view. Then you fill out the add form and submit it. A new object is then added to the current
folder. You can move objects between folders using the Cut, Copy, Paste, Delete, and Rename buttons.

Importing and Exporting Objects

You can move objects from one Zope system to another using export and import. You can export all types of
Zope objects to an export file. This file can then be imported into any other Zope system.

You can think of exporting an object as cloning a piece of your Zope system into a file that you can then move
around from machine to machine. You can take this file and graft the clone onto any other Zope server.
Imagine you had some documents in a Zope folder. If you wanted to copy just those objects to your friend's
Zope system, you could export the folder and send the export file via email to the friend, who could then
import it.

Suppose you have a folder for home work that you want to export from your school Zope server, and take
home with you to work on in your home Zope server. You can create a folder like this in your root folder
called "homeWork". Go to the folder that contains your homeWork folder. Select the homeWork folder by
checking the checkbox next to it. Then click the Import/Export button. You should now be working in the
Import/Export folder view, as shown in Figure 3−1.

Figure 3−1 The Import/Export View

There are two sections to this screen. The upper half is the export section and the lower half is the import
section. To export an object from this screen, type the id of the object into the first form element, Export
object id. In our case Zope already filled this field in for us, since we selected the homeWork folder on the last
screen.

Chapter 3: Using Basic Zope Objects 23

The next form option lets you choose between downloading the export file to your computer or leaving it on
the server. If you check Download to local machine, and click the Export button, your web browser will
prompt you to download the export file. If you check Save to file on server, then Zope will save the file on the
same machine on which Zope is running, and you must fetch the file from that location yourself. The export
file will be written to Zope's var directory on your server. By default export files have the .zexp file extension.

In general it's handier to download the export file to your local machine. Sometimes it's more convenient to
save the file to the server instead, for example if you are on a slow link and the export file is very large, or if
you are just trying to move the exported object to another Zope instance on the same computer.

The final export form element is the XML format? checkbox. Checking this box exports the object in the
eXtensible Markup Language (XML) format. Leaving this box unchecked exports the file in Zope's binary
format. The XML format is much bigger to download, but is human readable and XML parsable. For now, the
only tool that understands this XML format is Zope itself, but in the future there may be other tools that can
understand Zope's XML format. In general you should leave this box unchecked unless you're curious about
what the XML format looks like and want to examine it by hand.

Click the Export button and save your homeWork.zexp export file.

Now suppose that you've gone home and want to import the file into your home Zope server. First, you must
copy the export file into Zope's import directory on your server. Now, go to the Import/Export view of the
folder where you want perform the import. Enter the name of the export file in the Import file name form
element and click Import to import those objects into Zope.

Zope gives you the option to either Take ownership of imported objects or Retain existing ownership
information. Ownership will be discussed more in Chapter 7, "Users and Security". For now, just leave the
Take ownership of imported objects option selected.

After you import the file you should have a new object in the Zope folder where you performed the import.

To bring your homework back to school, perform the same export and import procedure. Note that you cannot
import an object into a folder that has an existing object with the same id. Therefore, when you bring your
homework back to school, you'll need to import it into a folder that doesn't already have a homeWork folder in
it. Then, you'll need to delete your old homeWork folder and copy the newly imported one into its place.

Temporary Folders

Temporary Folders are Zope folders that are used for storing temporary objects. Temporary Folders acts
almost exactly like a regular Folder with three significant differences:

Everything contained in a Temporary Folder disappears when you restart Zope.1.
You cannot undo actions taken to objects stored a Temporary Folder.2.
You cannot use a Version to manipulate objects in a Temporary Folder3.

By default there is a Temporary Folder in your root folder named temp_folder. You may notice that there is an
object entitled, "Session Data Container" within temp_folder. This is an object used by Zope's default
sessioning system configuration. See the "Using Sessions" section later in this chapter for more information
about sessions.

Temporary folders store their contents in RAM rather than in the Zope database. This makes them appropriate
for storing small objects that receive lots of writes, such as session data. However, it's a bad idea use
temporary folders to store large objects because your computer can potentially run out of RAM as a result.

Chapter 3: Using Basic Zope Objects 24

Using Zope Page Templates

In Zope 2.5, a new, powerful type of object was added called Page Templates. Page templates allow you to
define dynamic presentation for a web page by writing an HTML template. The HTML in your template is
made dynamic by inserting special XML namespace elements to your HTML which define the dynamic
behavior for that page.

Page templates are powerful for a few reasons:

They are always valid HTML. There is no need to insert invalid code into your templates like you
would with other dynamic languages.

•

Page templates separate logic from presentation. By intentionally only focusing on the goals of
presentation, page templates do not allow you to use them as a general purpose programming
language.

•

HTML designers do not need to be programmers. Because page templates start from an HTML mock
up your HTML designers do not need to know anything about programming to develop the initial
design of a page template.

•

Your programmers do not need to be HTML designers. Page templates also have a benefit the other
direction, because your programmers can make your templates dynamic by just adding XML tag
attributes, they can experiment with different dynamic behaviors without destroying or rewriting your
original HTML.

•

Creating Zope Page Templates

Create a Folder called Sales in the root folder. Click on the Sales folder and then select Page Template from
the add list you learned about in Chapter 2. This process will take you to the add form for a page template.
Specify the id "SalesPage" and the title "Template for Sales Staff" and click Add. You have successfully
created a page template. However, it's content is standard boilerplate text, so move on to the next step to edit
the content.

Editing Zope Page Templates

The easiest way to edit a page template is by clicking on its name or icon in the Zope management interface.
When you click on either one of those items, you are taken to the Edit view of the page template which gives
you a text−area where you can edit the template. Replace the original content that comes with the page
template with the following HTML:

 <html>
 <body>
 <h1>This is my first page template!</h1>
 </body>
 </html>

and click Save. Now you can click on the View tab to view the page template. This particular template does
not do anything special or have any dynamic behavior. In later sections in this chapter, we'll add some
dynamic behavior. In Chapter 5, you'll use page templates in much greater detail to create dynamic
presentation.

Uploading Zope Page Templates

Suppose you'd prefer not to edit your HTML templates in a web browser, or you have some existing HTML
pages that you'd like to bring into Zope. Zope allows you to upload your existing html files and convert them

Chapter 3: Using Basic Zope Objects 25

to page templates.

Select Page Template from the add menu, this will take you to the add form for page templates that we saw
earlier.. The last form element on the add form is the Browse button. Click this button. Your browser will then
pop up a file selection dialog box. Select the text file on your computer that you want to upload to this
template.

Type in an Id for the new Document and click Add. After clicking Add, you will be taken back to the
management screen. There you will see your new page template.

Using Zope Documents

Documents hold text. In web applications, you generally use documents to create web pages. You can also use
documents to hold text files or snippets of text or HTML code such as sidebars or headers. In addition to
containing text, a document allows you to edit the text through the web. Zope has several different types of
documents. The most important is DTML Document. DTML stands for Document Template Markup
Language.

There are other third−party object types (generally called "Products") available from sources such as Zope.org
which will extend your installation to support other types of textual and non−textual content.

DTML Documents

Use DTML Documents to create web pages and sections of documents, such as a sidebars that can be shared
by web pages. DTML Documents can contain scripting commands in DTML (Zope's tag based scripting
language). The mix of HTML and DTML generates dynamic web pages.

DTML Documents are also useful for creating shared content, such as common document structures.

Creating DTML Documents

Click on the Sales folder and then select DTML Document from the add list. This process will take you to the
add form for a DTML Document. Specify the id "SalesStaff" and the title "The Jungle Sales Staff" and click
Add. You have successfully created a DTML Document. However, its content is standard boilerplate text, so
move on to the next step to edit the content.

Editing DTML Documents

The easiest and quickest way to edit a DTML Document is through the management interface. To select a
document, click on its name or icon, which will bring up the form shown in Figure 3−2.

Chapter 3: Using Basic Zope Objects 26

Figure 3−2 Editing a DTML Document

This view shows a text area in which you can edit the content of your document. If you click the Change
button you make effective any changes you have made in the text area. You can control the size of the text
area with the Taller, Shorter, Wider, and Narrower buttons. You can also upload a new file into the document
with a the File text box and the Upload File button.

Delete the default content that is automatically inside the current SalesStaff DTML Document.

Add the following HTML content to the SalesStaff document:

 <html>
 <body>
 <h2>Jungle Sales Staff</h2>

 Tarzan
 Cheetah
 Jane

 </body>
 </html>

After you have completed the changes to your document, click the Change button. Zope returns with a
message telling you that your changes have taken effect. Now, you can look at the document by clicking the
View tab.

Congratulations! You've just used Zope to create an HTML page. You can carry out the creation and editing
in one step rather than two by using the Add and Edit button on the add page.

You can edit your HTML online and view it immediately. In fact, you can create entire Zope sites of HTML
documents and folders. This process shows just the surface of Zope's benefits, but it provides a good way to
familiarize yourself with Zope. You can also write some dynamic content in Zope and let those who are
interested purely in design edit their own HTML web pages in this way.

Chapter 3: Using Basic Zope Objects 27

Uploading an HTML File

Suppose you'd prefer not to edit your HTML files in a web browser, or you have some existing HTML pages
that you'd like to bring into Zope. Zope allows you to upload your existing text files and convert them to
DTML Documents.

Select DTML Document from the add menu, this will take you to the add form for DTML Documents. The
last form element on the add form is the Browse button. Click this button. Your browser will then pop up a
file selection dialog box. Select the text file on your computer that you want to upload to this document.

Type in an Id for the new Document and click Add. After clicking Add, you will be taken back to the
management screen. There you will see your new document.

Viewing DTML Documents

The primary purpose of a DTML document is to hold useful content. This content's primary usage is to be
viewed. DTML Documents can be viewed several different ways:

Management Interface
From the management interface you can Click on a Document's View tab to view the contents of the
document.

Calling Directly Through the Web
Documents can be called directly through the web by going to their URL location with a web
browser.

Called by Another Object
Other objects, especially other DTML objects, can display a Document's contents.

Calling Through the Web

Like all Zope objects, a DTML Document's URL is based on its id. For example, if you have a DTML
Document in the root folder called Bob, then its URL would be:

 http://localhost:8080/Bob

If Bob is in a sub−folder called Uncles then its URL would be:

 http://localhost:8080/Uncles/Bob

There could also be other DTML Documents in the Uncles folder called Rick, Danny and Louis. You access
them through the web similarly:

 http://localhost:8080/Uncles/Rick
 http://localhost:8080/Uncles/Danny
 http://localhost:8080/Uncles/Louis

Translating URLs to objects isn't a new idea, web servers like Apache do it all the time. They translate URLs
to files and directories on a filesystem. Zope carries this simple idea to greater heights. In Zope, URLs are
always simple to read because they map easily and simply onto the way objects are organized in Zope. This is
why we told you that your site's structure is key to your site's success.

Going directly to the URL of a DTML Document is called calling it through the web. This causes the content
of the DTML Document to be evaluated and returned to your web browser. In the next chapter on DTML, we
will see what it means for DTML to be evaluated, but for now, you can easily experiment with DTML and

Chapter 3: Using Basic Zope Objects 28

simple HTML content to get the idea.

Calling from Another Object

In using Zope you probably have encountered examples of DTML like this:

 <dtml−var standard_html_header>

 <h1>This is some simple HTML</h1>

 <dtml−var standard_html_footer>

Here we see that one DTML object, standard_html_header is being called by the document that contains this
code. In this case, the evaluated contents of the first document are inserted into the contents of this calling
document. This is a very fundamental concept in Zope and will be used throughout the book.

Reviewing Changes to Documents

The Undo tab lets you undo one transaction at a time, but often it is useful to undo only the change to one
object. Remember, a transaction can be a group of actions all taken at the same time. If a document was edited
in a transaction that also included moving an object, you may just want to undo the change to the document,
but not undo moving the file. To do that, you can go to that object's History View and look at the previous
states of the object, as shown in Figure 3−4.

Figure 3−4 The History View

Documents even support the idea of comparing revisions, allowing you to track changes to your objects. For
example, DTML Methods and Documents will allow you to select two revisions and compare them to one
another. You many want to use this to see what people have done to your object, for example, let's say you
had a document that contained a list of all the animals in a Zoo. If one of your co−workers then goes and edits
that list and saves it, you can use the history comparison feature to compare the most recent "new" version of
the file with the next most recent version.

Chapter 3: Using Basic Zope Objects 29

This comparison is displayed in a popular format called diff. The diff shows you the lines that have been
added to the new document (via a plus), which lines have been subtracted from the old document (via a
minus), and which lines have been replaced or changed (via an exclamation point).

Remote Editing with FTP, WebDAV, and PUT

Zope lets you edit documents directly in your web browser, though this is not the only way documents can be
edited in Zope. For simple documents, editing through the web is a handy method. But for large, complex
documents, or documents that have special formatting, it's useful to be able to use the editor you are most used
to.

DTML Documents can be edited with FTP, WebDAV, and the HTTP PUT protocol. Many HTML and text
editors support these protocols for editing documents on remote servers. Each of these protocols has
advantages and disadvantages:

FTP
FTP is the File Transfer Protocol. FTP is used to transfer a file from one computer to another. Many
text editors support FTP, so it is very useful.

WebDAV
WebDAV is a new Internet protocol based on the Web's underlying protocol, HTTP. DAV stands for
Distributed Authoring and Versioning. Because DAV is new, it may not be supported by as many text
editors as FTP.

PUT
The HTTP protocol supports a simple way to upload content to a server called PUT. PUT is supported
by many HTML editors, such as Netscape Composer.

Using one of these methods, you can edit your content with a variety of tools. In the next couple sections,
we'll show you a couple simple tools that use FTP to edit Zope content.

Uploading Documents and Files with WS_FTP

WS_FTP is a popular FTP client for Windows that you can use to upload documents and files into Zope with
the FTP protocol. WS_FTP can be downloaded from the Ipswitch Home Page.

There are other popular Windows FTP clients, and many web browsers like Netscape and Microsoft Internet
Explorer come with FTP clients also. This section applies to other FTP clients also.

In Chapter 2, "Using Zope" you determined the URL of your Zope system by looking at the start up log.
Finding out how to contact your Zope's FTP server follows a similar process:

 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer Medusa (V1.18) started at Mon Aug 7
 16:00:53 2000
 Hostname: peanut
 Port:8080

 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer FTP server started at Mon Aug 7
 16:00:53 2000
 Authorizer:None
 Hostname: peanut
 Port: 8021
 −−−−−−
 2000−08−07T23:00:53 INFO(0) ZServer Monitor Server (V1.9) started on port

Chapter 3: Using Basic Zope Objects 30

http://www.ipswitch.com/

 8099

The startup log says that the Zope FTP server is listening to port 8021 on the machine named peanut. When
you start WS_FTP, you will need to know the machine name and port information so you can connect to Zope
via FTP. After typing in the machine name and port of your Zope server, hit the Connect button. WS_FTP
will now ask you for a username and password. Enter your management username and password for the Zope
management interface.

If you type in your username and password correctly, WS_FTP shows you what your Zope site looks like
through FTP. There are folders and documents that correspond exactly to what your root Zope folder looks
like through the web, as shown in Figure 3−3.

Figure 3−3 Editing Zope through FTP

Transferring files to and from Zope is a very easy task with WS_FTP. On the left−hand side of the WS_FTP
window is a file selection box that represents files on your local machine. The file selection box on the
right−hand side of the WS_FTP window represents objects in your Zope system. Transferring files from your
computer to Zope or back again is as easy as selecting the file you want to transfer and clicking either the left
arrow (download) or the right arrow (upload). WS_FTP has lots of cool features and customizations that you
can use to make remote object management with Zope very easy.

Editing Zope Objects with Emacs

Emacs is a very popular text editor. In fact, Emacs is more than just a text editor, it is a whole culture. Emacs
comes in two flavors, GNU Emacs and XEmacs. Both of these flavors of Emacs can work directly over FTP
to manipulate Zope documents and other textual content.

Emacs will let you treat any remote FTP system like any other local filesystem, making remote management
of Zope content an easy process. Therefore, you need not leave Emacs in order to use Zope.

Chapter 3: Using Basic Zope Objects 31

Emacs provides a richer set of text editing capabilities than most web browser text areas. Emacs can be used
to directly edit documents and manipulate objects through FTP, therefore Emacs is a nice Zope development
environment.

By default when you start up Zope, Zope runs an FTP server just as it runs an HTTP server. You can specify
when you start Zope which port the FTP server should listen on, but by default this port is 8021.

To log into Zope, run Emacs. The file you visit to open an FTP connection depends on which text editor you
are running: XEmacs or Emacs:

Xemacs
To visit a remote file in XEmacs, visit a file by the form:
 /user@server#port:/

This will open a connection to the / folder of the FTP server running on server and listening on port port.

Emacs
To visit a remote file in Emacs, visit a file by the form:
 /user@server port:/

The literal space is inserted by holding down the Control key and the Q key, and then pressing the space
"C−Q ".

For the typical Zope installation with XEmacs, the filename to open up an FTP session with Zope is
/user@localhost#8021:/.

Emacs will ask you for a password to log into Zope's FTP server.

Visiting the / folder of an FTP server in Zope, Emacs will list the contents of the root folder:

 drwxrwx−−− 1 Zope Zope 0 Dec 30 1998 Control_Panel
 drwxrwx−−− 1 Zope Zope 0 Dec 30 1998 QuickStart
 drwxrwx−−− 1 Zope Zope 0 Dec 30 1998 Sales
 −rw−rw−−−− 1 Zope Zope 1024 May 3 1999 index_html
 −rw−rw−−−− 1 Zope Zope 1381 May 3 1999
 standard_error_message
 −rw−rw−−−− 1 Zope Zope 55 Dec 30 1998
 standard_html_footer
 −rw−rw−−−− 1 Zope Zope 81 Dec 30 1998
 standard_html_header

You can visit any of these "files" (which are really Zope objects) by selecting them in the usual Emacs way.
Editing with Emacs is very useful, but for the most part, Emacs is a very complex program that is not very
accessible to most people. Most Macintosh users, for example, would be very unfamiliar with a tool like
Emacs. There are a number of "easier" editors that can be used that also use FTP and WebDAV. WebDAV is,
in fact, designed to be used by tools like Adobe GoLive and Macromedia Dreamweaver.

Editing DTML Documents with WebDAV

WebDAV is a newer Internet protocol compared to HTTP or FTP, so there are fewer clients that support it.
There is, however, a lot of momentum behind the WebDAV movement and more clients are being developed
all the time. For more information on what programs support the WebDAV protocol, see the WebDAV
homepage.

Chapter 3: Using Basic Zope Objects 32

http://www.webdav.org/
http://www.webdav.org/

WebDAV is an extension to the HTTP protocol that provides rich features for many users concurrently
authoring and editing content on web sites. WebDAV offers features like locking, revision control, and
tagging documents or objects with properties. Because WebDAV's goals of through the web editing match
some of the goals of Zope, Zope has supported the WebDAV protocol for quite a while.

The WebDAV protocol is evolving quickly, and new features are being added all the time. You can use any
WebDAV client to edit your DTML Documents by simply pointing the client at your document's URL and
editing it. For most clients, however, this will cause them to try to edit the result of rendering the document,
not the source. For documents that use Zope's DTML template language to render dynamic content, this can
be a problem.

Until clients catch up to the latest WebDAV standard and understand the difference between the source of a
document and its result, Zope offers a special HTTP server you can enable with the −W command line option.
This server listens on a different port than your normal HTTP server and returns different, special source
content for WebDAV requests that come in on that port. This is an advanced feature and is explained more in
the Documentation Section of Zope.org.

Using Zope Files

Zope Files contain raw data, just as the files on your computer do. Lots of information, like software, audio,
video and documents are transported around the Internet and the world as files. You can use files to hold any
kind of information that Zope doesn't specifically support, such as Flash files, applets, tarballs, etc.

Files do not consider their contents to be of any special format, textual or otherwise. Files are good for
holding any kind of binary content which is just raw computer information of some kind. Files are also good
for holding textual content that doesn't need DTML scripting.

Every File object has a particular content type which is a standard Internet MIME designation for file type.
When you upload a file into Zope, Zope tries to guess the content type from the name of the file, but Zope
doesn't always guess correctly.

Uploading Files

Like DTML Documents and Methods, Files allow you to upload a file from your computer when you create a
new object. Click the Browse button to choose a file from your local computer when creating a new Zope File.
Try choosing a file such as a Word file (.doc) or a Portable Document Format (.pdf) file. Note, when
uploading a file with your browser, you may have to indicate the file type you're looking for in your browser's
upload dialog box. After selecting a file to upload, click Add. Depending on the size of the file you want to
upload, it may take a few minutes to add the file to Zope.

After adding the File, click on the new File and look at its Edit view. Here you will see that Zope has guessed
the content type as shown in Figure 3−5.

Chapter 3: Using Basic Zope Objects 33

http://www.zope.org/Documentation/

Figure 3−5 File content−type property

If you add a Word document, the content type is application/msword. If you add a PDF file, the content type
is application/pdf. If Zope does not recognize the file type, it chooses the default, generic content type of
application/octet−stream.

You can change the contents of an existing File by going to the Upload view. Here you can replace the
contents of the File with a new file. If you don't fill in an id and title in this form and you upload a file, Zope
will use the filename as the id and the title of the object.

Editing Files

If your File holds text and is less than 64K, then Zope lets you edit it in the management interface. A text file
is one that has a content−type that starts with text/, such as text/html, or text/plain. You may sometimes find it
convenient to edit text files in the management interface. In any case, you can always edit files locally and
then upload them to Zope.

Viewing Files

You can view a file by going to the View tab from the management interface. You can also view a File by
visiting its URL. In fact the View tab is just a way to get to a File's URL from the Zope management interface.
For example, if you have a file in your Zope root folder called employeeAgreement.pdf then you can view that
file in your web browser by going to the URL http://localhost:8080/employeeAgreement.pdf. Depending on
the type of the file, your web browser may display the file or download it.

Using Zope Images

Images display graphics such as GIF, JPEG, and PNG files. In Zope, Images are similar to File objects, but
include extra behavior for managing graphic content.

Chapter 3: Using Basic Zope Objects 34

Image objects have the same management interface as file objects. Everything in the previous section about
using file objects also applies to images. However, Image objects show you a preview of the image when you
upload them.

Viewing Images with HTML

The most common use for Images in Zope is putting pictures in web pages. To put a picture into a web page,
you need to use the HTML IMG tag. Suppose you have an Image object in your root folder called logo that
contains an image of your organizations logo.

Using this Image in your HTML is a straight forward process: you can reference it with an IMG tag as you'd
do to include any type of image in a web page:

 <dtml−var standard_html_header>

 <h1>Welcome!</h1>

 <dtml−var standard_html_footer>

In this example, you reference the logo image by creating an HTML IMG tag, but usually it is not necessary to
create your own IMG tags to display images. Image objects know how to generate their own HTML tags.
When you insert an Image object in DTML, it generates an IMG tag for itself.

Now, we want this logo to be seen on every page up in the upper left−hand corner, so put a reference to it in
the standard_html_header method:

 <html>
 <body>
 <dtml−var logo>

Now, view the root folder by clicking on the View tab. If you look at the source to the web page that Zope
creates, you can see that the var DTML code was turned into an HTML IMG tag for you:

 <html>
 <body>

Using the DTML var tag to draw Images makes things simple, because Zope automatically figures out the
height and width attributes of the IMG tag for you. If you don't like the way Zope constructs an IMG tag, it
can be customized. See Appendix B for more information on the Image object and how it can control the IMG
tag.

There are a number third party Zope object types (generally called "Products") for storing and viewing image
content available from the visual section of Zope.org.

Viewing Images Through the Web

Images can be viewed directly by going to their URL in your web browser. For example, let's say you want to
view your company logo directly. The logo exists as an image object in your root folder. It is called logo, you
can easily view it by going directly to its URL http://localhost:8080/logo.

Since Zope Images work just like images stored in a normal web server, you can access your Zope images
from other web servers. Suppose you have a Zope Image whose URL is

Chapter 3: Using Basic Zope Objects 35

http://www.zope.org/Products/visual

http://imageserver:8080/Birds/Parakeet.jpg. You can include this Image in any web page served from any
web server using the Image's absolute URL in your web page:

 <html>

 <h1>Remote Image</h1>

 </html>

This example shows how you can use Zope data from outside Zope using standard Internet protocols. Later in
Chapter 10, "Advanced Zope Scripting" you'll see how most Zope objects can provide services to the outside
world.

Using Object Properties

Properties are ways of associating information with objects in Zope. Many Zope objects, including folders and
documents, support properties. Properties can label an object in order to identify its contents (many Zope
content objects have a content type property). Another use for properties is to provide meta−data for an object
such as its author, title, status, etc.

Properties can be more complex than strings; they can also be numbers, lists, or other data structures. All
properties are managed via the Properties view. Click on an object's Properties tab and you will be taken to
the properties management view, as seen in Figure 3−6.

Figure 3−6: The Properties Management View

A property consists of a name, a value and a type. A property's type defines what kind of value or values it
can have.

In Figure 3−6 you can see that the folder has three properties, title, Author, KeyWords. The title and Author

Chapter 3: Using Basic Zope Objects 36

property are string properties, while the KeyWords property has a type of tokens. A tokens property is like a
sequence of words.

Zope supports a number of property types. Each type is suited to a specific task. This list gives a brief
overview of the kinds of properties you can create from the management interface:

string
A string is an arbitrary length sequence of characters. Strings are the most basic and useful type of
property in Zope.

int
An int property is an integer, which can be any positive or negative number that is not a fraction. An
int is guaranteed at least 32 bits long.

long
A long is like an integer that has no range limitation.

float
A float holds a floating point, or decimal number. Monetary values, for example, often use floats.

lines
A lines property is a sequence of strings.

tokens
A tokens property is list of words separated by spaces.

text
A text property is just like a string property, except that Zope normalizes the line ending characters
(different browsers use different line ending conventions).

selection
A selection property is special, it is used to render an HTML select input widget.

multiple selection
A multiple selection property is special, it is used to render an HTML multiple select form input
widget.

Properties are very useful tools for tagging your Zope objects with little bits of data or information. In
conjunction with methods and scripts, properties make extending simple objects like Folders a very powerful
technique.

Coding Logic with Scripts

In traditional programming lingo, a script is a short piece of code written in a programming language. As of
version 2.3, Zope now comes with two kinds of script objects: one that lets you write scripts in Python and
one that lets you write scripts in Perl.

Both Python and Perl are very popular and powerful programming languages. Both Python and Perl share
many similar feature: both offer powerful, rapid development, simple syntax, many add−on libraries, strong
community following, and copious amounts of free, online documentation. Both languages are also open
source.

Because scripts are so powerful and flexible, their possible uses are endless. Scripts are primarily used to
write what is called business logic. Business logic is different than presentation logic. Presentation logic is
usually written in a presentation language, like DTML, and its purpose is to display information to a user.
Business logic is usually written in a scripting language, and its purpose is to manipulate information that
comes from content sources (like documents or databases) or manipulate other objects. Often, presentation
logic is based on top of business logic.

Chapter 3: Using Basic Zope Objects 37

http://www.python.org
http://www.perl.org/

A simple example of using scripts is building an online web form to help your users calculate the amount of
compound interest on their debts. This kind of calculation involves the following procedure:

You need the following information: your current account balance (or debt) called the "principal", the
annual interest rate expressed as a decimal (like 0.095) called the "interest_rate", the number of times
during the year interest in compounded (usually monthly), called the "periods" and the number of
years from now you want to calculate, called the "years" .

1.

Divide your "interest_rate" by "periods" (usually 12). We'll call this result "i".2.
Take "periods" and multiply it by "years". We'll call this result "n".3.
Raise (1 + "i") to the power "n".4.
Multiply the result by your "principal". This is the new balance (or debt).5.

For this example, you will need two page templates named interestRateForm and interestRateDisplay to
collect the information from the user and display it, respectively. You will also need a Python−based script
called calculateCompoundingInterest that will do the actual calculation. The first step is to create a web form
in interestRateForm that collects "principal", "interest_rate", "periods" and "years" from your users. Here's an
example interestRateForm page templates:

 <html>
 <body>

 <form action="interestRateDisplay" method="POST">
 <p>Please enter the following information:</p>

 Your current balance (or debt): <input name="principal:float">

 Your annual interest rate: <input name="interest_rate:float">

 Number of periods in a year: <input name="periods:int">

 Number of years: <input name="years:int">

 <input type="submit" value=" Calculate ">

 </form>

 </body>
 </html>

This form collects information and calls the interestRateDisplay template. Now, create a Python−based script
called calculateCompoundingInterest that accepts four parameters, "principal", "interest_rate", "periods" and
"years" with the following python code:

 ## Script (Python) "calculateCompoundInterest"
 ##parameters=principal, interest_rate, periods, years
 ##
 """
 Calculate compounding interest.
 """
 i = interest_rate / periods
 n = periods * years
 return ((1 + i) ** n) * principal

Enter the parameters into the Parameters List field, and the code in the body text area. The comments shown
at the beginning of the code are not necessary when editing through the web. (However these comments are
useful for editing scripts via FTP.)

This will return the balance or debt compounded over the course of "years". Next, create a
interestRateDisplay page template that calls calculateCompoundingInterest and returns the result:

 <html>
 <body>

Chapter 3: Using Basic Zope Objects 38

 <p>Your total balance (or debt) including compounded interest over
 2 years is:</p>
 <p>$<span tal:content="python: here.calculateCompoundingInterest(principal,
 interest_rate,
 periods,
 years)" >1.00</p>

 </body>
 </html>

First view the interestRateForm page template. Now, type in some information about your balance or debt and
click Calculate. This will cause interestRateForm to submit the collect information to interestRateDisplay,
which calls the Python−based script calculateCompoundingInterest. The display method uses the value
returned by the script in the resulting display.

As we said earlier, the possibilities for using scripts is almost endless. This example, however, gives you a
good idea of the most common pattern for presentation objects to collect and display information, and using
business logic objects to make calculations.

Using Methods

Methods are objects in Zope that hold special executable content. The name "Method" is actually a bit of a
misnomer, and its use in Zope is slowly being phased out for more common terms like Script and Template.

Zope comes with two kinds of methods, DTML Methods and SQL Methods. DTML Methods are used to
define presentation templates that you can apply to content objects like DTML Documents and Files. A very
common and popular way to use DTML Methods is to define presentation layout separate from your content.

SQL Methods are used to contain database queries that you can reuse throughout your web application. SQL
Methods are explained in Chapter 12, "Relational Database Connectivity", where an example of creating a
web application using a relational database is given.

All the various objects in Zope can be manipulated by calling methods on those objects. For example, Folder
objects have an objectValues method that returns the objects contained by the folder. DTML Methods
can be used to write simple scripts that call these Zope API methods. These methods are documented in the
Help System, under API Documentation.

Before Zope 2.3, DTML Methods were the only way to write scripts in Zope with your web browser. While
DTML is useful for very simple scripts and for presenting information with templates, this approach had a
number of limitations because DTML isn't as flexible as other programming languages.

Zope 2.3 introduces two new kinds of Script objects based on two very popular programming languages,
Python (which Zope is written in) and Perl. You should use Python and Perl−based scripts to write more
complex scripts instead of a DTML Method. While browsing through past Zope documentation, mail list
archives, and other resources on "Zope.org"http://www.zope.org, you may find a lot of references to very
complex DTML scripts. These pre−date Python and Perl−based scripts. In general, complex scripts should be
written in either Python or Perl. Python and Perl−based scripts are described later in this chapter, and many
examples of their use is given in Chapter 10, "Advanced Zope Scripting".

A simple example of using DTML Methods is to create a DTML Method in the root folder called objectList:

 <dtml−var standard_html_header>

Chapter 3: Using Basic Zope Objects 39

 <dtml−in objectValues>
 <dtml−var getId>
 </dtml−in>

 <dtml−var standard_html_footer>

When you view this method, it calls the objectValues method on the root folder and this shows you a simple
HTML list of all the objects in the root folder, as shown in Figure 3−7.

Figure 3−7 Results of the objectList DTML Method

All folders implement the objectValues method. The objectValues method is part of an interface that all
folders implement called ObjectManager.

In addition to calling API methods on objects, DTML Methods can also be used in a certain way to extend
any Zope object. This will be explained in more detail in the next chapter. In effect, this allows you to extend
the Zope API by simply creating DTML Methods.

You just saw the objectList method, which resides in the root folder, and makes a simple list of the contents of
the root folder. Because the method is in the root folder, it is now usable by any other objects in or below the
root folder. This method extends the Zope API for these objects since it provides them with another callable
method.

To demonstrate, let's create a subfolder called Primates and add three documents, Monkeys, Apes, Humans.
You can call the objectList method on the Primates folder by visiting the URL Primates/objectList. You can
see the effect of calling the objectList method on the Primates folder differs from the effect of calling it on the
root folder. The objectList method is defined in the root folder, but here we are using it to display the contents
of the Primates folder. This mechanism of reusing objects is called acquisition and will be explained more in
Chapter 4, "Dynamic Content with DTML".

DTML Methods mainly serve as presentation templates. DTML Methods can act as templates tying reusable
bits of content together into dynamic web pages. The template features of DTML Methods will be discussed

Chapter 3: Using Basic Zope Objects 40

in further detail in the next chapter.

Comparing DTML Documents and Methods

DTML Methods have the same user interface as DTML Documents, which can be a bit confusing to the
beginner. All of the procedures that you learned in the last chapter for adding, editing, viewing and uploading
DTML Documents are identical for DTML Methods.

A source of frequent confusion for Zope beginners is the question of when to use a DTML Document versus
when to use a DTML Method. On the surface, these two options seem identical. They both hold DTML and
other content, they both execute DTML code, and they both have a similar user interface and a similar API, so
what's the difference?

DTML Documents are meant to hold document−like content. For example, the various chapters of a book
could be held in a DTML Document. A general rule is: if your content is mostly document−like and you want
to present it on your site, then it should go into a DTML Document.

DTML Methods are meant to manipulate and display other objects. DTML Methods don't usually hold a lot of
content, unless the content is meant to change or manipulate other content.

Don't worry if you're still unclear on the differences between DTML Document and Methods. Even the most
experienced Zope programmers need to think a little before deciding which type of object to use. In Chapter 8,
"Variables and Advanced DTML", you'll learn about the technical differences between DTML Documents
and DTML Methods (they look up variables differently since they have different "client" objects). Here are
some general rules to help you decide between DTML Documents and Methods:

If it's content, use a DTML Document, or a File if it doesn't require any DTML scripting.•
If it's simple logic, use a DTML Method.•
If it's meant to be presented by other objects, use a DTML Document.•
If it's meant to present other objects, use a DTML Method.•
If it's complex behavior, use a Python or Perl−based script.•

As you've seen DTML Methods are a useful tool for presentation and quick scripting, but eventually you're
going to want to power of a fully expressive programming language, and that's where Scripts come in.

Using Sessions

Sessions allow you keep track of site visitors. Web browsers use a protocol named HTTP to exchange data
with a server such as Zope. HTTP is does not provide a way for the server to keep track of a user's requests;
each request is considered completely independent.

Sessions overcome this limitation of HTTP. The term "session" means a series of related HTTP requests that
come from the same client during a given time period. Zope's sessioning system makes use of cookies and/or
HTTP form elements "in the background" to keep track of user sessions. Zope's sessioning system allows you
to avoid manually managing user sessions.

You can use sessions to keep track of anonymous users as well as those who have Zope login accounts.

Data associated with a session is called "session data". Session data is valid only for the duration of one site
visit as determined by a configurable inactivity timeout value. Session data is used to keep track of
information about a user's visit such as the items that a user has put into a "shopping cart", or which pages a

Chapter 3: Using Basic Zope Objects 41

user has seen on his trip to your site.

It is important to realize that keeping sensitive data in a session data object is potentially insecure unless the
connection between browsers and Zope is encrypted in some way. Don't store sensitive information such as
phone numbers, addresses, account numbers, credit card numbers or any other personal information about
your site visitors unless you've secured the connection between Zope and site visitors via SSL.

Session Configuration

Zope versions after 2.5 come with a default sessioning environment configured "out of the box", so there's no
need to change these objects unless you're curious or want to change how sessions are configured. For
information on changing sessioning configuration, use the Zope help system.

Zope uses several different types of objects to manage session data, and brief explanations of their purpose
follow.

Browser ID Manager
This object manages how visitors' browsers are identified from request−to−request, and allows you to
configure whether this happens via cookies or form variables, or via a combination of both. The
default sessioning configuration provides a Browser Id Manager as the /browser_id_manager
object.

Transient Object Container
This object holds session data. It allows you to set how long session data lasts before it expires. The
default sessioning configuration provides a Transient Object Container named
/temp_folder/session_data. The session data objects in the default session_data
Transient Object container are lost each time Zope is restarted.

Session Data Manager
This object connects the browser id and session data information. When a folder which contains a
session data manager is traversed, the REQUEST object is populated with the SESSION, which is a
session data object. The default sessioning configuration provides a Session Data Manager named
/session_data_manager.

Using Session Data

You will typically access session data through the SESSION attribute of the REQUEST object.

Here's an example of how to work with a session using a Python−based Script:

 ## Script (Python) "lastView"
 secs_per_day=24*60*60
 session=context.REQUEST.SESSION
 if session.has_key('last view'):
 # The script has been viewed before, since the 'last view'
 # has been previously set in the session.
 then=session['last view']
 now=context.ZopeTime()
 session['last view']=now # reset last view to now
 return 'Seconds since last view %.2f' % ((now − then) * secs_per_day)
 # The script hasn't been viewed before, since there's no 'last
 # view' in the session data.
 session['last view']=context.ZopeTime()
 return 'This is your first view'

View this script, and then reload it a couple of times. It keeps track of when you last viewed the script and
calculates how long it has been since you last viewed it. Notice that if you quit your browser and come back to

Chapter 3: Using Basic Zope Objects 42

the script it forgets you. However, if you simply visit some other pages and then return, it still remembers the
last time you viewed it.

This example shows the basic features of working with session data: session data objects act like Python
dictionaries. You will almost always use session data that consists of normal Python lists, dictionaries, strings,
and numbers. The only tricky thing about sessions is that when working with mutable session data (for
example dictionaries or lists) you need to save the session data by reassigning it. Here's an example:

 ## Script (Python) "sessionExample"
 session=context.REQUEST.SESSION
 # l is a list
 l=session['myList']
 l.append('spam')
 # If you quit here, your changes to the list won't
 # be saved. You need to save the session data by
 # reassigning it to the session.
 session['myList']=l

For more information about persistence and mutable data, see the Zope Developer's Guide.

You can use sessions in Page Templates and DTML Documents, too. For example, here's a template snippet
that displays the users favorite color (as stored in a session):

 <p tal:content="request/SESSION/favorite_color">Blue</p>

Here's how to do the same thing in DTML:

 <dtml−with SESSION mapping>
 <p><dtml−var favorite_color></p>
 </dtml−with>

Sessions have a plethora of additional configuration parameters and usage patterns. For further information
about the session application programming interface, see the Zope help system. For an additional example of
using sessions, see the "shopping cart" example that comes with Zope 2.5 and above (in the Examples folder).

Using Versions

Version objects help coordinate the work of many people on the same set of objects. While you are editing a
document, someone else can be editing another document at the same time. In a large Zope site hundreds or
even thousands of people can be using Zope simultaneously. For the most part this works well, but problems
can occur. For example, two people might edit the same document at the same time. When the first person
finishes their changes they are saved in Zope. When the second person finishes their changes they over write
the first person's changes. You can always work around this problem using Undo and History, but it can still
be a problem. To solve this problem, Zope has Version objects.

Another problem that you may encounter is that you may wish to make some changes, but you may not want
to make them public until you are done. For example, suppose you want to change the menu structure of your
site. You don't want to work on these changes while folks are using your site because it may break the
navigation system temporarily while you're working.

Versions are a way of making private changes in Zope. You can make changes to many different documents
without other people seeing them. When you decide that you are done you can choose to make your changes
public, or discard them. You can work in a Version for as long as you wish. For example it may take you a
week to put the finishing touches on your new menu system. Once you're done you can make all your changes
live at once by committing the version.

Chapter 3: Using Basic Zope Objects 43

Create a Version by choosing Version from the product add list. You should be taken to an add form. Give
your Version an id of MyChanges and click the Add button. Now you have created a version, but you are not
yet using it. To use your version click on it. You should be taken to the Join/Leave view of your version as
shown in Figure 3−8.

Figure 3−8 Joining a Version

The Version is telling you that you are not currently using it. Click on the Start Working in MyChanges
button. Now Zope should tell you that you are working in a version. Now return to the root folder. Notice that
everywhere you go you see a small message at the top of the screen that says You are currently working in
version /MyChanges. This message lets you know that any changes you make at this point will not be public,
but will be stored in your version. For example, create a new DTML Document named new. Notice how it has
a small red diamond after its id. Now edit your standard_html_header method. Add a line to it like so:

 <HTML>
 <HEAD>
 <TITLE><dtml−var title_or_id></TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <H1>Changed in a Version</H1>

Any object that you create or edit while working in a version will be marked with a red diamond. Now return
to your version and click the Quit working in MyChanges button. Now try to return to the new document.
Notice that the document you created while in your version has now disappeared. Any other changes that you
made in the version are also gone. Notice how your standard_html_header method now has a small red
diamond and a lock symbol after it. This indicates that this object has been changed in a version. Changing an
object in a version locks it, so no one else can change it until you commit or discard the changes you made in
your version. Locking ensures that your version changes don't overwrite changes that other people make while
you're working in a version. So for example if you want to make sure that only you are working on an object
at a given time you can change it in a version. In addition to protecting you from unexpected changes, locking
also makes things inconvenient if you want to edit something that is locked by someone else. It's a good idea
to limit your use of versions to avoid locking other people out of making changes to objects.

Chapter 3: Using Basic Zope Objects 44

Now return to your version by clicking on it and then clicking the Start working in MyChanges button. Notice
how everything returns to the way it was when you left the Version. At this point let's make your changes
permanent. Go to the Save/Discard view as shown in Figure 3−9.

Figure 3−9 Committing Version changes.

Enter a comment like This is a test into the comment field and click the Save button. Your changes are now
public, and all objects that you changed in your Version are now unlocked. Notice that you are still working in
your Version. Go to the Join/Leave view and click the Quit Working in MyChanges button. Now verify that
the document you created in your version is visible. Your change to the standard_html_header should also be
visible. Like anything else in Zope you can choose to undo these changes if you want. Go to the Undo view.
Notice that instead of many transactions one for each change, you only have one transaction for all the
changes you made in your version. If you undo the transaction, all the changes you made in the version will be
undone.

Versions are a powerful tool for group collaboration. You don't have to run a live server and a test server since
versions let you make experiments, evaluate them and then make them public when you decide that all is well.
You are not limited to working in a version alone. Many people can work in the same version. This way you
can collaborate on version's changes together, while keeping the changes hidden from the general public.

Versions and ZCatalog

Versions don't work well with ZCatalog. This is because versions lock objects when they are modified in a
version, preventing changes outside the version. This works well when changes are isolated.

ZCatalog has a way of connecting changes made to disparate objects. This is because cataloging an object
must, by necessity change the catalog. Objects that automatically catalog themselves when they are changed
propigate their changes to the catalog. If such an object is changed in a version, then the catalog is changed in
the version too, thus locking the catalog. This property makes the catalog and versions get along poorly. As a
rule, versions should not be used in applications that use the catalog.

Chapter 3: Using Basic Zope Objects 45

Improving Performance with Caching

A cache is a temporary place to store information that you access frequently. The reason for using a cache is
speed. Any kind of dynamic content, like a DTML page or a Python Script, must be evaluated each time it is
called. For simple pages or quick scripts, this is usually not a problem. For very complex DTML pages or
scripts that do a lot of computation or call remote servers, accessing that page or script could take more than a
trivial amount of time. Both DTML and Python can get this complex, especially if you use lots of looping
(such as the in tag or the Python for loop) or if you call lots of scripts, that in turn call lots of scripts, and so
on. Computations that take a lot of time are said to be expensive.

A cache can add a lot of speed to your site by calling an expensive page or script once and storing the result of
that call so that it can be reused. The very first person to call that page will get the usual slow response time,
but then once the value of the computation is stored in the cache, all subsequent users to call that page will see
a very quick response time because they are getting the cached copy of the result and not actually going
through the same expensive computation the first user went through.

To give you an idea of how caches can improve your site speed, imagine that you are creating
www.zopezoo.org, and that the very first page of your site is very complex. Let's suppose this page has
complex headers, footers, queries several different database tables, and calls several special scripts that parse
the results of the database queries in complex ways. Every time a user comes to www.zopezoo.org, Zope must
render this very complex page. For the purposes of demonstration, let's suppose this complex page takes
one−half of a second, or 500 milliseconds, to compute.

Given that it takes a half of a second to render this fictional complex main page, your machine can only really
serve 120 hits per minute. In reality, this number would probably be even lower than that, because Zope has to
do other things in addition to just serving up this main page. Now, imagine that you set this page up to be
cached. Since none of the expensive computation needs to be done to show the cached copy of the page, many
more users could see the main page. If it takes, for example, 10 milliseconds to show a cached page, then this
page is being served 50 times faster to your web site visitors. The actual performance of the cache and Zope
depends a lot on your computer and your application, but this example gives you an idea of how caching can
speed up your web site quite a bit. There are some disadvantages to caching however:

Cache lifetime
If pages are cached for a long time, they may not reflect the most current information on your site. If
you have information that changes very quickly, caching may hide the new information from your
users because the cached copy contains the old information. How long a result remains cached is
called the cache lifetime of the information.

Personal information
Many web pages may be personalized for one particular user. Obviously, caching this information and
showing it to another user would be bad due to privacy concerns, and because the other user would
not be getting information about them, they'd be getting it about someone else. For this reason,
caching is often never used for personalized information.

Zope allows you to get around these problems by setting up a cache policy. The cache policy allows you to
control how content gets cached. Cache policies are controlled by Cache Manager objects.

Adding a Cache Manager

Cache managers can be added just like any other Zope object. Currently Zope comes with two kinds of cache
managers:

HTTP Accelerated Cache Manager

Chapter 3: Using Basic Zope Objects 46

An HTTP Accelerated Cache Manager allows you to control an HTTP cache server that is external to
Zope, for example, Squid. HTTP Accelerated Cache Managers do not do the caching themselves, but
rather set special HTTP headers that tell an external cache server what to cache. Setting up an external
caching server like Squid is beyond the scope of this book, see the Squid site for more details.

(RAM) Cache Manager
A RAM Cache Manager is a Zope cache manager that caches the content of objects in your computer
memory. This makes it very fast, but also causes Zope to consume more of your computer's memory.
A RAM Cache Manager does not require any external resources like a Squid server, to work.

For the purposes of this example, create a RAM Cache Manager in the root folder called CacheManager. This
is going to be the cache manager object for your whole site.

Now, you can click on CacheManager and see its configuration screen. There are a number of elements on
this screen:

Title
The title of the cache manager. This is optional.

REQUEST variables
This information is used to store the cached copy of a page. This is an advanced feature, for now, you
can leave this set to just "AUTHENTICATED_USER".

Threshold Entries
The number of objects the cache manager will cache at one time.

Cleanup Interval
The lifetime of cached results.

For now, leave all of these entries as is, they are good, reasonable defaults. That's all there is to setting up a
cache manager!

There are a couple more views on a cache manager that you may find useful. The first is the Statistics view.
This view shows you the number of cache "hits" and "misses" to tell you how effective your caching is.

There is also an Associate view that allows you to associate a specific type or types of Zope objects with a
particular cache manager. For example, you may only want your cache manager to cache DTML Documents.
You can change these settings on the Associate view.

At this point, nothing is cached yet, you have just created a cache manager. The next section explains how you
can cache the contents of actual documents.

Caching a Document

Caching a document is very easy. First, before you can cache a document you must have a cache manager like
the one you created in the previous section.

To cache a document, create a new DTML Document object in the root folder called Weather. This object will
contain some weather information. For example, let's say it contains:

 <dtml−var standard_html_header>

 <p>Yesterday it rained.</p>

 <dtml−var standard_html_footer>

Chapter 3: Using Basic Zope Objects 47

http://www.squid-cache.org/

Now, click on the Weather DTML Document and click on its Cache view. This view lets you associate this
document with a cache manager. If you pull down the select box at the top of the view, you'll see the cache
manager you created in the previous section, CacheManager. Select this as the cache manager for Weather.

Now, whenever anyone visits the Weather document, they will get the cached copy instead. For a document as
trivial as our Weather example, this is not much of a benefit. But imagine for a moment that Weather
contained some database queries. For example:

 <dtml−var standard_html_header>

 <p>Yesterday's weather was <dtml−var yesterdayQuery> </p>

 <p>The current temperature is <dtml−var currentTempQuery></p>

 <dtml−var standard_html_footer>

Let's suppose that yesterdayQuery and currentTempQuery are SQL Methods that query a database for
yesterdays forecast and the current temperature, respectively (for more information on SQL Methods, see
Chapter 12, "Relational Database Connectivity"). Let's also suppose that the information in the database only
changes once every hour.

Now, without caching, the Weather document would query the database every time it was viewed. If the
Weather document was viewed hundreds of times in an hour, then all of those hundreds of queries would
always contain the same information.

If you specify that the document should be cached, however, then the document will only make the query
when the cache expires. The default cache time is 300 seconds (5 minutes), so setting this document up to be
cached will save you 91% of your database queries by doing them only one twelfth as often. There is a
trade−off with this method, there is a chance that the data may be five minutes out of date, but this is usually
an acceptable compromise.

For more information about caching and using the more advanced options of caching, see the Zope
Administrator's Guide.

Virtual Hosting Objects

Zope comes with three objects that help you do virtual hosting, SiteRoot, Set Access Rule, and Virtual Host
Monster. Virtual hosting is a way to serve many web sites with one Zope server. Virtual hosting is an
advanced administration function, that is beyond the scope of this book. See the Zope Administrator's Guide
for more information on virtual hosting.

Sending mail with MailHost

Zope comes with an object that is used to send outbound e−mail, usually in conjunction with the DTML
sendmail tag, described more in Chapter 8, "Variables and Advanced DTML".

Mailhosts can be used from either Python or DTML to send an email message over the Internet. They are
useful as gateways out to the world. Each mailhost object is associated with one mail server, for example,
you can associate a mailhost object with yourmail.yourdomain.com, which would be your outbound
SMTP mail server. Once you associate a server with a mailhost object, the mailhost object will always use
that server to send mail.

Chapter 3: Using Basic Zope Objects 48

http://www.zope.org/DocProjects/AdminGuide
http://www.zope.org/DocProjects/AdminGuide
http://www.zope.org/DocProjects/AdminGuide

To create a mailhost object select MailHost from the add list. You can see that the default id is "MailHost"
and the default SMTP server and port are "localhost" and "25". make sure that either your localhost machine
is running a mail server, or change "localhost" to be the name of your outgoing SMTP server.

Now you can use the new MailHost object from a DTML sendmail tag. This is explained in more detail in
Chapter 8, "Variables and Advanced DTML". The API for MailHost objects also allows you to send mail
from Python scripts. For more information, see the online help system.

Chapter 3: Using Basic Zope Objects 49

Chapter 4: Dynamic Content with DTML
DTML (Document Template Markup Language) is Zope's tag−based presentation and scripting language.
DTML dynamically generates, controls, and formats content. DTML is commonly used to build modular and
dynamic web interfaces for your web applications.

DTML is a server side scripting language, like SSI, PHP, ASP, and JSP. This means that DTML commands
are executed by Zope at the server, and the result of that execution is sent to your web browser. By contrast,
client−side scripting languages like Javascript are not processed by the server, but are rather sent to and
executed by your web browser.

You can use DTML scripting in two types of Zope objects, DTML Documents and DTML Methods.

Who is DTML For?

DTML is designed for people familiar with HTML and basic web scripting, not for application programmers.
In fact, if you want to do programming with Zope you shouldn't use DTML. In Chapter 9, "Advanced Zope
Scripting", we'll cover advanced programming using Python and Perl.

DTML is for presentation and should be managed by web designers. Zope encourages you to keep your
presentation and logic separate by providing different objects for presentation (DTML), and logic (Python,
Perl, and others). You will find a host of benefits resulting from keeping your presentation in DTML and your
logic in other types of Zope objects. Some of those benefits include:

Keeping logic and presentation separate makes it easy to vary either component without disrupting the
other.

•

Often you will have different people in charge of maintaining logic and presentation. By using
different objects for these tasks you make it easier for people to collaborate without disrupting each
other.

•

It's easier to reuse existing presentation and logic components if they are not intermingled.•

What is DTML Good for?

DTML is good for creating dynamic web interfaces. It supports reusing content and layout, formatting
heterogeneous data, and separating presentation from logic and data.

For example with DTML you can reuse shared web page headers and footers:

 <dtml−var standard_html_header>

 <p>Hello world.</p>

 <dtml−var standard_html_footer>

This web page mixes HTML and DTML together. DTML commands are written as tags that begin with
dtml−. This example builds a web page by inserting a standard header and footer into an HTML page. The
resulting HTML page might look something like this:

 <html>
 <body bgcolor="#FFFFFF">

 <p>Hello world.</p>

 <hr>
 <p>Last modified 2000/10/16 by AmosL</p>
 </body>
 </html>

As you can see the standard header defined a white background color and the standard footer added a note at
the bottom of the page telling when the page was last modified and by whom.

In addition to reusing content, DTML lets you easily and powerfully format all kinds of data. You can use
DTML to call methods, query databases, introspect Zope objects, process forms, and more.

For example when you query a database with a SQL Method it typically returns a list of results. Here's how
you might use DTML to format each result from a database query:

 <dtml−in frogQuery>
 <dtml−var animal_name>
 </dtml−in>

The DTML in tag iterates over the results of the database query and formats each result. Suppose four results
are returned by frogQuery. Here's what the resulting HTML might look like:

 Fire−bellied toad
 African clawed frog
 Lake Nabu reed frog
 Chilean four−eyed frog

The results of the database query are formatted as an HTML bulleted list.

Note that you don't have to tell DTML that you are querying a database and you don't have to tell it where to
find the arguments to call the database query. You just tell it what object to call, it will do the work of figuring
out how to call the object and pass it appropriate arguments. If you replace the frogQuery SQL Method with
some other kind of object, like a Script, a ZCatalog, or even another DTML Method, you won't have to
change the way you format the results.

This ability to format all kinds of data makes DTML a powerful presentation tool, and lets you modify your
business logic without changing your presentation.

When Not to Use DTML

DTML is not a general purpose programming language. For example, DTML does not allow you to create
variables very easily. While it may be possible to implement complex algorithms in DTML, it is painful and
not recommended. If you want to implement programming logic, use Python or Perl (for more information on
these subjects, see Chapter 9, "Advanced Zope Scripting").

For example, let's suppose you were writing a simple web page for a group of math students, and on that page
you wanted to illustrate a simple calculation. You would not want to write the program that made this
calculation in DTML. It could be done in DTML, but it would be difficult to understand. DTML would be
perfect for describing the page that this calculation is inserted into, but it would be awful to do this calculation
in DTML, whereas it may be very simple and trivial in Python or Perl.

Chapter 4: Dynamic Content with DTML 51

String processing is another area where DTML is not the best choice. If you want to manipulate input from a
user in a complex way, but using functions that manipulate strings, you are better off doing it in Python or
Perl, both of which have much more powerful string processing abilities than DTML.

DTML is one tool among many available in Zope. If you find yourself scratching your head trying to figure
out some complicated DTML construct, there's a good chance that things would work better if you broke your
DTML script up into a collection of DTML and Python or Perl−based Scripts.

DTML Tag Syntax

DTML's syntax is similar to HTML. DTML is a tag based mark−up language. In other words DTML uses tags
to do its work. Here is a simple snippet of DTML:

 <dtml−var standard_html_header>

 <h1>Hello World!</h1>

 <dtml−var standard_html_footer>

This DTML code contains two DTML var tags and some HTML. The h1 tags are HTML, not DTML. You
typically mix DTML with other mark−up languages like HTML. Normally DTML is used to generate HTML,
but there's nothing keeping you from generating other types of text. As you'll see later you can also use
DTML to generate mail messages and other textual information.

DTML contains two kinds of tags, singleton and block tags. Singleton tags consist of one tag enclosed by
less−than (<) and greater−than (>) symbols. The var tag is an example of a singleton tag:

 <dtml−var parrot>

There's no need to close the var tag.

Block tags consist of two tags, one that opens the block and one that closes the block, and content that goes
between them:

 <dtml−in mySequence>

 <!−− this is an HTML comment inside the in tag block −−>

 </dtml−in>

The opening tag starts the block and the closing tag ends it. The closing tag has the same name as the opening
tag with a slash preceding it. This is the same convention that HTML and XML use.

Using DTML Tag Attributes

All DTML tags have attributes. An attribute provides information about how the tag is supposed to work.
Some attributes are optional. For example, the var tag inserts the value of a variable. It has an optional missing
attribute that specifies a default value in case the variable can't be found:

 <dtml−var wingspan missing="unknown wingspan">

If the wingspan variable is not found then unknown wingspan is inserted instead.

Some attributes don't have values. For example, you can convert an inserted variable to upper case with the

Chapter 4: Dynamic Content with DTML 52

upper attribute:

 <dtml−var exclamation upper>

Notice that the upper attribute, unlike the missing attribute doesn't need a value.

Different tags have different attributes. See Appendix A, "DTML Reference", for more information on the
syntax of different DTML tags.

Inserting Variables with DTML

Inserting a variable is the most basic task that you can perform with DTML. You already saw how DTML
inserts a header and footer into a web page with the var tag. Many DTML tags insert variables, and they all do
it in a similar way. Let's look more closely at how Zope inserts variables.

Suppose you have a folder whose id is Feedbags that has the title "Bob's Fancy Feedbags". Inside the folder
create a DTML Method with an id of pricelist. Then change the contents of the DTML Method to the
following:

 <dtml−var standard_html_header>

 <h1>Price list for <dtml−var title></h1>

 <p>Hemp Bag $2.50</p>
 <p>Silk Bag $5.00</p>

 <dtml−var standard_html_footer>

Now view the DTML Method by clicking the View tab. You should see an HTML page whose source looks
something like this:

 <html>
 <body>

 <h1>Price list for Bob's Fancy Feedbags</h1>

 <p>Hemp Bag $2.50</p>
 <p>Silk Bag $5.00</p>

 </body>
 </html>

This is basically what you might expect. Zope inserts a header, a footer, and a title into the web page. DTML
gets the values for these variables from a number of different places. First, the var tag tries to find a variable
in the current object. Then it looks in the current object's containers. Then it looks in the web request (forms
and cookies). If Zope cannot find a variable then it raises an exception, and it stops executing the DTML.

Let's follow this DTML code step by step to see where the variables are found. First Zope looks for
standard_html_header in the current object, which is the pricelist DTML Method. Next, Zope looks for the
header in the current object's containers. The Feedbags folder doesn't have any methods or properties or
sub−objects by that name either. Next Zope examines the Feedbags folder's container, and so on until it gets
to the root folder. The root folder does have a sub−object named standard_html_header. The header object is
a DTML Method. So Zope calls the header method and inserts the results.

Next Zope looks for the title variable. Here, the search is a little shorter. First, it looks in the pricelist DTML
Method, which does not have a title, so Zope moves on and finds the Feedbags folder's title and inserts it.

Chapter 4: Dynamic Content with DTML 53

Finally Zope looks for the standard_html_footer variable. It has to search all the way up to the root folder to
find it, just like it looked for standard_html_header.

This exercise may seem a bit tedious, but understanding how Zope looks up variables is very important. For
example, some important implications of how Zope looks up variables include how Zope objects can get
content and behavior from their parents, and how content defined in one location can be reused by many
objects.

Processing Input from Forms

It's easy to do form processing with Zope. DTML looks for variables to insert in a number of locations,
including information that comes from submitted HTML forms. You don't need any special objects, DTML
Documents and DTML Methods will do.

Create two DTML Documents, one with the id infoForm and the other with the id infoAction. Now edit the
contents of the documents. Here's the contents of the infoForm document:

 <dtml−var standard_html_header>

 <p>Please send me information on your aardvark adoption
 program.</p>

 <form action="infoAction">
 name: <input type="text" name="user_name">

 email: <input type="text" name="email">

 <input type="submit">
 </form>

 <dtml−var standard_html_footer>

Now view this document. It is a web form that asks for information and sends it to the infoAction document
when you submit the form.

Now edit the contents of the infoAction document to make it process the form:

 <dtml−var standard_html_header>

 <h1>Thanks <dtml−var user_name></h1>

 <p>We received your request for information and will send you
 email at <dtml−var email> describing our aardvark adoption
 program as soon as it receives final governmental approval.
 </p>

 <dtml−var standard_html_footer>

This document displays a thanks message which includes name and email information gathered from the web
form.

Now go back to the infoForm document, view it, fill out the form and submit it. If all goes well you should
see a thank you message that includes your name and email address.

The infoAction document found the form information from the web request that happened when you clicked
the submit button on the infoForm. As we mentioned in the last section, DTML looks for variables in a couple
of places, one of which is the web request, so there's nothing special you need to do to enable your documents
to process web forms.

Chapter 4: Dynamic Content with DTML 54

Let's perform an experiment. What happens if you try to view the infoAction document directly, as opposed to
getting to it from the infoForm document. Click on the infoAction document and then click the View tab, as
shown in Figure 4−1.

Figure 4−1 DTML error resulting from a failed variable lookup.

Zope couldn't find the user_name variable since it was not in the current object, its containers or the web
request. This is an error that you're likely to see frequently as you learn Zope. Don't fear, it just means that
you've tried to insert a variable that Zope can't find. In this example, you need to either insert a variable that
Zope can find, or use the missing attribute on the var tag as described above:

 <h1>Thanks <dtml−var user_name missing="Anonymous User"></h1>

Understanding where Zope looks for variables will help you figure out how to fix this kind of problem. In this
case, you have viewed a document that needs to be called from an HTML form like infoForm in order to
provide variables to be inserted in the output.

Dynamically Acquiring Content

Zope looks for DTML variables in the current object's containers if it can't find the variable first in the current
object. This behavior allows your objects to find and use content and behavior defined in their parents. Zope
uses the term acquisition to refer to this dynamic use of content and behavior.

Now that you see how site structure fits into the way names are looked up, you can begin to understand that
where you place objects you are looking for is very important.

An example of acquisition that you've already seen is how web pages use standard headers and footers. To
acquire the standard header just ask Zope to insert it with the var tag:

 <dtml−var standard_html_header>

Chapter 4: Dynamic Content with DTML 55

It doesn't matter where your DTML Method or Document is located. Zope will search upwards until it finds
the standard_html_header that is defined in the root folder.

You can take advantage of how Zope looks up variables to customize your header in different parts of your
site. Just create a new standard_html_header in a folder and it will override global header for all web pages in
your folder and below it.

Create a folder in the root folder with an id of Green. Enter the Green folder and create a DTML Document
with an id of welcome. Edit the welcome document to have these contents:

 <dtml−var standard_html_header>

 <p>Welcome</p>

 <dtml−var standard_html_footer>

Now view the welcome document. It should look like a simple web page with the word welcome, as shown in
Figure 4−2.

Figure 4−2 Welcome document.

Now let's customize the header for the Green folder. Create a DTML Method in the Green folder with an id of
standard_html_header. Then edit the contents of the header to the following:

 <html>
 <head>
 <style type="text/css">
 body {color: #00FF00;}
 p {font−family: sans−serif;}
 </style>
 </head>
 <body>

Chapter 4: Dynamic Content with DTML 56

Notice that this is not a complete web page. This is just a fragment of HTML that will be used as a header.
This header uses CSS (Cascading Style Sheets) to make some changes to the look and feel of web pages.

Now go back to the welcome document and view it again, as shown in Figure 4−3.

Figure 4−3 Welcome document with custom header.

The document now looks quite different. This is because it is now using the new header we introduced in the
Green folder. This header will be used by all web pages in the Green folder and its sub−folders.

You can continue this process of overriding default content by creating another folder inside the Green folder
and creating a standard_html_header DTML Method there. Now web pages in the sub−folder will use their
local header rather than the Green folder's header. Using this pattern you can quickly change the look and feel
of different parts of your web site. If you later decide that an area of the site needs a different header, just
create one. You don't have to change the DTML in any of the web pages; they'll automatically find the closest
header and use it.

Using Python Expressions from DTML

So far we've looked at simple DTML tags. Here's an example:

 <dtml−var getHippo>

This will insert the value of the variable named getHippo, whatever that may be. DTML will automatically
take care of the details, like finding the variable and calling it. We call this basic tag syntax name syntax to
differentiate it from expression syntax.

DTML expressions allow you to be more explicit about how to find and call variables. Expressions are tag
attributes that contain snippets of code in the Python language. For example, instead of letting DTML find and
call getHippo, we can use an expression to explicitly pass arguments:

Chapter 4: Dynamic Content with DTML 57

http://www.w3.org/Style/CSS

 <dtml−var expr="getHippo('with a large net')">

Here we've used a Python expression to explicitly call the getHippo method with the string argument, with
a large net. To find out more about Python's syntax, see the Python Tutorial at the Python.org web site.
Many DTML tags can use expression attributes.

Expressions make DTML pretty powerful. For example, using Python expressions, you can easily test
conditions:

 <dtml−if expr="foo < bar">
 Foo is less than bar.
 </dtml−if>

Without expressions, this very simple task would have to be broken out into a separate method and would add
a lot of overhead for something this trivial.

Before you get carried away with expressions, take care. Expressions can make your DTML hard to
understand. Code that is hard to understand is more likely to contain errors and is harder to maintain.
Expressions can also lead to mixing logic in your presentation. If you find yourself staring blankly at an
expression for more than five seconds, stop. Rewrite the DTML without the expression and use a Script to do
your logic. Just because you can do complex things with DTML doesn't mean you should.

DTML Expression Gotchas

Using Python expressions can be tricky. One common mistake is to confuse expressions with basic tag syntax.
For example:

 <dtml−var objectValues>

and:

 <dtml−var expr="objectValues">

will end up giving you two completely different results. The first example of the DTML var tag will
automatically render variables. In other words it will try to do the right thing to insert your variable, no matter
what that variable may be. In general this means that if the variable is a method it will be called with
appropriate arguments. This process is covered more thoroughly in Chapter 8, "Variables and Advanced
DTML".

In an expression, you have complete control over the variable rendering. In the case of our example,
objectValues is a method. So:

 <dtml−var objectValues>

will call the method. But:

 <dtml−var expr="objectValues">

will not call the method, it will just try to insert it. The result will be not a list of objects but a string such as
<Python Method object at 8681298>. If you ever see results like this, there is a good chance that
you're returning a method, rather than calling it.

To call a method from an expression, you must use standard Python calling syntax by using parenthesis:

 <dtml−var expr="objectValues()">

Chapter 4: Dynamic Content with DTML 58

http://www.python.org/doc/current/tut

The lesson is that if you use Python expressions you must know what kind of variable you are inserting and
must use the proper Python syntax to appropriately render the variable.

Before we leave the subject of variable expressions we should mention that there is a deprecated form of the
expression syntax. You can leave out the "expr=" part on a variable expression tag. But please don't do this. It
is far too easy to confuse:

 <dtml−var aName>

with:

 <dtml−var "aName">

and get two completely different results. These "shortcuts" were built into DTML long ago, but we do not
encourage you to use them now unless you are prepared to accept the confusion and debugging problems that
come from this subtle difference in syntax.

The Var Tag

The var tag inserts variables into DTML Methods and Documents. We've already seen many examples of how
the var tag can be used to insert strings into web pages.

As you've seen, the var tag looks up variables first in the current object, then in its containers and finally in
the web request.

The var tag can also use Python expressions to provide more control in locating and calling variables.

Var Tag Attributes

You can control the behavior of the var tag using its attributes. The var tag has many attributes that help you
in common formatting situations. The attributes are summarized in Appendix A. Here's a sampling of var tag
attributes.

html_quote
This attribute causes the inserted values to be HTML quoted. This means that <, > and & are escaped.

missing
The missing attribute allows you to specify a default value to use in case Zope can't find the variable.
For example:
 <dtml−var bananas missing="We have no bananas">

fmt
The fmt attribute allows you to control the format of the var tags output. There are many possible
formats which are detailed in Appendix A.
One use of the fmt attribute is to format monetary values. For example, create a float property in your
root folder called adult_rate. This property will represent the cost for one adult to visit the Zoo. Give
this property the value 2.2.

You can display this cost in a DTML Document or Method like so:

 One Adult pass: <dtml−var adult_rate fmt=dollars−and−cents>

This will correctly print "$2.20". It will round more precise decimal numbers to the nearest penny.

Chapter 4: Dynamic Content with DTML 59

Var Tag Entity Syntax

Zope provides a shortcut DTML syntax just for the simple var tag. Because the var tag is a singleton, it can be
represented with an HTML entity like syntax:

 &dtml−cockatiel;

This is equivalent to:

 <dtml−var name="cockatiel" html_quote>

The main reason to use the entity syntax is to avoid putting DTML tags inside HTML tags. For example,
instead of writing:

 <input type="text" value="<dtml−var name="defaultValue">">

You can use the entity syntax to make things more readable for you and your text editor:

 <input type="text" value="&dtml−defaultValue;">

The var tag entity syntax is very limited. You can't use Python expressions and some tag attributes with it. See
Appendix A for more information on var tag entity syntax.

The If Tag

One of DTML's important benefits is to let you customize your web pages. Often customization means testing
conditions are responding appropriately. This if tag lets you evaluate a condition and carry out different
actions based on the result.

What is a condition? A condition is either a true or false value. In general all objects are considered true
unless they are 0, None, an empty sequence or an empty string.

Here's an example condition:

objectValues
True if the variable objectValues exists and is true. That is to say, when found and rendered
objectValues is not 0, None, an empty sequence, or an empty string.

As with the var tag, you can use both name syntax and expression syntax. Here are some conditions expressed
as DTML expressions.

expr="1"
Always true.

expr="rhino"
True if the rhino variable is true.

expr="x < 5"
True if x is less than 5.

expr="objectValues('File')"
True if calling the objectValues method with an argument of File returns a true value. This method is
explained in more detail in this chapter.

The if tag is a block tag. The block inside the if tag is executed if the condition is true.

Chapter 4: Dynamic Content with DTML 60

Here's how you might use a variable expression with the if tag to test a condition:

 <p>How many monkeys are there?</p>

 <dtml−if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
 </dtml−if>

In the above example, if the Python expression monkeys > monkey_limit is true then you will see the
first and the second paragraphs of HTML. If the condition is false, you will only see the first.

If tags be nested to any depth, for example, you could have:

 <p>Are there too many blue monkeys?</p>

 <dtml−if "monkeys.color == 'blue'">
 <dtml−if expr="monkeys > monkey_limit">
 <p>There are too many blue monkeys!</p>
 </dtml−if>
 </dtml−if>

Nested if tags work by evaluating the first condition, and if that condition is true, then evaluating the second.
In general, DTML if tags work very much like Python if statements..

Name and Expression Syntax Differences

The name syntax checks for the existence of a name, as well as its value. For example:

 <dtml−if monkey_house>
 <p>There is a monkey house Mom!</p>
 </dtml−if>

If the monkey_house variable does not exist, then this condition is false. If there is a monkey_house variable
but it is false, then this condition is also false. The condition is only true is there is a monkey_house variable
and it is not 0, None, an empty sequence or an empty string.

The Python expression syntax does not check for variable existence. This is because the expression must be
valid Python. For example:

 <dtml−if expr="monkey_house">
 <p>There is a monkey house, Mom!</p>
 </dtml−if>

This will work as expected as long as monkey_house exists. If the monkey_house variable does not exist, Zope
will raise a KeyError exception when it tries to find the variable.

Else and Elif Tags

The if tag only lets you take an action if a condition is true. You may also want to take a different action if the
condition is false. This can be done with the DTML else tag. The if block can also contain an else singleton
tag. For example:

 <dtml−if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
 <dtml−else>
 <p>The monkeys are happy!</p>
 </dtml−if>

Chapter 4: Dynamic Content with DTML 61

The else tag splits the if tag block into two blocks, the first is executed if the condition is true, the second is
executed if the condition is not true.

A if tag block can also contain a elif singleton tag. The elif tag specifies another condition just like an addition
if tag. This lets you specify multiple conditions in one block:

 <dtml−if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
 <dtml−elif expr="monkeys < minimum_monkeys">
 <p>There aren't enough monkeys!</p>
 <dtml−else>
 <p>There are just enough monkeys.</p>
 </dtml−if>

An if tag block can contain any number of elif tags but only one else tag. The else tag must always come after
the elif tags. Elif tags can test for condition using either the name or expression syntax.

Using Cookies with the If Tag

Let's look at a more meaty if tag example. Often when you have visitors to your site you want to give them a
cookie to identify them with some kind of special value. Cookies are used frequently all over the Internet, and
when they are used properly they are quite useful.

Suppose we want to differentiate new visitors from folks who have already been to our site. When a user visits
the site we can set a cookie. Then we can test for the cookie when displaying pages. If the user has already
been to the site they will have the cookie. If they don't have the cookie yet, it means that they're new.

Suppose we're running a special. First time zoo visitors get in for half price. Here's a DTML fragment that
tests for a cookie using the hasVisitedZoo variable and displays the price according to whether a user is new
or a repeat visitor:

 <dtml−if hasVisitedZoo>
 <p>Zoo admission <dtml−var adult_rate fmt="dollars−and−cents">.</p>
 <dtml−else>
 Zoo admission for first time visitors
 <dtml−var expr="adult_rate/2" fmt="dollars−and−cents"></p>
 </dtml−if>

This fragment tests for the hasVisitedZoo variable. If the user has visited the zoo before it displays the normal
price for admission. If the visitor is here for the first time they get in for half−price.

Just for completeness sake, here's an implementation of the hasVisitedZoo method as a Python−based Script:

 ## Script(Python) "hasVisitedZoo"
 ##parameters=REQUEST, RESPONSE
 ##
 """
 Returns true if the user has previously visited
 the Zoo. Uses cookies to keep track of zoo visits.
 """
 if REQUEST.has_key('zooVisitCookie'):
 return 1
 else:
 RESPONSE.setCookie('zooVisitCookie', '1')
 return 0

Chapter 4: Dynamic Content with DTML 62

In Chapter 10, "Advanced Zope Scripting" we'll look more closely at how to script business logic with Python
and Perl. For now it is sufficient to see that the method looks for a cookie and returns a true or false value
depending on whether the cookie is found or not. Notice how Python uses if and else statements just like
DTML uses if and else tags. DTML's if and else tags are based on Python's. In fact Python also has an elif
statement, just like DTML.

The In Tag

The DTML in tag iterates over a sequence of objects, carrying out one block of execution for each item in the
sequence. In programming, this is often called iteration, or looping.

The in tag is a block tag like the if tag. The content of the in tag block is executed once for every iteration in
the in tag loop. For example:

 <dtml−in todo_list>
 <p><dtml−var description></p>
 </dtml−in>

This example loops over a list of objects named todo_list. For each item, it inserts an HTML paragraph with a
description of the to do item.

Iteration is very useful in many web tasks. Consider a site that display houses for sale. Users will search your
site for houses that match certain criteria. You will want to format all of those results in a consistent way on
the page, therefore, you will need to iterate over each result one at a time and render a similar block of HTML
for each result.

In a way, the contents of an in tag block is a kind of template that is applied once for each item in a sequence.

Iterating over Folder Contents

Here's an example of how to iterate over the contents of a folder. This DTML will loop over all the files in a
folder and display a link to each one. This example shows you how to display all the "File" objects in a folder,
so in order to run this example you will need to upload some files into Zope as explained in the previous
chapter:

 <dtml−var standard_html_header>

 <dtml−in expr="objectValues('File')">
 <dtml−var title_or_id>
 </dtml−in>

 <dtml−var standard_html_footer>

This code displayed the following file listing, as shown in Figure 4−4.

Chapter 4: Dynamic Content with DTML 63

Figure 4−4 Iterating over a list of files.

Let's look at this DTML example step by step. First, the var tag is used to insert your common header into the
document. Next, to indicate that you want the browser to draw an HTML bulleted list, you have the ul HTML
tag.

Then there is the in tag. The tag has an expression that is calling the Zope API method called objectValues.
This method returns a sequence of objects in the current folder that match a given criteria. In this case, the
objects must be files. This method call will return a list of files in the current folder.

The in tag will loop over every item in this sequence. If there are four file objects in the current folder, then
the in tag will execute the code in its block four times; once for each object in the sequence.

During each iteration, the in tag looks for variables in the current object, first. In Chapter 8, "Variables and
Advanced DTML" we'll look more closely at how DTML looks up variables.

For example, this in tag iterates over a collection of File objects and uses the var tag to look up variables in
each file:

 <dtml−in expr="objectValues('File')">
 <dtml−var title_or_id>
 </dtml−in>

The first var tag is an entity and the second is a normal DTML var tag. When the in tag loops over the first
object its absolute_url and title_or_id variables will be inserted in the first bulleted list item:

 FirstFile

During the second iteration the second object's absolute_url and title_or_id variables are inserted in the
output:

Chapter 4: Dynamic Content with DTML 64

 FirstFile
 SecondFile

This process will continue until the in tag has iterated over every file in the current folder. After the in tag you
finally close your HTML bulleted list with a closing ul HTML tag and the standard_html_footer is inserted to
close the document.

In Tag Special Variables

The in tag provides you with some useful information that lets you customize your HTML while you are
iterating over a sequence. For example, you can make your file library easier to read by putting it in an HTML
table and making every other table row an alternating color, like this, as shown in Figure 4−5.

Figure 4−5 File listing with alternating row colors.

The in tag makes this easy. Change your file library method a bit to look like this:

 <dtml−var standard_html_header>

 <table>
 <dtml−in expr="objectValues('File')">
 <dtml−if sequence−even>
 <tr bgcolor="grey">
 <dtml−else>
 <tr>
 </dtml−if>
 <td>
 <dtml−var title_or_id>
 </td></tr>
 </dtml−in>
 </table>

 <dtml−var standard_html_footer>

Chapter 4: Dynamic Content with DTML 65

Here an if tag is used to test for a special variable called sequence−even. The in tag sets this variable to a
true or false value each time through the loop. If the current iteration number is even, then the value is true, if
the iteration number is odd, it is false.

The result of this test is that a tr tag with either a gray background or no background is inserted into the
document for every other object in the sequence. As you might expect, there is a sequence−odd that
always has the opposite value of sequence−even.

There are many special variables that the in tag defines for you. Here are the most common and useful:

sequence−item
This special variable is the current item in the iteration.
In the case of the file library example, each time through the loop the current file of the iteration is
assigned to sequence−item. It is often useful to have a reference to the current object in the iteration.

sequence−index
the current number, starting from 0, of iterations completed so far. If this number is even,
sequence−even is true and sequence−odd is false.

sequence−number
The current number, starting from 1, of iterations completed so far. This can be thought of as the
cardinal position (first, second, third, etc.) of the current object in the loop. If this number is even,
sequence−even is false and sequence−odd is true.

sequence−start
This variable is true for the very first iteration.

sequence−end
This variable is true for the very last iteration.

These special variables are detailed more thoroughly in Appendix A.

DTML is a powerful tool for creating dynamic content. It allows you to perform fairly complex calculations.
In Chapter 8, "Variables and Advanced DTML", you'll find out about many more DTML tags, and more
powerful ways to use the tags you already have seen. Despite its power, you should resist the temptation to
use DTML for complex scripting. In Chapter 10, "Advanced Zope Scripting" you'll find out about how to use
Python and Perl for scripting business logic.

Chapter 4: Dynamic Content with DTML 66

Chapter 5. Using Zope Page Templates
Page Templates are a web page generation tool. They help programmers and designers collaborate in
producing dynamic web pages for Zope web applications. Designers can use them to maintain pages without
having to abandon their tools, while preserving the work required to embed those pages in an application. In
this chapter, you'll learn the basics about Page Templates including how you can use them in your web site to
create dynamic web pages easily. In Chapter 9, "Advanced Page Templates", you'll learn about advanced Page
Template features.

The goal of Page Templates is to allow designers and programmers to work together easily. A designer can
use a WYSIWYG HTML editor to create a template, then a programmer can edit it to make it part of an
application. If required, the designer can load the template back into his editor and make further changes to its
structure and appearance. By taking reasonable steps to preserve the changes made by the programmer, the
designer will not disrupt the application.

Page Templates aim at this goal by adopting three principles:

Play nicely with editing tools.1.
What you see is very similar to what you get.2.
Keep code out of templates, except for structural logic.3.

A Page Template is like a model of the pages that it will generate. In particular, it is a valid HTML page.

Zope Page Templates versus DTML

Zope already has DTML, why do you need another template language. First of all, DTML is not aimed at
HTML designers. Once a page has been converted into a template, it is invalid HTML, making it difficult to
work with outside of the application. Secondly, DTML suffers from a failure to separate presentation, logic,
and content (data). This decreases the scalability of content management and website development efforts that
use these systems.

DTML can do things that Page Templates can't such as dynamically generate email messages (Page
Templates can only generate HTML and XML). So DTML won't go away. However, we do see Page
Templates taking over almost all HTML/XML presentation work in Zope.

How Page Templates Work

Page Templates use the Template Attribute Language (TAL). TAL consists of special tag attributes. For
example, a dynamic page title might look like this:

 <title tal:content="here/title">Page Title</title>

The tal:content attribute is a TAL statement. Since it has an XML namespace (the tal: part) most
editing tools will not complain that they don't understand it, and will not remove it. It will not change the
structure or appearance of the template when loaded into a WYSIWYG editor or a web browser. The name
content indicates that it will set the content of the title tag, and the value "here/title" is an expression
providing the text to insert into the tag.

All TAL statements consist of tag attributes whose name starts with tal: and all TAL statements have
values associated with them. The value of a TAL statement is shown inside quotes. See Appendix C, "Zope
Page Templates Reference", for more information on TAL.

To the HTML designer using a WYSIWYG tool, the dynamic title example is perfectly valid HTML, and
shows up in their editor looking like a title should look like. In other words, Page Templates play nicely with
editing tools.

This example also demonstrates the principle that, "What you see is very similar to what you get". When you
view the template in an editor, the title text will act as a placeholder for the dynamic title text. The template
provides an example of how generated documents will look.

When this template is saved in Zope and viewed by a user, Zope turns the dummy content into dynamic
content, replacing "Page Title" with whatever "here/title" resolves to. In this case, "here/title" resolves to the
title of the object to which to the template is applied. This substitution is done dynamically, when the template
is viewed.

There are template statements for replacing entire tags, their contents, or just some of their attributes. You can
repeat a tag several times or omit it entirely. You can join parts of several templates together, and specify
simple error handling. All of these capabilities are used to generate document structures. Despite these
capabilities, you can't create subroutines or classes, perform complex flow control, or easily express complex
algorithms. For these tasks, you should use Python−based Scripts or application components.

The Page Template language is deliberately not as powerful and general−purpose as it could be. It is meant to
be used inside of a framework (such as Zope) in which other objects handle business logic and tasks unrelated
to page layout.

For instance, template language would be useful for rendering an invoice page, generating one row for each
line item, and inserting the description, quantity, price, and so on into the text for each row. It would not be
used to create the invoice record in a database or to interact with a credit card processing facility.

Creating a Page Template

If you design pages, you will probably use FTP or WebDAV instead of the Zope Management Interface
(ZMI) to create and edit Page Templates. See the "Using FTP and WebDAV" section later in this chapter for
information on editing Page Templates remotely. For the small examples in this chapter, it is easier to use the
ZMI.

Use your web browser to log into the Zope Management Interface as a manager. Choose a Folder to work in
(the root is fine) and pick "Page Template" from the drop−down add list. Type "simple_page" in the add
form's Id field, then push the "Add and Edit" button.

You should now see the main editing page for the new Page Template. The title is blank, the content−type is
text/html, and the default template text is in the editing area.

Now let's create simple dynamic page. Type the words "a Simple Page" in the Title field. Then, edit the
template text to look like this:

 <html>
 <body>
 <p>
 This is <b tal:replace="template/title">the Title.
 </p>
 </body>
 </html>

Now push the Save Changes button. Zope should show a message confirming that your changes have been

Chapter 5. Using Zope Page Templates 68

saved.

If an HTML comment starting with <−− Page Template Diagnostics is added to the template text,
then check to make sure you typed the example correctly and save it again. This comment is an error message
telling you that something is wrong. You don't need to erase the error comment; once the error is corrected it
will go away.

Click on the Test tab. You should see a page with, "This is a Simple Page." at the top. Notice that the text is
plain; nothing is in bold.

Back up, then click on the Browse HTML source link under the content−type field. This will show you the
unrendered source of the template. You should see, "This is the Title." Back up again, so that you are ready to
edit the example further.

The Content−Type field allows you to specify the content type of your page. Generally you'll use a content
type of text/html HTML or text/xml for XML.

If you set the content−type to text/html then Zope parses your template using HTML compatiblity mode
which allowers HTML's loose markup. If you set your content−type to something other than text/html
then Zope assumes that your template is well formed XML. Zope also requires an explicit TAL and METAL
XML namespace declarations for well formed XML.

The Expand macros with editing control is explain in Chapter 9, "Advanced Page Templates".

Simple Expressions

The expression, "template/title" in your simple Page Template is a path expression. This the most common
type of expression. There are several other types of expressions defined by the TAL Expression Syntax
(TALES) standard. For more information on TALES see Appendix C, "Zope Page Templates Reference".

The "template/title" path expression fetches the title property of the template. Here are some other
common path expressions:

request/URL: The URL of the current web request.•
user/getUserName: The authenticated user's login name.•
container/objectIds: A list of Ids of the objects in the same Folder as the template.•

Every path starts with a variable name. If the variable contains the value you want, you stop there. Otherwise,
you add a slash ('/') and the name of a sub−object or property. You may need to work your way through
several sub−objects to get to the value you're looking for.

Zope defines a small set of built−in variables such as request and user, which are described in Chapter 9,
"Advanced Page Templates". You will also learn how to define your own variables in that chapter.

Inserting Text

In your "simple_page" template, you used the tal:replace statement on a bold tag. When you tested it,
Zope replaced the entire tag with the title of the template. When you browsed the source, you saw the
template text in bold. We used a bold tag in order to highlight the difference.

In order to place dynamic text inside of other text, you typically use tal:replace on a span tag rather

Chapter 5. Using Zope Page Templates 69

than on a bold tag. For example, add the following lines to your example:

 The URL is URL.

The span tag is structural, not visual, so this looks like "The URL is URL." when you view the source in an
editor or browser. When you view the rendered version, it may look something like:

 The URL is http://localhost:8080/simple_page.

If you want to insert text into a tag but leave the tag itself alone, you use the tal:content statement. To
set the title of your example page to the template's title property, add the following lines between the html
and the body tags:

 <head>
 <title tal:content="template/title">The Title</title>
 </head>

If you open the "Test" tab in a new browser window, the window's title will be "a Simple Page". If you view
the source of the page you'll see something like this:

 <html>
 <head>
 <title>a Simple Page</title>
 </head>
 ...

Zope inserted the title of your template into the title tag.

Repeating Structures

Now let's add some context to your page, in the form of a list of the objects that are in the same Folder as the
template. You will make a table that has a numbered row for each object, and columns for the id, meta−type,
and title. Add these lines to the bottom of your example template:

 <table border="1" width="100%">
 <tr>
 <th>Number</th>
 <th>Id</th>
 <th>Meta−Type</th>
 <th>Title</th>
 </tr>
 <tr tal:repeat="item container/objectValues">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/getId">Id</td>
 <td tal:content="item/meta_type">Meta−Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
 </table>

The tal:repeat statement on the table row means "repeat this row for each item in my container's list of
object values". The repeat statement puts the objects from the list into the item variable one at a time (this is
called the repeat variable), and makes a copy of the row using that variable. The value of "item/getId" in each
row is the Id of the object for that row, and likewise with "item/meta_type" and "item/title".

You can use any name you like for the repeat variable ("item" is only an example), as long as it starts with a

Chapter 5. Using Zope Page Templates 70

letter and contains only letters, numbers, and underscores ('_'). The repeat variable is only defined in the
repeat tag. If you try to use it above or below the tr tag you will get an error.

You can also use the repeat variable name to get information about the current repetition. By placing it after
the built−in variable repeat in a path, you can access the repetition count from zero ('index'), from one
('number'), from "A" ('Letter'), and in several other ways. So, the expression repeat/item/number is 1
in the first row, 2 in the second row, and so on.

Since one tal:repeat loop can be placed inside of another, more than one can be active at the same time.
This is why you must write repeat/item/number instead of just repeat/number. You must specify
which loop your interested in by including the loop name.

Now view the page and notice how it lists all the objects in the same folder as the template. Try adding or
deleting objects from the folder and notice how the page reflects these changes.

Conditional Elements

Using Page Templates you can dynamically query your environment and selectively insert text depending on
conditions. For example, you could display special information in response to a cookie:

 <p tal:condition="request/cookies/verbose | nothing">
 Here's the extra information you requested.
 </p>

This paragraph will be included in the output only if there is a verbose cookie set. The expression,
'request/cookies/verbose | nothing' is true only when there is a cookie named verbose set. You'll learn more
about this kind of expression in Chapter 9, "Advanced Page Templates".

Using the tal:condition statement you can check all kinds of conditions. A tal:condition
statement does nothing if its expression has a true value, but removes the entire statement tag, including its
contents, if the value is false. Zope considers the number zero, a blank string, an empty list, and the built−in
variable nothing to be false values. Nearly every other value is true, including non−zero numbers, and
strings with anything in them (even spaces!).

Another common use of conditions is to test a sequence to see if it is empty before looping over it. For
example is the last section you saw how to draw a table by iterating over a collection of objects. Here's how to
add a check to page so that if the list of objects is empty no table is drawn:

 <table tal:condition="container/objectValues"
 border="1" width="100%">
 <tr>
 <th>Number</th>
 <th>Id</th>
 <th>Meta−Type</th>
 <th>Title</th>
 </tr>
 <tr tal:repeat="item container/objectValues">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/getId">Id</td>
 <td tal:content="item/meta_type">Meta−Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
 </table>

If the expressions, container/objectValues is false then the entire table is omitted.

Chapter 5. Using Zope Page Templates 71

Changing Attributes

Most, if not all, of the objects listed by your template have an icon property, that contains the path to the
icon for that kind of object. In order to show this icon in the meta−type column, you will need to insert this
path into the src attribute of an img tag. Edit the meta−type column in both rows to look like this:

 <td><img src="/misc_/OFSP/Folder_icon.gif"
 tal:attributes="src item/icon">
 Meta−Type
 </td>

The tal:attributes statement replaces the src attribute of the img tag with the value of item/icon.
The src="/misc_/OFSP/Folder_icon.gif" attribute in the template acts as a placeholder.

Notice that we've replaced the tal:content attribute on the table cell with a tal:replace statement on a
span tag. This change allows you to have both an image and text in the table cell.

Creating a File Library with Page Templates

Here's an example of using Page Templates with Zope to create a simple file library with one template, a little
bit of Python code, and some files.

First, create a mock up of a file library page using your HTML editor. The examples in this chapter were
made with Amaya. This mock−up doesn't need to overdo it, it just shows some dummy information. Here's a
mock−up of a file library that contains one file:

 <!DOCTYPE html PUBLIC "−//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head>
 <title>File Library</title>
 <style type="text/css">
 .header {
 font−weight: bold;
 font−family: helvetica;
 background: #DDDDDD;
 }
 h1 {
 font−family: helvetica;
 }
 .filename {
 font−family: courier
 }
 </style>
 <meta name="GENERATOR" content="amaya 5.1">
 </head>

 <body>
 <h1>File Library</h1>

 <p>Click on a file below to download it.</p>

 <table border="1" cellpadding="5" cellspacing="0">
 <tbody>
 <tr>
 <td class="header">Name</td>
 <td class="header">Type</td>
 <td class="header">Size</td>

Chapter 5. Using Zope Page Templates 72

http://www.w3.org/Amaya/

 <td class="header">Last Modified</td>
 </tr>
 <tr>
 <td>Sample.tgz</td>
 <td>application/x−gzip−compressed</td>
 <td>22 K</td>
 <td>2001/09/17</td>
 </tr>
 </tbody>
 </table>
 </body>
 </html>

Now, log into your Zope and create a folder called FileLib. In this folder, create a Page Template called
index_html by selecting Page Template from the add menu, specifying the Id index_html in the
form, and clicking Add.

Now, with your HTML editor, save the above HTML to the URL of the index_html Page Template
followed by /source.html, for example,
http://localhost:8080/FileLib/index_html/source.html. Notice that the URL to save
the index_html page ends in source.html. Because Page Templates are dynamic, you need a way to
edit the raw source of the template, unrendered by the page template language. Appending source.html to
a Page Template gives you this raw source. Note, if the content−type of your page is text/xml then you'll
use source.xml, rather than source.html.

Now that you've saved the template, you can go back to Zope and click on index_html and then click on
its Test tab to view the template. It looks just like it the mock−up, so everything is going well.

Now let's tweak the above HTML and add some dynamic magic. First, we want the title of the template to be
dynamic. In Zope, you'll notice that the Page Template has a title form field that you can fill in. Instead of
being static HTML, we want Zope to dynamically insert the Page Templates title into the rendered version of
the template. Here's how:

 <head>
 ...
 <title tal:content="template/title">File Library</title>
 ...

 <body>
 <h1 tal:content="template/title">File Library</h1>
 ...

Now go to Zope and change the title of the index_html page template. After saving that change, click the
Test tab. As you can see, the Page Template dynamically inserted the title of the template object in the output
of the template.

Notice the new content tag attribute in the tal xml namespace. This attribute says to "replace the content
of this tag with the variable 'template/title'". In this case, template/title is the title of the index_html
Page Template.

The next bit of magic is to build a dynamic file list that shows you all the File objects in the FileLib folder.

To start, you need to write just one line of Python. Go to the FileLib folder and create a Script
(Python) in that folder. Give the script the id files and click Add and Edit. Edit the script to contain the
following Python code:

Chapter 5. Using Zope Page Templates 73

 ## Script (Python) "files"
 ##
 return container.objectValues('File')

This will return a list of any File objects in the FileLib folder. Now, edit your index_html Page Template
and add some more tal attributes to your mock−up:

 ...
 <tr tal:repeat="item container/files">
 <td><a href="Sample.tgz" class="filename"
 tal:attributes="href item/getId"
 tal:content="item/getId">Sample.tgz</td>
 <td tal:content="item/content_type">application/x−gzip−compressed</td>
 <td tal:content="item/getSize">22 K</td>
 <td tal:content="item/bobobase_modification_time">2001/09/17</td>
 </tr>
 ...

The interesting part is the tal:repeat attribute on the tr HTML tag. This attribute tells the template to
iterate over the values returned by "container/files" (the Python script you created) and create a new table row
for each of those files. During each iteration, the current file object being iterated over is assigned the name
item.

The cells of each row all have tal:content attributes that describe the the data that should go in each cell.
During each iteration through the table row loop, the id, the content type, the size, and modification times
replace the dummy data in the rows. Also notice how the anchor link dynamically points to the current file
using tal:attributes to rewrite the href attribute.

This data comes from the item object by calling Zope API methods on what we know is a file object. The
methods item/getId, item/content_type, item/getSize,
item/bobobase_modification_time are all standard API functions that are documented in Zope's
online help system.

Go to Zope and test this script by first uploading some Files into the FileLib folder. This is done by
selecting File from the add menu and clicking on the upload form button on the next screen. After
uploading your file, you can just click Add. If you do not specify an id, then the filename of the file you are
uploading will be used.

After uploading some files, go to the index_html Page Template and click the Test tab. Now, you can see
the Page Template has rendered a very simple file library with just a few HTML tag attribute changes.

There are a few cosmetic problems with the file library as it stands. The size and date displays are not very
pretty and don't match the format of the dummy content. You would like the size of the files to be displayed in
K or MB rather than bytes. Here's a Python−based script that you can use for this:

 ## Script (Python) "file_size"
 ##
 """
 Return a string describing the size of a file.
 """
 bytes=context.getSize()
 k=bytes/1024.0
 mb=bytes/1048576.0
 if mb > 1:
 return "%.2f MB" % mb
 if k > 1:
 return "%d K" % k

Chapter 5. Using Zope Page Templates 74

 return "%d bytes" % bytes

Create this script with the Id file_size in your FileLib folder. It calculates a file's size in kilobytes and
megabytes and returns an appropriate string describing the size of the file. Now you can use the script in place
of the item/getSize expression:

 ...
 <td tal:content="item/file_size">22 K</td>
 ...

You can also fix the date formatting problems with a little Python. Create a script named file_date in your
FileLib folder:

 ## Script (Python) "file_date"
 ##
 """
 Return modification date as string YYYY/MM/DD
 """
 date=context.bobobase_modification_time()
 return "%s/%s/%s" % (date.year(), date.mm(), date.day())

Now replace the item/bobobase_modification_time expression with a reference to this script:

 ...
 <td tal:content="item/file_date">2001/09/17</td>
 ...

Congratulations, you've successfully taken a mock−up and turned it into a dynamic Page Template. This
example illustrates how Page Templates work well as the "presentation layer" to your applications. The Page
Templates present the application logic (the Python−based scripts) and the application logic works with the
data in your site (the files).

Remote Editing with FTP and WebDAV

You can edit Page Templates remotely with FTP and WebDAV, as well as HTTP PUT publishing. Using
these methods, you can use Page Templates without leaving advanced WYSIWYG editors such as
DreamWeaver.

The previous section showed you how to edit a page remotely using Amaya, which uses HTTP PUT to upload
pages. You can do the same thing with FTP and WebDAV using the same steps.

Create a Page Template in the Zope Management interface. You can name it with whatever file
extension you wish. Many folks prefer .html, while others prefer .zpt. Note, some names such as
index_html have special meanings to Zope.

1.

Retrieve the file using the URL of you page template plus /source.html or /source.xml. This
gives you the source of your Page Template.

2.

Edit your file with your editor and then save it. When you save it you should use the same source
URL you used to retrieve it.

3.

Optionally reload your page after you edit it, to check for error comments. See the next section for
more details on debugging.

4.

In later versions of Zope you'll probably be able to create Page Templates without using the Zope
Management Interface.

Chapter 5. Using Zope Page Templates 75

Debugging and Testing

Zope helps you find and correct problems in your Page Templates. Zope notices problem at two different
times: when you're editing a Page Template, and when you're viewing a Page Template. Zope catches
different types of problems when you're editing than when you're viewing a Page Template.

You're probably already familiar with trouble−shooting comments that Zope inserts into your Page Templates
when it runs into problems. These comments tell you about problems that Zope finds while you're editing
your templates. The sorts of problems that Zope finds when you're editing are mostly errors in your tal
statements. For example:

 <!−− Page Template Diagnostics
 Compilation failed
 TAL.TALDefs.TALError: bad TAL attribute: 'contents', at line 10, column 1
 −−>

This diagnostic message lets you know that you mistakenly used tal:contents rather than
tal:content on line 10 of your template. Other diagnostic messages will tell you about problems with
your template expressions and macros.

When you're using the Zope management interface to edit Page Templates it's easy to spot these diagnostic
messages. However, if you're using WebDAV or FTP it's easy to miss these messages. For example, if you
save a template to Zope with FTP, you won't get an FTP error telling you about the problem. In fact, you'll
have to reload the template from Zope to see the diagnostic message. When using FTP and WebDAV it's a
good idea to reload templates after you edit them to make sure that they don't contain diagnostic messages.

If you don't notice the diagnostic message and try to render a template with problems you'll see a message like
this:

 Error Type: RuntimeError
 Error Value: Page Template hello.html has errors.

That's your signal to reload the template and check out the diagnostic message.

In addition to diagnostic messages when editing, you'll occasionally get regular Zope errors when viewing a
Page Template. These problems are usually due to problems in your template expressions. For example, you
might get an error if an expression can't locate a variable:

 Error Type: Undefined
 Error Value: "unicorn" not found in "here/unicorn"

This error message tells you that it cannot find the unicorn variable which is referenced in the expression,
here/unicorn. To help you figure out what went wrong, Zope includes information about the environment
in the traceback. If you're in debugging mode this information will be available at the bottom of the error
page. Otherwise, view the source of the error page to see the traceback. The traceback will include
information about the environment:

 ...
 'here': <Application instance at 01736F78>,
 'modules': <Products.PageTemplates.ZRPythonExpr._SecureModuleImporter instance at 016E77FC>,
 'nothing': None,
 'options': {'args': ()},
 'request': ...
 'root': <Application instance at 01736F78>,
 'template': <ZopePageTemplate instance at 01732978>,

Chapter 5. Using Zope Page Templates 76

 'traverse_subpath': [],
 'user': amos})
 ...

This information is a bit cryptic, but with a little detective work it can help you figure out what went wrong.
In this case, it tells us that the here variable is an "Application instance". This means that it is the top−level
Zope folder (notice how root variable is the same "Application instance"). Perhaps the problem is that you
wanted to apply the template to a folder that had a unicorn property. The traceback doesn't provide a lot of
help, but it can help you sometimes.

XML Templates

Another example of the flexibility of Page Templates is that they can dynamically render XML as well as
HTML. For example, in Chapter 5, "Creating Basic Zope Applications", you created the following XML:

 <guestbook>
 <entry>
 <comments>My comments</comments>
 </entry>
 <entry>
 <comments>I like your web page</comments>
 </entry>
 <entry>
 <comments>Please no blink tags</comments>
 </entry>
 </guestbook>

This XML was created by looping over all the DTML Documents in a folder and inserting their source into
comment elements. In this section, we'll show you how to use Page Templates to generate this same XML.

Create a new Page Template called "entries.xml" in your guest book folder with the following contents:

 <guestbook xmlns:tal="http://xml.zope.org/namespaces/tal">
 <entry tal:repeat="entry python:here.objectValues('DTML Document')">
 <comments tal:content="entry/document_src">Comment goes here...</comments>
 </entry>
 </guestbook>

Make sure you set the content type to text/xml. Now, click Save Changes and click the Test tab. If you're
using Netscape, it will prompt you to download an XML document, if you are using MSIE 5 or higher, you
will be able to view the XML document in the browser.

Notice how the tal:repeat statement loops over all the DTML Documents. The tal:content
statement inserts the source of each document into the comments element. The xmlns:tal attribute is an
XML namespace declaration. It tells Zope that names that start with tal are Page Template commands. See
Appendix C, "Zope Page Templates Reference" for more information about TAL and TALES XML
namespaces.

Creating XML with Page Templates is almost exactly like creating HTML. The most important difference is
that you must use explicit XML namespace declarations. Another difference is that you should set the content
type to text/xml or whatever the content−type for your XML should be. The final difference is that you
can browse the source of an XML template by going to source.xml rather than source.html.

Chapter 5. Using Zope Page Templates 77

Using Templates with Content

In general Zope supports content, presentation, and logic components. Page Templates are presentation
components and they can be used to display content components.

Zope 2.5 ships with several content components: ZSQL Methods, Files, and Images. DTML Documents and
methods are not really pure content components since they can hold content and execute DTML code. As this
time Zope doesn't come with a good general purpose content object. You can use Files for textual content
since you can edit the contents of Files if the file is less than 64K and contains text. However, the File object
is pretty basic.

Zope's Content Management Framework (CMF) solves this problem by providing an assortment of rich
content components. The CMF is Zope's content management add on. It introduces all kinds of enhancements
including work−flow, skins, and content objects. The CMF makes a lot of use of Page Templates. A later
release of Zope will probably include the CMF.

Conclusion

Zope Page Templates help you build web pages for your web applications. Templates make it easier for you
to use normal HTML tools and techniques to build web pages. They also provide convenient hooks to allow
you to attach them to your applications. Page Templates help designers and programmers work together to
produce web applications. In Chapter 9, "Advanced Page Templates", you'll learn about powerful template
techniques like Python expressions, and macros.

Chapter 5. Using Zope Page Templates 78

Chapter 6: Creating Basic Zope Applications
In Chapter 3, "Using Basic Zope Objects" and Chapter 4, "Dynamic Content with DTML" you learned about
basic Zope objects and DTML. In this chapter you'll see how you can build simple but powerful web
applications using these tools. In later chapters of the book you'll discover more complex objects and more
complex DTML. However, the design techniques covered in this chapter are still relevant.

Note: in chapter 3, "Basic Zope Objects", we explained how Zope Page Templates are new to Zope and
should be used for presentation. We have not yet converted this chapter over to use Page Templates instead of
DTML. We will be rewriting this chapter soon to reflect new methedologies based on page templates soon.

Building Applications with Folders

Folders are the "basic building blocks" of Zope applications. Folders allow you to organize your Zope objects,
and actively participate in your web applications. Folders are given behavior by adding scripts to them.

Scripts and folders work together to build simple applications. Folders provide structure for your information
and also provide a framework for your site's behavior. Later in this chapter, an example of a simple guest
book application based on this design concept is given. A folder is used to hold the methods, scripts and data
of the guest book application, the scripts provide behavior that define how the application works, and the
methods provide presentation to the application.

For example, suppose you have an Invoices folder to hold invoices. You could create objects inside that folder
named addInvoice and editInvoice to allow you to add and edit invoices. Now your Invoices folder becomes a
small application.

Zope's simple and expressive URLs are used to work with the invoices application. As you've seen, you can
display a Zope object by going to its URL in your browser. So for example, the URL
http://localhost:8080/Invoices/addInvoice calls the addInvoice object on the Invoices folder. This URL might
take you to a screen that lets you add an invoice. Likewise, the URL
http://localhost:8080/Invoices/editInvoice?invoice_number=42 calls the editInvoice object on the Invoices
folder and passes it the argument invoice_number with a value of 42. This URL could allow you to edit
invoice number 42.

Calling Objects on Folders with URLs

The invoices example demonstrates a powerful Zope feature. You can call an object on a folder by going to a
URL that consists of the folder's URL followed by the id of the object. This facility is used throughout Zope
and is a very general design pattern. In fact you are not just restricted to calling objects on folders. You'll see
later how you can call objects on all kinds of Zope objects using the same URL technique.

For example suppose you want to call an object named viewFolder on one of your folders. Perhaps you have
many different viewFolder objects in different locations. Zope figures out which one you want by first looking
in the folder that you are calling the object on. If it can't find the object there it goes up one level and looks in
the folder's containing folder. If the object can't be found there it goes up another level. This process continues
until Zope finds the object or gets to the root folder. If Zope can't find the object in the root it gives up and
raises an exception.

You'll see this kind of dynamic behavior in many different places in Zope. This technique is called
acquisition. A folder is said to acquire a object by searching for the object in its containers.

The Special Folder Object index_html

As you've seen, folders can acquire all kinds of objects. There is one special object that Zope uses to display a
folder. This object is named index_html.

The index_html object provides a default view of the folder. This is analogous to how an index.html file
provides a default view for a directory in Apache and other web servers.

For example, if you create an index_html object in your Invoices folder and view the folder by clicking the
View tab or by visiting the URL http://localhost:8080/Invoices/, Zope will call the index_html object on the
Invoices folder.

A folder can also acquire an index_html object from its parent folders just as it can acquire any object. You
can use this behavior to create a default view for a bunch of folders all in one place. If you want a different
default view of a given folder, just create a custom index_html object in that folder. This way you can override
the index_html object defined higher up.

Building the Zope Zoo Website

In this section, you'll create a simple web site for the Zope Zoo. As the Zoo webmaster, it is your job to make
the web site easy to use and manage. Here are some things you'll need:

Zoo users must easily move around the site, just as if they were walking through a real Zoo.•
All of your shared web layout tools, like a Cascading Style Sheet (CSS), must be in one easy to
manage location.

•

You must provide a simple file library of various documents that describe the animals.•
You need a site map so that users can quickly get an idea of the layout of the entire Zoo.•
A Guest book must be created so that Zoo visitors can give you feedback and comments about your
site.

•

A what's new section must be added to the guest book so that you can see any recent comments that
have been added.

•

Navigating the Zoo

In order for your navigation system to work, your site will need some basic structure through which to
navigate. Create some folders in your Zope system that represent the structure of your site. Let's use a zoo
structure with the following layout, as shown in Figure 5−1.

Chapter 6: Creating Basic Zope Applications 80

Figure 5−1 Zoo folder structure.

The main structure of the Zope Zoo contains three top level folders, Reptiles, Mammals and Fish. To navigate
your site, users should first go to your home page and click on one of the top level folders to enter that
particular part of the Zoo. They should also be able to use a very similar interface to keep going deeper into
the site; i.e. the snakes section. Also, the user should be able to back out of a section and go up to the parent
section.

You can accomplish this easily with Zope. In your ZopeZoo folder, create a DTML Method called navigation:

 <dtml−in expr="objectValues('Folder')">
 <dtml−var title_or_id>

 </dtml−in>

The method you just created shows a list of links to the various sub−sections of the zoo. It's important to
notice that this method can work on any zoo folder since it makes no assumptions about the folder. Also since
we placed this method in the ZopeZoo folder, all the zoo folders can acquire it.

Now, you need to incorporate this method into the site. Let's put a reference to it in the standard_html_header
object so that the navigation system is available on every page of the site. Your standard_html_header could
look like this:

 <html>
 <head><title><dtml−var title></title></head>
 <body>
 <dtml−var navigation>

Next we need to add a front page to the Zoo site and then we can view the site and verify that the navigation
works correctly.

Chapter 6: Creating Basic Zope Applications 81

Adding a Front Page to the Zoo

Now, you need a front page that serves as the welcome screen for Zoo visitors. Let's create a DTML Method
in the ZopeZoo folder called index_html with the following content:

 <dtml−var standard_html_header>

 <h1>Welcome to the Zope Zoo</h1>

 <p>Here you will find all kinds of cool animals. You are in
 the <dtml−var getId> section.</p>

 <dtml−var standard_html_footer>

Take a look at how your site appears by clicking on the View tab in the root folder, as shown in Figure 5−2.

Figure 5−2 Zope Zoo front page.

Here you start to see how things come together. At the top of your main page you see a list of links to the
various subsections. These links are created by the navigation method that is called by the
standard_html_header method.

You can use the navigation links to travel through the various sections of the Zoo. Use this navigation
interface to find the reptiles section.

Zope builds this page to display a folder by looking for the default folder view method ,index_html. It walks
up the zoo site folder by folder until it finds the index_html method in the ZopeZoo folder. It then calls this
method on the Reptiles folder. The index_html method calls the standard_html_header method which in turn
calls the navigation method. Finally, the index_html method displays a welcome message and calls the
standard_html_footer.

What if you want the reptile page to display something besides the welcome message? You can replace the
index_html method in the reptile section with a more appropriate display method and still take advantage of

Chapter 6: Creating Basic Zope Applications 82

the zoo header and footer including navigation.

In the Reptile folder create a DTML Method named index_html. Give it some content more appropriate to
reptiles:

 <dtml−var standard_html_header>

 <h1>The Reptile House</h1>

 <p>Welcome to the Reptile House.</p>

 <p>We are open from 6pm to midnight Monday through Friday.</p>

 <dtml−var standard_html_footer>

Now take a look at the reptile page by going to the Reptile folder and clicking the View tab.

Since the index_html method in the Reptile folder includes the standard headers and footers, the reptile page
still includes your navigation system.

Click on the Snakes link on the reptile page to see what the Snakes section looks like. The snakes page looks
like the Reptiles page because the Snakes folder acquires its index_html display method from the Reptiles
folder.

Improving Navigation

The navigation system for the zoo works pretty well, but it has one big problem. Once you go deeper into the
site you need to use your browser's back button to go back. There are no navigation links to allow you to
navigate up the folder hierarchy. Let's add a navigation link to allow you to go up the hierarchy. Change the
navigation method in the root folder:

 Return to parent

 <dtml−in expr="objectValues('Folder')">
 <dtml−var title_or_id>

 </dtml−in>

Now browse the Zoo site to see how this new link works, as shown in Figure Figure 5−3.

Chapter 6: Creating Basic Zope Applications 83

Figure 5−3 Improved zoo navigation controls.

As you can see, the Return to parent link allows you to go back up from a section of the site to its parent.
However some problems remain; when you are at the top level of the site you still get a Return to parent link
which leads nowhere. Let's fix this by changing the navigation method to hide the parent link when you're in
the ZopeZoo folder:

 <dtml−if expr="_.len(PARENTS) > 2">
 Return to parent

 </dtml−if>

 <dtml−in expr="objectValues('Folder')">
 <dtml−var title_or_id>

 </dtml−in>

Now the method tests to see if the current object has any parents before it display a link to the parent.
PARENTS is a list of the current object's parents, and len is a utility function which returns the length of a list.
See Appendix A for more information on DTML utility functions. Now view the site. Notice that now there is
no parent link when you're viewing the main zoo page.

There are still some things that could be improved about the navigation system. For example, it's pretty hard
to tell what section of the Zoo you're in. You've changed the reptile section, but the rest of the site all looks
pretty much the same with the exception of having different navigation links. It would be nice to have each
page tell you what part of the Zoo you're in.

Let's change the navigation method once again to display where you are:

 <dtml−if expr="_.len(PARENTS) > 2">
 <h2><dtml−var title_or_id> Section</h2>
 Return to parent

 </dtml−if>

Chapter 6: Creating Basic Zope Applications 84

 <dtml−in expr="objectValues('Folder')">
 <dtml−var title_or_id>

 </dtml−in>

Now view the site again.

Figure 5−4 Zoo page with section information.

As you can see in Figure 5−4, the navigation method now tells you what section you're in along with links to
go to different sections of the zoo.

Factoring out Style Sheets

Zoo pages are built by collections of methods that operate on folders. For example, the header method calls
the navigation method to display navigation links on all pages. In addition to factoring out shared behavior
such as navigation controls, you can use different Zope objects to factor out shared content.

Suppose you'd like to use CSS (Cascading Style Sheets) to tailor the look and feel of the zoo site. One way to
do this would be to include the CSS tags in the standard_html_header method. This way every page of the
site would have the CSS information. This is a good way to reuse content, however, this is not a flexible
solution since you may want a different look and feel in different parts of your site. Suppose you want the
background of the snakes page to be green, while the rest of the site should have a white background. You'd
have to override the standard_html_header in the Snakes folder and make it exactly the same as the normal
header with the exception of the style information. This is an inflexible solution since you can't vary the CSS
information without changing the entire header.

You can create a more flexible way to define CSS information by factoring it out into a separate object that
the header will insert. Create a DTML Document in the ZopeZoo folder named style_sheet. Change the
contents of the document to include some style information:

Chapter 6: Creating Basic Zope Applications 85

http://www.w3.org/Style/CSS/

 <style type="text/css">
 h1{
 font−size: 24pt;
 font−family: sans−serif;
 }
 p{
 color: #220000;
 }
 body{
 background: #FFFFDD;
 }
 </style>

This is a CSS style sheet that defines how to display h1, p and body HTML tags. Now let's include this
content into our web site by inserting it into the standard_html_header method:

 <html>
 <head>
 <dtml−var style_sheet>
 </head>
 <body>
 <dtml−var navigation>

Now, when you look at documents on your site, all of their paragraphs will be dark red, and the headers will
be in a sans−serif font.

To change the style information in a part of the zoo site, just create a new style_sheet document and drop it
into a folder. All the pages in that folder and its sub−folders will use the new style sheet.

Creating a File Library

File libraries are common on web sites since many sites distribute files of some sort. The old fashioned way to
create a file library is to upload your files, then create a web page that contains links to those files. With Zope
you can dynamically create links to files. When you upload, change or delete files, the file library's links can
change automatically.

Create a folder in the ZopeZoo folder called Files. This folder contains all of the file you want to distribute to
your web visitors.

In the Files folder create some empty file objects with names like DogGrooming or
HomeScienceExperiments, just to give you some sample data to work with. Add some descriptive titles to
these files.

DTML can help you save time maintaining this library. Create an index_html DTML Method in the Files
folder to list all the files in the library:

 <dtml−var standard_html_header>

 <h1>File Library</h1>

 <dtml−in expr="objectValues('File')">
 <dtml−var title_or_id>
 </dtml−in>

 <dtml−var standard_html_footer>

Chapter 6: Creating Basic Zope Applications 86

Now view the Files folder. You should see a list of links to the files in the Files folder as shown in Figure
5−5.

Figure 5−5 File library contents page.

If you add another file, Zope will dynamically adjust the file library page. You may also want to try changing
the titles of the files, uploading new files, or deleting some of the files.

The file library as it stands is functional but Spartan. The library doesn't let you know when a file was created,
and it doesn't let you sort the files in any way. Let's make the library a little fancier.

Most Zope objects have a bobobase_modification_time method that returns the time the object was last
modified. We can use this method in the file library's index_html method:

 <dtml−var standard_html_header>

 <h1>File Library</h1>

 <table>
 <tr>
 <th>File</th>
 <th>Last Modified</th>
 </tr>

 <dtml−in expr="objectValues('File')">
 <tr>
 <td><dtml−var title_or_id></td>
 <td><dtml−var bobobase_modification_time fmt="aCommon"></td>
 </tr>
 </dtml−in>

 </table>

 <dtml−var standard_html_footer>

Chapter 6: Creating Basic Zope Applications 87

The new file library method uses an HTML table to display the files and their modification times.

Finally let's add the ability to sort this list by file name or by modification date. Change the index_html
method again:

 <dtml−var standard_html_header>

 <h1>File Library</h1>

 <table>
 <tr>
 <th>File</th>
 <th>Last Modified</th>
 </tr>

 <dtml−if expr="_.has_key('sort') and sort=='date'">
 <dtml−in expr="objectValues('File')"
 sort="bobobase_modification_time" reverse>
 <tr>
 <td><dtml−var title_or_id></td>
 <td><dtml−var bobobase_modification_time fmt="aCommon"><td>
 </tr>
 </dtml−in>
 <dtml−else>
 <dtml−in expr="objectValues('File')" sort="id">
 <tr>
 <td><dtml−var title_or_id></td>
 <td><dtml−var bobobase_modification_time fmt="aCommon"><td>
 </tr>
 </dtml−in>
 </dtml−if>

 </table>

 <dtml−var standard_html_footer>

Now view the file library and click on the File and Last Modified links to sort the files. This method works
with two sorting loops. One uses the in tag to sort on an object's id. The other does a reverse sort on an
object's bobobase_modification_time method. The index_html method decides which loop to use by looking
for the sort variable. If there is a sort variable and if it has a value of date then the files are sorted by
modification time. Otherwise the files are sorted by id.

Building a Guest Book

A guest book is a common and useful web application that allows visitors to your site to leave messages.
Figure Figure 5−6 shows what the guest book you're going to write looks like.

Chapter 6: Creating Basic Zope Applications 88

Figure 5−6 Zoo guest book.

Start by creating a folder called GuestBook in the root folder. Give this folder the title The Zope Zoo
Guest Book. The GuestBook folder will hold the guest book entries and methods to view and add entries.
The folder will hold everything the guest book needs. After the guest book is done you will be able to copy
and paste it elsewhere in your site to create new guest books.

You can use Zope to create a guest book several ways, but for this example, you'll use one of the simplest.
The GuestBook folder will hold a bunch of DTML Documents, one document for each guest book entry.
When a new entry is added to the guest book, a new document is created in the GuestBook folder. To delete
an unwanted entry, just go into the GuestBook folder and delete the unwanted document using the
management interface.

Let's create a method that displays all of the entries. Call this method index_html so that it is the default view
of the GuestBook folder:

 <dtml−var standard_html_header>

 <h2><dtml−var title_or_id></h2>

 <!−− Provide a link to add a new entry, this link goes to the
 addEntryForm method −−>

 <p>
 Sign the guest book
 </p>

 <!−− Iterate over each DTML Document in the folder starting with
 the newest documents first. −−>

 <dtml−in expr="objectValues('DTML Document')"
 sort="bobobase_modification_time" reverse>

 <!−− Display the date, author and contents of each document −−>

Chapter 6: Creating Basic Zope Applications 89

 <p>
 On <dtml−var bobobase_modification_time fmt="aCommon">,
 <dtml−var guest_name html_quote null="Anonymous"> said:

 <dtml−var sequence−item html_quote newline_to_br>

 <!−− Make sure we use html_quote so the users can't sneak any
 HTML onto our page −−>

 </p>

 </dtml−in>

 <dtml−var standard_html_footer>

This method loops over all the documents in the folder and displays each one. Notice that this method
assumes that each document will have a guest_name property. If that property doesn't exist or is empty, then
Zope will use Anonymous as the guest name. When you create a entry document you'll have to make sure to
set this property.

Next, let's create a form that your site visitors will use to add new guest book entries. In the index_html
method above we already created a link to this form. In your GuestBook folder create a new DTML Method
named addEntryForm:

 <dtml−var standard_html_header>

 <p>Type in your name and your comments and we'll add it to the
 guest book.</p>

 <form action="addEntryAction" method="POST">
 <p> Your name:
 <input type="text" name="guest_name" value="Anonymous">
 </p>
 <p> Your comments:

 <textarea name="comments" rows="10" cols="60"></textarea>
 </p>

 <p>
 <input type="submit" value="Send Comments">
 </p>
 </form>

 <dtml−var standard_html_footer>

Now when you click on the Sign Guest Book link on the guest book page you'll see a form allowing you to
type in your comments. This form collects the user's name and comments and submits this information to a
method named addEntryAction.

Now create an addEntryAction DTML Method in the GuestBook folder to handle the form. This form will
create a new entry document and return a confirmation message:

 <dtml−var standard_html_header>

 <dtml−call expr="addEntry(guest_name, comments)">

 <h1>Thanks for signing our guest book!</h1>

 <p><a href="<dtml−var URL1>">Return
 to the guest book.</p>

Chapter 6: Creating Basic Zope Applications 90

 <dtml−var standard_html_footer>

This method creates a new entry by calling the addEntry method and returns a message letting the user know
that their entry has been added.

The last remaining piece of the puzzle is to write the script that will create a document and sets its contents
and properties. We'll do this in Python since it is much clearer than doing it in DTML. Create a Python−based
Script in the GuestBook folder called addEntry with parameters guest_name and comments:

 ## Script (Python) "addEntry"
 ##parameters=guest_name, comments
 ##
 """
 Create a guest book entry.
 """
 # create a unique document id
 id='entry_%d' % len(context.objectIds())

 # create the document
 context.manage_addProduct['OFSP'].manage_addDTMLDocument(id,
 title="", file=comments)

 # add a guest_name string property
 doc=getattr(context, id)
 doc.manage_addProperty('guest_name', guest_name, 'string')

This script uses Zope API calls to create a DTML Document and to create a property on that document. This
script performs the same sort of actions in a script that you could do manually; it creates a document, edits it
and sets a property.

The guest book is now almost finished. To use the simple guest book, just visit
http://localhost:8080/GuestBook/.

One final thing is needed to make the guest book complete. More than likely your security policy will not
allow anonymous site visitors to create documents. However the guest book application should be able to be
used by anonymous visitors. In Chapter 7, User and Security, we'll explore this scenario more fully. The
solution is to grant special permission to the addEntry method to allow it to do its work of creating a
document. You can do this by setting the Proxy role of the method to Manager. This means that when the
method runs it will work as though it was run by a manager regardless of who is actually running the method.
To change the proxy roles go to the Proxy view of the addEntry method, as shown in Figure 5−7.

Chapter 6: Creating Basic Zope Applications 91

Figure 5−7 Setting proxy roles for the addEntry method.

Now select Manager from the list of proxy roles and click Change.

Congratulations, you've just completed a functional web application. The guest book is complete and can be
copied to different sites if you want.

Extending the Guest Book to Generate XML

All Zope objects can create XML. It's fairly easy to create XML with DTML. XML is just a way of describing
information. The power of XML is that it lets you easily exchange information across the network. Here's a
simple way that you could represent your guest book in XML:

 <guestbook>
 <entry>
 <comments>My comments</comments>
 </entry>
 <entry>
 <comments>I like your web page</comments>
 </entry>
 <entry>
 <comments>Please no blink tags</comments>
 </entry>
 </guestbook>

This XML document may not be that complex but it's easy to generate. Create a DTML Method named
"entries.xml" in your guest book folder with the following contents:

 <guestbook>
 <dtml−in expr="objectValues('DTML Document')">
 <entry>
 <comments><dtml−var document_src html_quote></comments>
 </entry>
 </dtml−in>
 </guestbook>

Chapter 6: Creating Basic Zope Applications 92

As you can see, DTML is equally adept at creating XML as it is at creating HTML. Simply embed DTML
tags among XML tags and you're set. The only tricky thing that you may wish to do is to set the content−type
of the response to text/xml, which can be done with this DTML code:

 <dtml−call expr="RESPONSE.setHeader('content−type', 'text/xml')">

The whole point of generating XML is producing data in a format that can be understood by other systems.
Therefore you will probably want to create XML in an existing format understood by the systems you want to
communicate with. In the case of the guest book a reasonable format may be the RSS (Rich Site Summary)
XML format. RSS is a format developed by Netscape for its my.netscape.com site, which has since gained
popularity among other web logs and news sites. The Zope.org web site uses DTML to build a dynamic RSS
document.

Congratulations! You've XML−enabled your guest book in just a couple minutes. Pat yourself on the back. If
you want extra credit, research RSS enough to figure out how to change entries.xml to generate RSS.

The Next Step

This chapter shows how simple web applications can be made. Zope has many more features in addition to
these, but these simple examples should get you started on create well managed, complex web sites.

In the next chapter, we'll see how the Zope security system lets Zope work with many different users at the
same time and allows them to collaborate together on the same projects.

Chapter 6: Creating Basic Zope Applications 93

Chapter 7: Users and Security
All web applications need to manage security. Managing security means controlling who can access your
application, and determining what they can do. Security is not an afterthought that can be added to protect a
working system. Instead security should be an important design element that you consider as you build your
Zope applications.

In this chapter you'll find out how to create and manage user accounts, and how to control how users can use
your application by creating security policies.

Introducing Security

Security controls what the users of your site can do and how you and others can maintain your site. If you
carefully consider security you can provide powerful features to your users and allow large groups of people
to safely work together to maintain your site. If you do not consider security, it will be difficult to give your
users control safely and managing your site will become a messy burden. Your site will suffer not only from
people doing harmful things that they shouldn't be able to do, but it will be hard for you to provide value to
your users and control to those who manage your site.

Zope weaves security into almost every aspect of web application building. Zope uses the same security
system to control Zope management as you use to create users for your application. Zope makes no distinction
between using and managing an application. This may seem confusing, but in fact it allows you to leverage
Zope's security framework for your application's needs.

Logging in and Logging Out of Zope

As we saw in Chapter 2, "Using Zope" you log into Zope by going to a management URL in your web
browser and entering your username and password. We also pointed out in Chapter 2, "Using Zope" that
because of how most web browsers work, you must quit your browser to log out of Zope.

If you attempt to access a protected resource for which you don't have access privileges, Zope will prompt you
to log in. This can happen even if you're already logged in. In general, there is no need to log in to Zope if you
only wish to use public resources.

Authentication and Authorization

Security in the broadest sense controls two functions, authentication and authorization. Authentication means
finding out who you are, and authorization means determining what you can do. Zope provides separate
facilities to manage the processes of identifying users and granting access to controlled actions.

When you access a protected resource (for example, by viewing a private web page) Zope will ask you to log
in and will look for your user account. This is the authentication process. Note that Zope will only
authenticate you if you ask for a protected resource; if you only access public resources Zope will continue to
assume you are anonymous.

Once you've been authenticated, Zope determines whether or not you have access to the protected resource.
This process involves two intermediary layers between you and the protected resource, roles and permissions.
Users have roles which describe what they can do such as "Author", "Manager", and "Editor". Zope objects
have permissions which describe what can be done with them such as "View", "Delete objects", and "Manage
properties".

Security policies map roles to permissions; in other words they say who can do what. For example, a security
policy may associate the "Manager" role with the "Delete objects" permission. This allows managers to delete
objects. In this way Zope authorizes users to perform protected actions.

In the following sections we'll look more closely at authentication and authorization and how to effectively set
security policies. First you'll learn about authentication using users and User Folders, then you'll find out
about controlling authorization with security policies.

Authentication and Managing Users

A Zope User defines a user account. A Zope user has a name, a password, and optionally additional data
about someone who uses Zope. To log into Zope, you must have a user account. Let's examine how to create
and manage user accounts.

Creating Users in User Folders

To create user accounts in Zope you add users to user folders. In Chapter 2, "Using Zope" you should already
have added a Manager user to your top level user folder.

Let's create a new user so that your coworker can help you manage your Zope site. Go to the root Zope folder.
Click on the user folder named acl_users. The user folder contains user objects that define Zope user
accounts. Click the Add button to create a new user.

Figure 6−1 Adding a user to a user folder.

The form in Figure 6−1 lets you define the user. Type a username for your coworker in the Name field, for
example, "michel". The username can contain letters, spaces, and numbers. The username is case sensitive.

Choose a password for your coworker and enter it in the Password and (Confirm) fields. We'll set things up so
that your coworker can change their password later when they log in. You might want to use a password like
"change me" to help remind them to change their password.

Chapter 7: Users and Security 95

The Domains field lets you restrict Internet domains from which the user can log in. This allows you to add
another safety control to your account. For example if you always want your coworker to log in from work
you could enter your work's domain, for example "myjob.com", in the Domains field. You can specify
multiple domains separated by spaces to allow the user to log in from multiple domains. For example if you
decide that your coworker should be able to manage Zope from their home account too, you could set the
domains to "myjob.com myhome.net". You can also use IP numbers with asterisks to indicate wild card
instead of domain names to specify domains. For example, "209.67.167.*" will match all IP addresses that
start with "209.67.167".

The Roles select list indicates which roles the user should have. In general users who are performing
management tasks should be given the Manager role. In the case of your coworker, select the Manager role.
The Owner role is not appropriate in most cases because a user is normally an owner of a specific object, not
an owner in general. We'll look at ownership more later in the chapter. We'll also see later how you can define
your own roles such as Editor and Reviewer.

To create the new user click the Add button. You should see a new user object in the user folder.

Editing Users

You can edit existing users by clicking on them. This displays a form very similar to the form you used to
create a user. In fact you can control all the same settings that we just discussed from this form. After your
coworker logs in with the account you created for them, they should go to this management screen and change
their password here.

Like all Zope management functions, editing users is protected by the security policy. A user can only change
their password if they have the Manage Users permission, which managers have by default.

So by default it's possible for a manager defined in a given user folder to change other managers' accounts if
they both are defined in the same user folder. This may or may not be what you want. Later we'll look at ways
to avoid this potential problem. Rest assured that it is not, however, possible for someone to find out your
password from the management interface. Another manager may have access to change your password, but
not find out what your current password is without changing it.

In general, user folders work like normal Zope folders; you can create, edit and delete contained objects.
However, user folders are not as capable as normal folders. You cannot cut and paste users in a user folder,
and you can't create anything besides a user in a user folder.

To delete an existing user from a user folder, select the user and click the Delete button. Remember, like all
Zope actions, this can be undone if you make a mistake.

Defining a User's Location

Zope can contain multiple user folders at different locations in the object hierarchy. A Zope user cannot
access resources above the user folder they are defined in. Where your user account is defined determines
what Zope resources you can access.

If your account is defined in a user folder in the root folder, you have access to the root folder. This is
probably where the account you are using right now is defined. You can however, define users in any Zope
folder.

Consider the case of a user folder at /BeautySchool/Hair/acl_users. Suppose the user Ralph Scissorhands is
defined in this user folder. Ralph cannot log into to Zope above the folder at /BeautySchool/Hair. Effectively

Chapter 7: Users and Security 96

Ralph's view of the Zope site is limited to things in the BeautySchool/Hair folder and below. Regardless of the
roles assigned to Ralph, he cannot access protected resources above his location.

Using this technique it's easy to build simple security policies. One of the most common Zope management
patterns is to place related objects in a folder together and then create a user folder in that folder to define
people who are responsible for those objects.

For example suppose people in your organization wear uniforms. You are creating an intranet that provides
information about your organization, including information about uniforms. You might create a uniforms
folder somewhere in the intranet Zope site. In that folder you could put objects such as pictures of uniforms
and descriptions for how to wear and clean them. Then you could create a user folder in the uniforms folder
and create an account for the head tailor. When a new style of uniform comes out the tailor doesn't have to ask
the web master to update the site, he or she can update their own section of the site without bothering anyone
else. Additionally, the head tailor cannot log into any folder above the uniforms folder, which means the head
tailor cannot manage any objects other than those in the uniforms folder.

This security pattern is called delegation, and is very common in Zope applications. By delegating different
areas of your Zope site to different users, you can take the burden of site administration off of a small group of
managers and spread that burden around to different specific groups of users. Later in the chapter we'll look at
other security patterns.

Working with Alternative User Folders

It may be that you don't want to manage your user account through the web. This may be because you already
have a user database, or perhaps you want to use other tools to maintain your account information. Zope
allows you to use all sorts of authentication techniques with alternate user folders. You can find many
alternate user folders on the Zope web site at http://www.zope.org/Products/user_management. At the time of
this writing there are 19 contributed alternate user folders. Here is a sampling of some of the more popular
alternative user folders available.

LoginManager
This is a flexible and powerful user folder that allows you to plug in your own authorization methods.
For example, you can use LoginManager to authenticate from a database.

etcUserFolder
This user folder authenticates using standard Unix /etc/password style files.

LDAPAdapter
This user folder allows you to authenticate from an LDAP server.

NTUserFolder
This user folder authenticates from NT user accounts. It only works if you are running Zope under
Windows NT or Windows 2000.

Some user folders provide alternate log in and log out controls such as log in web forms, rather than browser
HTTP authorization controls. Despite this variety, all user folders use the same general log in procedure of
prompting you for credentials when you access a protected resource.

While most users are managed with user folders of one kind or another, Zope has a few special user accounts
that are not managed with user folder.

Special User Accounts

Zope provides three special user accounts which are not defined with user folders, the anonymous user, the
emergency user, and the initial manager. The anonymous user is used frequently, while the emergency user

Chapter 7: Users and Security 97

and initial manager accounts are rarely used but are important to know about.

Zope Anonymous User

Zope has a built−in user account for guests, the anonymous user. If you don't have a user account on Zope,
you'll be considered to be the anonymous user.

The anonymous user has security controls like any other, it has the role Anonymous. By default the
Anonymous role can only access public resources, and can't change any Zope objects. You can tailor this
policy, but most of the time you'll find the default anonymous security settings adequate.

As we mentioned earlier in the chapter, you must try to access a protected resource in order for Zope to
authenticate you. The upshot is that even if you have a user account, Zope will consider you anonymous until
you have logged in.

Zope Emergency User

Zope has a special user account for emergency use known as the emergency user. We discussed the
emergency user briefly in Chapter 2, "Using Zope". The emergency user is not restricted by normal security
settings. However, the emergency user cannot create any new objects with the exception of new user objects.

The emergency user is only really useful for two things: fixing messed up permissions, and creating manager
accounts. As we saw in Chapter 2, "Using Zope" you can log in as the emergency user to create a manager
account when none exist. After you create a manager account you should log out as the emergency user and
log back in as the manager.

Another reason to use the emergency user account is if you lock yourself out of Zope by removing
permissions you need to manage Zope. In this case log in as the emergency user and make sure that your
manager account has the 'View management screens' and Change permissions permissions. Then log
out and log back with your manager account and you should have enough access to fix anything else that is
broken.

A common problem with the emergency user is trying to create a new object.

Chapter 7: Users and Security 98

Figure 6−2 Error caused by trying to create a new object when logged in as the Emergency User.

The error in Figure 6−2 lets you know that the emergency user cannot create new objects. The reason for this
is a bit complex but will become clearer later in the chapter when we cover ownership. The short version of
the story is that it would be unsafe for the emergency user to create objects since they would not be subject to
the same security constraints as other objects.

Creating an Emergency User

Unlike normal user accounts that are defined through the web. The Emergency User account is defined in the
filesystem. You can change the Emergency User account by editing the access file in the Zope directory. Zope
comes with a command line utility, zpasswd.py to manage the Emergency User account. Run zpasswd.py by
passing it the access file path:

 $ python zpasswd.py access

 Username: superuser
 Password:
 Verify password:

 Please choose a format from:

 SHA − SHA−1 hashed password
 CRYPT − UNIX−style crypt password
 CLEARTEXT − no protection.

 Encoding: SHA
 Domain restrictions:

The zpasswd.py script steps you through the process of creating a Emergency User account. Note that when
you type in your password it is not echoed to the screen. You can also run zpasswd.py with no arguments
to get a list of command line options.

Chapter 7: Users and Security 99

Zope Initial Manager

The Initial manager account is created by the Zope installer so you can log into Zope the first time. When you
first install Zope you should see a message like this:

 creating default inituser file
 Note:
 The initial user name and password are 'admin'
 and 'IVX3kAwU'.

 You can change the name and password through the web
 interface or using the 'zpasswd.py' script.

This lets you know the initial manager's name and password. You can use this information to log in to Zope
for the first time as a manager. For there you can create additional user accounts.

Initial users are defined in a similar way to the emergency user; they are defined in a file on the filesystem call
inituser. The zpasswd.py program can be used to edit this file the same way it is used to edit the emergency
user access file:

 $ python zpasswd.py inituser

 Username: bob
 Password:
 Verify password:

 Please choose a format from:

 SHA − SHA−1 hashed password
 CRYPT − UNIX−style crypt password
 CLEARTEXT − no protection.

 Encoding: SHA
 Domain restrictions:

This will create a new initial user called "bob" and set its password (the password is not echoed back to you
when you type it in). When Zope starts, it checks this file for users and makes sure they can log into Zope.
Normally, initial users are created by the Zope installer for you, and you shouldn't have to worry about
changing them. If you want to create additional users, you'll do it through the Zope web management
interface.

So far we've covered how users and user folders control authentication. Next we'll look at how to control
authorization with security policies.

Authorization and Managing Security

Zope security policies control authorization; they define who can do what. Security policies describe which
roles have which permissions. Roles label classes of users, and permissions protect objects. Thus, security
policies define which classes of users (roles) can take what kinds of actions (permissions) in a given part of
the site.

Rather than stating which specific user can take which specific action on which specific object, Zope allows
you to define which kinds of users can take which kinds of action in which areas of the site. This sort of
generalizing makes your security policies simple and more powerful. Of course, you can make exceptions to
your policy for specific users, actions, and objects.

Chapter 7: Users and Security 100

In the following sections we'll examine roles, permissions and security policies more closely with an eye to
building simple and effective security policies.

Working with Roles

Zope users have roles that define what kinds of actions they can take. Roles define classes of users such as
Manager, Anonymous, and Authenticated.

Roles are similar to UNIX groups in that they abstract groups of users. And like UNIX groups, Zope users can
have more than one role.

Roles make it easier for you to manage security. Instead of defining what every single user can do, you can
simply set a couple different security policies for different user roles.

Zope comes with four built−in roles:

Manager
This role is used for users who perform standard Zope management functions such as creating and
edit Zope folders and documents.

Anonymous
The Zope Anonymous User has this role. This role should be authorized to view public resources. In
general this role should not be allowed to change Zope objects.

Owner
This role is assigned automatically to users in the context of objects they create. We'll cover
ownership later in this chapter.

Authenticated
This role is assigned automatically to users who have provided valid authentication credentials. This
role means that Zope "knows" who a particular user is.

For basic Zope sites you can get by with Manager and Anonymous. For more complex sites you may want to
create your own roles to classify your users into different groups.

Defining Roles

To create a new role go to the Security tab and scroll down to the bottom of the screen. Type the name of the
new role in the User defined role field, and click Add Role. Role names should be short one or two word
descriptions of a type of user such as "Author", "Site Architect", or "Designer". You should pick role names
that are relevant to your application.

You can verify that your role was created, noticing that there is now a role column for your new role at the top
of the screen. You can also delete a role by selecting the role from the select list at the bottom of the security
screen and clicking the Delete Role button. You can only delete your own custom roles, you cannot delete any
of the "stock" roles that come with Zope.

You should notice that roles can be used at the level where they are defined and below in the object hierarchy.
So if you want to create a role that is appropriate for your entire site create it in the root folder.

In general roles should be applicable for large sections of your site. If you find yourself creating roles to limit
access to parts of your site, chances are there are better ways to accomplish the same thing. For example you
could simply change the security settings for existing roles on the folder you want to protect, or you could
define users deeper in the object hierarchy to limit their access. Later in the chapter we'll look at more
examples of how to define security policies.

Chapter 7: Users and Security 101

Understanding Local Roles

Local roles are an advanced feature of Zope security. Users can be given extra roles when working with a
certain object. If an object has local roles associated with a user then that user gets those additional roles while
working with that object.

For example, if a user owns an object they are usually given the additional local role of Owner while working
with that object. A user might not have the ability to edit DTML Methods in general, but for DTML Methods
they own, the user could have access to edit the DTML Method through the Owner local role.

Local roles are a fairly advanced security control and are not needed very often. Zope's automatic control of
the Owner local role is likely the only place you'll encounter local roles.

The main reason you might want to manually control local roles is to give a specific user special access to an
object. In general you should avoid setting security for specific users if possible. It is easier to manage
security settings that control groups of users instead of individuals.

Understanding Permissions

Permissions define what actions can be taken with Zope objects. Just as roles abstract users, permissions
abstract objects. For example, many Zope objects, including DTML Methods and DTML Documents, can be
viewed. This action is protected by the View permission.

Some permissions are only relevant for one type of object, for example, the Change DTML Methods
permission only protects DTML Methods. Other permissions protect many types of objects, such as the FTP
access and WebDAV access permissions which control whether objects are available via FTP and WebDAV.

You can find out what permissions are available on a given object by going to the Security management tab.

Figure 6−3 Security settings for a mail host object.

Chapter 7: Users and Security 102

As you can see in Figure 6−3, a mail host has a limited pallet of permissions available. Contrast this to the
many permissions that you see when setting security on a folder.

Defining Security Policies

Security policies are where roles meet permissions. Security policies define who can do what in a given part
of the site.

You can set security policies on almost any Zope object. To set a security policy, go the Security tab. For
example, click on the security tab of the root folder.

Figure 6−4 Security policy for the root folder.

There is a lot going on in Figure 6−4. In the center of the screen is a grid of check boxes. The vertical columns
of the grid represent roles, and the horizontal rows of the grid represent permissions. Checking the box at the
intersection of a permission and a role grants users with that role the ability to take actions protected by that
permission.

You'll notice that Zope comes with a default security policy that allows managers to perform most tasks, and
anonymous users to perform only a couple. You can tailor this policy to suit your needs, by changing the
security settings in the root folder.

For example, you can make your site private by disallowing anonymous users the ability to view any web
pages. To do this deny all anonymous users View access by unchecking the View Permission where it
intersects the Anonymous role. You can make your entire site private by making this security policy change in
the root folder. If you want to make one part of your site private, you could make this change in the folder you
want to make private.

This example points out a very important point about security policies: they control security for a given part
of the site only. The only global security policy is the one on the root folder.

Chapter 7: Users and Security 103

Security Policy Acquisition

How do different security policies interact? We've seen that you can create security policies on different
objects, but what determines which policies control which objects? The answer is that objects use their own
policy if they have one, additionally they acquire their parents' security policies through a process called
acquisition.

Acquisition is a mechanism in Zope for sharing information among objects contained in a folder and its
subfolders. The Zope security system uses acquisition to share security policies so that access can be
controlled from high−level folders.

You can control security policy acquisition from the Security tab. Notice that there is a column of check boxes
to the left of the screen labeled Acquire permission settings. Every check box in this column is checked by
default. This means that security policy will acquire its parent's setting for each permission to role setting in
addition to any settings specified on this screen. Keep in mind that for the root folder (which has no parent to
acquire from) this left most check box column does not exist.

So for example, suppose you want to make this folder private. As we saw before this merely requires denying
the Anonymous role the View permission. But as you can see on this screen, the Anonymous role doesn't have
the View permission, and yet this folder is not private. Why is this? The answer is that the Acquire permission
settings option is checked for the View permission. This means that the current settings are augmented by the
security policies of this folder's parents. Somewhere above this folder the Anonymous role must be assigned to
the View permission. You can verify this by examining the security policies of this folder's parents. To make
the folder private we must uncheck the Acquire permission settings option. This will ensure that only the
settings explicitly in this security policy are in effect.

In general, you should always acquire security settings unless you have a specific reason not too. This will
make managing your security settings much easier as much of the work can be done from the root folder.

Next we'll consider some examples of how to create effective security policies using the tools that you've
learned about so far in this chapter.

Security Usage Patterns

The basic concepts of Zope security are simple: roles and permissions combine to create security policies, and
users actions are controlled by these policies. However these simple tools can be put together in many
different ways. This can make managing security complex. Let's look at some basic patterns for managing
security that provide good examples of how to create an effective and easy to manage security architecture.

Security Rules of Thumb

Here are a few simple guidelines for Zope security management. The security patterns that follow offer more
specific recipes, but these guidelines give you some guidance when you face uncharted territory.

Define users at their highest level of control, but no higher.1.
Group objects that should be managed by the same people together in folders.2.
Keep it simple.3.

Rules one and two are closely related. Both are part of a more general rule for Zope site architecture. In
general you should refactor your site to locate related resources and users near each other. Granted it's never
possible to force resources and users into a strict hierarchy. However, a well considered arrangement of

Chapter 7: Users and Security 104

resources and users into folders and sub−folders helps tremendously.

Regardless of your site architecture, try to keep things simple. The more you complicate your security settings
the harder time you'll have understanding it, managing it and making sure that it's effective. For example,
limit the number of new roles you create, and try to use security policy acquisition to limit the number of
places you have to explicitly define security settings. If you find that your security policies, users, and roles
are growing into a complex thicket, you should rethink what you're doing; there's probably a simpler way.

Global and Local Policies

The most basic Zope security pattern is to define a global security policy on the root folder and acquire this
policy everywhere. Then as needed you can add additional policies deeper in the object hierarchy to augment
the global policy. Try to limit the number of places that you override the global policy. If you find that you
have to make changes in a number of places, consider consolidating the objects in those separate locations
into the same folder so that you can make the security settings in one place.

You should choose to acquire permission settings in your sub−policies unless your sub−policy is more
restrictive than the global policy. In this case you should uncheck this option for the permission that you want
to restrict.

This simple pattern will take care of much of your security needs. Its advantages are that it is easy to manage
and easy to understand. These are extremely important characteristics for any security architecture.

Delegating Control to Local Managers

This security pattern is very central to Zope, and is part of what gives Zope its unique flavor. Zope encourages
you to collect like resources in folders together and then to create user accounts in these folders to manager
their contents.

Lets say you want to delegate the management of the Sales folder in your Zope site over to the new sales web
manager, Steve. First, you don't want Steve messing with anything other than the Sales folder, so you don't
need to add him to the acl_users folder in the root folder. Instead, create a new user folder in the Sales folder.

Now you can add Steve to the user folder in Sales and give him the Role Manager. Steve can now log directly
into the Sales folder to manage his area of control by pointing his browser to
http://www.zopezoo.org/Sales/manage.

Chapter 7: Users and Security 105

Figure 6−5 Managing the Sales folder.

Notice in Figure 6−5, the navigation tree on the left shows that Sales is the root folder. The local manager
defined in this folder will never have the ability to log into any folders above Sales so it is shown as the top
folder.

This pattern is very powerful since it can be applied recursively. For example, Steve can create a sub−folder
for multi−level marketing sales. Then he can create a user folder in the multi−level marketing sales folder to
delegate control of this folder to the multi−level marketing sales manager. And so on. This is a recipe for huge
web sites managed by thousands of people.

The beauty of this pattern is that higher level managers need not concern themselves too much with what their
underlings do. If they choose they can pay close attention, but they can safely ignore the details since they
know that their delegates cannot make any changes outside their area of control, and they know that their
security settings will be acquired.

Different Levels of Access with Roles

The local manager pattern is powerful and scalable, but it takes a rather coarse view of security. Either you
have access or you don't. Sometimes you need to have more fine grained control. Many times you will have
resources that need to be used by more than one type of person. Roles provides you with a solution to this
problem. Roles allow you to define classes of users and set security policies for them.

Before creating new roles make sure that you really need them. Suppose that you have a web site that
publishes articles. The public reads articles and managers edit and publish articles, but there is a third class of
user who can author articles, but not publish or edit them.

One solution would be to create an authors folder where author accounts are created and given the Manager
role. This folder would be private so it could only be viewed by managers. Articles could be written in this
folder and then managers could move the articles out of this folder to publish them. This is a reasonable
solution, but it requires that authors work only in one part of the site and it requires extra work by managers to

Chapter 7: Users and Security 106

move articles out of the authors folder. Also, consider that problems that result when an author wants to
update an article that has been moved out of the authors folder.

A better solution is to add an Author role. Adding a role helps us because it allows access controls not based
on location. So in our example, by adding an author role we make it possible for articles to be written, edited,
and published anywhere in the site. We can set a global security policy that gives authors the ability to create
and write articles, but doesn't grant them permissions to publish or edit articles.

Roles allow you to control access based on who a user is, not just where they are defined.

Controlling Access to Locations with Roles

Roles can help you overcome another subtle problem with the local manager pattern. The problem is that the
local manager pattern requires a strict hierarchy of control. There is no provision to allow two different groups
of people to access the same resources without one group being the manager of the other group. Put another
way, there is no way for users defined in one part of the site to manage resources in another part of the site.

Let's take an example to illustrate the second limitation of the local manager pattern. Suppose you run a large
site for a pharmaceutical company. You have two classes of users, scientists and salespeople. In general the
scientists and the salespeople manage different web resources. However, suppose that there are some things
that both types of people need to manage, such as advertisements that have to contain complex scientific
warnings. If we define our scientists in the Science folder and the salespeople in the Sales folder, where
should we put the AdsWithComplexWarnings folder? Unless the Science folder is inside the Sales folder or
vice versa there is no place that we can put the AdsWithComplexWarnings folder so that both scientists and
salespeople can manage it. It is not a good political or practical solution to have the salespeople manage the
scientists or vice versa; what can be done?

The solution is to use roles. You should create two roles at a level above both the Science and Sales folders,
say Scientist, and SalesPerson. Then instead of defining the scientists and salespeople in their own folders
define them higher in the object hierarchy so that they have access to the AdsWithComplexWarnings folder.

When you create users at this higher level, you should not give them the Manager role, but instead give them
Scientist or SalesPerson as appropriate. Then you should set the security policies. On the Science folder the
Scientist role should have the equivalent of Manager control. On the Sales folder, the Salesperson role should
have the same permissions as Manager. Finally on the AdsWithComplexWarnings folder you should give both
Scientist and Salesperson roles adequate permissions. This way roles are used not to provide different levels
of access, but to provide access to different locations based on who you are.

Another common situation when you might want to employ this pattern is when you cannot define your
managers locally. For example, you may be using an alternate user folder that requires all users to be defined
in the root folder. In this case you would want to make extensive use of roles to limit access to different
locations based on roles.

This wraps up our discussion of security patterns. By now you should have a reasonable grasp of how to use
user folders, roles, and security policies, to shape a reasonable security architecture for your application. Next
we'll cover two advanced security issues, how to perform security checks, and securing executable content.

Performing Security Checks

Most of the time you don't have to perform any security checks. If a user attempts to perform a secured
operation, Zope will prompt them to log in. If the user doesn't have adequate permissions to access a protected
resource, Zope will deny them access. However, sometimes you may wish to manually perform security

Chapter 7: Users and Security 107

checks. The main reason to do this is to limit the choices you offer a user to those for which they are
authorized. This doesn't prevent a sneaky user for trying to access secured actions, but it does reduce user
frustration, by not giving to user the option to try something that will not work.

The most common security query asks whether the current user has a given permission. For example, suppose
your application allows some users to upload files. This action may be protected by the "Add Documents,
Images, and Files" standard Zope permission. You can test to see if the current user has this permission in
DTML:

 <dtml−if expr="_.SecurityCheckPermission(
 'Add Documents, Images, and Files', this())">

 <form action="upload">
 ...
 </form>

 </dtml−if>

The SecurityCheckPermission function takes two arguments, a permission name, and an object. In this case
we pass this() as the object which is a reference to the current object. By passing the current object, we
make sure that local roles are taken into account when testing whether the current user has a given permission.

You can find out about the current user by accessing the user in DTML. The current user is a Zope object like
any other and you can perform actions on it using methods defined in the API documentation.

Suppose you wish to display the current user name on a web page to personalize the page. You can do this
easily in DTML:

 <dtml−var expr="_.SecurityGetUser().getUserName()">

You can retrieve the currently logged in user with the SecurityGetUser DTML function. This DTML fragment
tests the current user by calling the getUserName method on the current user object. If the user is not logged
in, you will get the name of the anonymous user, which is Anonymous User.

Next we'll look at another advanced issue which affects security of DTML and scripts.

Advanced Security Issues: Ownership and Executable
Content

You've now covered all the basics of Zope security. What remains are the advanced concepts of ownership
and executable content. Zope uses ownership to associate objects with users who create them, and executable
content refers to objects such as Scripts, DTML Methods and Documents, which execute user code.

For small sites with trusted users you can safely ignore these advanced issues. However for large sites where
you allow untrusted users to create and manage Zope objects, it's important to understand ownership and
securing executable content.

The Problem: Trojan Horse Attacks

The basic scenario that motivates both ownership and executable content controls is a Trojan horse attack. A
Trojan horse is an attack on a system that operates by tricking a user into taking a potentially harmful action.
A typical Trojan horse masquerades as a benign program that causes harm when you unwittingly run it.

Chapter 7: Users and Security 108

All web−based platform including Zope and many others are subject to this style of attack. All that is required
is to trick someone into visiting a URL that performs a harmful action.

This kind of attack is very hard to protect against. You can trick someone into clicking a link fairly easily, or
you can use more advanced techniques such as Javascript to cause a user to visit a malicious URL.

Zope offers some protection from this kind of Trojan horse. Zope helps protect your site from server−side to
Trojan attacks by limiting the power of web resources based on who authored them. If an untrusted user
author a web page, then the power of the web pages to do harm to unsuspecting visitors will be limited. For
example, suppose an untrusted user creates a DTML document or Python script that deletes all the pages in
your site. If they attempt to view the page, it will fail since they do not have adequate permissions. If a
manager views the page, it will also fail, even though the manager does have adequate permissions to perform
the dangerous action.

Zope uses ownership information and executable content controls to provide this limited protection.

Managing Ownership

When a user creates a Zope object, they own that object. An object that has no owner is referred to as
unowned. Ownership information is stored in the object itself. This is similar to how UNIX keeps track of the
owner of a file.

You find out how an object is owned by viewing the Ownership management tab, as shown in Figure 6−6.

Figure 6−6 Managing ownership settings.

This screen tells you if the object is owned and if so by whom. If the object is owned by someone else, and
you have the Take ownership permission, you can take over the ownership of an object. You also have the
option of taking ownership of all sub−objects by checking the Take ownership of all sub−objects box. Taking
ownership is mostly useful if the owner account has been deleted, or if objects have been turned over to you
for continued management.

Chapter 7: Users and Security 109

As we mentioned earlier in the chapter ownership affects security policies because a user will have the local
role Owner on objects they own. However, ownership also affects security because it controls the role's
executable content.

Roles of Executable Content

Through the web you can edit scripts on some kinds of Zope objects. These objects including DTML
Documents, DTML Methods, SQL Methods, Python−based Scripts, and Perl−based Scripts. These objects are
said to be executable since they run scripts that are edited through the web.

When you visit an executable object by going to its URL or calling it from DTML or a script, Zope runs the
object's script. The script is restricted by the roles of the object's owner and your roles. In other words an
executable object can only perform actions that both the owner and the viewer are authorized for. This keeps
an unprivileged user from writing a harmful script and then tricking a powerful user into executing the script.
You can't fool someone else into performing an action that you are not authorized to perform yourself. This is
how Zope uses ownership is used to protect against server−side Trojan horse attacks.

Proxy Roles

Sometimes Zope's system of limiting access to executable objects isn't exactly what you want. Sometimes you
may wish to clamp down security on an executable object despite whoever may own or execute it as a form of
extra security. Other times you may want to provide an executable object with extra access to allow an
unprivileged viewer to perform protected actions. Proxy roles provide you with a way to tailor the roles of an
executable object.

Suppose you want to create a mail form that allows anonymous users to send email to the webmaster of your
site. Sending email is protected by the Use mailhost services permission. Anonymous users don't
normally have this permission and for good reason. You don't want just anyone to be able to anonymously
send email with your Zope server.

The problem with this arrangement is that your DTML Method that sends email will fail for anonymous users.
How can you get around this problem? The answer is to set the proxy roles on the DTML Method that sends
email so that when it executes it has the "Manager" role. Visit the Proxy management tab on your DTML
Method, as shown in Figure 6−7.

Chapter 7: Users and Security 110

Figure 6−7 Proxy role management.

Select Manager and click the Change button. This will set the proxy roles of the mail sending method to
Manager. Note you must have the Manager role yourself to set it as a proxy role. Now when anyone,
anonymous or not runs your mail sending method, it will execute with the Manager role, and thus will have
authorization to send email.

Proxy roles define a fixed set of the permissions of executable content. Thus you can also use them to restrict
security. For example, if you set the proxy roles of a script to Anonymous role, then the script will never
execute any other roles besides Anonymous despite the roles of the owner and viewer.

Use Proxy roles with care, since they can be used skirt the default security restrictions.

Summary

Security consists of two processes, authentication and authorization. User folders control authentication, and
security policies control authorization. Zope security is intimately tied with the concept of location; users have
location, security policies have location, even roles can have location. Creating an effective security
architecture requires attention to location. When in doubt refer to the security usage patterns discussed in this
chapter.

In the next chapter we'll switch gears and explore advanced DTML. DTML can be a very powerful tool for
presentation and scripting. You'll find out about many new tags, and will take a look at some DTML−specific
security controls that were not covered in this chapter.

Chapter 7: Users and Security 111

Chapter 8: Variables and Advanced DTML
DTML is the kind of language that "does what you mean." That is good, when it does what you actually want
it to do, but when it does something you don't want to do, it's bad. This chapter tells you how to make DTML
do what you really mean.

It's no lie that DTML has reputation for complexity. And it's true, DTML is really simple if you all you want
to do is simple layout, like you've seen so far. However, if you want to use DTML for more advanced tasks,
you have to understand where DTML variables come from.

Here's a very tricky error that almost all newbies encounter. Imagine you have a DTML Document named
called zooName. This document contains an HTML form like the following:

 <dtml−var standard_html_header>

 <dtml−if zooName>

 <p><dtml−var zooName></p>

 <dtml−else>

 <form action="<dtml−var URL>" method="GET">
 <input name="zooName">
 <input type="submit" value="What is zooName?">
 </form>

 </dtml−if>

 <dtml−var standard_html_footer>

This looks simple enough, the idea is, this is an HTML page that calls itself. This is because the HTML action
is the URL variable, which will become the URL of the DTML Document.

If there is a zooName variable, then the page will print it, if there isn't, it shows a form that asks for it. When
you click submit, the data you enter will make the "if" evaluate to true, and this code should print what
entered in the form.

But unfortunately, this is one of those instances where DTML will not do what you mean, because the name
of the DTML Document that contains this DTML is also named zooName, and it doesn't use the variable out
of the request, it uses itself, which causes it call itself and call itself, ad infinitum, until you get an "excessive
recursion" error. So instead of doing what you really meant, you got an error. This is what confuses beginners.
In the next couple sections, we'll show you how to fix this example to do what you mean.

How Variables are Looked up

There's are actually two ways to fix the DTML error in the zooName document. The first is that you can
rename the document to something like zopeNameFormOrReply and always remember this special exception
and never do it; never knowning why it happens. The second is to understand how names are looked up, and
to be explicit about where you want the name to come from in the namespace.

The DTML namespace is a collection of objects arranged in a stack. A stack is a list of objects that can
manipulated by pushing and popping objects on to and off of the stack.

When a DTML Document or DTML Method is executed, Zope creates a DTML namespace to resolve DTML
variable names. It's important to understand the workings of the DTML namespace so that you can accurately
predict how Zope will locate variables. Some of the trickiest problems you will run into with DTML can be
resolved by understanding the DTML namespace.

When Zope looks for names in the DTML namespace stack it first looks at the very top most object in the
stack. If the name can't be found there, then the next item down is looked in. Zope will work its way down the
stack, checking each object in turn until it finds the name that it is looking for.

If Zope gets all the way down to the bottom of the stack and can't find what it is looking for, then an error is
generated. For example, try looking for the non−existent name, unicorn:

 <dtml−var unicorn>

As long as there is no variable named unicorn viewing this DTML will return an error, as shown in Figure
7−1.

Figure 7−1 DTML error message indicating that it cannot find a variable.

But the DTML stack is not all there is to names because DTML doesn't start with an empty stack, before you
even begin executing DTML in Zope there are already a number of objects pushed on the namespace stack.

DTML Namespaces

DTML namespaces are built dynamically for every request in Zope. When you call a DTML Method or
DTML Document through the web, the DTML namespace starts with the same first two stack elements the
client object and the request as shown in Figure 7−2

Chapter 8: Variables and Advanced DTML 113

Figure 7−2 Initial DTML namespace stack.

The client object is the first object on the top of the DTML namespace stack. What the client object is depends
on whether or not you are executing a DTML Method or a DTML Document. In our example above, this
means that the client object is named zooName. Which is why it breaks. The form input that we really wanted
comes from the web request, but the client is looked at first.

The request namespace is always on the bottom of the DTML namespace stack, and is therefore the last
namespace to be looked in for names. This means that we must be explicit in our example about which
namespace we want. We can do this with the DTML with tag:

 <dtml−var standard_html_header>

 <dtml−with REQUEST only>
 <dtml−if zooName>
 <p><dtml−var zooName></p>
 <dtml−else>
 <form action="<dtml−var URL>" method="GET">
 <input name="zooName">
 <input type="submit" value="What is zooName?">
 </form>
 </dtml−if>
 </dtml−with>

 <dtml−var standard_html_footer>

Here, the with tag says to look in the REQUEST namespace, and only the REQUEST namespace, for the name
"zooName".

DTML Client Object

The client object in DTML depends on whether or not you are executing a DTML Method or a DTML
Document. In the case of a Document, the client object is always the document itself, or in other words, a
DTML Document is its own client object.

A DTML Method however can have different kinds of client objects depending on how it is called. For
example, if you had a DTML Method that displayed all of the contents of a folder then the client object would
be the folder that is being displayed. This client object can change depending on which folder the method in
question is displaying. For example, consider the following DTML Method named list in the root folder:

 <dtml−var standard_html_header>

 <dtml−in objectValues>
 <dtml−var title_or_id>
 </dtml−in>

Chapter 8: Variables and Advanced DTML 114

 <dtml−var standard_html_footer>

Now, what this method displays depends upon how it is used. If you apply this method to the Reptiles folder
with the URL http://localhost:8080/Reptiles/list, then you will get something that looks
like Figure 7−3.

Figure 7−3 Applying the list method to the Reptiles folder.

But if you were to apply the method to the Birds folder with the URL http://localhost:8080/Birds/list then you
would get something different, only two items in the list, Parrot and Raptors.

Same DTML Method, different results. In the first example, the client object of the list method was the
Reptiles folder. In the second example, the client object was the Birds folder. When Zope looked up the
objectValues variable, in the first case it called the objectValues method of the Reptiles folder, in the second
case it called the objectValues method of the Birds folder.

In other words, the client object is where variables such as methods, and properties are looked up first.

As you saw in Chapter 4, "Dynamic Content with DTML", if Zope cannot find a variable in the client object,
it searches through the object's containers. Zope uses acquisition to automatically inherit variables from the
client object's containers. So when Zope walks up the object hierarchy looking for variables it always starts at
the client object, and works its way up from there.

DTML Request Object

The request object is the very bottom most object on the DTML namespace stack. The request contains all of
the information specific to the current web request.

Just as the client object uses acquisition to look in a number of places for variables, so too the request looks
up variables in a number of places. When the request looks for a variable it consults these sources in order:

Chapter 8: Variables and Advanced DTML 115

The CGI environment. The Common Gateway Interface, or CGI interface defines a standard set of
environment variables to be used by dynamic web scripts. These variables are provided by Zope in
the REQUEST namespace.

1.

Form data. If the current request is a form action, then any form input data that was submitted with
the request can be found in the REQUEST object.

2.

Cookies. If the client of the current request has any cookies these can be found in the current
REQUEST object.

3.

Additional variables. The REQUEST namespace provides you with lots of other useful information,
such as the URL of the current object and all of its parents.

4.

The request namespace is very useful in Zope since it is the primary way that clients (in this case, web
browsers) communicate with Zope by providing form data, cookies and other information about themselves.
For more information about the request object, see Appendix B.

A very simple and enlightening example is to simply print the REQUEST out in an HTML page:

 <dtml−var standard_html_header>

 <dtml−var REQUEST>

 <dtml−var standard_html_footer>

Try this yourself, you should get something that looks like Figure 7−4.

Figure 7−4 Displaying the request.

Since the request comes after the client object, if there are names that exist in both the request and the client
object, DTML will always find them first in the client object. This can be a problem. Next, let's look at some
ways to get around this problem by controlling more directly how DTML looks up variables.

Chapter 8: Variables and Advanced DTML 116

http://www.w3.org/CGI/

Rendering Variables

When you insert a variable using the var tag, Zope first looks up the variable using the DTML namespace, it
then renders it and inserts the results. Rendering means turning an object or value into a string suitable for
inserting into the output. Zope renders simple variables by using Python's standard method for coercing
objects to strings. For complex objects such as DTML Methods and SQL Methods, Zope will call the object
instead of just trying to turn it into a string. This allows you to insert DTML Methods into other DTML
Methods.

In general Zope renders variables in the way you would expect. It's only when you start doing more advanced
tricks that you become aware of the rendering process. Later in this chapter we'll look at some examples of
how to control rendering using the getitem DTML utility function.

Modifying the DTML Namespace

Now that you have seen that the DTML namespace is a stack, you may be wondering how, or even why, new
objects get pushed onto it.

Some DTML tags modify the DTML namespace while they are executing. A tag may push some object onto
the namespace stack during the course of execution. These tags include the in tag, the with tag, and the let tag.

In Tag Namespace Modifications

When the in tag iterates over a sequence it pushes the current item in the sequence onto the top of the
namespace stack:

 <dtml−var getId> <!−− This is the id of the client object −−>

 <dtml−in objectValues>

 <dtml−var getId> <!−− this is the id of the current item in the
 objectValues sequence −−>
 </dtml−in>

You've seen this many times throughout the examples in this book. While the in tag is iterating over a
sequence, each item is pushed onto the namespace stack for the duration of the contents of the in tag block.
When the block is finished executing, the current item in the sequence is popped off the DTML namespace
stack and the next item in the sequence is pushed on.

The With Tag

The with tag pushes an object that you specify onto the top of the namespace stack for the duration of the with
block. This allows you to specify where variables should be looked up first. When the with block closes, the
object is popped off the namespace stack.

Consider a folder that contains a bunch of methods and properties that you are interested in. You could access
those names with Python expressions like this:

 <dtml−var standard_html_header>

 <dtml−var expr="Reptiles.getReptileInfo()">
 <dtml−var expr="Reptiles.reptileHouseMaintainer">

 <dtml−in expr="Reptiles.getReptiles()">

Chapter 8: Variables and Advanced DTML 117

 <dtml−var species>
 </dtml−in>

 <dtml−var standard_html_footer>

Notice that a lot of complexity is added to the code just to get things out of the Reptiles folder. Using the with
tag you can make this example much easier to read:

 <dtml−var standard_html_header>

 <dtml−with Reptiles>

 <dtml−var getReptileInfo>
 <dtml−var reptileHouseMaintainer>

 <dtml−in getReptiles>
 <dtml−var species>
 </dtml−in>

 </dtml−with>

 <dtml−var standard_html_footer>

Another reason you might want to use the with tag is to put the request, or some part of the request on top of
the namespace stack. For example suppose you have a form that includes an input named id. If you try to
process this form by looking up the id variable like so:

 <dtml−var id>

You will not get your form's id variable, but the client object's id. One solution is to push the web request's
form on to the top of the DTML namespace stack using the with tag:

 <dtml−with expr="REQUEST.form">
 <dtml−var id>
 </dtml−with>

This will ensure that you get the form's id first. See Appendix B for complete API documentation of the
request object.

If you submit your form without supplying a value for the id input, the form on top of the namespace stack
will do you no good, since the form doesn't contain an id variable. You'll still get the client object's id since
DTML will search the client object after failing to find the id variable in the form. The with tag has an
attribute that lets you trim the DTML namespace to only include the object you specify:

 <dtml−with expr="REQUEST.form" only>
 <dtml−if id>
 <dtml−var id>
 <dtml−else>
 <p>The form didn't contain an "id" variable.</p>
 </dtml−if>
 </dtml−with>

Using the only attribute allows you to be sure about where your variables are being looked up.

The Let Tag

The let tag lets you push a new namespace onto the namespace stack. This namespace is defined by the tag
attributes to the let tag:

Chapter 8: Variables and Advanced DTML 118

 <dtml−let person="'Bob'" relation="'uncle'">
 <p><dtml−var person>'s your <dtml−var relation>.</p>
 </dtml−let>

This would display:

 <p>Bob's your uncle.</p>

The let tag accomplishes much of the same goals as the with tag. The main advantage of the let tag is that you
can use it to define multiple variables to be used in a block. The let tag creates one or more new variables and
their values and pushes a namespace object containing those variables and their values on to the top of the
DTML namespace stack. In general the with tag is more useful to push existing objects onto the namespace
stack, while the let tag is better suited for defining new variables for a block.

When you find yourself writing complex DTML that requires things like new variables, there's a good chance
that you could do the same thing better with Python or Perl. Advanced scripting is covered in Chapter 10,
"Advanced Zope Scripting".

The DTML namespace is a complex place, and this complexity evolved over a lot of time. Although it helps
to understand where names come from, it is much more helpful to always be specific about where you are
looking for a name. The with and let tags let you control the namespace to look exactly in the right place
for the name you are looking for.

DTML Namespace Utility Functions

Like all things in Zope, the DTML namespace is an object, and it can can be accessed directly in DTML with
the _ (underscore) object. The _ namespace is often referred to as as "the under namespace".

The under namespace provides you with many useful methods for certain programming tasks. Let's look at a
few of them.

Say you wanted to print your name three times. This can be done with the in tag, but how do you explicitly
tell the in tag to loop three times? Just pass it a sequence with three items:

 <dtml−var standard_html_header>

 <dtml−in expr="_.range(3)">
 <dtml−var sequence−item>: My name is Bob.
 </dtml−in>

 <dtml−var standard_html_footer>

The _.range(3) Python expression will return a sequence of the first three integers, 0, 1, and 2. The range
function is a standard Python built−in and many of Python's built−in functions can be accessed through the _
namespace, including:

range([start,], stop, [step])
Returns a list of integers from start to stop counting step integers at a time. start defaults to
0 and step defaults to 1. For example:
 '_.range(3,9,2)' −− gives '[3,5,7,9]'.

 'len(sequence)' −− 'len' returns the size of *sequence* as an integer.

Chapter 8: Variables and Advanced DTML 119

Many of these names come from the Python language, which contains a set of special functions called
built−ins. The Python philosophy is to have a small, set number of built−in names. The Zope philosphy
can be thought of as having a large, complex array of built−in names.

The under namespace can also be used to explicitly control variable look up. There is a very common usage of
this syntax. You've seen that the in tag defines a number of special variables, like sequence−item and
sequence−key that you can use inside a loop to help you display and control it. What if you wanted to use one
of these variables inside a Python expression?:

 <dtml−var standard_html_header>

 <h1>The squares of the first three integers:</h1>

 <dtml−in expr="_.range(3)">
 The square of <dtml−var sequence−item> is:
 <dtml−var expr="sequence−item * sequence−item">

 </dtml−in>

 <dtml−var standard_html_footer>

Try this, does it work? No! Why not? The problem lies in this var tag:

 <dtml−var expr="sequence−item * sequence−item">

Remember, everything inside a Python expression attribute must be a valid Python expression. In DTML,
sequence−item is the name of a variable, but in Python this means "The object sequence minus the object
item". This is not what you want.

What you really want is to look up the variable sequence−item. One way to solve this problem is to use the in
tag prefix attribute. For example:

 <dtml−var standard_html_header>

 <h1>The squares of the first three integers:</h1>

 <dtml−in prefix="loop" expr="_.range(3)">
 The square of <dtml−var loop_item> is:
 <dtml−var expr="loop_item * loop_item">

 </dtml−in>

 <dtml−var standard_html_footer>

The prefix attribute causes in tag variables to be renamed using the specified prefix and underscores, rather
than using "sequence" and dashes. So in this example, "sequence−item" becomes "loop_item". See Appendix
A for more information on the prefix attribute.

Another way to look up the variable sequence−item in a DTML expression is to use the getitem utility
function to explicitly look up a variable:

 The square of <dtml−var sequence−item> is:
 <dtml−var expr="_.getitem('sequence−item') *
 _.getitem('sequence−item')">

Chapter 8: Variables and Advanced DTML 120

The getitem function takes the name to look up as its first argument. Now, the DTML Method will correctly
display the sum of the first three integers. The getitem method takes an optional second argument which
specifies whether or not to render the variable. Recall that rendering a DTML variable means turning it into a
string. By default the getitem function does not render a variable.

Here's how to insert a rendered variable named myDoc:

 <dtml−var expr="_.getitem('myDoc', 1)">

This example is in some ways rather pointless, since it's the functional equivalent to:

 <dtml−var myDoc>

However, suppose you had a form in which a user got to select which document they wanted to see from a list
of choices. Suppose the form had an input named selectedDoc which contained the name of the document.
You could then display the rendered document like so:

 <dtml−var expr="_.getitem(selectedDoc, 1)">

Notice in the above example that selectedDoc is not in quotes. We don't want to insert the variable named
selectedDoc we want to insert the variable named by selectedDoc. For example, the value of selectedDoc
might be chapterOne. Using indirect variable insertion you can insert the chapterOne variable. This way you
can insert a variable whose name you don't know when you are authoring the DTML.

If you a python programmer and you begin using the more complex aspects of DTML, consider doing a lot of
your work in Python scripts that you call from DTML. This is explained more in Chapter 10, "Advanced Zope
Scripting". Using Python sidesteps many of the issues in DTML.

DTML Security

Zope can be used by many different kinds of users. For example, the Zope site, Zope.org, has over 11,000
community members at the time of this writing. Each member can log into Zope, add objects and news items,
and manage their own personal area.

Because DTML is a scripting language, it is very flexible about working with objects and their properties. If
there were no security system that constrained DTML then a user could potentially create malicious or
privacy−invading DTML code.

DTML is restricted by standard Zope security settings. So if you don't have permission to access an object by
going to its URL you also don't have permission to access it via DTML. You can't use DTML to trick the
Zope security system.

For example, suppose you have a DTML Document named Diary which is private. Anonymous users can't
access your diary via the web. If an anonymous user views DTML that tries to access your diary they will be
denied:

 <dtml−var Diary>

DTML verifies that the current user is authorized to access all DTML variables. If the user does not have
authorization, than the security system will raise an Unauthorized error and the user will be asked to present
more privileged authentication credentials.

Chapter 8: Variables and Advanced DTML 121

http://www.zope.org/

In Chapter 7, "Users and Security" you read about security rules for executable content. There are ways to
tailor the roles of a DTML Document or Method to allow it to access restricted variables regardless of the
viewer's roles.

Safe Scripting Limits

DTML will not let you gobble up memory or execute infinite loops and recursions the restrictions on looping
and memory are pretty tight, which makes DTML not the right language for complex, expensive
programming logic. For example, you cannot create huge lists with the _.range utility function. You also have
no way to access the filesystem directly in DTML.

Keep in mind however that these safety limits are simple and can be outsmarted by a determined user. It's
generally not a good idea to let anyone you don't trust write DTML code on your site.

Advanced DTML Tags

In the rest of this chapter we'll look at the many advanced DTML tags. These tags are summarized in
Appendix A. DTML has a set of built−in tags, as documented in this book, which can be counted on to be
present in all Zope installations and perform the most common kinds of things. However, it is also possible to
add new tags to a Zope installation. Instructions for doing this are provided at the Zope.org web site, along
with an interesting set of contributed DTML tags.

This section covers what could be referred to as Zope miscellaneous tags. These tags don't really fit into any
broad categories except for one group of tags, the exception handling DTML tags which are discussed at the
end of this chapter.

The Call Tag

The var tag can call methods, but it also inserts the return value. Using the call tag you can call methods
without inserting their return value into the output. This is useful if you are more interested in the effect of
calling a method rather than its return value.

For example, when you want to change the value of a property, animalName, you are more interested in the
effect of calling the manage_changeProperties method than the return value the method gives you. Here's an
example:

 <dtml−if expr="REQUEST.has_key('animalName')">
 <dtml−call expr="manage_changeProperties(animalName=REQUEST['animalName'])">
 <h1>The property 'animalName' has changed</h1>
 <dtml−else>
 <h1>No properties were changed</h1>
 </dtml−if>

In this example, the page will change a property depending on whether a certain name exists. The result of the
manage_changeProperties method is not important and does not need to be shown to the user.

Another common usage of the call tag is calling methods that affect client behavior, like the
RESPONSE.redirect method. In this example, you make the client redirect to a different page, to change
the page that gets redirected, change the value for the "target" variable defined in the let tag:

 <dtml−var standard_html_header>

 <dtml−let target="'http://example.com/new_location.html'">

Chapter 8: Variables and Advanced DTML 122

 <h1>This page has moved, you will now be redirected to the
 correct location. If your browser does not redirect, click <a
 href="<dtml−var target>"><dtml−var target>.</h1>

 <dtml−call expr="RESPONSE.redirect(target)">

 </dtml−let>

 <dtml−var standard_html_footer>

In short, the call tag works exactly like the var tag with the exception that it doesn't insert the results of calling
the variable.

The Comment Tag

DTML can be documented with comments using the comment tag:

 <dtml−var standard_html_header>

 <dtml−comment>

 This is a DTML comment and will be removed from the DTML code
 before it is returned to the client. This is useful for
 documenting DTML code. Unlike HTML comments, DTML comments
 are NEVER sent to the client.

 </dtml−comment>

 <!−−

 This is an HTML comment, this is NOT DTML and will be treated
 as HTML and like any other HTML code will get sent to the
 client. Although it is customary for an HTML browser to hide
 these comments from the end user, they still get sent to the
 client and can be easily seen by 'Viewing the Source' of a
 document.

 −−>

 <dtml−var standard_html_footer>

The comment block is removed from DTML output.

In addition to documenting DTML you can use the comment tag to temporarily comment out other DTML
tags. Later you can remove the comment tags to re−enable the DTML.

The Tree Tag

The tree tag lets you easily build dynamic trees in HTML to display hierarchical data. A tree is a graphical
representation of data that starts with a "root" object that has objects underneath it often referred to as
"branches". Branches can have their own branches, just like a real tree. This concept should be familiar to
anyone who has used a file manager program like Microsoft Windows Explorer to navigate a file system.
And, in fact, the left hand "navigation" view of the Zope management interface is created using the tree tag.

For example here's a tree that represents a collection of folders and sub−folders.

Chapter 8: Variables and Advanced DTML 123

Figure 7−5 HTML tree generated by the tree tag.

Here's the DTML that generated this tree display:

 <dtml−var standard_html_header>

 <dtml−tree>

 <dtml−var getId>

 </dtml−tree>

 <dtml−var standard_html_footer>

The tree tag queries objects to find their sub−objects and takes care of displaying the results as a tree. The tree
tag block works as a template to display nodes of the tree.

Now, since the basic protocol of the web, HTTP, is stateless, you need to somehow remember what state the
tree is in every time you look at a page. To do this, Zope stores the state of the tree in a cookie. Because this
tree state is stored in a cookie, only one tree can appear on a web page at a time, otherwise they will
confusingly use the same cookie.

You can tailor the behavior of the tree tag quite a bit with tree tag attributes and special variables. Here is a
sampling of tree tag attributes.

branches
The name of the method used to find sub−objects. This defaults to tpValues, which is a method
defined by a number of standard Zope objects.

leaves
The name of a method used to display objects that do not have sub−object branches.

nowrap
Either 0 or 1. If 0, then branch text will wrap to fit in available space, otherwise, text may be
truncated. The default value is 0.

Chapter 8: Variables and Advanced DTML 124

sort
Sort branches before text insertion is performed. The attribute value is the name of the attribute that
items should be sorted on.

assume_children
Either 0 or 1. If 1, then all objects are assumed to have sub−objects, and will therefore always have a
plus sign in front of them when they are collapsed. Only when an item is expanded will sub−objects
be looked for. This could be a good option when the retrieval of sub−objects is a costly process. The
defalt value is 0.

single
Either 0 or 1. If 1, then only one branch of the tree can be expanded. Any expanded branches will
collapse when a new branch is expanded. The default value is 0.

skip_unauthorized
Either 0 or 1. If 1, then no errors will be raised trying to display sub−objects for which the user does
not have sufficient access. The protected sub−objects are not displayed. The default value is 0.

Suppose you want to use the tree tag to create a dynamic site map. You don't want every page to show up in
the site map. Let's say that you put a property on folders and documents that you want to show up in the site
map.

Let's first define a Script with the id of publicObjects that returns public objects:

 ## Script (Python) "publicObjects"
 ##
 """
 Returns sub−folders and DTML documents that have a
 true 'siteMap' property.
 """
 results=[]
 for object in context.objectValues(['Folder', 'DTML Document']):
 if object.hasProperty('siteMap') and object.siteMap:
 results.append(object)
 return results

Now we can create a DTML Method that uses the tree tag and our Scripts to draw a site map:

 <dtml−var standard_html_header>

 <h1>Site Map</h1>

 <p>Expand All |
 Collapse All
 </p>

 <dtml−tree branches="publicObjects" skip_unauthorized="1">
 <dtml−var title_or_id>
 </dtml−tree>

 <dtml−var standard_html_footer>

This DTML Method draws a link to all public resources and displays them in a tree. Here's what the resulting
site map looks like.

Chapter 8: Variables and Advanced DTML 125

Figure 7−6 Dynamic site map using the tree tag.

For a summary of the tree tag arguments and special variables see Appendix A.

The Return Tag

In general DTML creates textual output. You can however, make DTML return other values besides text.
Using the return tag you can make a DTML Method return an arbitrary value just like a Python or Perl−based
Script.

Here's an example:

 <p>This text is ignored.</p>

 <dtml−return expr="42">

This DTML Method returns the number 42.

Another upshot of using the return tag is that DTML execution will stop after the return tag.

If you find yourself using the return tag, you almost certainly should be using a Script instead. The return tag
was developed before Scripts, and is largely useless now that you can easily write scripts in Python and Perl.

The Sendmail Tag

The sendmail tag formats and sends a mail messages. You can use the sendmail tag to connect to an existing
Mail Host, or you can manually specify your SMTP host.

Here's an example of how to send an email message with the sendmail tag:

 <dtml−sendmail>

Chapter 8: Variables and Advanced DTML 126

 To: <dtml−var recipient>
 Subject: Make Money Fast!!!!

 Take advantage of our exciting offer now! Using our exclusive method
 you can build unimaginable wealth very quickly. Act now!
 </dtml−sendmail>

Notice that there is an extra blank line separating the mail headers from the body of the message.

A common use of the sendmail tag is to send an email message generated by a feedback form. The sendmail
tag can contain any DTML tags you wish, so it's easy to tailor your message with form data.

The Mime Tag

The mime tag allows you to format data using MIME (Multipurpose Internet Mail Extensions). MIME is an
Internet standard for encoding data in email message. Using the mime tag you can use Zope to send emails
with attachments.

Suppose you'd like to upload your resume to Zope and then have Zope email this file to a list of potential
employers.

Here's the upload form:

 <dtml−var standard_html_header>

 <p>Send you resume to potential employers</p>

 <form method=post action="sendresume" ENCTYPE="multipart/form−data">
 <p>Resume file: <input type="file" name="resume_file"></p>
 <p>Send to:</p>
 <p>
 <input type="checkbox" name="send_to:list" value="jobs@yahoo.com">
 Yahoo

 <input type="checkbox" name="send_to:list" value="jobs@microsoft.com">
 Microsoft

 <input type="checkbox" name="send_to:list" value="jobs@mcdonalds.com">
 McDonalds</p>

 <input type=submit value="Send Resume">
 </form>

 <dtml−var standard_html_footer>

Create another DTML Method called sendresume to process the form and send the resume file:

 <dtml−var standard_html_header>

 <dtml−if send_to>

 <dtml−in send_to>

 <dtml−sendmail smtphost="my.mailserver.com">
 To: <dtml−var sequence−item>
 Subject: Resume
 <dtml−mime type=text/plain encode=7bit>

 Hi, please take a look at my resume.

Chapter 8: Variables and Advanced DTML 127

 <dtml−boundary type=application/octet−stream disposition=attachment
 encode=base64><dtml−var expr="resume_file.read()"></dtml−mime>
 </dtml−sendmail>

 </dtml−in>

 <p>Your resume was sent.</p>

 <dtml−else>

 <p>You didn't select any recipients.</p>

 </dtml−if>

 <dtml−var standard_html_footer>

This method iterates over the sendto variable and sends one email for each item.

Notice that there is no blank line between the To: header and the starting mime tag. If a blank line is inserted
between them then the message will not be interpreted as a multipart message by the receiving mail reader.

Also notice that there is no newline between the boundary tag and the var tag, or the end of the var tag and the
closing mime tag. This is important, if you break the tags up with newlines then they will be encoded and
included in the MIME part, which is probably not what you're after.

As per the MIME spec, mime tags may be nested within mime tags arbitrarily.

The Unless Tag

The unless tag executes a block of code unless the given condition is true. The unless tag is the opposite of the
if tag. The DTML code:

 <dtml−if expr="not butter">
 I can't believe it's not butter.
 </dtml−if>

is equivalent to:

 <dtml−unless expr="butter">
 I can't believe it's not butter.
 </dtml−unless>

What is the purpose of the unless tag? It is simply a convenience tag. The unless tag is more limited than the if
tag, since it cannot contain an else or elif tag.

Like the if tag, calling the unless tag by name does existence checking, so:

 <dtml−unless the_easter_bunny>
 The Easter Bunny does not exist or is not true.
 </dtml−unless>

Checks for the existence of the_easter_bunny as well as its truth. While this example only checks for the truth
of the_easter_bunny:

 <dtml−unless expr="the_easter_bunny">
 The Easter Bunny is not true.

Chapter 8: Variables and Advanced DTML 128

 </dtml−unless>

This example will raise an exception if the_easter_bunny does not exist.

Anything that can be done by the unless tag can be done by the if tag. Thus, its use is totally optional and a
matter of style.

Batch Processing With The In Tag

Often you want to present a large list of information but only show it to the user one screen at a time. For
example, if a user queried your database and got 120 results, you will probably only want to show them to the
user a small batch, say 10 or 20 results per page. Breaking up large lists into parts is called batching. Batching
has a number of benefits.

The user only needs to download a reasonably sized document rather than a potentially huge
document. This makes pages load faster since they are smaller.

•

Because smaller batches of results are being used, often less memory is consumed by Zope.•
Next and Previous navigation interfaces makes scanning large batches relatively easy.•

The in tag provides several variables to facilitate batch processing. Let's look at a complete example that
shows how to display 100 items in batches of 10 at a time:

 <dtml−var standard_html_header>

 <dtml−in expr="_.range(100)" size=10 start=query_start>

 <dtml−if sequence−start>

 <dtml−if previous−sequence>
 <a href="<dtml−var URL><dtml−var sequence−query
 >query_start=<dtml−var previous−sequence−start−number>">
 (Previous <dtml−var previous−sequence−size> results)

 </dtml−if>

 <h1>These words are displayed at the top of a batch:</h1>

 </dtml−if>

 Iteration number: <dtml−var sequence−item>

 <dtml−if sequence−end>

 <h4>These words are displayed at the bottom of a batch.</h4>

 <dtml−if next−sequence>
 <a href="<dtml−var URL><dtml−var sequence−query
 >query_start=<dtml−var
 next−sequence−start−number>">
 (Next <dtml−var next−sequence−size> results)

 </dtml−if>

 </dtml−if>

 </dtml−in>

Chapter 8: Variables and Advanced DTML 129

 <dtml−var standard_html_footer>

Let's take a look at the DTML to get an idea of what's going on. First we have an in tag that iterates over 100
numbers that are generated by the range utility function. The size attribute tells the in tag to display only 10
items at a time. The start attribute tells the in tag which item number to display first.

Inside the in tag there are two main if tags. The first one tests special variable sequence−start. This
variable is only true on the first pass through the in block. So the contents of this if tag will only be executed
once at the beginning of the loop. The second if tag tests for the special variable sequence−end. This
variable is only true on the last pass through the in tag. So the second if block will only be executed once at
the end. The paragraph between the if tags is executed each time through the loop.

Inside each if tag there is another if tag that check for the special variables previous−sequence and
next−sequence. The variables are true when the current batch has previous or further batches
respectively. In other words previous−sequence is true for all batches except the first, and
next−sequence is true for all batches except the last. So the DTML tests to see if there are additional
batches available, and if so it draws navigation links.

The batch navigation consists of links back to the document with a query_start variable set which indicates
where the in tag should start when displaying the batch. To better get a feel for how this works, click the
previous and next links a few times and watch how the URLs for the navigation links change.

Finally some statistics about the previous and next batches are displayed using the next−sequence−size
and previous−sequence−size special variables. All of this ends up generating the following HTML
code:

 <html><head><title>Zope</title></head><body bgcolor="#FFFFFF">

 <h1>These words are displayed at the top of a batch:</h1>

 Iteration number: 0
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 Iteration number: 5
 Iteration number: 6
 Iteration number: 7
 Iteration number: 8
 Iteration number: 9

 <h4>These words are displayed at the bottom of a batch.</h4>

 (Next 10 results)

 </body></html>

Batch processing can be complex. A good way to work with batches is to use the Searchable Interface object
to create a batching search report for you. You can then modify the DTML to fit your needs. This is explained
more in Chapter 11, "Searching and Categorizing Content".

Chapter 8: Variables and Advanced DTML 130

Exception Handling Tags

Zope has extensive exception handling facilities. You can get access to these facilities with the raise and try
tags. For more information on exceptions and how they are raised and handled see a book on Python or you
can read the online Python Tutorial.

The Raise Tag

You can raise exceptions with the raise tag. One reason to raise exceptions is to signal an error. For example
you could check for a problem with the if tag, and in case there was something wrong you could report the
error with the raise tag.

The raise tag has a type attribute for specifying an error type. The error type is a short descriptive name for
the error. In addition, there are some standard error types, like Unauthorized and Redirect that are returned as
HTTP errors. Unauthorized errors cause a log−in prompt to be displayed on the user's browser. You can raise
HTTP errors to make Zope send an HTTP error. For example:

 <dtml−raise type="404">Not Found</dtml−raise>

This raises an HTTP 404 (Not Found) error. Zope responds by sending the HTTP 404 error back to the client's
browser.

The raise tag is a block tag. The block enclosed by the raise tag is rendered to create an error message. If the
rendered text contains any HTML markup, then Zope will display the text as an error message on the browser,
otherwise a generic error message is displayed.

Here is a raise tag example:

 <dtml−if expr="balance >= debit_amount">

 <dtml−call expr="debitAccount(account, debit_amount)">

 <p><dtml−var debit_amount> has been deducted from your
 account <dtml−var account>.</p>

 <dtml−else>

 <dtml−raise type="Insufficient funds">

 <p>There is not enough money in account <dtml−account>
 to cover the requested debit amount.</p>

 </dtml−raise>

 </dtml−if>

There is an important side effect to raising an exception, exceptions cause the current transaction to be rolled
back. This means any changes made by a web request to be ignored. So in addition to reporting errors,
exceptions allow you to back out changes if a problem crops up.

The Try Tag

If an exception is raised either manually with the raise tag, or as the result of some error that Zope encounters,
you can catch it with the try tag.

Chapter 8: Variables and Advanced DTML 131

http://www.python.org/doc/current/tut/node10.html

Exceptions are unexpected errors that Zope encounters during the execution of a DTML document or method.
Once an exception is detected, the normal execution of the DTML stops. Consider the following example:

 Cost per unit: <dtml−var
 expr="_.float(total_cost/total_units)"
 fmt=dollars−and−cents>

This DTML works fine if total_units is not zero. However, if total_units is zero, a ZeroDivisionError
exception is raised indicating an illegal operation. So rather than rendering the DTML, an error message will
be returned.

You can use the try tag to handle these kind of problems. With the try tag you can anticipate and handle errors
yourself, rather than getting a Zope error message whenever an exception occurs.

The try tag has two functions. First, if an exception is raised, the try tag gains control of execution and handles
the exception appropriately, and thus avoids returning a Zope error message. Second, the try tag allows the
rendering of any subsequent DTML to continue.

Within the try tag are one or more except tags that identify and handle different exceptions. When an
exception is raised, each except tag is checked in turn to see if it matches the exception's type. The first except
tag to match handles the exception. If no exceptions are given in an except tag, then the except tag will match
all exceptions.

Here's how to use the try tag to avoid errors that could occur in the last example:

 <dtml−try>

 Cost per unit: <dtml−var
 expr="_.float(total_cost/total_units)"
 fmt="dollars−and−cents">

 <dtml−except ZeroDivisionError>

 Cost per unit: N/A

 </dtml−try>

If a ZeroDivisionError is raised, control goes to the except tag, and "Cost per unit: N/A" is rendered. Once the
except tag block finishes, execution of DTML continues after the try block.

DTML's except tags work with Python's class−based exceptions. In addition to matching exceptions by name,
the except tag will match any subclass of the named exception. For example, if ArithmeticError is named in a
except tag, the tag can handle all ArithmeticError subclasses including, ZeroDivisionError. See a Python
reference such as the online Python Library Reference for a list of Python exceptions and their subclasses. An
except tag can catch multiple exceptions by listing them all in the same tag.

Inside the body of an except tag you can access information about the handled exception through several
special variables.

error_type
The type of the handled exception.

error_value
The value of the handled exception.

error_tb
The traceback of the handled exception.

Chapter 8: Variables and Advanced DTML 132

http://www.python.org/doc/current/lib/module-exceptions.html

You can use these variables to provide error messages to users or to take different actions such as sending
email to the webmaster or logging errors depending on the type of error.

The Try Tag Optional Else Block

The try tag has an optional else block that is rendered if an exception didn't occur. Here's an example of how
to use the else tag within the try tag:

 <dtml−try>

 <dtml−call feedAlligators>

 <dtml−except NotEnoughFood WrongKindOfFood>

 <p>Make sure you have enough alligator food first.</p>

 <dtml−except NotHungry>

 <p>The alligators aren't hungry yet.</p>

 <dtml−except>

 <p>There was some problem trying to feed the alligators.<p>
 <p>Error type: <dtml−var error_type></p>
 <p>Error value: <dtml−var error_value></p>

 <dtml−else>

 <p>The alligator were successfully fed.</p>

 </dtml−try>

The first except block to match the type of error raised is rendered. If an except block has no name, then it
matches all raised errors. The optional else block is rendered when no exception occurs in the try block.
Exceptions in the else block are not handled by the preceding except blocks.

The Try Tag Optional Finally Block

You can also use the try tag in a slightly different way. Instead of handling exceptions, the try tag can be used
not to trap exceptions, but to clean up after them.

The finally tag inside the try tag specifies a cleanup block to be rendered even when an exception occurs.

The finally block is only useful if you need to clean up something that will not be cleaned up by the
transaction abort code. The finally block will always be called, whether there is an exception or not and
whether a return tag is used or not. If you use a return tag in the try block, any output of the finally block is
discarded. Here's an example of how you might use the finally tag:

 <dtml−call acquireLock>
 <dtml−try>
 <dtml−call useLockedResource>
 <dtml−finally>
 <!−− this always gets done even if an exception is raised −−>
 <dtml−call releaseLock>
 </dtml−try>

In this example you first acquire a lock on a resource, then try to perform some action on the locked resource.
If an exception is raised, you don't handle it, but you make sure to release the lock before passing control off

Chapter 8: Variables and Advanced DTML 133

to an exception handler. If all goes well and no exception is raised, you still release the lock at the end of the
try block by executing the finally block.

The try/finally form of the try tag is seldom used in Zope. This kind of complex programming control is often
better done in Python or Perl.

Conclusion

DTML provides some very powerful functionality for designing web applications. In this chapter, we looked
at the more advanced DTML tags and some of their options. A more complete reference can be found in
Appendix A.

The next chapter teaches you how to become a Page Template wizard. While DTML is a powerful tool, Page
Templates provide a more elegant solution to HTML generation.

Chapter 8: Variables and Advanced DTML 134

Chapter 9. Advanced Page Templates
In Chapter 5, "Using Zope Page Templates" you learned the basics about Page Templates. In this chapter
you'll learn about advanced techniques including new types of expressions and macros.

Advanced TAL

You've already learned about a few TAL statements. In this section we'll go over all TAL statements and their
various options. Note, this material is covered more concisely in Appendix C, "Zope Page Templates
Reference".

Advanced Content Insertion

You've already seen how tal:content and tal:replace work in Chapter 5, "Using Zope Page
Templates". In this section you'll learn some advanced tricks for inserting content.

Inserting Structure

Normally, the tal:replace and tal:content statements escape HTML tags and entities in the text that
they insert, converting < to <, for instance. If you actually want to insert the unquoted text, you need to
precede the expression with the structure keyword. For example:

 <p replace="structure here/story">
 the story
 </p>

This feature is useful when you are inserting a fragment of HTML or XML that is stored in a property or
generated by another Zope object. For instance, you may have news items that contain simple HTML markup
such as bold and italic text when they are rendered, and you want to preserve this when inserting them into a
"Top News" page. In this case, you might write:

 <p tal:repeat="newsItem here/topNews"
 tal:content="structure newsItem">
 A news item with<code>HTML</code> markup.
 </p>

This will insert the news items including their HTML markup into paragraphs.

Dummy Elements

You can include page elements that are visible in the template but not in generated text by using the built−in
variable nothing, like this:

 <tr tal:replace="nothing">
 <td>10213</td><td>Example Item</td><td>$15.34</td>
 </tr>

This can be useful for filling out parts of the page that will be populated with dynamic content. For instance, a
table that usually has ten rows will only have one row in the template. By adding nine dummy rows, the
template's layout will look more like the final result.

It's not always necessary to use the tal:replace="nothing" trick to get dummy content into your Page
Template. For example, you've already seen that anything inside a tal:content or tal:replace

element is normally removed when the template is rendered. In these cases you don't have do anything special
to make sure that dummy content is removed.

Default Content

You can leave the contents of a tag along by using the default expression with tal:content or
tal:replace. For example:

 <p tal:content="default">Spam<p>

This renders to:

 <p>Spam</p>

Most often you will want to selectively include default content, rather than always including it. For example:

 <p tal:content="python:here.getFood() or default">Spam</p>

Note: Python expressions are explained later in the chapter. If the getFood method returns a true value than
its result will be inserted into the paragraph, otherwise it's Spam for dinner.

Advanced Tag Repetition

You've already seen most of what you can do with the tal:repeat statement in Chapter 5, "Using Zope
Page Templates". This section covers a few advanced features of the tal:repeat statement.

Repeat Variables

One topic that bear more explanation is repeat variables. Repeat variables provide information about the
current repetition. These attributes are available on repeat variables:

index − repetition number, starting from zero.•
number − repetition number, starting from one.•
even − true for even−indexed repetitions (0, 2, 4, ...).•
odd − true for odd−indexed repetitions (1, 3, 5, ...).•
start − true for the starting repetition (index 0).•
end − true for the ending, or final, repetition.•
length − length of the sequence, which will be the total number of repetitions.•
letter − count reps with lower−case letters: "a" − "z", "aa" − "az", "ba" − "bz", ..., "za" − "zz", "aaa" −
"aaz", and so forth.

•

Letter − upper−case version of letter.•

You can access the contents of a repeat variable using path expressions or Python expressions. In path
expressions, you write a three−part path consisting of the name repeat, the statement variable's name, and
the name of the information you want, for example, repeat/item/start. In Python expressions, you use
normal dictionary notation to get the repeat variable, then attribute access to get the information, for example,
'python:repeat['item'].start'.

Repetition Tips

Here are a couple practical tips that you may find useful. Some times you'd like to repeat a tag, but not have
an enclosing tag. For example, you might want to repeat a number of paragraph tags, but there is no need to
enclose them in another tag. You can do this with the tal:omit−tag statement:

Chapter 9. Advanced Page Templates 136

 <div tal:repeat="quote here/getQuotes"
 tal:omit−tag="">
 <p tal:content="quote">quotation</p>
 </div>

The tal:omit−tag statement is described later in this chapter.

While it's been mentioned before, it's worth saying again: you can nest tal:repeat statements inside each
other. Each tal:repeat statement must have a different repeat variable name. Here's an example that
shows a math times−table:

 <table border="1">
 <tr tal:repeat="x python:range(1, 13)">
 <div tal:repeat="y python:range(1, 13)"
 tal:omit−tag="">
 <td tal:content="python:'%d x %d = %d' % (x, y, x*y)">
 X x Y = Z
 </td>
 </div>
 </tr>
 </table>

This example uses Python expressions, and the tal:omit−tag statement both of which are covered later in
this chapter.

If you've done much work with the dtml−in DTML repetition statement, you will have encountered batching.
Batching is the process of chopping up a large list into smaller lists. You typically use it to display a small
number of items from a large list on a web page. Think of how a search engine batches its search results. The
tal:repeat statement does not support batching, but Zope comes with a batching utility. See the section,
"Batching" later in this chapter.

Another useful feature that isn't supplied by tal:repeat is sorting. If you want to sort a list you can either
use write your own sorting script (which is quite easy in Python) or you can use the sequence.sort utility
function. Here's an example of how to sort a list of objects by title, and then by modification date:

 <table tal:define="objects here/objectValues;
 sort_on python:(('title', 'nocase', 'asc'),
 ('bobobase_modification_time', 'cmp', 'desc'));
 sorted_objects python:sequence.sort(objects, sort_on)">
 <tr tal:repeat="item sorted_objects">
 <td tal:content="item/title">title</td>
 <td tal:content="item/bobobase_modification_time">
 modification date</td>
 </tr>
 </table>

This example tries to make things clearer by defining the sort arguments outside the sort function. You call
the sequence.sort function takes a sequence and a description of how to sort it. In this example the
description of how to sort the sequence is defined in the sort_on variable. See Appendix B, "API
Reference" for more information on the powerful sequence.sort function.

Advanced Attribute Control

You've already met the tal:attributes statement. You can use it to dynamically replace tag attributes,
for example, the href attribute on an a element. You can replace more than one attribute on a tag by
separating attributes with semicolons:

Chapter 9. Advanced Page Templates 137

 <a href="link"
 tal:attributes="href here/getLink;
 class here/getClass">link

You can also define attributes with XML namespaces. For example:

 <Description
 dc:Creator="creator name"
 tal:attributes="dc:Creator here/owner/getUserName">
 Description</Description>

Simply put the XML namespace prefix before the attribute name and you can create attributes with XML
namespaces.

Defining Variables

You can define your own variable using the tal:define attribute. There are several reasons that you might
want to do this. One reason is to avoid having to write long expressions repeatedly in a template. Another is to
avoid having to call expensive methods repeatedly. You can define a variable once and then use it many times
in a template. For example, here's a list that defines a variable and later tests it and repeats over it:

 <ul tal:define="items container/objectIds"
 tal:condition="items">
 <li tal:repeat="item items">
 <p tal:content="item">id</p>

The tal:define statement creates the variable items, which you can use it anywhere in the ul tag.
Notice also how you can have two TAL statement on the same ul tag. See the section, "Interactions Between
TAL Statements" later in this chapter for more information about using more than one statement on a tag. In
this case the first statement assigns the variable items and the second uses items in a condition to see
whether or not it is false (in this case, an empty sequence) or true. If the items variable is false, then the ul
tag is not shown.

Now, suppose that instead of simply removing the list when there are no items, you want to show a message.
To do this, place the following before the list:

 <h4 tal:condition="not:container/objectIds">There
 Are No Items</h4>

The expression, not:container/objectIds is true when container/objectIds is false, and vice
versa. See the section, "Not Expressions" later in this chapter for more information.

You can't use your items variable here, because it isn't defined yet. If you move the definition of items to
the h4 tag, then you can't use it in the ul tag any more, because it becomes a local variable of the h4 tag.
You could place the definition on some tag that enclosed both the h4 and the ul, but there is a simpler
solution. By placing the keyword global in front of the variable name, you can make the definition last
from the h4 tag to the bottom of the template:

 <h4 tal:define="global items container/objectIds"
 tal:condition="not:items">There Are No Items</h4>

You can define more than one variable using tal:define by separating them with semicolons. For
example:

Chapter 9. Advanced Page Templates 138

 <p tal:define="ids container/objectIds;
 title container/title">

You can define as many variables as you wish. Each variable can have its own global or local scope. You can
also refer to earlier defined variables in later definitions. For example:

 <p tal:define="title template/title;
 tlen python:len(title);">

With judicious use of tal:define you can improve the efficiency and readability of your templates.

Omitting Tags

You can remove tags with the tal:omit−tag statement. You will seldom need to use this TAL statement,
but occasionally it's useful. The omit−tag attribute removes a tag, but does not affect the contents of the tag.
For example:

 <b tal:omit−tag=""><i>this</i> stays

Renders to:

 <i>this</i> stays

At this level of usage, tal:omit−tag operates almost like tal:replace="default". However,
tal:omit−tag is more useful when used in combination with other TAL statement such as tal:repeat.
For example here's one way to create ten paragraph tags using tal:repeat:

 <span tal:repeat="n python:range(10)"
 tal:omit−tag="">
 <p tal:content="n">1</p>

This will produce ten paragraph tags, however, the span tag will not appear in the output.

The tal:omit−tag attribute takes an expression, though normally you'll simply use an empty expression.
If the expression is true or there is no expression then the statement tag is removed. If the expression is false,
then the tag is not omitted. This allows you to selectively remove tags depending on dynamic circumstances.

Error Handling

If an error occurs in your page template, you can catch that error and show a useful error message to your
user. For example, suppose your template defines a variable using form data:

 ...
 <span tal:define="global prefs request/form/prefs"
 tal:omit−tag="" />
 ...

If Zope encounters a problem, like not being able to find the prefs variable in the form data, the entire page
will break; you'll get an error page instead. Happily, you can avoid this kind of thing with limited error
handling using the tal:on−error statement:

 ...
 <span tal:define="global prefs here/scriptToGetPreferences"
 tal:omit−tag=""
 tal:on−error="string:An error occurred">

Chapter 9. Advanced Page Templates 139

 ...

When an error is raised while rendering a template, Zope looks for a tal:on−error statement to handle
the error. It first looks in the current tag, then on its enclosing tag, and so on until it reaches the top−level tag.
When it finds an error handler, it replaces the contents of that tag with the error handling expression. In this
case, the span tag will contain an error message.

Typically you'll define an error handler on a tag that encloses a logical page element, for example a table. If
an error crops up drawing the table, then the error handler can simply omit the table from the page, or else
replace it with an error message of some sort.

For more flexible error handling you can call a script. For example:

 <div tal:on−error="structure here/handleError">
 ...
 </div>

Any error that occurs inside the div will call the handleError script. Note that the structure option
allows the script to return HTML. Your error handling script can examine the error and take various actions
depending on the error. Your script gets access to the error through the error variable in the namespace. For
example:

 ## Script (Python) "handleError"
 ##bind namespace=_
 ##
 error=_['error']
 if error.type==ZeroDivisionError:
 return "<p>Can't divide by zero.</p>"
 else
 return """<p>An error occurred.</p>
 <p>Error type: %s</p>
 <p>Error value: %s</p>""" % (error.type,
 error.value)

Your error handling script can take all kinds of actions, for example, it might log the error by sending email.

The tal:on−error statement is not meant for general purpose exception handling. For example, you
shouldn't validate form input with in. You should use a script for that, since scripts allow you to do powerful
exception handling. The tal:on−error statement is for dealing with unusual problems that can occur
when rendering templates.

Interactions Between TAL Statements

When there is only one TAL statement per element, the order in which they are executed is simple. Starting
with the root element, each element's statements are executed, then each of its child elements is visited, in
order, and their statements are executed, and so on.

However, it's possible to have more than one TAL statement on the same element. Any combination of
statements may appear on the same element, except that the tal:content and tal:replace statements
may not appear together.

When an element has multiple statements, they are executed in this order:

define1.
condition2.

Chapter 9. Advanced Page Templates 140

repeat3.
content or replace4.
attributes5.
omit−tag6.

Since the tal:on−error statement is only invoked when an error occurs, it does not appear in the list.

The reasoning behind this ordering goes like this: you often want to set up variables for use in other
statements, so define comes first. The very next thing to do is decide whether this element will be included at
all, so condition is next; since the condition may depend on variables you just set, it comes after define. It is
valuable to be able to replace various parts of an element with different values on each iteration of a repeat, so
repeat comes before content, replace and attributes. Content and replace can't both be used on the same
element so they occur at the same place. Omit−tag comes last since no other statement are likely to depend on
it and since it should come after define and repeat.

Here's an example tag that includes several TAL statements:

 <p tal:define="x /root/a/long/path/x | nothing"
 tal:condition="x"
 tal:content="x/txt"
 tal:attributes="class x/class">Ex Text</p>

Notice how the tal:define statement is executed first, and the other statements rely on its results.

There are three limits you should be aware of when combining TAL statements on elements:

Only one of each kind of statement can be used on a single tag. Since HTML does not allow multiple
attributes with the same name. For example, you can't have two tal:define on the same tag.

1.

Both of tal:content and tal:replace cannot be used on the same tag, since their functions
conflict.

2.

The order in which you write TAL attributes on a tag does not affect the order in which they execute.
No matter how you arrange them, the TAL statements on a tag always execute in the fixed order
described earlier.

3.

If you want to override the ordering of TAL statements, you must do so by enclosing the element in another
element, possibly div or span, and placing some of the statements on this new element. For example
suppose you want to loop over a series of items but skip some. Here's an attempt to write a template that loops
over the numbers zero to nine and skips three:

 <!−− broken template −−>

 <li tal:repeat="n python:range(10)"
 tal:condition="python:n != 3"
 tal:content="n">
 1

This template doesn't work because the the condition is tested before the repeat is executed. The upshot is that
the n variable is not defined until after it is tested. Here's a way around this problem:

 <div tal:repeat="n python:range(10)"
 tal:omit−tag="">
 <li tal:condition="python:n != 3"
 tal:content="n">

Chapter 9. Advanced Page Templates 141

 1

 </div>

This template solves the problem by defining the n variable on an enclosing div tag. Notice that the div tag
will not appear in the output on account of it's tal:omit−tag statement. This may be ugly, but it works.
Perhaps future versions of Page Templates will solve this problem in a nicer fashion.

Form Processing

You can process forms in DTML using a common pattern called the "form/action pair". A form/action pair
consists of two DTML methods or document: one that contains a form that collects input from the user, and
one that contains an action that is taken on that input and returns the user a response. The form calls the
action. See Chapter 4, "Dynamic Content with DTML" for more information on the form/action pattern.

Zope Page Templates don't work particularly well with the form/action pattern since it assumes that input
processing and response presentation are handled by the same object (the action). Instead of the form/action
pattern you should use form/action/response pattern with Page Templates. The form and response should be
Page Templates and the action should be a script. The form template gathers the input and call the action
script. The action script should process the input and return a response template. This pattern is more flexible
than the form/action pattern since it allows the script to return any of a number of different response objects.

For example here's a part of a form template:

 ...
 <form action="action">
 <input type="text" name="name">
 <input type="text" name="age:int">
 <input type="submit">
 </form>
 ...

This form could be processed by this script:

 ## Script (Python) "action"
 ##parameters=name, age
 ##
 container.addPerson(name, age)
 return container.responseTemplate()

This script calls a method to process the inputs and then returns another template, the response. You can
render a Page Template from Python by calling it. The response template typically contains an
acknowledgment that the form has been correctly processed.

The action script can do all kinds of things. It can validate input, handle errors, send email, and more. Here's a
sketch of how to validate input with an script:

 ## Script (Python) "action"
 ##
 if not context.validateData(request):
 # if there's a problem return the form page template
 # along with an error message
 return context.formTemplate(error_message='Invalid data')

 # otherwise return the thanks page
 return context.responseTemplate()

Chapter 9. Advanced Page Templates 142

This script validates the form input and returns the form template with an error message if there's a problem.
You can pass Page Templates extra information with keyword arguments. The keyword arguments are
available to the template as via the options built−in variable. So the form template in this example might
include a section like this:

 <b tal:condition="options/error_message | nothing"
 tal:content="options/error_message">
 Error message goes here.

This example shows how you can display an error message that is passed to the template via keyword
arguments.

Depending on your application you may choose to redirect the user to a response Page Template instead of
returning it directly. This results in twice as much network activity, but might be useful because it changes the
URL displayed in the user's browser to the URL of the Page Template, rather than that of the action script.

If you insist on doing a crummy job of things, you can always create a lame version of the form−action pair
using Page Templates. You should only do this when you don't care about error handling and when the
response will always be the same, not matter what the user submits. Since Page Templates don't have an
equivalent of dtml−call, you can use one of any number of hacks to call an input processing method without
inserting its results. For example:

 <span tal:define="unused here/processInputs"
 tal:omit−tag=""/>

This sample calls the processInputs method and assigns the result to the unused variable.

Expressions

You've already encountered Page Template expressions. Expressions provide values to template statements.
For example, path expressions describe objects by giving them paths such as request/form/age, or
user/getUserName. In this section you'll learn about all the different types of expressions, and variables.

Built−in Variables

Variables are names that you can use in expressions. You have already seen some examples of the built−in
variables such as template, user, repeat, and request. Here is the complete list of the other built−in
variables and their uses:

nothing
A false value, similar to a blank string, that you can use in tal:replace or tal:content to
erase a tag or its contents. If you set an attribute to nothing, the attribute is removed from the tag
(or not inserted), unlike a blank string.

default
A special value that doesn't change anything when used in tal:replace, tal:content, or
tal:attributes. It leaves the template text in place.

options
The keyword arguments, if any, that were passed to the template. Note: options are only available
when a template is called from Python. When a template is rendered from the web, no options are
present.

attrs

Chapter 9. Advanced Page Templates 143

A dictionary of attributes of the current tag in the template. The keys are the attributes names, and the
values are the original values of the attributes in the template. This variable is rarely needed.

root
The root Zope object. Use this to get Zope objects from fixed locations, no matter where your
template is placed or called.

here
The object on which the template is being called. This is often the same as the container, but can be
different if you are using acquisition. Use this to get Zope objects that you expect to find in different
places depending on how the template is called. The here variable is analogous to the context
variable in Python−based scripts.

container
The container (usually a Folder) in which the template is kept. Use this to get Zope objects from
locations relative to the template's permanent home. The container and here variables refer to
the same object when a template is called from its normal location. However, when a template is
applied to another object (for example, a ZSQL Method) the container and here will not refer to
the same object.

modules
The collection of Python modules available to templates. See the section on writing Python
expressions.

You'll find examples of how to use these variables through out this chapter.

String Expressions

String expressions allow you to easily mix path expressions with text. All of the text after the leading
string: is taken and searched for path expressions. Each path expression must be preceded by a dollar sign
('$'). Here are some examples:

 "string:Just text. There's no path here."
 "string:copyright $year, by me."

If the path expression has more than one part, or needs to be separated from the text that follows it, it must be
surrounded by braces ('{}'). For example:

 "string:Three ${vegetable}s, please."
 "string:Your name is ${user/getUserName}!"

Notice how in the example above, you need to surround the vegetable path with braces so that Zope
doesn't mistake it for vegetables.

Since the text is inside of an attribute value, you can only include a double quote by using the entity syntax
". Since dollar signs are used to signal path expressions, a literal dollar sign must be written as two
dollar signs ('$$'). For example:

 "string:Please pay $$$dollars_owed"
 "string:She said, "Hello world.""

Some complex string formatting operations (such as search and replace or changing capitalization) can't easily
be done with string expressions. For these cases, you should use Python expressions or Scripts.

Path Expressions

Path expressions refer to objects with a path that resembles a URL path. A path describes a traversal from

Chapter 9. Advanced Page Templates 144

object to object. All paths begin with a known object (such as a built−in variable, a repeat variable, or a user
defined variable) and depart from there to the desired object. Here are some example paths expressions:

 template/title
 container/files/objectValues
 user/getUserName
 container/master.html/macros/header
 request/form/address
 root/standard_look_and_feel.html

With path expressions you can traverse from an object to its sub−objects including properties and methods.
You can also use acquisition in path expressions. See the section entitled "Calling Scripts from the Web" in
Chapter 8, "Advanced Zope Scripting" for more information on acquisition and path traversal.

Zope restricts object traversal in path expressions in the same way that it restricts object access via URLs.
You must have adequate permissions to access an object in order to refer to it with a path expression. See
Chapter 6, "Users and Security" for more information about object access controls.

Alternate Paths

The path template/title is guaranteed to exist every time the template is used, although it may be a
blank string. Some paths, such as request/form/x, may not exist during some renderings of the template.
This normally causes an error when Zope evaluates the path expression.

When a path doesn't exist, you may have a fall−back path or value that you would like to use instead. For
instance, if request/form/x doesn't exist, you might want to use here/x instead. You can do this by
listing the paths in order of preference, separated by vertical bar characters ('|'):

 <h4 tal:content="request/form/x | here/x">Header</h4>

Two variables that are very useful as the last path in a list of alternates are nothing and default. For
example, default tells tal:content to leave the dummy content. Different TAL statements interpret
default and nothing differently. See Appendix C, "Zope Page Templates Reference" for more
information.

You can also use a non−path expression as the final part in an alternate−path expression. For example:

 <p tal:content="request/form/age|python:18">age</p>

In this example, if the request/form/age path doesn't exist, then the value is the number 18. This form
allows you to specify default values to use which can't be expressed as paths. Note, you can only use a
non−path expression as the last alternative.

You can also test the existence of a path directly with the exists expression type prefix. See the section "Exists
Expressions" below for more information on exists expressions.

Not Expressions

Not expressions let you negate the value of other expressions. For example:

 <p tal:condition="not:here/objectIds">
 There are no contained objects.
 </p>

Chapter 9. Advanced Page Templates 145

Not expressions return true when the expression they are applied to is false, and vice versa. In Zope,
non−existent variables, zero, empty strings, empty sequences, nothing, and None are considered false, while
everything else is true.

There isn't much reason to use not expressions with Python expressions since you can use the Python not
keyword instead.

Nocall Expressions

An ordinary path expression tries to render the object that it fetches. This means that if the object is a function,
Script, Method, or some other kind of executable thing, then expression will evaluate to the result of calling
the object. This is usually what you want, but not always. For example, if you want to put a DTML Document
into a variable so that you can refer to its properties, you can't use a normal path expression because it will
render the Document into a string.

If you put the nocall: expression type prefix in front of a path, it prevents the rendering and simply gives
you the object. For example:

 <span tal:define="doc nocall:here/aDoc"
 tal:content="string:${doc/getId}: ${doc/title}">
 Id: Title

This expression type is also valuable when you want to define a variable to hold a function or class from a
module, for use in a Python expression.

Nocall expressions can also be used on functions, rather than objects:

 <p tal:define="join nocall:modules/string/join">

This expression defines the join variable as a function ('string.join'), rather than the result of calling a
function.

Exists Expressions

An exists expression is true if its path exists, and otherwise is false. For example here's one way to display an
error message only if it is passed in the request:

 <h4 tal:define="err request/form/errmsg | nothing"
 tal:condition="err"
 tal:content="err">Error!</h4>

You can do the same thing more easily with an exists expression:

 <h4 tal:condition="exists:request/form/errmsg"
 tal:content="request/form/errmsg">Error!</h4>

You can combine exists expressions with not expressions, for example:

 <p tal:condition="not:exists:request/form/number">Please enter
 a number between 0 and 5</p>

Note that in this example you can't use the expression, "not:request/form/number", since that expression will
be true if the number variable exists and is zero.

Chapter 9. Advanced Page Templates 146

Python Expressions

The Python programming language is a simple and expressive one. If you have never encountered it before,
you should read one of the excellent tutorials or introductions available at the Python website.

A Page Template Python expression can contain anything that the Python language considers an expression.
You can't use statements such as if and while. In addition, Zope imposes some security restrictions to keep
you from accessing protected information, changing secured data, and creating problems such as infinite
loops. See Chapter Chapter 8, "Advanced Zope Scripting" for more information on Python security
restrictions.

Comparisons

One place where Python expressions are practically necessary is in tal:condition statements. You
usually want to compare two strings or numbers, and there isn't any other way to do that without Python
expressions. You can use the comparison operators < (less than), > (greater than), == (equal to), and != (not
equal to). You can also use the boolean operators and, not, and or. For example:

 <p tal:repeat="widget widgets">

 Gear #1:
 Name

 </p>

This example loops over a collection of objects, testing each object's type attribute.

Sometimes you want to choose different values inside a single statement based on one or more conditions.
You can do this with the test function, like this:

 You <span tal:define="name user/getUserName"
 tal:replace="python:test(name=='Anonymous User',
 'need to log in', default)">
 are logged in as
 Name

The test function works like an if/then/else statement. See Appendix A, "DTML Reference" for more
information on the test function. Here's another example of how you can use the test function:

 <tr tal:define="oddrow repeat/item/odd"
 tal:attributes="class python:test(oddrow, 'oddclass',
 'evenclass')">

Without the test function you'd have to write two tr elements each with a different condition, one for even
rows, and the other for odd rows.

Using other Expression Types

You can use other expression types inside of a Python expression. Each expression type has a corresponding
function with the same name, including: path(), string(), exists(), and nocall(). This allows
you to write expressions such as:

 "python:path('here/%s/thing' % foldername)"
 "python:path(string('here/$foldername/thing'))"
 "python:path('request/form/x') or default"

Chapter 9. Advanced Page Templates 147

http://www.python.org

The final example has a slightly different meaning than the path expression, "request/form/x | default", since it
will use the default text if "request/form/x" doesn't exists or if it is false.

Getting at Zope Objects

Much of the power of Zope involves tying together specialized objects. Your Page Templates can use Scripts,
SQL Methods, Catalogs, and custom content objects. In order to use these objects you have to know how to
get access to them within Page Templates.

Object properties are usually attributes, so you can get a template's title with the expression "template.title".
Most Zope objects support acquisition, which allows you to get attributes from "parent" objects. This means
that the Python expression "here.Control_Panel" will acquire the Control Panel object from the root Folder.
Object methods are attributes, as in "here.objectIds" and "request.set". Objects contained in a Folder can be
accessed as attributes of the Folder, but since they often have Ids that are not valid Python identifiers, you
can't use the normal notation. For example, you cannot use this Python expression:

 "python:here.penguin.gif"'.

You must write:

 "python:getattr(here, 'penguin.gif')"

since Python doesn't support attribute names with periods.

Some objects, such as request, modules, and Zope Folders support Python item access, for example:

 request['URL']
 modules['math']
 here['thing']

When you use item access on a Folder, it doesn't try to acquire the name, so it will only succeed if there is
actually an object with that Id contained in the Folder.

As shown in previous chapters, path expressions allow you to ignore details of how you get from one object to
the next. Zope tries attribute access, then item access. You can write:

 "here/images/penguin.gif"

instead of:

 "python:getattr(here.images, 'penguin.gif')"

and:

 "request/form/x"

instead of:

 "python:request.form['x']"

The trade−off is that path expressions don't allow you to specify those details. For instance, if you have a form
variable named "get", you must write:

 "python:request.form['get']"

Chapter 9. Advanced Page Templates 148

since this path expression:

 "request/form/get"

will evaluate to the "get" method of the form dictionary.

If you prefer you can use path expressions inside Python expressions using the path() function, as
described above.

Using Scripts

Script objects are often used to encapsulate business logic and complex data manipulation. Any time that you
find yourself writing lots of TAL statements with complicated expressions in them, you should consider
whether you could do the work better in a Script. If you have trouble understanding your template statements
and expressions, then it's better to simplify your Page Template and use Scripts for the complex stuff.

Each Script has a list of parameters that it expects to be given when it is called. If this list is empty, then you
can use the Script by writing a path expression. Otherwise, you will need to use a Python expression in order
to supply the argument, like this:

 "python:here.myscript(1, 2)"
 "python:here.myscript('arg', foo=request.form['x'])"

If you want to return more than one item of data from a Script to a Page Template, it is a good idea to return it
in a dictionary. That way, you can define a variable to hold all the data, and use path expressions to refer to
each item. For example, suppose the getPerson script returns a dictionary with name and age keys:

 <span tal:define="person here/getPerson"
 tal:replace="string:${person/name} is ${person/age}">
 Name is 30 years old.

Of course, it's fine to return Zope objects and Python lists as well.

Calling DTML

Unlike Scripts, DTML Methods and Documents don't have an explicit parameter list. Instead, they expect to
be passed a client, a mapping, and keyword arguments. They use these parameters to construct a namespace.
See Chapter 7 for more information on explicitly calling DTML.

When the Zope publishes a DTML object through the web, it passes the context of the object as the client, and
the REQUEST as the mapping. When one DTML object calls another, it passes its own namespace as the
mapping, and no client.

If you use a path expression to render a DTML object, it will pass a namespace with request, here, and
the template's variables already on it. This means that the DTML object will be able to use the same names as
if it were being published in the same context as the template, plus the variable names defined in the template.

Python Modules

The Python language comes with a large number of modules, which provide a wide variety of capabilities to
Python programs. Each module is a collection of Python functions, data, and classes related to a single
purpose, such as mathematical calculations or regular expressions.

Chapter 9. Advanced Page Templates 149

Several modules, including "math" and "string", are available in Python expressions by default. For example,
you can get the value of pi from the math module by writing "python:math.pi". To access it from a path
expression, however, you need to use the modules variable, "modules/math/pi".

The "string" module is hidden in Python expressions by the "string" expression type function, so you need to
access it through the modules variable. You can do this directly in an expression in which you use it, or
define a global variable for it, like this:

 tal:define="global mstring modules/string"
 tal:replace="python:mstring.join(slist, ':')"

In practice you'll rarely need to do this since you can use string methods most of the time rather than having to
rely on functions in the string module.

Modules can be grouped into packages, which are simply a way of organizing and naming related modules.
For instance, Zope's Python−based Scripts are provided by a collection of modules in the "PythonScripts"
subpackage of the Zope "Products" package. In particular, the "standard" module in this package provides a
number of useful formatting functions that are standard in the DTML "var" tag. The full name of this module
is "Products.PythonScripts.standard", so you could get access to it using either of the following statements:

 tal:define="global pps modules/Products/PythonScripts/standard"
 tal:define="global pps python:modules['Products.PythonScripts.standard']"

Most Python modules cannot be accessed from Page Templates, DTML, or Scripts unless you add Zope
security assertions to them. This procedure is outside the scope of this book. See the Zope Developer's Guide
for more information.

Macros

So far, you've seen how page templates can be used to add dynamic behavior to individual web pages.
Another feature of page templates is the ability to reuse look and feel elements across many pages.

For example, with Page Templates, you can have a site that has a standard look and feel. No matter what the
"content" of a page, it will have a standard header, side−bar, footer, and/or other page elements. This is a very
common requirement for web sites.

You can reuse presentation elements across pages with macros. Macros define a section of a page that can be
reused in other pages. A macro can be an entire page, or just a chunk of a page such as a header or footer.
After you define one or more macros in one Page Template, you can use them in other Page Templates.

Using Macros

You can define macros with tag attributes similar to TAL statements. Macro tag attributes are called Macro
Expansion Tag Attribute Language (METAL) statements. Here's an example macro definition:

 <p metal:define−macro="copyright">
 Copyright 2001, Foo, Bar, and Associates Inc.
 </p>

This metal:define−macro statement defines a macro named "copyright". The macro consists of the p
tag and its contents (including all contained tags).

Macros defined in a Page Template are stored in the template's macro attribute. You can use macros from

Chapter 9. Advanced Page Templates 150

other page template by referring to them through the macros attribute of the Page Template in which they
are defined. For example, suppose the copyright macro is in a Page Template called "master_page". Here's
how to use copyright macro from another Page Template:

 <hr>
 <b metal:use−macro="container/master_page/macros/copyright">
 Macro goes here

In this Page template, the b tag will be completely replaced by the macro when Zope renders the page:

 <hr>
 <p>
 Copyright 2001, Foo, Bar, and Associates Inc.
 </p>

If you change the macro (for example, if the copyright holder changes their name) then all Page Templates
that use the macro will automatically reflect the change.

Notice how the macro is identified by a path expression using the metal:use−macro statement. The
metal:use−macro statement replaces the statement element with the named macro.

Macro Details

The metal:define−macro and metal:use−macro statements are pretty simple. However there are a
few subtleties worth mentioning.

A macro's name must be unique within the Page Template in which it's defined. You can define more than one
macro in a template, but they all need to have different names.

Normally you'll refer to a macro in a metal:use−macro statement with a path expression. However, you
can use any expression type you wish so long as it returns a macro. For example:

 <p metal:use−macro="python:here.getMacro()">
 Replaced with a dynamically determined macro,
 which is located by the getMacro script.
 </p>

Using Python expressions to locate macros lets you dynamically vary which macro your template uses.

You can use the default variable with the metal:use−macro statement:

 <p metal:use−macro="default">
 This content remains − no macro is used
 </p>

The result is the same as using default with tal:content and tal:replace, the statement element
doesn't change.

If you try to use the nothing variable with metal:use−macro you will get an error, since nothing is
not a macro. If you want to use nothing to conditionally include a macro, you should instead enclose the
metal:use−macro statement with a tal:condition statement.

Zope handles macros first when rendering your templates. Then Zope evaluates TAL expressions. For
example, consider this macro:

Chapter 9. Advanced Page Templates 151

 <p metal:define−macro="title"
 tal:content="template/title">
 template's title
 </p>

When you use this macro it will insert the title of the template in which the macro is used, not the title of the
template in which the macro is defined. In other words, when you use a macro, it's like copying the text of a
macro into your template and then rendering your template.

If you check the Expand macros when editing option on the Page Template Edit view, then any macros that
you use will be expanded in your template's source. This is Zope's default behavior, and in general this is what
you want, since it allows you to edit a complete and valid page. Sometimes, however, especially when you're
editing in the ZMI, rather than using a WYSIWYG editing tool, it's more convenient not to expand macros
when editing. In these cases, simply uncheck the option.

Using Slots

Macros are much more useful if you can override parts of them when you use them. You can do this by
defining slots in the macro that you can fill in when you use the template. For example, consider a side bar
macro:

 <p metal:define−macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

 </p>

This macro is fine, but suppose you'd like to include some additional information in the sidebar on some
pages. One way to accomplish this is with slots:

 <p metal:define−macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

 </p>

When you use this macro you can choose to fill the slot like so:

 <p metal:fill−slot="container/master.html/macros/sidebar">
 <b metal:fill−slot="additional_info">
 Make sure to check out our specials.

 </p>

When you render this template the side bar will include the extra information that you provided in the slot:

 <p>
 Links

Chapter 9. Advanced Page Templates 152

 Home
 Products
 Support
 Contact Us

 Make sure to check out our specials.

 </p>

Notice how the span element that defines the slot is replaced with the b element that fills the slot.

Customizing Default Presentation

A common use of slot is to provide default presentation which you can customize. In the slot example in the
last section, the slot definition was just an empty span element. However, you can provide default
presentation in a slot definition. For example, consider this revised sidebar macro:

 <div metal:define−macro="sidebar">
 <p metal:define−slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </p>

 </div>

Now the sidebar is fully customizable. You can fill the links slot to redefine the sidebar links. However, if you
choose not to fill the links slot then you'll get the default links, which appear inside the slot.

You can even take this technique further by defining slots inside of slots. This allows you to override default
presentation with a fine degree of precision. Here's a sidebar macro that defines slots within slots:

 <div metal:define−macro="sidebar">
 <p metal:define−slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </p>

 </div>

If you wish to customize the sidebar links you can either fill the links slot to completely override the links,
or you can fill the additional_links slot to insert some extra links after the default links. You can nest
slots as deeply as you wish.

Combining METAL and TAL

You can use both METAL and TAL statements on the same elements. For example:

Chapter 9. Advanced Page Templates 153

 <ul metal:define−macro="links"
 tal:repeat="link here/getLinks">

 <a href="link url"
 tal:attributes="url link/url"
 tal:content="link/name">link name

Since METAL statements are evaluated before TAL statements, there are no conflicts. This example is also
interesting since it customizes a macro without using slots. The macro calls the getLinks Script to
determine the links. You can thus customize your site's links be redefining the getLinks Script at different
locations within your site.

It's not always easy to figure out the best way customize look and feel in different parts of your site. In general
you should use slots to override presentation elements, and you should use Scripts to provide content
dynamically. In the case of the links example, it's arguable whether links are content or presentation. Scripts
probably provide a more flexible solution, especially if your site includes link content objects.

Whole Page Macros

Rather than using macros for chunks of presentation shared between pages, you can use macros to define
entire pages. Slots make this possible. Here's an example macro that defines an entire page:

 <html metal:define−macro="page">
 <head>
 <title tal:content="here/title">The title</title>
 </head>

 <body>
 <h1 metal:define−slot="headline"
 tal:content="here/title">title</h1>

 <p metal:define−slot="body">
 This is the body.
 </p>

 <p>Copyright 2001 Fluffy Enterprises</p>

 </body>
 </html>

This macro defines a page with three slots, headline, body, and footer. Notice how the headline slot
includes a TAL statement to dynamically determine the headline content.

You can then use this macro in templates for different types of content, or different parts of your site. For
example here's how a template for news items might use this macro:

 <html metal:use−macro="container/master.html/macros/page">

 <h1 metal:fill−slot="headline">
 Press Release:
 Headline
 </h1>

 <p metal:fill−slot="body"
 tal:content="here/getBody">

Chapter 9. Advanced Page Templates 154

 News item body goes here
 </p>

 </html>

This template redefines the headline slot to include the words, "Press Release" and call the
getHeadline method on the current object. It also redefines the body slot to call the getBody method on
the current object.

The powerful thing about this approach is that you can now change the page macro and the press release
template will be automatically updated. For example you could put the body of the page in a table and add a
sidebar on the left and the press release template would automatically use these new presentation elements.

This is a much more flexible solution to control page look and feel then the DTML
standard_html_header and standard_html_footer solution. In fact, Zope comes with a stock
page template in the root folder named standard_template.pt that includes a whole page macro with a
head and body slot. Here's how you might use this macro in a template:

 <html metal:use−macro="here/standard_template.pt/macros/page">
 <div metal:fill−slot="body">
 <h1 tal:content="here/title">Title</h1>
 <p tal:content="here/getBody">Body text goes here</p>
 </div>
 </html>

Using the standard_template.pt macro is very similar to using other whole page macros. The only
subtlety worth pointing out is the path used to locate the macro. In this example the path begins with here.
This means that Zope will search for the standard_template.pt object using acquisition starting at the
object that the template is applied to. This allows you to customize the look and feel of templates by creating
custom standard_template.pt objects in various locations. This is exactly the same trick that you can
use to customize look and feel by overriding standard_html_header and standard_html_footer
in site locations. However, with standard_template.pt you have more choices. You can choose to
start the path to the macro with root or with container, as well as with here. If the path begins with
root then you will always get the standard template which is located in the root folder. If the path begins
with container then Zope will search for a standard template using acquisition starting in the folder where
the template is defined. This allows you to customize look and feel of templates, but does not allow you to
customize the look and feel of different objects based on their location in the site.

Caching Templates

While rendering Page Templates normally is quite fast, sometimes it's not fast enough. For frequently
accessed pages, or page that take a long time to render, you may want to trade some dynamic behavior for
speed. Caching lets you do this. For more information on caching see the "Cache Manager" section of Chapter
3, "Basic Objects".

You can cache Page Templates using a cache manager in the same way that you cache other objects. To cache
a Page Template, you must associate it with a cache manager. You can either do this by going to the Cache
view of you Page Template and selecting the cache manager, or by going to the Associate view of your cache
manager and locating your Page Template.

Here's an example of how to cache a Page Template. First create a Python−based script name long.py with
these contents:

 ## Script (Python) "long.py"

Chapter 9. Advanced Page Templates 155

 ##
 for i in range(500):
 for j in range(500):
 for k in range(5):
 pass
 return 'Done'

The purpose of this script is to take up a noticeable amount of execution time. Now create a Page Template
that uses this script, for example:

 <html>
 <body>
 <p tal:content="here/long.py">results</p>
 </body>
 </html>

Now view this page. Notice how it takes a while to render. Now let's radically improve its rendering time with
caching. Create a Ram Cache Manager if you don't already have one. Make sure to create it within the same
folder as your Page Template, or in a higher level. Now visit the Cache view of your Page Template. Choose
the Ram Cache Manager you just created and click Save Changes. Click the Cache Settings link to see how
your Ram Cache Manager is configured. By default, your cache stores objects for one hour (3600 seconds).
You may want to adjust this number depending on your application. Now return to your Page Template and
view it again. It should take a while for it to render. Now reload the page, and watch it render immediately.
You can reload the page again and again, and it will always render immediately since the page is now cached.

If you change your Page Template, then it will be removed from the cache. So the next time you view it, it
will take a while to render. But after that it will render quickly since it will be cached again.

Caching is a simple but very powerful technique for improving performance. You don't have to be a wizard to
use caching, and it can provide great speed−ups. It's well worth your time to use caching for
performance−critical applications.

Page Template Utilities

Zope Page Templates are powerful but simple. Unlike DTML, Page Templates don't give you a lot of
convenience features for things like batching, drawing trees, sorting, etc. The creators of Page Templates
wanted to keep them simple. However, you may miss some of the built−in features that DTML provides. To
address these needs, Zope comes with utilities designed to enhance Page Templates.

Batching Large Sets of Information

When a user queries a database and gets a hundred results, it's often better to show them several pages with
only twenty results per page, rather than putting all the results on one page. Breaking up large lists into
smaller lists is called batching.

Unlike DTML, which provides batching built into the language, Page Templates support batching by using a
special Batch object that comes from the ZTUtils utility module. See Appendix B, "API Reference", for
more information on the ZTUtils Python module.

Here's a simple example, showing how to create a Batch object:

 <ul tal:define="lots python:range(100);
 batch python:modules['ZTUtils'].Batch(lots,
 size=10,
 start=0)">

Chapter 9. Advanced Page Templates 156

 <li tal:repeat="num batch"
 tal:content="num">0

This example renders a list with 10 items (in this case, the numbers 0 through 9). The Batch object chops a
long list up into groups or batches. In this case it broke a one hundred item list up into batches of ten items.

You can display a different batch of ten items by passing a different start number:

 <ul tal:define="lots python:range(100);
 batch python:modules['ZTUtils'].Batch(lots,
 size=10,
 start=13)">

This batch starts with the fourteenth item and ends with the twenty third item. In other words, it displays the
numbers 13 through 22. It's important to notice that the batch start argument is the index of the first item.
Indexes count from zero, rather than from one. So index 13 points to the fourteenth item in the sequence.
Python uses indexes to refer to list items.

Normally when you use batches you'll want to include navigation elements on the page to allow users to go
from batch to batch. Here's a full−blow batching example that shows how to navigate between batches:

 <html>
 <head>
 <title tal:content="template/title">The title</title>
 </head>
 <body tal:define="employees here/getEmployees;
 start python:path('request/start') or 0;
 batch python:modules['ZTUtils'].Batch(employees,
 size=10,
 start=start);
 previous python:batch.previous;
 next python:batch.next">

 <p>
 <a tal:condition="previous"
 tal:attributes="href string:${request/URL0}?start:int=${previous/first}"
 href="previous_url">previous
 <a tal:condition="next"
 tal:attributes="href string:${request/URL0}?start:int=${next/first}"
 href="next_url">next
 </p>

 <ul tal:repeat="employee batch" >

 Bob Jones
 makes $100,000
 a year.

 </body>
 </html>

This example iterates over batches of results from the getEmployees ZSQL Method. It draws a previous
and a next link as necessary to allow you to page through all the results a batch at a time.

Take a look at the tal:define statement on the body element. It defines a bunch of batching variables.
The employees variable is a potentially big list of employee objects returned by the getEmployees

Chapter 9. Advanced Page Templates 157

ZSQL Method. The second variable, start, is either set to the value of request/start or to zero if there
is no start variable in the request. The start variable keeps track of where you are in the list of
employees. The batch variable is a batch of ten items from the lists of employees. The batch starts at the
location specified by the start variable. The previous and next variables refer to the previous and next
batches (if any). Since all these variables are defined on the body element, they are available to all elements
inside the body.

Next let's look at the navigation links. They create hyper links to browse previous and next batches. The
tal:condition statement first tests to see if there is a previous and next batch. If there is a previous or
next batch, then the link is rendered, otherwise there is not link. The tal:attributes statement creates a
link to the previous and next batches. The link is simply the URL or the current page ('request/URL0') along
with a query string indicating the start index of the batch. For example, if the current batch starts with index
10, then the previous batch will start with an index of 0. The first variable of a batch gives its staring
index, so in this case, previous.start would be 0.

It's not important to fully understand the workings of this example. Simply copy it, or use a batching example
created by the Z Search Interface. Later when you want to do more complex batching you can experiment by
changing the example code. Don't forget to consult Appendix B, "API Reference" for more information on the
ZTUtils module and Batch objects.

Miscellaneous Utilities

Zope provides a couple Python modules which may come in handy when using Page Templates. The
string, math, and random modules can be used in Python expressions for string formatting, math
function, and pseudo−random number generation. These same modules are available from DTML and
Python−based scripts. See Appendix B, "API Reference" for more information on these modules.

The Products.PythonScripts.standard module is designed to provide utilities to Python−based
scripts, but it's also useful for Page Templates. It includes various string and number formatting functions. See
Appendix B, "API Reference" for more information.

As mentioned earlier in the chapter, the sequence module provides a handy sort function. See Appendix
B, "API Reference" for the details.

Finally the AccessControl module includes a function and a class which you'll need if you want to test
access and to get the authenticated user. See Appendix B, "API Reference" for more information.

Conclusion

This chapter covers all the nooks and crannies of Page Templates, and after reading it you may feel a little
overwhelmed. Don't worry, you don't need to know everything in this chapter to effectively use Page
Templates. You should understand the different path types and macros, but you can come back to the rest of
the material when you need it. The advanced features that you've learned about in this chapter are there for
you when you need them. It's encouraging to know that when you're ready you can do some pretty impressive
tricks with Page Templates.

Chapter 9. Advanced Page Templates 158

Chapter 10: Advanced Zope Scripting
Zope manages your presentation, logic and data with objects. So far, you've seen how Zope can manage
presentation with DTML, and data with files and images. This chapter shows you how to add Script objects
that allows you to write scripts in Python, and Perl through your web browser.

What is logic and how does it differ from presentation? Logic provides the actions that change objects, send
messages, test conditions and respond to events, whereas presentation formats and displays information and
reports. Typically you will use DTML to handle presentation, and Zope scripting with Python and Perl to
handle logic.

Zope Scripts

Zope Script objects are objects that encapsulate a small chunk of code written in a programming language.
Currently, Zope provides Python−based Scripts, which are written in the Python language, and Perl−based
Scripts which are written in the Perl language. Script objects are new as of Zope 2.3, and are the preferred
way to write programming logic in Zope.

So far in this book you have heavily used DTML Methods and Documents to create simple web applications
in Zope. DTML allows you to perform simple scripting operations such as string manipulation. For the most
part, however, DTML Methods should be used for presentation. DTML Methods are explained in Chapters 4,
"Dynamic Content with DTML", and Chapter 8, "Variables and Advanced DTML".

Here is an overview of Zope's scripts:

Python−based Scripts
You can use Python, a general purpose scripting language, to control Zope objects and perform other
tasks. These Scripts give you general purpose programming facilities within Zope.

Perl−based Scripts
You can use Perl, a powerful text processing language, to script Zope objects and access Perl
libraries. These scripts offer benefits similar to those of Python−based Scripts, but may be more
appealing for folks who know Perl but not Python, or who want to use Perl libraries for which there
are no Python equivalents.

You can add these scripts to your Zope application just like any other object.

Calling Scripts

Zope scripts are called from the web or from other scripts or objects. Almost any type of script can be called
by any other type of object; you can call a Python−based Script from a DTML Method, or a built−in method
from a Perl−based Script. In fact scripts can call scripts which call other scripts, and so on. As you saw in
Chapter 4, "Dynamic Content with DTML", you can replace a script with a script implemented in another
language transparently. For example if you're using Perl to perform a task, but later decide that it would be
better done in Python, you can usually replace the script with a Python−based Script with the same id.

When you call a script, the way that you call it gives the script a context in which to execute. A script's
context is important. For example, when you call a script you usually want to single out some object that is
central to the script's task. You would call the script in the context of the object on which you want it to carry
out its task. It is simpler to just say that you are calling the script on the object.

http://www.python.org
http://www.perl.org

Calling Scripts From the Web

You can call a script directly from with web by visiting its URL. You can call a single script on different
objects by using different URLS. This works because by using different URLs you can give your scripts
different contexts, and scripts can operate differently depending on their context. This is a powerful feature
that enables you to apply logic to objects like documents or folders without having to embed the actual code
within the object.

To call a script on an object from the web, simply visit the URL of the object, followed by the name of the
script. This places the script in the context of your object. For example suppose you have a collection of
objects and scripts as shown in Figure 8−1.

Figure 8−1 A collection of objects and scripts

To call the feed script on the hippo object you would visit the URL Zoo/LargeAnimals/hippo/feed To call the
feed script on the kangarooMouse object you can visit the URL Zoo/SmallAnimals/kangarooMouse/feed.
These URLs place the feed script in the context of the hippo and kargarooMouse objects, respectively.

Zope uses a URL as a map to find what object and what script you want to call.

Zope breaks apart the URL and compares it to the object hierarchy, working backwards until it finds a match
for each part. This process is called URL traversal. For example, when you give Zope the URL
Zoo/LargeAnimals/hippo/feed, it starts at the root folder and looks for an object named Zoo. It then moves to
the Zoo folder and looks for an object named LargeAnimals. It moves to the LargeAnimals folder and looks
for an object named hippo. It moves to the hippo object and looks for an object named feed. The feed script
can't be found in the hippo object and is located in the Zoo folder by a process called acquisition.

Acquisition does two things. First it tries to find the object in the current object's containers. If that doesn't
work it backs up along the URL path and tries again. In this example Zope first looks for the feed object in
hippo, then it goes to the first container, LargeAnimals, and then to the next container, Zoo, where feed is
finally found.

Chapter 10: Advanced Zope Scripting 160

Now Zope has reached the end of the URL. It calls the last object found, feed. The feed script operates on its
context which is the second to last object found, the hippo object. This is how the feed script is called on the
hippo object.

Likewise you can call the wash method on the hippo with the URL Zoo/LargeAnimals/hippo/wash. In this
case Zope acquires the wash method from the LargeAnimals folder.

More complex arrangements are possible. Suppose you want to call the vaccinate script on the hippo object.
What URL can you use? If you visit the URL Zoo/LargeAnimals/hippo/vaccinate Zope will not be able to find
the vaccinate script since it isn't in any of the hippo object's containers.

The solution is to give the path to the script as part of the URL. This way, when Zope uses acquisition to find
the script it will find the right script as it backtracks along the URL. The URL to vaccinate the hippo is
Zoo/Vet/LargeAnimals/hippo/vaccinate. Likewise, if you want to call the vaccinate script on the
kargarooMouse object you should use the URL Zoo/Vet/SmallAnimals/kargarooMouse/vaccinate.

Let's follow along as Zope traverses the URL Zoo/Vet/LargeAnimals/hippo/vaccinate. Zope starts in the root
folder and looks for an object named Zoo. It moves to the Zoo folder and looks for an object named Vet. It
moves to the Vet folder and looks for an object named LargeAnimals. The Vet folder doesn't contain an object
with that name, but it can acquire the LargeAnimals folder from its container, Zoo folder. So it moves to the
LargeAnimals folder and looks for an object named hippo. It then moves to the hippo object and looks for an
object named vaccinate. Since the hippo object does not contain a vaccinate object and neither do any of its
containers, Zope backtracks along the URL path trying to find a vaccinate object. First it backs up to the
LargeAnimals folder where vaccinate still can't be found. Then it backs up to the Vet folder. Here it finds a
vaccinate script in the Vet folder. Since Zope has now come to the end of the URL, it calls the vaccinate script
in the context of the hippo object.

When Zope looks for a sub−object during URL traversal, it first looks for the sub−object in the current object.
If it can't find it in the current object it looks in the current object's containers. If it still can't find the
sub−object, it backs up along the URL path and searches again. It continues this process until it either finds
the object or raises an error if it can't be found.

This is a very useful mechanism, and it allows you to be quite expressive when you compose URLs. The path
that you tell Zope to take on its way to an object will determine how it uses acquisition to look up the object's
scripts.

Calling Scripts from other Objects

You can call scripts from other objects. For example, it is common to call scripts from DTML Methods.

As you saw in Chapter 8, "Variables and Advanced DTML", you can call Zope scripts from DTML with the
call tag. For example:

 <dtml−call updateInfo>

DTML will call the updateInfo script. You don't have to specify if the script is implemented in Perl, Python,
or any other language (you can also call other DTML objects and SQL Methods this way).

If the updateInfo script requires parameters, you must either choose a name for the DTML namespace binding
(see Binding Variables below) so that the parameters will be looked up in the namespace, or you must pass the
parameters in an expression, like this:

 <dtml−call expr="updateInfo(color='brown', pattern='spotted')">

Chapter 10: Advanced Zope Scripting 161

Calling scripts from Python and Perl works the same way, except that you must always pass script parameters
when you call a script from Python or Perl. For example here's how you might call the updateInfo script from
Python:

 context.updateInfo(color='brown',
 pattern='spotted')

From Perl you could do the same thing using standard Perl semantics for calling scripts:

 $self−>updateInfo(color => 'brown',
 pattern => 'spotted');

Each scripting language has a different way of writing a script call, but you don't have to know what language
is used in the script you are calling. Effectively Zope objects can have scripts implemented in several different
languages. But when you call a script you don't have to know how it's implemented, you just need to pass the
appropriate parameters.

Zope locates the scripts you call using acquisition the same way it does when calling scripts from the web.
Returning to our hippo feeding example of the last section, let's see how to vaccinate a hippo from Python and
Perl. Figure 8−2 shows a slightly updated object hierarchy that contains two scripts, vaccinateHippo.py and
vaccinateHippo.pl.

Figure 8−2 A collection of objects and scripts

Suppose vaccinateHippo.py is a Python script. Here's how you call the vaccinate script on the hippo object
from Python:

Chapter 10: Advanced Zope Scripting 162

 context.Vet.LargeAnimals.hippo.vaccinate()

In other words you simply access the object using the same acquisition path as you would use if calling it
from the web. Likewise in Perl you could say:

 $self−>Vet−>LargeAnimals−>hippo−>vaccinate();

Using scripts from other scripts is very similar to calling scripts from the web. The semantics differ slightly
but the same acquisition rules apply. Later on in this chapter, you'll see more examples of how scripts in both
Perl and Python work.

Passing Parameters to Scripts

All scripts can be passed parameters. A parameter gives a script more information about what to do. When
you call a script from the web, Zope will try to find the script's parameters in the web request and pass them to
your script. For example if you have a script with parameters dolphin and REQUEST Zope will look for
dolphin in the web request, and will pass the request itself as the REQUEST parameter. In practical terms this
means that it is easy to do form processing in your script. For example here is a form:

 <form action="actionScript">
 Name <input type="text" name="name">

 Age <input type="text" name="age:int">

 <input type="submit">
 </form>

You can easily process this form with a script named actionScript that includes name and age in its parameter
list:

 ## Script (Python) "actionScript"
 ##parameters=name, age
 ##
 "Process form"
 context.processName(name)
 context.processAge(age)
 return context.responseMessage()

There's no need to process the form manually to extract values from it. Form elements are passed as strings, or
lists of strings in the case of check boxes, and multiple−select input.

In addition to form variables, you can specify any request variables as script parameters. For example, to get
access to the request and response objects just include REQUEST and RESPONSE in your list of parameters.
Request variables are detailed more fully in Appendix B.

One thing to note is that the context variable refers to the object that your script is called on. This works
similarly in Perl−based Scripts, for example:

 my $self = shift;
 $self−>processName($name);
 $self−>processAge($age);
 return $context−>responseMessage();

In the Python version of the example, there is a subtle problem. You are probably expecting an integer rather
than a string for age. You could manually convert the string to an integer using the Python int built−in:

 age=int(age) # covert a string to an integer

Chapter 10: Advanced Zope Scripting 163

But this manual conversion may be inconvenient. Zope provides a way for you to specify form input types in
the form, rather than in the processing script. Instead of converting the age variable to an integer in the
processing script, you can indicate that it is an integer in the form:

 Age <input type="text" name="age:int">

The :int appended to the form input name tells Zope to automatically convert the form input to an integer.
If the user of your form types something that can't be converted to an integer (such as "22 going on 23") then
Zope will raise an exception as shown in Figure 8−3.

Figure 8−3 Parameter conversion error

It's handy to have Zope catch conversion errors, but you may not like Zope's error messages. You should
avoid using Zope's converters if you want to provide your own error messages.

Zope can perform many parameter conversions. Here is a list of Zope's basic parameter converters.

boolean
Converts a variable to true or false. Variables that are 0, None, an empty string, or an empty sequence
are false, all others are true.

int
Converts a variable to an integer.

long
Converts a variable to a long integer.

float
Converts a variable to a floating point number.

string
Converts a variable to a string. Most variables are strings already so this converter is seldom used.

text
Converts a variable to a string with normalized line breaks. Different browsers on various platforms
encode line endings differently, so this script makes sure the line endings are consistent, regardless of
how they were encoded by the browser.

Chapter 10: Advanced Zope Scripting 164

list
Converts a variable to a Python list.

tuple
Converts a variable to a Python tuple. A tuple is like a list, but cannot be modified.

tokens
Converts a string to a list by breaking it on white spaces.

lines
Converts a string to a list by breaking it on new lines.

date
Converts a string to a DateTime object. The formats accepted are fairly flexible, for example
10/16/2000, 12:01:13 pm.

required
Raises an exception if the variable is not present.

ignore_empty
Excludes the variable from the request if the variable is an empty string.

These converters all work in more or less the same way to coerce a string form variable into a specific type.
You may recognize these converters from Chapter 3, "Using Basic Zope Objects", where we discussed
properties. These converters are used by Zope's property facility to convert properties to the right type.

The list and tuple converters can be used in combination with other converters. This allows you to apply
additional converters to each element of the list or tuple. Consider this form:

 <form action="processTimes">

 <p>I would prefer not to be disturbed at the following
 times:</p>

 <input type="checkbox" name="disturb_times:list:date"
 value="12:00 AM"> Midnight

 <input type="checkbox" name="disturb_times:list:date"
 value="01:00 AM"> 1:00 AM

 <input type="checkbox" name="disturb_times:list:date"
 value="02:00 AM"> 2:00 AM

 <input type="checkbox" name="disturb_times:list:date"
 value="03:00 AM"> 3:00 AM

 <input type="checkbox" name="disturb_times:list:date"
 value="04:00 AM"> 4:00 AM

 <input type="submit">
 </form>

By using the list and date converters together Zope will convert each selected time to a date and then combine
all selected dates into a list named disturb_times.

A more complex type of form conversion is to convert a series of inputs into records. Records are structures
that have attributes. Using records you can combine a number of form inputs into one variable with attributes.
The available record converters are:

record
Converts a variable to a record attribute.

records
Converts a variable to a record attribute in a list of records.

Chapter 10: Advanced Zope Scripting 165

default
Provides a default value for a record attribute if the variable is empty.

ignore_empty
Skips a record attribute if the variable is empty.

Here are some examples of how these converters are used:

 <form action="processPerson">

 First Name <input type="text" name="person.fname:record">

 Last Name <input type="text" name="person.lname:record">

 Age <input type="text" name="person.age:record:int">

 <input type="submit">
 </form>

This form will call the processPerson script with one parameter, person. The person variable will have fname,
lname and age attributes. Here's an example of how you might use the person variable in your processPerson
script:

 ## Script (Python) "processPerson"
 ##parameters=person
 ##
 " process a person record "
 full_name="%s %s" % (person.fname, person.lname)
 if person.age < 21:
 return "Sorry, %s. You are not old enough to adopt an aardvark." % full_name
 return "Thanks, %s. Your aardvark is on its way." % full_name

The records converter works like the record converter except that it produces a list of records, rather than just
one. Here's an example form:

 <form action="processPeople">

 <p>Please, enter information about one or more of your next of
 kin.</p>

 <p>First Name <input type="text" name="people.fname:records">
 Last Name <input type="text" name="people.lname:records"></p>

 <p>First Name <input type="text" name="people.fname:records">
 Last Name <input type="text" name="people.lname:records"></p>

 <p>First Name <input type="text" name="people.fname:records">
 Last Name <input type="text" name="people.lname:records"></p>

 <input type="submit">
 </form>

This form will call the processPeople script with a variable called people that is a list of records. Each record
will have fname and lname attributes.

Another useful parameter conversion uses form variables to rewrite the action of the form. This allows you to
submit a form to different scripts depending on how the form is filled out. This is most useful in the case of a
form with multiple submit buttons. Zope's action converters are:

action
Changes the action of the form. This is mostly useful in the case where you have multiple submit
buttons on one form. Each button can be assigned to a script that gets called when that button is

Chapter 10: Advanced Zope Scripting 166

clicked to submit the form.
default_action

Changes the action script of the form when no other method converter is found.

Here's an example form that uses action converters:

 <form action="">

 <p>Select one or more employees</p>

 <input type="checkbox" name="employees:list" value="Larry"> Larry

 <input type="checkbox" name="employees:list" value="Simon"> Simon

 <input type="checkbox" name="employees:list" value="Rene"> Rene

 <input type="submit" name="fireEmployees:action"
 value="Fire!">

 <input type="submit" name="promoteEmployees:action"
 value="Promote!">

 </form>

This form will call either the fireEmployees or the promoteEmployees script depending on which of the two
submit buttons is used. Notice also how it builds a list of employees with the list converter. Form converters
can be very useful when designing Zope applications.

Script Security

All scripts that can be edited through the web are subject to Zope's standard security policies. The only scripts
that are not subject to these security restrictions are scripts that must be edited through the filesystem. These
unrestricted scripts include Python and Perl External Methods.

Chapter 7, "Users and Security" covers security in more detail. You should consult the Roles of Executable
Objects and Proxy Roles sections for more information on how scripts are restricted by Zope security
constraints.

The Zope API

One of the main reasons to script Zope is to get convenient access to the Zope API (Application Programmer
Interface). The Zope API describes built−in actions that can be called on Zope objects. You can examine the
Zope API in the help system, as shown in Figure 8−4.

Chapter 10: Advanced Zope Scripting 167

Figure 8−4 Zope API Documentation

Suppose you'd like to have a script that takes a file you upload from a form and creates a Zope File object in a
folder. To do this you need to know a number of Zope API actions. It's easy enough to read files in Python or
Perl, but once you have the file you need to know what actions to call to create a new File object in a Folder.

There are many other things that you might like to script using the Zope API. Any management task that you
can perform through the web can be scripted using the Zope API. This includes creating, modifying and
deleting Zope objects. You can even perform maintenance tasks, like restarting Zope and packing the Zope
database.

The Zope API is documented in Appendix B, "API Reference" as well as in the Zope online help. The API
documentation shows you which classes inherit from which other classes. For example Folder inherits from
ObjectManager. This means that Folder objects have all the actions listed in the ObjectManager section of the
API reference.

Using Python−based Scripts

Earlier in this chapter you saw some examples of scripts. Now let's take a look at scripts in more detail.

The Python Language

Python is a high−level, object oriented scripting language. Most of Zope is written in Python. Many folks like
Python because of its clarity, simplicity and ability to scale to large projects.

There are many resources available for learning Python. The python.org web site has lots of Python
documentation including a tutorial by Python's Creator, Guido van Rossum.

Python comes with a rich set of modules and packages. You can find out more about the Python standard
library at the python.org web site.

Chapter 10: Advanced Zope Scripting 168

http://www.python.org/
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html

Another highly respected source for reference material is Python Essential Reference by David Beazley
published by New Riders.

Creating Python−based Scripts

To create a Python−based Script choose Script (Python) from the Product add list. Name the script hello, and
click the Add and Edit button. You should now see the Edit view of your script as shown in Figure 8−5.

Figure 8−5 Script editing view

This screen allows you to control the parameters and body of your script. You can enter your script's
parameters in the parameter list field. Type the body of your script in the text area at the bottom of the screen.

Enter name="World" into the parameter list field, and type:

 return "Hello %s." % name

in the body of the script. This is equivalent to this in standard Python syntax:

 def hello(name="World"):
 return "Hello %s." % name

You can now test this script by going to the Test tab as shown in Figure 8−6.

Chapter 10: Advanced Zope Scripting 169

Figure 8−6 Testing a Script

Leave the name field blank and click the Run Script button. Zope should return "Hello World." Now go back
and try entering your name in the Value field and click the Run Script button. Zope should now say hello to
you.

Since scripts are called on Zope objects, you can get access to Zope objects via the context variable. For
example, this script returns the number of objects contained by a given Zope object:

 ## Script (Python) "numberOfObjects
 ##
 return len(context.objectIds())

The script calls context.objectIds() to find out the number of contained objects. When you call this
script on a given Zope object, the context variable is bound to the context object. So if you called this script
by visiting the URL FolderA/FolderB/numberOfObjects the context parameter would refer to the FolderB
object.

When writing your logic in Python you'll typically want to query Zope objects, call other scripts and return
reports. For example, suppose you want to implement a simple workflow system in which various Zope
objects are tagged with properties that indicate their status. You might want to produce reports that summarize
which objects are in which state. You can use Python to query objects and test their properties. For example,
here is a script named objectsForStatus with one parameter, status:

 ## Script (Python) "objectsForStatus"
 ##parameters=status
 ##
 """
 Returns all sub−objects that have a given status
 property.
 """
 results=[]
 for object in context.objectValues():
 if object.getProperty('status') == status:

Chapter 10: Advanced Zope Scripting 170

 results.append(object)
 return results

This script loops through an object's sub−objects and returns all the sub−objects that have a status property
with a given value.

You could then use this script from DTML to email reports. For example:

 <dtml−sendmail>
 To: <dtml−var ResponsiblePerson>
 Subject: Pending Objects

 These objects are pending and need attention.

 <dtml−in expr="objectsForStatus('Pending')">
 <dtml−var title_or_id> (<dtml−var absolute_url>)
 </dtml−in>
 </dtml−sendmail>

This example shows how you can use DTML for presentation or report formatting, while Python handles the
logic. This is a very important pattern, that you'll see over and over in Zope.

String Processing

One common use for scripts is to do string processing. Python has a number of standard modules for string
processing. You cannot do regular expression processing from Python−based Scripts, but you do have access
to the string module. You have access to the string module from DTML as well, but it is much easier to use
from Python. Suppose you want to change all the occurrences of a given word in a DTML Document. Here's a
script, replaceWord, that accepts two arguments, word and replacement. This will change all the occurrences
of a given word in a DTML Document:

 ## Script (Python) "replaceWord"
 ##parameters=word, replacement
 ##
 """
 Replaces all the occurrences of a word with a
 replacement word in the source text of a DTML
 Document. Call this script on a DTML Document to use
 it.

 Note: you'll need permission to edit a document to
 call this script on the document.
 """
 import string
 text=context.document_src()
 text=string.replace(text, word, replacement)
 context.manage_edit(text, context.title)

You can call this script from the web on a DTML Document to change the source of the document. For
example, the URL Swamp/replaceWord?word=Alligatorodile would call the replaceWord script on a
document named Swamp and would replace all occurrences of the word Alligator with Crocodile.

The string module that you can access via scripts does not have all the features available in the standard
Python string module. These limitations are imposed for security reasons. See Appendix A for more
information on the string module.

One thing that you might be tempted to do with scripts is to use Python to search for objects that contain a
given word in their text or as a property. You can do this, but Zope has a much better facility for this kind of

Chapter 10: Advanced Zope Scripting 171

work, the Catalog. See Chapter 11, "Searching and Categorizing Content" for more information on searching
with Catalogs.

Doing Math

Another common use of scripts is to perform mathematical calculations which would be unwieldy from
DTML. The math and random modules give you access from Python to many math functions. These modules
are standard Python services as described on the Python.org web site.

math
Mathematical functions such as sin and cos.

random
Pseudo random number generation functions.

One interesting function of the random module is the choice function that returns a random selection from a
sequence of objects. Here's an example of how to use this function in a script called randomImage:

 ## Script (Python) "randomImage"
 ##
 """
 When called on a Folder that contains Image objects this
 script returns a random image.
 """
 import random
 return random.choice(context.objectValues('Image'))

Suppose you had a Folder named Images that contained a number of images. You could display a random
image from the folder in DTML like so:

 <dtml−with Images>
 <dtml−var randomImage>
 </dtml−with>

This DTML calls the randomImage script on the Images folder. The result is a HTML IMG tag that references
a random image in the Images Folder.

Binding Variables

A set of special variables is created whenever a Python−based Script is called. These variables, defined on the
Bindings view, are used by your script to access other Zope objects and scripts.

By default, the names of these binding variables are set to reasonable values and you should not need to
change them. They are explained here so that you know how each special variable works, and how you can
use these variables in your scripts.

Context
The Context binding defaults to the name context. This variable refers to the object that the script is
called on.

Container
The Container binding defaults to the name container. This variable refers to the folder that the script
is defined in.

Script
The Script binding defaults to the name script. This variable refers to the script object itself.

Namespace

Chapter 10: Advanced Zope Scripting 172

http://www.python.org/doc/current/lib/module-math.html
http://www.python.org/doc/current/lib/module-random.html

The Namespace binding is left blank by default. This is an advanced variable that you will not need
for any of the examples in this book. If your script is called from a DTML Method, and you have
chosen a name for this binding, then the named variable contains the DTML namespace explained in
Chapter 8, "Variables and Advanced DTML". Also, if this binding is set, the script will search for its
parameters in the DTML namespace when called from DTML without explicitly passing any
arguments.

Subpath
The Subpath binding defaults to the name traverse_subpath. This is an advanced variable that you
will not need for any of the examples in this book. If your script is traversed, meaning that other path
elements follow it in a URL, then those path elements are placed in a list, from left to right, in this
variable.

If you edit your scripts via FTP, you'll notice that these bindings are listed in comments at the top of your
script files. For example:

 ## Script (Python) "example"
 ##bind container=container
 ##bind context=context
 ##bind namespace=
 ##bind script=script
 ##bind subpath=traverse_subpath
 ##parameters=name, age
 ##title=
 ##
 return "Hello %s you are %d years old." % (name, age)

You can change your script's bindings by changing these comments and then uploading your script.

Print Statement Support

Python−based Scripts have a special facility to help you print information. Normally printed data is sent to
standard output and is displayed on the console. This is not practical for a server application like Zope since
most of the time you do not have access to the server's console. Scripts allow you to use print anyway and to
retrieve what you printed with the special variable printed. For example:

 ## Script (Python) "printExample"
 ##
 for word in ('Zope', 'on', 'a', 'rope'):
 print word
 return printed

This script will return:

 Zope
 on
 a
 rope

The reason that there is a line break in between each word is that Python adds a new line after every string that
is printed.

You might want to use the print statement to perform simple debugging in your scripts. For more complex
output control you probably should manage things yourself by accumulating data, modifying it and returning
it manually rather than relying on the print statement.

Chapter 10: Advanced Zope Scripting 173

Security Restrictions

Scripts are restricted in order to limit their ability to do harm. What could be harmful? In general, scripts keep
you from accessing private Zope objects, making harmful changes to Zope objects, hurting the Zope process
itself, and accessing the server Zope is running on. These restrictions are implemented through a collection of
limits on what your scripts can do.

Loop limits
Scripts cannot create infinite loops. If your script loops a very large number of times Zope will raise
an error. This restriction covers all kinds of loops including for and while loops. The reason for this
restriction is to limit your ability to hang Zope by creating an infinite loop.

Import limits
Scripts cannot import arbitrary packages and modules. You are limited to importing the
Products.PythonScripts.standard utility module, the AccessControl module, those modules available
via DTML (string, random, math, sequence), and modules which have been specifically made
available to scripts by product authors. See Appendix B, "API Reference" for more information on
these modules. If you want to be able to import any Python module, use an External Method, as
described later in the chapter.

Access limits
You are restricted by standard Zope security policies when accessing objects. In other words the user
executing the script is checked for authorization when accessing objects. As with all executable
objects you can modify the effective roles a user has when calling a script using Proxy Roles (see
Chapter 7, "Users and Security", for more information.) In addition, you cannot access objects whose
names begin with underscore, since Zope considers these objects to be private.

Writing limits
In general you cannot change Zope object attributes using scripts. You should call scripts on Zope
objects to change them, rather than directly changing instance attributes.

Despite these limits, a determined user could use large amounts of CPU time and memory using
Python−based Scripts. So malicious scripts could constitute a kind of denial of service attack by using lots of
resources. These are difficult problems to solve and DTML suffers from the same potential for abuse. As with
DTML, you probably shouldn't grant access to scripts to untrusted people.

Built−in Functions

Python−based Scripts give you a slightly different menu of built−ins than you find in normal Python. Most of
the changes are designed to keep you from performing unsafe actions. For example, the open function is not
available, which keeps you from being able to access the filesystem. To partially make up for some missing
built−ins a few extra functions are available.

These restricted built−ins work the same as standard Python built−ins: None, abs, apply, callable, chr, cmp,
complex, delattr, divmod, filter, float, getattr, hash, hex, int, isinstance, issubclass, list, len, long, map, max,
min, oct, ord, repr, round, setattr, str, tuple. For more information on what these built−ins do, see the online
Python Documentation.

The range and pow functions are available and work the same way they do in standard Python; however, they
are limited to keep them from generating very large numbers and sequences. This limitation helps protect
against denial of service attacks as described previously.

In addition, these DTML utility functions are available: DateTime, and test. See Appendix A, "DTML
Reference" for more information on these functions.

Chapter 10: Advanced Zope Scripting 174

http://www.python.org/doc/

Finally to make up for the lack of a type function, there is a same_type function that compares the type of two
or more objects, returning true if they are of the same type. So instead of saying:

 if type(foo) == type([]):
 return "foo is a list"

to check if foo is a list, you would instead use the same_type function to check this:

 if same_type(foo, []):
 return "foo is a list"

Now let's take a look at External Methods which provide more power and less restrictions than Python−based
Scripts.

Using External Methods

Sometimes the security constraints imposed by scripts get in your way. For example, you might want to read
files from disk, or access the network, or use some advanced libraries for things like regular expressions or
image processing. In these cases you'll want to use External Methods.

To create and edit External Methods you need access to the filesystem. This makes editing these scripts more
cumbersome since you can't edit them right in your web browser. However requiring access to the server's
filesystem provides an important security control. If a user has access to a servers filesystem they already have
the ability to harm Zope. So by requiring that unrestricted scripts be edited on the filesystem Zope ensures that
only people who are already trusted have access.

Unrestricted scripts are created and edited in files on the Zope server in the Extensions directory. This
directory is located in the top−level Zope directory. Alternately you can create and edit unrestricted scripts in
an Extensions directory inside an installed Zope product directory.

Create a file named Example.py in the Zope Extensions directory on your server. In the Example.py file, enter
the following code:

 def hello(name="World"):
 return "Hello %s." % name

You've created a Python function in a Python module. Now let's use this function in the External Method.

You manage External Methods the same way you manage restricted scripts with the exception that you cannot
edit the script itself through the web. Instead of editing code you must tell Zope where to find your code on
the filesystem. You do this by specifying the name of your Python file and the name of the function within the
module.

To create an External Method choose External Method from the product add list. You will be taken to an add
form where you must provide an id. Type "hello" into the Id field and "hello" in the Function name field and
"Example" in the Module name field and click the Add button. You should now see a new External Method
object in your folder. Click on it. You should be taken to the Properties view of your new External Method as
shown in Figure 8−7.

Chapter 10: Advanced Zope Scripting 175

Figure 8−7 External Method Properties view

Now test your new script by going to the Test view. You should see a greeting. You can pass different names
to the script by specifying them in the URL. For example, hello?name=Spanish+Inquisition.

This example is exactly the same as the hello world example that you saw for using scripts. In fact for simple
string processing tasks like this restricted scripts offer a better solution since they are easier to work with.

The main reasons to use an unrestricted script are to access the filesystem or network or to use Python
packages that are not available to restricted scripts.

Here's an example External Method that uses the Python Imaging Library (PIL) to create a thumbnail version
of an existing Image object in a Folder. Enter the following code in a file named Thumbnail.py in the
Extensions directory:

 def makeThumbnail(self, original_id, size=200):
 """
 Makes a thumbnail image given an image Id when called on a Zope
 folder.

 The thumbnail is a Zope image object that is a small JPG
 representation of the original image. The thumbnail has a
 'original_id' property set to the id of the full size image
 object.
 """

 from PIL import Image
 from StringIO import StringIO
 import os.path

 # create a thumbnail image file
 original_image=getattr(self, original_id)
 original_file=StringIO(str(original_image.data))
 image=Image.open(original_file)
 image=image.convert('RGB')

Chapter 10: Advanced Zope Scripting 176

 image.thumbnail((size,size))
 thumbnail_file=StringIO()
 image.save(thumbnail_file, "JPEG")
 thumbnail_file.seek(0)

 # create an id for the thumbnail
 path, ext=os.path.splitext(original_id)
 thumbnail_id=path + '.thumb.jpg'

 # if there's and old thumbnail, delete it
 if thumbnail_id in self.objectIds():
 self.manage_delObjects([thumbnail_id])

 # create the Zope image object
 self.manage_addProduct['OFSP'].manage_addImage(thumbnail_id,
 thumbnail_file,
 'thumbnail image')
 thumbnail_image=getattr(self, thumbnail_id)

 # set the 'originial_id' property
 thumbnail_image.manage_addProperty('original_id', original_id, 'string')

You must have PIL installed for this example to work. See the PythonWorks website for more information on
PIL. To use this code create an External Method named makeThumbnail that uses the makeThumbnail
function in the Thumbnail module.

Now you have a method that will create a thumbnail image. You can call it on a Folder with a URL like
ImageFolder/makeThumbnail?original_id=Horse.gif This would create a thumbnail image named
Horse.thumb.jpg.

You can use a script to loop through all the images in a folder and create thumbnail images for them. Create a
script named makeThumbnails:

 ## Script (Python) "makeThumbnails"
 ##
 for image_id in context.objectIds('Image'):
 context.makeThumbnail(image_id)

This will loop through all the images in a folder and create a thumbnail for each one.

Now call this script on a folder with images in it. It will create a thumbnail image for each contained image.
Try calling the makeThumbnails script on the folder again and you'll notice it created thumbnails of your
thumbnails. This is no good. You need to change the makeThumbnails script to recognize existing thumbnail
images and not make thumbnails of them. Since all thumbnail images have an original_id property you can
check for that property as a way of distinguishing between thumbnails and normal images:

 ## Script (Python) "makeThumbnails"
 ##
 for image in context.objectValues('Image'):
 if not image.hasProperty('original_id'):
 context.makeThumbnail(image.getId())

Delete all the thumbnail images in your folder and try calling your updated makeThumbnails script on the
folder. It seems to work correctly now.

Now with a little DTML you can glue your script and External Method together. Create a DTML Method
called displayThumbnails:

Chapter 10: Advanced Zope Scripting 177

 <dtml−var standard_html_header>

 <dtml−if updateThumbnails>
 <dtml−call makeThumbnails>
 </dtml−if>

 <h2>Thumbnails</h2>

 <table><tr valign="top">

 <dtml−in expr="objectValues('Image')">
 <dtml−if original_id>
 <td>
 <dtml−var sequence−item>

 <dtml−var original_id>
 </td>
 </dtml−if>
 </dtml−in>

 </tr></table>

 <form>
 <input type="submit" name="updateThumbnails" value="Update Thumbnails">
 </form>

 <dtml−var standard_html_footer>

When you call this DTML Method on a folder it will loop through all the images in the folder and display all
the thumbnail images and link them to the originals as shown in Figure 8−8.

Figure 8−8 Displaying thumbnail images

This DTML Method also includes a form that allows you to update the thumbnail images. If you add, delete
or change the images in your folder you can use this form to update your thumbnails.

This example shows how to use scripts, External Methods and DTML together. Python takes care of the logic

Chapter 10: Advanced Zope Scripting 178

while the DTML handles presentation. Your External Methods handle external packages while your scripts do
simple processing of Zope objects.

Processing XML with External Methods

You can use External Methods to do darn near anything. One interesting thing that you can do is to
communicate using XML. You can generate and process XML with External Methods.

Zope already understands some kinds of XML messages such as XML−RPC and WebDAV. As you create
web applications that communicate with other systems you may want to have the ability to receive XML
messages. You can receive XML a number of ways: you can read XML files from the file system or over the
network, or you can define scripts that take XML arguments which can be called by remote systems.

Once you have received an XML message you must process the XML to find out what it means and how to
act on it. Let's take a quick look at how you might parse XML manually using Python. Suppose you want to
connect your web application to a Jabber chat server. You might want to allow users to message you and
receive dynamic responses based on the status of your web application. For example suppose you want to
allow users to check the status of animals using instant messaging. Your application should respond to XML
instant messages like this:

 <message to="cage_monitor@zopezoo.org" from="user@host.com">
 <body>monkey food status</body>
 </message>

You could scan the body of the message for commands, call a script and return responses like this:

 <message to="user@host.com" from="cage_monitor@zopezoo.org">
 <body>Monkeys were last fed at 3:15</body>
 </message>

Here is a sketch of how you could implement this XML messaging facility in your web application using an
External Method:

 # Uses Python 2.x standard xml processing packages. See
 # http://www.python.org/doc/current/lib/module−xml.sax.html for
 # information about Python's SAX (Simple API for XML) support If
 # you are using Python 1.5.2 you can get the PyXML package. See
 # http://pyxml.sourceforge.net for more information about PyXML.

 from xml.sax import parseString
 from xml.sax.handler import ContentHandler

 class MessageHandler(ContentHandler):
 """
 SAX message handler class

 Extracts a message's to, from, and body
 """

 inbody=0
 body=""

 def startElement(self, name, attrs):
 if name=="message":
 self.recipient=attrs['to']
 self.sender=attrs['from']
 elif name=="body":
 self.inbody=1

Chapter 10: Advanced Zope Scripting 179

http://www.jabber.com/

 def endElement(self, name):
 if name=="body":
 self.inbody=0

 def characters(self, content):
 if self.inbody:
 self.body=self.body + content

 def receiveMessage(self, message):
 """
 Called by a Jabber server
 """
 handler=MessageHandler()
 parseString(message, handler)

 # call a script that returns a response string
 # given a message body string
 response_body=self.getResponse(handler.body)

 # create a response XML message
 response_message="""
 <message to="%s" from="%s">
 <body>%s</body>
 </message>""" % (handler.sender, handler.recipient, response_body)

 # return it to the server
 return response_message

The receiveMessage External Method uses Python's SAX (Simple API for XML) package to parse the XML
message. The MessageHandler class receives callbacks as Python parses the message. The handler saves
information its interested in. The External Method uses the handler class by creating an instance of it, and
passing it to the parseString function. It then figures out a response message by calling getResponse with the
message body. The getResponse script (which is not shown here) presumably scans the body for commands,
queries the web applications state and returns some response. The receiveMessage method then creates an
XML message using response and the sender information and returns it.

The remote server would use this External Method by calling the receiveMessage method using the standard
HTTP POST command. Voila, you've implemented a custom XML chat server that runs over HTTP.

External Method Gotchas

While you are essentially unrestricted in what you can do in an External Method, there are still some things
that are hard to do.

While your Python code can do as it pleases if you want to work with the Zope framework you need to respect
its rules. While programming with the Zope framework is too advanced a topic to cover here, there are a few
things that should be aware of.

Problems can occur if you hand instances of your own classes to Zope and expect them to work like Zope
objects. For example, you cannot define a class in an External Method script file and assign it as an attribute
of a Zope object. This causes problems with Zope's persistence machinery. You also cannot easily hand
instances of your own classes over to DTML or scripts. The issue here is that your instances won't have Zope
security information. You can define and use your own classes and instances to your heart's delight, just don't
expect Zope to use them directly. Limit yourself to returning simple Python structures like strings, dictionaries
and lists or Zope objects.

Chapter 10: Advanced Zope Scripting 180

Using Perl−based Scripts

Perl−based Scripts allow you to script Zope in Perl. If you love Perl and don't want to learn Python to use
Zope, these scripts are for you. Using Perl−based Scripts you can use all your favorite Perl modules and treat
Zope like a collection of Perl objects.

The Perl Language

Perl is a high−level scripting language like Python. From a broad perspective, Perl and Python are very
similar languages, they have similar primitive data constructs and employ similar programming constructs.

Perl is a popular language for Internet scripting. In the early days of CGI scripting, Perl and CGI were
practically synonymous. Perl continues to be the dominant Internet scripting language.

Perl has a very rich collection of modules for tackling almost any computing task. CPAN (Comprehensive
Perl Archive Network) is the authoritative guide to Perl resources.

Perl−based Zope scripts are available for download from ActiveState. Perl−based scripts require you to have
Perl installed, and a few other packages, and how to install these things is beyond the scope of this book. See
the documentation that comes with Perl−based scripts from the above URL. There is also more information
provided by Andy McKay available on Zope.org.

Creating Perl−based Scripts

Perl−based Scripts are quite similar to Python−based Scripts. Both have access to Zope objects and are called
in similar ways. Here's the Perl hello world program:

 my $name=shift;
 return "Hello $name.";

Let's take a look at a more complex example script by Monty Taylor. It uses the LWP::UserAgent package
to retrieve the URL of the daily Dilbert comic from the network. Create a Perl−based Script named
get_dilbert_url with this code:

 use LWP::UserAgent;

 my $ua = LWP::UserAgent−>new;

 # retrieve the Dilbert page
 my $request = HTTP::Request−>new('GET','http://www.dilbert.com');
 my $response = $ua−>request($request);

 # look for the image URL in the HTML
 my $content = $response−>content;
 $content =~ m,(/comics/dilbert/archive/images/[^"]*),s;

 # return the URL
 return $content

You can display the daily Dilbert comic by calling this script from DTML by calling the script inside an
HTML IMG tag:

Chapter 10: Advanced Zope Scripting 181

http://www.perl.com/
http://search.cpan.org/
http://downloads.activestate.com/Zope-Perl/
http://www.zope.org/Members/andym/wiki/FrontPage

However there is a problem with this code. Each time you display the cartoon, Zope has to make a network
connection. This is inefficient and wasteful. You'd do much better to only figure out the Dilbert URL once a
day.

Here's a script cached_dilbert_url that improves the situation by keeping track of when it last fetched the
Dilbert URL with a dilbert_url_date property:

 my $context=shift;
 my $date=$context−>getProperty('dilbert_url_date');

 if ($date==null or $now−$date > 1){
 my $url=$context−>get_dilbert_url();
 $context−>manage_changeProperties(
 dilbert_url => $url
 dilbert_url_time => $now
);
 }
 return $context−>getProperty('dilbert_url');

This script uses two properties, dilbert_url and dilbert_url_date. If the URL gets too old, a new one is
fetched. You can use this script from DTML just like the original script:

You can use Perl and DTML together to control your logic and your presentation.

Perl−based Script Security

Like DTML and Python−based Scripts, Perl−based Scripts constrain you in the Zope security system from
doing anything that you are not allowed to do. Script security is similar in both languages, but there are some
Perl specific constraints.

First, the security system does not allow you to eval an expression in Perl. For example, consider this script:

 my $context = shift;
 my $input = shift;

 eval $input

This code takes an argument and evaluates it in Perl. This means you could call this script from, say an HTML
form, and evaluate the contents of one of the form elements. This is not allowed since the form element could
contain malicious code.

Perl−based Scripts also cannot assign new variables to any object other than local variables that you declare
with my.

DTML versus Python versus Perl

Zope gives you many ways to script. For small scripting tasks the choice of Python, Perl or DTML probably
doesn't make a big difference. For larger, logic−oriented tasks you should use Python or Perl. You should
choose the language you are most comfortable with. Of course, your boss may want to have some say in the
matter too.

Just for comparison sake here is a simple script suggested by Gisle Aas, the author of Perl−based Scripts, in
three different languages.

Chapter 10: Advanced Zope Scripting 182

In DTML:

 <dtml−in objectValues>
 <dtml−var getId>: <dtml−var sequence−item>
 </dtml−in>
 done

In Python:

 for item in context.objectValues():
 print "%s: %s" % (item.getId(), item)
 print "done"
 return printed

In Perl:

 my $context = shift;
 my @res;

 for ($context−>objectValues()) {
 push(@res, join(": ", $_−>getId(), $_));
 }
 join("\n", @res, "done");

Despite the fact that Zope is implemented in Python, it follows the Perl philosophy that there's more than one
way to do it.

Remote Scripting and Network Services

Web servers are used to serve content to software clients; usually people using web browser software. The
software client can also be another computer that is using your web server to access some kind of service.

Because Zope exposes objects and scripts on the web, it can be used to provide a powerful, well organized,
secure web API to other remote network application clients.

There are two common ways to remotely script Zope. The first way is using a simple remote procedure call
protocol called XML−RPC. XML−RPC is used to execute a procedure on a remote machine and get a result
on the local machine. XML−RPC is designed to be language neutral, and in this chapter you'll see examples in
Python, Perl and Java.

The second common way to remotely script Zope is with any HTTP client that can be automated with a script.
Many language libraries come with simple scriptable HTTP clients and there are many programs that let you
you script HTTP from the command line.

Using XML−RPC

XML−RPC is a simple remote procedure call mechanism that works over HTTP and uses XML to encode
information. XML−RPC clients have been implemented for many languages including Python, Perl, Java,
JavaScript, and TCL.

In−depth information on XML−RPC can be found at the XML−RPC website.

All Zope scripts that can be called from URLs can be called via XML−RPC. Basically XML−RPC provides a
system to marshal arguments to scripts that can be called from the web. As you saw earlier in the chapter
Zope provides its own marshaling controls that you can use from HTTP. XML−RPC and Zope's own

Chapter 10: Advanced Zope Scripting 183

http://www.xmlrpc.org/

marshaling accomplish much the same thing. The advantage of XML−RPC marshaling is that it is a
reasonably supported standard that also supports marshaling of return values as well as argument values.

Here's a fanciful example that shows you how to remotely script a mass firing of janitors using XML−RPC.

Here's the code in Python:

 import xmlrpclib

 server = xmlrpclib.Server('http://www.zopezoo.org/')
 for employeeID in server.JanitorialDepartment.personnel():
 server.fireEmployee(employee)

In Perl:

 use Frontier::Client;

 $server = Frontier::Client−>new(url => "http://www.zopezoo.org/");

 $employees = $server−>call("JanitorialDepartment.personnel");
 foreach $employee (@$employees) {

 $server−>call("fireEmployee",$server−>string($employee));

 }

In Java:

 try {
 XmlRpcClient server = new XmlRpcClient("http://www.zopezoo.org/");
 Vector employees = (Vector) server.execute("JanitorialDepartment.personnel");

 int num = employees.size();
 for (int i = 0; i < num; i++) {
 Vector args = new Vector(employees.subList(i, i+1));
 server.execute("fireEmployee", args);
 }

 } catch (XmlRpcException ex) {
 ex.printStackTrace();
 } catch (IOException ioex) {
 ex.printStackTrace();
 }

Actually the above example will probably not run correctly, since you will most likely want to protect the
fireEmployee script. This brings up the issue of security with XML−RPC. XML−RPC does not have any
security provisions of its own; however, since it runs over HTTP it can leverage existing HTTP security
controls. In fact Zope treats an XML−RPC request exactly like a normal HTTP request with respect to
security controls. This means that you must provide authentication in your XML−RPC request for Zope to
grant you access to protected scripts. The Python client at the time of this writing does not support control of
HTTP Authorization headers. However it is a fairly trivial addition. For example, an article on XML.com
Internet Scripting: Zope and XML−RPC includes a patch to Python's XML−RPC support showing how to add
HTTP authorization headers to your XML−RPC client.

Remote Scripting with HTTP

Any HTTP client can be used for remotely scripting Zope.

Chapter 10: Advanced Zope Scripting 184

http://www.xml.com/pub/2000/01/xmlrpc/index.html

On Unix systems you have a number of tools at your disposal for remotely scripting Zope. One simple
example is to use wget to call Zope script URLs and use cron to schedule the script calls. For example,
suppose you have a Zope script that feeds the lions and you'd like to call it every morning. You can use wget
to call the script like so:

 $ wget −−spider http://www.zopezope.org/Lions/feed

The spider option tells wget not to save the response as a file. Suppose that your script is protected and
requires authorization. You can pass your user name and password with wget to access protected scripts:

 $ wget −−spider −−http_user=ZooKeeper −−http_pass=SecretPhrase http://www.zopezope.org/Lions/feed

Now let's use cron to call this command every morning at 8am. Edit your crontab file with the crontab
command:

 $ crontab −e

Then add a line to call wget every day at 8 am:

 0 8 * * * wget −v −−spider −−http_user=ZooKeeper −−http_pass=SecretPhrase http://www.zopezoo.org/Lions/feed

The only difference between using cron and calling wget manually is that you should use the v switch when
using cron since you don't care about output of the wget command.

For our final example let's get really perverse. Since networking is built into so many different systems, it's
easy to find an unlikely candidate to script Zope. If you had an Internet−enabled toaster you would probably
be able to script Zope with it. Let's take Microsoft Word as our example Zope client. All that's necessary is to
get Word to agree to tickle a URL.

The easiest way to script Zope with Word is to tell word to open a document and then type a Zope script URL
as the file name as shown in Figure 8−9.

Figure 8−9 Calling a URL with Microsoft Word

Chapter 10: Advanced Zope Scripting 185

Word will then load the URL and return the results of calling the Zope script. Despite the fact that Word
doesn't let you POST arguments this way, you can pass GET arguments by entering them as part of the URL.

You can even control this behavior using Word's built−in Visual Basic scripting. For example, here's a
fragment of Visual Basic that tells Word to open a new document using a Zope script URL:

 Documents.Open FileName:="http://www.zopezoo.org/LionCages/wash?use_soap=1&water_temp=hot"

You could use Visual Basic to call Zope script URLs in many different ways.

Zope's URL to script call translation is the key to remote scripting. Since you can control Zope so easily with
simple URLs you can easy script Zope with almost any network−aware system.

Conclusion

Zope provides scripting with Python and Perl. With scripts you can control Zope objects and glue together
your application's logic, data, and presentation. You can also perform serious programming tasks such as
image processing and XML parsing.

In the next chapter you'll learn about ZCatalog, Zope's built−in search engine.

Chapter 10: Advanced Zope Scripting 186

Chapter 11: Searching and Categorizing Content
The Catalog is Zope's built in search engine. It allows you to categorize and search all kinds of Zope objects.
You can also use it to search external data such as relational data, files, and remote web pages. In addition to
searching you can use the Catalog to organize collections of objects.

The Catalog supports a rich query interface. You can perform full text searching, and can search multiple
indexes at once. In addition, the catalog keeps track of meta−data about indexed objects. Here are the two
most common ZCatalog usage patterns:

Mass Cataloging
Cataloging a large collection of objects all at once.

Automatic Cataloging
Cataloging objects as they are created and tracking changes made to them.

Getting started with Mass Cataloging

Let's take a look at how to use the catalog to search documents. Cataloging a bunch of objects all at once is
called mass cataloging. Mass cataloging involves three steps:

Creating a ZCatalog•
Finding objects and cataloging them•
Creating a web interface to search the catalog.•

Choose ZCatalog from the product add list to create a ZCatalog object. This takes you to the ZCatalog add
form, as shown in Figure 9−1.

Figure 9−1 ZCatalog add form

The Add form asks you for an Id and a Title. The third form element is the Vocabulary select box. For now,

leave this box on "Create one for me". Give your ZCatalog the Id "AnimalTracker" and click Add to create
your new catalog. The Catalog icon looks like a folder with a small magnifying glass on it. Select the
AnimalTracker icon to see the Contents view of the Catalog.

A ZCatalog looks a lot like a folder, but it has a few more tabs. Six tabs on the ZCatalog are the exact same
six tabs you find on a standard folder. ZCatalog have the following views: Contents, Catalog, Properties,
Indexes, MetaData, Find Objects, Advanced, Undo, Security, and Ownership. When you click on a ZCatalog,
you are on the Contents view. Here, you can add new objects and the ZCatalog will contain them just as any
folder does. You should note that containment does not imply that the object is searchable.

Now that you have created a ZCatalog, you can move onto the next step, finding objects and cataloging them.
Suppose you have a zoo site with information about animals. To work with these examples, create two DTML
Documents that contain information about reptiles and amphibians:

Title: Chilean four−eyed frog
The Chilean four−eyed frog has a bright pair of spots on its rump that look like enormous eyes. When
seated, the frog's thighs conceal these eyespots. When predators approach, the frog lowers its head
and lifts its rump, creating a much larger and more intimidating head. Frogs are amphibians.

Title: Carpet python
Morelia spilotes variegata averages 2.4 meters in length. It is a medium−sized python with
black−to−gray patterns of blotches, crossbands, stripes, or a combination of these markings on a light
yellowish−to−dark brown background. Snakes are reptiles.

Visitors to your Zoo want to be able to search for information on the Zoo's animals. Eager herpetologists want
to know if you have their favorite snake, so you should provide them with the ability to search for certain
words and show all the documents that contain those words. Searching is one of the most useful and common
web activities.

The AnimalTracker ZCatalog you created can catalog all of the documents in your Zope site and let your users
search for specific words. To catalog your documents, go to the AnimalTracker ZCatalog and click on the
Find Objects tab.

In this view, you tell the ZCatalog what kind of objects you are interested in. You want to catalog all DTML
Documents so select DTML Document from the Find objects of type multiple selection and click Find and
Catalog.

The ZCatalog will now start from the folder where it is located and search for all DTML Documents. It will
search the folder and then descend down into all of the sub−folders and their sub−folders. If you have lots and
lots of objects, this may take a long time to complete, so be patient.

After a period of time, the Catalog will take you to the Catalog view automatically, with a status message
telling you what it just did.

Below the status information is a list of objects that are cataloged, they are all DTML Documents. To confirm
that these are the objects you are interested in, you can click on them to visit them.

You have completed the first step of searching your objects, cataloging them into a ZCatalog. Now your
documents are in the ZCatalog's database. Now you can move onto the third step, creating a web page and
result form to query the ZCatalog.

Below the status information is a list of objects that are cataloged. They are all DTML Documents. To
confirm that these are the objects you are interested in, you can click on them to visit them.

Chapter 11: Searching and Categorizing Content 188

You have completed the first step of searching your objects, cataloging them into a ZCatalog. Now your
documents are in the ZCatalog's database. Now you can move onto the third step, creating a web page and
result form to query the ZCatalog.

Search and Report Forms

To create search and report forms, make sure you are inside the AnimalTracker catalog and select Z Search
Interface from the add list. Select the AnimalTracker ZCatalog as the searchable object, as shown in Figure
9−2.

Figure 9−2 Creating a search form for a ZCatalog

Name the Report Id "SearchResults" and the Search Input Id "SearchForm" and click Add. This will create
two new DTML Methods in the AnimalTracker ZCatalog named SeachForm and SearchResults.

These objects are contained in the ZCatalog, but they are not cataloged by the ZCatalog. The AnimalTracker
has only cataloged DTML Documents. The search Form and Report methods are just a user interface to search
the animal documents in the Catalog. You can verify this by noting that the search and report forms are not
listed in the Cataloged Objects tab.

To search the AnimalTracker ZCatalog, select the SearchForm method and click on its View tab. This form
has a number of elements on it. There is one search element for each index in the ZCatalog. Indexes are
explained further in the next section. For now, you want to use the PrincipiaSearchSource form element. You
can leave all the other form elements blank.

By typing words into the PrincipiaSearchSource form element you can search all of the documents cataloged
by the AnimalTracker ZCatalog. For example, type in the word "Reptiles". The AnimalTracker ZCatalog will
be searched and return a simple table of objects that have the word "Reptiles" in them. The search results
should include the carpet python. You can also try specifying multiple search terms like "reptile amphibian".
Search results for this query should include both the Chilean four−eyed Frog and the carpet python.
Congratulations, you have successfully created a catalog, cataloged content into it and searched it through the

Chapter 11: Searching and Categorizing Content 189

web.

Configuring Catalogs

The Catalog is capable of much more powerful and complex searches than the one you just performed. Let's
take a look at how the Catalog stores information. This will help you tailor your catalogs to provide the sort of
searching you want.

Defining Indexes

ZCatalogs store information about objects and their contents in fast databases called indexes. Indexes can
store and retrieve large volumes of information very quickly. You can create different kinds of indexes that
remember different kinds of information about your objects. For example, you could have one index that
remembers the text content of DTML Documents, and another index that remembers any objects that have a
specific property.

When you search a ZCatalog you are not searching through your objects one by one. That would take far too
much time if you had a lot of objects. Before you search a ZCatalog, it looks at your objects and remembers
whatever you tell it to remember about them. This process is called indexing. From then on, you can search
for certain criteria and the ZCatalog will return objects that match the criteria you provide.

A good way to think of an index in a ZCatalog is just like an index in a book. For example, in a book's index
you can look up the word Python:

 Python: 23, 67, 227

The word Python appears on three pages. Zope indexes work like this except that they map the search term, in
this case the word Python, to a list of all the objects that contain it, instead of a list of pages in a book.

In Zope 2.4, indexes can be added and removed from a Catalog using a new, "pluggable" index interface as
shown in Figure 9−3:

Chapter 11: Searching and Categorizing Content 190

Figure 9−3 Managing indexes

Here, you can see that ZCatalogs come with some predefined indexes. Each index has a name, like
PrincipiaSearchSource, and a type, like TextIndex.

When you catalog an object the Catalog uses each index to examine the object. The catalog consults attributes
and methods to find an object's value for each index. For example, in the case of the DTML Documents
cataloged with a PrincipiaSearchSource index, the Catalog calls each document's PrincipiaSearchSource
method and records the results in its PrincipiaSearchSource index. If the Catalog cannot find an attribute or
method for an index, then it ignores it. In other words it's fine if an object does not support a given index.
There are four kinds of indexes:

TextIndex
Searches text. Use this kind of index when you want a full−text search.

FieldIndex
Searches objects for specific values. Use this kind of index when you want to search date objects,
numbers, or specific strings.

KeywordIndex
Searches collections of specific values. This index is like a FieldIndex, but it allows you to search
collections rather than single values.

PathIndex
Searches for all objects that contain certain URL path elements. For example, you could search for all
the objects whose paths begin with /Animals/Zoo.

We'll examine these different indexes more closely later in the chapter. New indexes can be created from the
Indexes view of a ZCatalog. There, you can enter the name and select a type for your new index. This creates
a new empty index in the ZCatalog. To populate this index with information, you need to Go to the Advanced
view and click the the Update Catalog button. Recataloging your content may take a while if you have lots of
cataloged objects.

To remove an index from a Catalog, select the Indexes and click on the Delete button. This will delete the
index and all of its indexed content. As usual, this operation is undoable.

Defining Meta Data

The ZCatalog can not only index information about your object, but it can also store information about your
object in a tabular database called the Meta−Data Table. The Meta−Data Table works similarly to a
relational database table, it consists of one or more columns that define the schema of the table. The table is
filled with rows of information about cataloged objects. These rows can contain information about cataloged
objects that you want to store in the table. Your meta data columns don't need to match your Catalog's
indexes. Indexes allow you to search; meta−data allows you to report search results.

The Meta−Data Table is useful for generating search reports. It keeps track of information about objects that
goes on your report forms. For example, if you create a Meta−Data Table column called absolute_url, then
your report forms can use this information to create links to your objects that are returned in search results.

To add a new Meta−Data Table column, type in the name of the column on the Meta−Data Table view and
click Add. To remove a column from the Meta−Data Table, select the column check box and click on the
Delete button. This will delete the column and all of its content for each row. As usual, this operation is
undoable. Next let's look more closely at how to search a Catalog.

Chapter 11: Searching and Categorizing Content 191

Searching Catalogs

You can search a Catalog by passing it search terms. These search terms describe what you are looking for in
one or more indexes. The Catalog can glean this information from the web request, or you can pass this
information explicitly from DTML or Python. In response to a search request, a Catalog will return a list of
records corresponding to the cataloged objects that match the search terms.

Searching with Forms

In this chapter you used the Z Search Interface to automatically build a Form/Action pair to query a Catalog
(the Form/Action pattern is discussed in Chapter 4, "Dynamic Content with DTML"). The Z Search Interface
builds a very simple form and a very simple report. These two methods are a good place to start understanding
how Catalogs are queried and how you can customize and extend your search interface.

Suppose you have a catalog that holds news items. Each news item has contents, an author and a date. Your
catalog has three indexes that correspond to these attributes. The contents index is a text index, and the author
and date indexes are field indexes. Here is the search form that would allow you to query such a catalog:

 <dtml−var standard_html_header>

 <form action="Report" method="get">
 <h2><dtml−var document_title></h2>
 Enter query parameters:
<table>

 <tr><th>Content</th>
 <td><input name="content" width=30 value=""></td></tr>
 <tr><th>Author</th>
 <td><input name="author" width=30 value=""></td></tr>
 <tr><th>Date</th>
 <td><input name="date" width=30 value=""></td></tr>

 <tr><td colspan=2 align=center>
 <input type="SUBMIT" value="Submit Query">
 </td></tr>
 </table>
 </form>

 <dtml−var standard_html_footer>

This form consists of three input boxes named content, author, and date. These names of the input form
elements match the names of the indexes in the catalog. These names must match the names of the catalog's
indexes for the catalog to find the search terms. Here is a report form that works with the search form:

 <dtml−var standard_html_header>

 <table>
 <dtml−in NewsCatalog>
 <tr>
 <td><dtml−var author></td>
 <td><dtml−var date></td>
 </tr>
 </dtml−in>
 </table>

 <dtml−var standard_html_footer>

There are a few things going on here which merit closer examination. The heart of the whole thing is the in
tag.:

Chapter 11: Searching and Categorizing Content 192

 <dtml−in NewsCatalog>

This tag calls the NewsCatalog Catalog. Notice how the form parameters from the search form (content,
author, date) are not mentioned here at all. Zope automatically makes sure that the query parameters from the
search form are given to the Catalog. All you have to do is make sure the report form calls the Catalog. Zope
locates the search terms in the web request and passes them to the Catalog.

The Catalog returns a sequence of Record Objects (just like ZSQL Methods). These record objects correspond
to search hits, which are objects that match the search criteria you typed in. For a record to match a search, it
must match all criteria for each specified index. So if you enter an author and some search terms for the
contents, the Catalog will only return records that match both the author and the contents.

Record objects had an attribute for every column in the database table. Record objects for Catalogs work very
similarly, except that a Catalog Record object has an attribute for every column in the Meta−Data Table. In
fact, the purpose of the Meta−Data Table is to define the schema for the Record objects that Catalog queries
return.

Searching from Python

DTML makes querying a Catalog from a form very simple. For the most part, DTML will automatically make
sure your search parameters are passed properly to the Catalog.

Sometimes though you may not want to search a Catalog from a web form; some other part of your
application may want to query a Catalog. For example, suppose you want to add a sidebar to the Zope Zoo
that shows news items that only relate to the animals in the section of the site that you are currently looking at.
As you've seen, the Zope Zoo site is built up from Folders that organize all the sections according to animal.
Each Folder's id is a name that specifies the group or animal the folder contains. Suppose you want your
sidebar to show you all the news items that contain the id of the current section. Here is a Script called
relevantSectionNews that queries the news Catalog with the currentfolder's id:

 ## Script (Python) "relevantSectionNews"
 ##
 """ Returns news relevant to the current folder's id """
 id=context.getId()
 return context.NewsCatalog({'content' : id})

This script queries the NewsCatalog by calling it like a method. Catalog's expect a mapping as the first
argument when they are called. The argument maps the name of an index to the search terms you are looking
for. In this case, the content index will be queried for all news items that contain the name of the current
Folder. To use this in your sidebar, just edit the Zope Zoo's standard_html_header to use the
relevantSectionNews script:

 <html>
 <body>
 <dtml−var style_sheet>
 <dtml−var navigation>

 <dtml−in relevantSectionNews>
 <dtml−var title>
 </dtml−in>

This method assumes that you have defined absolute_url and title as meta−data columns in the news Catalog.
Now, when you are in a particular section, the sidebar will show a simple list of links to news items that
contain the id of the current animal section you are viewing.

Chapter 11: Searching and Categorizing Content 193

Searching and Indexing Details

Earlier you saw that the Catalog supports three types of indexes, text indexes, field indexes and keyword
indexes. Let's examine these indexes more closely to understand what they are good for and how to search
them.

Searching Text Indexes

A Text Index is used to index text. After indexing, you can search the index for objects that contain certain
words. Text Indexes support a rich search grammar for doing more advanced searches than just looking for a
word. ZCatalog's Text Index can:

Search for Boolean expressions like "word1 AND word2". This will search for all objects that contain
both "word1" and "word2". Valid Boolean operators include AND, OR, and AND NOT.

•

Control search order with parenthetical expressions "(word1 AND word2) OR word3)". This will
return objects containing "word1" and "word2" or just objects that contain the term "word3".

•

If you use a special kind of Vocabulary object (explained a little further on) you can search using
simple wild cards like "Z*", which returns all words that begin with "Z".

•

All of these advanced features can be mixed together. For example, "((bob AND uncle) AND NOT Zoo*)"
will return all objects that contain the terms "bob" and "uncle" but will not include any objects that contain
words that start with "Zoo" like "Zoologist", "Zoology", or "Zoo" itself.

Querying a TextIndex with these advanced features works just like querying it with the original simple
features. In the HTML search form for DTML Documents, for example, you could enter "Koala AND Lion"
and get all documents about Koalas and Lions. Querying a TextIndex from Python with advanced features
works much the same; suppose you want to change your relevantSectionNews Script to not include any news
items that contain the word "catastrophic":

 ## Script (Python) "relevantSectionNews"
 ##
 """ Returns relevant, non−catastropic news """"
 id=context.getId()
 return context.NewsCatalog(
 {'content' : id + ' AND NOT catastrophic'}
)

TextIndexes are very powerful. When mixed with the Automatic Cataloging pattern described later in the
chapter, they give you the ability to automatically free−text search all of your objects as you create and edit
them.

Vocabularies

Vocabularies are used by text indexes. A vocabulary is an object that manages language specific text indexing
options. In order for the ZCatalog to work with any kind of language, it must understand certain behaviors of
that language. For example, all languages:

have a different concept of words. In English and many other languages, words are defined by white
space boundaries, but in other languages, like Chinese and Japanese, words are defined by their
contextual usage.

•

have different concepts of stop words. A stop word is a common word that should be ignored by
indexes. The French word nous would be extremely common in French text and should probably be
removed as a stop word, but in English text it might make perfect sense to catalog this word because it

•

Chapter 11: Searching and Categorizing Content 194

is very infrequent.
have different concepts of synonymous, The synonym pair automobile/car would not make sense in
any language but English.

•

have different concepts of stemming. In English, it is common for text indexers to strip suffixes like
ing from words, so that bake and baking match the same word. This is called stemming. These suffix
strippings would only make sense to English, and other languages would want to provide their own
stemming (or none at all).

•

Current Vocabularies

There are a number of vocabularies currently available for ZCatalog:

Plain Vocabularies
Plain vocabularies are very simple and do minimal English language specific tasks.

Globbing Vocabularies
Globbing vocabularies are more complex vocabularies that allow wild card searches on English text
to be performed. The down side of them is that they consume a lot more memory and database space
than plain vocabularies.

The idea behind Vocabularies is to customize the way text in any language is indexed. Because of this, other
languages may be supported in the future by people who create a Vocabulary specific to their language.
Creating your own Vocabulary is an advanced topic, and beyond the scope of this book.

Using Vocabularies

When you create a new ZCatalog, the ZCatalog add form has a select box for you to choose a vocabulary to
use. If you do not select a vocabulary, the ZCatalog automatically creates a Plain Vocabulary for you, and
adds it to the ZCatalog's contents (this can be seen on the Contents view of the AnimalTracker you created for
the examples in this chapter).

To use a Globbing Vocabulary or any other kind of Vocabulary, you must create it first before you create the
Catalog you want to use it on. A ZCatalog can use any Vocabulary inside its contents or any Vocabulary that
it can find above it in the Zope Folder hierarchy.

Searching Field Indexes

FieldIndexes differ slightly from TextIndexes. A TextIndex will treat the value it finds in your object, for
example the contents of a News Item, like text. This means that it breaks the text up into words and indexes
all the individual words.

A FieldIndex does not break up the value it finds. Instead, it indexes the entire value it finds. This is very
useful for tracking objects that have traits with fixed values.

In the news item example, you created two FieldIndexes, date and author. With the existing search form,
these fields are not very useful. To use them more effectively you have to customize your search form a little.
Before doing that though, let's consider some use cases for these indexes.

The date index lets you search for News Items by the time they were created. The existing search form is not
very useful though because you have to type in exactly the time you were looking for, right down to the
second, in the text box to get any hits. This is obviously not very useful. It would be better to search for a
range of dates, like all of the News Items added in the last 24 hours, or all of the next Items from last month.

Chapter 11: Searching and Categorizing Content 195

The author index lets you search for News Items by certain authors. Unless you know exactly the name of the
author you are looking for though, you will not get any results. It would be better to be able to select from a
list of all the unique authors indexed by the author index.

FieldIndexes are designed to do both range searching and searching for a unique value in the index. To take
advantage of these features, you need only change your search form a little bit. Let's try the first example,
range searching with dates.

Like TextIndexes, FieldIndexes can be passed special options to enable these features. These special features
need to be passed in as form elements that get turned into Catalog queries. Here is the search form used in the
previous section Searching with Forms, but with some new form elements added to enable searching for
News Items modified since "Yesterday", "Last Week", "Last Month", "Last Year" or "Ever":

 <dtml−var standard_html_header>

 <form action="Report" method="get">
 <h2><dtml−var document_title></h2>
 Search for News Items:
<table>

 <tr><th>Content</th>
 <td><input name="content" width=30 value=""></td></tr>
 <tr><th>Author</th>
 <td><input name="author" width=30 value=""></td></tr>
 <tr>
 <td><p>modified since:</p></td>
 <td>
 <input type="hidden" name="date_usage" value="range:min">
 <select name="date:date">
 <option value="<dtml−var expr="ZopeTime(0)" >">Ever</option>
 <option value="<dtml−var expr="ZopeTime() − 1" >">Yesterday</option>
 <option value="<dtml−var expr="ZopeTime() − 7" >">Last Week</option>
 <option value="<dtml−var expr="ZopeTime() − 30" >">Last Month</option>
 <option value="<dtml−var expr="ZopeTime() − 365" >">Last Year</option>
 </select>
 </td>
 </tr>

 <tr><td colspan=2 align=center>
 <input type="SUBMIT" value="Submit Query">
 </td></tr>
 </table>
 </form>
 <dtml−var standard_html_footer>

This should make your search form look like Figure 9−4.

Chapter 11: Searching and Categorizing Content 196

Figure 9−4 Range searching by Date

This HTML form changes the date format from the old search form. Instead of just a text box, it offers you a
selection box where you can choose a date. But remember, this is a range search. Can you spot the part that
tells the date FieldIndex to search by range? Here it is:

 <input type="hidden" name="date_usage" value="range:min">

This is a special kind of HTML form element called a hidden element. It does not show up anywhere on the
search form that you look at, but it is still passed into Zope when you submit the form. This special element,
called date_usage tells the date FieldIndex that the value in the date form element is a minimum range
boundary. This means that the FieldIndex will not just return objects that have that date, but it will return
objects that have that date or any later date.

Any kind of FieldIndex can be told what kind of range specifiers to use by adding an additional search
argument that suffixes the index name with "_usage". In addition to specifying a minimum range boundary,
you specify a maximum range boundary by changing the hidden form element to:

 <input type="hidden" name="date_usage" value="range:max">

This will cause the search form to return all News Items modified before the specified date, instead of after.

The "_usage" syntax can also be used when calling a Catalog directly from a script, like this Script,
relevantRecentSectionNews:

 ## Script (Python) "relevantRecentSectionNews"
 ##
 """ Return relevant, and recent, news for this section """
 id=context.getId()
 return context.NewsCatalog(
 {'content' : id,
 'date' : ZopeTime() − 7,
 'date_usage' : 'range:min',
 }

Chapter 11: Searching and Categorizing Content 197

)

This works just like your old relevantSectionNews script, except that it only shows news items created in the
last week.

You can also supply both a minimum and maximum range boundary. There's one catch to this, however.
Normally if you specify no range boundary or just one boundary, ZCatalog uses the value you pass in as the
search term. But when you provide two range boundaries, the ZCatalog needs two values, not one. Here is the
relevantRecentSectionNews Script above with some slight modification to provide a list of date objects
instead of just one:

 ## Script (Python) "relevantRecentSectionNews"
 ##
 """
 Return relevant news modified in the last month, but not the
 last week
 """
 id=context.getId()
 return context.NewsCatalog(
 {'content' : id,
 'date' : [ZopeTime() − 30, ZopeTime() − 7],
 'date_usage' : 'range:min:max',
 }
)

This script will return all of the relevant News Items modified in the last month, but not in the last week.
When using two range specifiers, it is important to make sure you get the order of the values to correctly
match the order of the range specifiers. If you were to accidentally switch the "min" and "max" around, but
didn't switch around the two dates, then you will get no search results because you are making a query that
doesn't make sense (providing a minimum value that is larger than the maximum value).

The second use case you considered above was being able to search from a list of all unique authors. There is
a special method on the ZCatalog that does exactly this called uniqueValuesFor. The uniqueValuesFor
method returns a list of unique values for a certain index. Let's change your search form yet again, and replace
the original author input box with something a little more useful:

 <dtml−var standard_html_header>

 <form action="Report" method="get">
 <h2><dtml−var document_title></h2>
 Search for News Items:
<table>

 <tr><th>Content:</th>
 <td><input name="content" width=30 value=""></td></tr>
 <tr valign="top">
 <td><p>Author:</p></td>

 <td>
 <select name="author:list" size=6 MULTIPLE>
 <dtml−in expr="AnimalTracker.uniqueValuesFor('author')">
 <option value="<dtml−var sequence−item>">
 <dtml−var sequence−item></option>
 </dtml−in>
 </select>
 </td>
 </tr>

 <tr>
 <td><p>modified since:</p></td>
 <td>

Chapter 11: Searching and Categorizing Content 198

 <input type="hidden" name="date_usage" value="range:min">
 <select name="date:date">
 <option value="<dtml−var "ZopeTime(0)" >">Ever</option>
 <option value="<dtml−var "ZopeTime() − 1" >">Yesterday</option>
 <option value="<dtml−var "ZopeTime() − 7" >">Last Week</option>
 <option value="<dtml−var "ZopeTime() − 30" >">Last Month</option>
 <option value="<dtml−var "ZopeTime() − 365" >">Last Year</option>
 </select>
 </td>
 </tr>

 <tr><td colspan=2 align=center>
 <input type="SUBMIT" name="SUBMIT" value="Submit Query">
 </td></tr>
 </table>
 </form>
 <dtml−var standard_html_footer>

The new, important bit of code added to the search form is:

 <select name="author:list" size=6 MULTIPLE>
 <dtml−in expr="AnimalTracker.uniqueValuesFor('author')">
 <option value="<dtml−var sequence−item>">
 <dtml−var sequence−item></option>
 </dtml−in>
 </select>

The HTML was also changed a bit to make the on−screen presentation make sense.

In this example, you are changing the form element author from just a simple text box to an HTML multiple
select box. This box contains a unique list of all the authors that are indexed in the author FieldIndex. Now,
your search form should look like Figure 9−5.

Figure 9−5 Range searching and unique Authors

Chapter 11: Searching and Categorizing Content 199

That's it. You can continue to extend this search form using HTML form elements to be as complex as you'd
like. In the next section, we'll show you how to use the next kind of index, keyword indexes.

Searching Keyword Indexes

A KeywordIndex indexes a sequence of keywords for objects and can be queried for any objects that have one
or more of those keywords.

Suppose that you have a number of Image objects that have a topics property. The topics property is a lines
property that lists the relevant topics for a given Image, for example, "Portraits", "19th Century", and
"Women" for a picture of Queen Victoria.

The topics provide a way of categorizing Images. Each Image can belong in one or more categories depending
on its topics property. For example, the portrait of Queen Victoria belongs to three categories and can thus be
found by searching for any of the three terms.

You can use a KeyWord index to search the topics property. Define a KeyWord index with the name topics on
your ZCatalog. Then catalog your Images. Now you should be able to find all the Images that are portraits by
creating a search form and searching for "Portraits" in the topics field. You can also find all pictures that
represent 19th Century subjects by searching for "19th Century".

It's important to realize that the same Image can be in more than one category. This gives you much more
flexibility in searching and categorizing your objects than you get with a field index. Using a field index your
portrait of Queen Victoria can only be categorized one way. Using a keyword index it can be categorized a
couple different ways.

Often you will use a small list of terms with KeyWord indexes. In this case you may want to use the
uniqueValuesFor method to create a custom search form. For example here's a snippet of DTML that will
create a multiple select box for all the values in the topics index:

 <select name="topics:list" multiple>
 <dtml−in expr="uniqueValuesFor('topics')">
 <option value="&dtml−sequence−item;"><dtml−var sequence−item></option>
 </dtml−in>
 </select>

Using this search form you can provide users with a range of valid search terms. You can select as many
topics as you want and Zope will find all the Images that match one or more of your selected topics. Not only
can each object have several indexed terms, but you can provide several search terms and find all objects that
have one or more of those values.

Searching Path Indexes

Path indexes allow you to search for objects based on their location in Zope. Suppose you have an object
whose path is /zoo/animals/Africa/tiger.doc. You can find this object with the path queries:
/zoo, or /zoo/animals, or /zoo/animals/Africa. In other words, a path index allows you to find
objects within a given folder (and below).

If you place related objects within the same folders, you can use path indexes to quickly located these objects.
For example:

 <h2>Lizard Pictures</h2>

Chapter 11: Searching and Categorizing Content 200

 <p>
 <dtml−in expr="Catalog(meta_type='Image',
 path='/Zoo/Animals/Lizard')">
 <dtml−var title>
 </dtml−in>
 </p>

This query searches a catalog for all images that are located within the /Zoo/Animals/Lizard folder and
below. It creates a link to each image.

Depending on how you choose to arrange objects in your site, you may find that a path indexes are more or
less effective. If you locate objects without regard to their subject (for example, if objects are mostly located
in user "home" folders) then path indexes may be of limited value. In these cases, key word and field indexes
will be more useful.

Advanced Searching with Records

A new feature in Zope 2.4 is the ability to query indexes more precisely using record objects. Record objects
contain information about how to query an index. Records are Python objects with attributes, or mappings.
Different indexes support different record attributes.

Keyword Index Record Attributes

query
Either a sequence of words or a single word. (mandatory)

operator
Specifies whether all keywords or only one need to match. Allowed values: and, or. (optional,
default: 'or')

For example:

 # big or shiny
 results=Catalog(categories=['big, 'shiny'])

 # big and shiny
 results=Catalog(categories={'query':['big','shiny'],
 'operator':'and'})

The second query matches objects that have both the keywords "big" and "shiny". Without using the record
syntax you can only match objects that are big or shiny.

Field Index Record Attributes

query
Either a sequence of objects or a single value to be passed as query to the index (mandatory)

range
Defines a range search on a Field Index (optional, default: not set).
Allowed values:

min
Searches for all objects with values larger than the minimum of the values passed in the
query parameter.

max

Chapter 11: Searching and Categorizing Content 201

Searches for all objects with values smaller than the maximum of the values passed in the
query parameter.

minmax
Searches for all objects with values smaller than the maximum of the values passed in the
query parameter and larger than the minimum of the values passwd in the query
parameter.

For example:

 # items modified in the last week
 results=Catalog(bobobase_modification_time={
 'query':DateTime() − 7,
 'range': 'min'}
)

This query matches objects with a bobobase_modification_time of less than DateTime() −7.
Compare this query with one defined in relevantRecentSectionNews earlier in this chapter which
uses date_usage to accomplish the same query.

Text Index Record Attributes

query
Either a sequence of words (seperated by white space) or a single word to be passed as query to the
index. (mandatory)

operator
Specifies how to combine the search terms. (optional, default: 'or').
Allowed values:

and
All terms must be present.

or
At least one term must be present.

andnot
The first term must be present, but none of the rest of the terms.

There's not much reason to use record queries with text indexes since you can embed the operator information
in the query string itself in a very flexible manner.

Path Index Record Attributes

query
Path to search for either as a string (e.g. "/Zoo/Birds") or list (e.g. ["Zoo", "Birds"]). (mandatory)

level
The path level to begin searching at. (optional, default: '0')

Suppose you have a collection of objects with these paths:

/aa/bb/aa1.
/aa/bb/bb2.
/aa/bb/cc3.
/bb/bb/aa4.
/bb/bb/bb5.
/bb/bb/cc6.

Chapter 11: Searching and Categorizing Content 202

/cc/bb/aa7.
/cc/bb/bb8.
/cc/bb/cc9.

Here are some examples queries and their results to show how the level attribute works:

query='/aa/bb', level=0 returns 1, 2, 3•
query='/bb/bb', level=0 returns 4, 5, 6•
query='/bb/bb', level=1 returns 2, 5, 8•
query='/bb/bb', level=−1 returns 2, 4, 5, 6, 8•
query='/xx', level=−1 returns none•

You can use the level attribute to flexibly search different parts of the path.

As of Zope 2.4.1, you can also include level information in a search without using a record. Simply use a tuple
containing the query and the level. Here's an example tuple: ("/aa/bb", 1).

Creating Records in HTML

You can also perform record queries using HTML forms. Here's an example showing how to create a search
form using records:

 <form action="Report" method="get">
 <table>
 <tr><th>Search Terms (must match all terms)</th>
 <td><input name="content.query:record" width=30 value=""></td></tr>
 <input type="hidden" name="content.operator:record" value="and">
 <tr><td colspan=2 align=center>
 <input type="SUBMIT" value="Submit Query">
 </td></tr>
 </table>
 </form>

For more information on creating records in HTML see the section "Passing Parameters to Scripts" in Chapter
10, Advanced Zope Scripting.

Stored Queries

While the main use of the Catalog is to provide interactive searching, you can also use stored queries to
categorize and organize your site. For example, in the section on keyword indexes you saw how you can use
the Catalog and properties to search for categories of Images such as portraits. In addition to providing
interactive searching for categories of Images you can create web pages with canned queries. So for example,
here's some DTML that you could use for a page that displays all your portraits:

 <dtml−var standard_html_header>

 <h1>Portraits</h1>

 <dtml−in expr="ImageCatalog({'topics':'Portraits'})">
 <p>
 <dtml−var sequence−item>
 <dtml−var title_or_id>
 </p>
 </dtml−in>

 <dtml−var standard_html_footer>

Chapter 11: Searching and Categorizing Content 203

The dynamic nature of this page is not visible to the viewer. However, just add another portrait, update the
catalog and this page will automatically include the new Image.

This technique can be very powerful. Not only can you organize and display public resources, but you can
easily institute workflow systems by tagging objects with properties to indicate their state and cataloging
them. After that it's easy for you to create pages for different people that show which objects need their
attention. This technique is even more powerful when using the Automatic Cataloging pattern.

Automatic Cataloging

Automatic Cataloging is an advanced Catalog usage pattern that keeps objects up to date as they are changed.
It requires that as objects are created, changed, and destroyed, they are automatically tracked by a ZCatalog.
This usually involves the objects notifying the Catalog when they are created, changed, or deleted.

This usage pattern has a number of advantages in comparison to mass cataloging. Mass cataloging is simple
but has drawbacks. The total amount of content you can index in one transaction is equivalent to the amount
of free virtual memory available to the Zope process, plus the amount of temporary storage the system has. In
other words, the more content you want to index all at once, the better your computer hardware has to be.
Mass cataloging works well for indexing up to a few thousand objects, but beyond that automatic indexing
works much better.

Another major advantage of automatic cataloging is that it can handle objects that change. As objects evolve
and change, the index information is always current, even for rapidly changing information sources like
message boards.

In this section, we'll show you an example that creates "news" items thatpeople can add to your site. These
items will get automatically cataloged. This example consists of two steps:

Creating a new type of object to catalog.•
Creating a Catalog to catalog the newly created objects.•

As of Zope 2.3, none of the "out−of−the−box" Zope objects support automatic cataloging. This is for
backwards compatibility reasons. For now, you have to define your own kind of objects that can be cataloged
automatically. One of the ways this can be done is by defining a ZClass.

A ZClass is a Zope object that defines new types of Zope objects. In a way, a ZClass is like a blueprint that
describes how new Zope objects are built. Consider a news item as discussed in examples earlier in the
chapter. News items not only have content, but they also have specific properties that make them news items.
Often these Items come in collections that have their own properties. You want to build a News site that
collects News Items, reviews them, and posts them online to a web site where readers can read them.

In this kind of system, you may want to create a new type of object called a News Item. This way, when you
want to add a new news item to your site, you just select it from the product add list. If you design this object
to be automatically cataloged, then you can search your news content very powerfully. In this example, you
will just skim a little over ZClasses, which are described in much more detail in Chapter 14, "Extending
Zope."

New types of objects are defined in the Products section of the Control Panel. This is reached by clicking on
the Control Panel and then clicking on Product Management. Products contain new kinds of ZClasses. On this
screen, click "Add" to add a New product. You will be taken to the Add form for new Products.

Chapter 11: Searching and Categorizing Content 204

Name the new Product "News" and click "Generate". This will take you back to the Products Management
view and you will see your new Product.

Select the News Product by clicking on it. This new Product looks a lot like a Folder. It contains one object
called Help and has an Add menu, as well as the usual Folder "tabs" across the top. To add a new ZClass, pull
down the Add menu and select ZClass. This will take you to the ZClass add form, as shown in Figure 9−6.

Figure 9−6 ZClass add form

This is a complicated form which will be explained in much more detail in Chapter 14, "Extending Zope". For
now, you only need to do three things to create your ZClass:

Specify the Id "NewsItem" This is the name of the new ZClass.•
Specify the meta_type "News Item". This will be used to create the Add menu entry for your new
type of object.

•

Select ZCatalog:CatalogAware from the left hand Base Classes box, and click the button with the
arrow pointing to the right hand Base Classes box. This should cause ZCatalog:CatalogAware to
show up in the right hand window.

•

When you're done, don't change any of the other settings in the Form. To create your new ZClass, click Add.
This will take you back to your News Product. Notice that there is now a new object called NewsItem as well
as several other objects. The NewsItem object is your new ZClass. The other objects are "helpers" that you
will examine more in Chapter 14, "Extending Zope".

Select the NewsItem ZClass object. Your view should now look like Figure 9−7.

Chapter 11: Searching and Categorizing Content 205

Figure 9−7 A ZClass Methods View

This is the Methods View of a ZClass. Here, you can add Zope objects that will act as methods on your new
type of object. Here, for example, you can create DTML Methods or Scripts and these objects will become
methods on any new News Items that are created. Before creating any methods however, let's review the needs
of this new "News Item" object:

News Content
The news Item contains news content, this is its primary purpose. This content should be any kind of
plain text or marked up content like HTML or XML.

Author Credit
The News Item should provide some kind of credit to the author or organization that created it.

Date
News Items are timely, so the date that the item was created is important.

Keywords
News Items fit into various lists of categories. By convention, these lists of categories are often called
keywords.

You may want your new News Item object to have other properties, these are just suggestions. To add new
properties to your News Item click on the Property Sheets tab. This takes you to the Property Sheets view.

Properties are added to new types of objects in groups called Property Sheets. Since your object has no
property sheets defined, this view is empty. To add a New Property Sheet, click Add Common Instance
Property Sheet, and give the sheet the name "News". Now click Add. This will add a new Property Sheet
called News to your object. Clicking on the new Property Sheet will take you to the Properties view of the
News Property Sheet, as shown in Figure 9−8.

Chapter 11: Searching and Categorizing Content 206

Figure 9−8 The properties screen for a Property Sheet

This view is almost identical to the Properties view found on Folders and other objects. Here, you can create
the properties of your News Item object. Create three new properties in this form:

content
This property's type should be text. Each newly created News Item will contain its own unique
content property.

author
This property's type should be string. This will contain the name of the news author.

date
This property's type should be date. This will contain the time and date the news item was last
updated. A date property requires a value, so for now you can enter the string "01/01/2000".

That's it! Now you have created a Property Sheet that describes your News Items and what kind of
information they contain. Properties can be thought of as the data that an object contains. Now that we have
the data all set, you need to create an interface to your new kind of objects. This is done by creating new
Views for your object.

Click on the Views tab. This will take you to the Views view, as shown in Figure 9−9.

Chapter 11: Searching and Categorizing Content 207

Figure 9−9 The Views view

Here, you can see that Zope has created three default Views for you. These views will be described in much
more detail in Chapter 14, "Extending Zope", but for now, it suffices to say that these views define the tabs
that your objects will eventually have.

To create a new view, use the form at the bottom of the Views view. Create a new View with the name
"News" and select "propertysheets/News/manage" from the select box and click Add. This will create a new
View on this screen under the original three Views, as shown in Figure 9−10.

Figure 9−10 The new News View

Chapter 11: Searching and Categorizing Content 208

Since this View is going to give us the ability to edit the News Item, we want to make it the first view that you
see when you select a News Item object. To change the order of the views, select the newly created News
view and click the First button. This should move the new view from the bottom to the top of the list.

The final step in creating a ZClass is defining the methods for the class. Methods are defined on the Methods
View. Click on the Methods tab and you will be taken to the Methods view. Select 'DTML Method' from the
add list and add a new DTML Method with the id "index_html". This will be the default view of your news
item. Add the following DTML to the new method:

 <dtml−var standard_html_header>

 <h1>News Flash</h1>

 <p><dtml−var date></p>

 <p><dtml−var author></p>

 <P><dtml−var content></p>

 <dtml−var standard_html_footer>

That's it! You've created your own kind of object called a News Item. When you go to the root folder, you will
now see a new entry in your add list.

But don't add any new News Items yet, because the second step in this exercise is to create a Catalog that will
catalog your new News Items. Go to the root folder and create a new catalog with the id Catalog.

Like the previous two examples of using a ZCatalog, you need to create Indexes and a Meta−Data Table that
make sense for your objects. First, delete the default indexes in the new ZCatalog and create the following
indexes to replace them:

content
This should be a TextIndex. This will index the content of your News Items.

title
This should be a TextIndex. This will index the title of your News Items.

author
This should be a FieldIndex. This will index the author of the News Item.

date
This should be a FieldIndex. This will index the date of the News Item.

After creating these Indexes, delete the default Meta−Data columns and add these columns to replace them:

author•
date•
title•
absolute_url•

After creating the Indexes and Meta−Data Table columns, create a search interface for the Catalog using the Z
Search Interface tool described previously in this chapter.

Now you are ready to go. Start by adding some new News Items to your Zope. Go anywhere in Zope and
select News Item from the add list. This will take you to the add Form for News items.

Give your new News Item the id "KoalaGivesBirth" and click Add. This will create a new News Item. Select
the new News Item.

Chapter 11: Searching and Categorizing Content 209

Notice how it has four tabs that match the four Views that were in the ZClass. The first View is News, this
view corresponds to the News Property Sheet you created in the News Item ZClass.

Enter your news in the contents box:

 Today, Bob the Koala bear gave birth to little baby Jimbo.

Enter your name in the Author box, and today's date in the Date box.

Click Change and your News Item should now contain some news. Because the News Item object is
CatalogAware, it is automatically cataloged when it is changed or added. Verify this by looking at the
Cataloged Objects tab of the ZCatalog you created for this example.

The News Item you added is the only object that is cataloged. As you add more News Items to your site, they
will automatically get cataloged here. Add a few more items, and then experiment with searching the
ZCatalog. For example, if you search for "Koala" you should get back the KoalaGivesBirth News Item.

At this point you may want to use some of the more advanced search forms that you created earlier in the
chapter. You can see for example that as you add new News Items with new authors, the authors select list on
the search form changes to include the new information.

Conclusion

The cataloging features of ZCatalog allow you to search your objects for certain attributes very quickly. This
can be very useful for sites with lots of content that many people need to be able to search in an efficient
manner.

Searching the ZCatalog works a lot like searching a relational database, except that the searching is more
object−oriented. Not all data models are object−oriented however, so in some cases you will want to use the
ZCatalog, but in other cases you may want to use a relational database. The next chapter goes into more
details about how Zope works with relational databases, and how you can use relational data as objects in
Zope.

Chapter 11: Searching and Categorizing Content 210

Chapter 12: Relational Database Connectivity
Zope uses an object database to store Zope objects. Relational databases such as Oracle, Sybase and
PostgreSQL use a different store information in a different way. Relational databases store their information
in tables as shown in Figure 10−1.

Figure 10−1 Relational Database Table

Information in the table is stored in rows. The table's column layout is called the schema. A standard
language, called the Structured Query Language (SQL) is used to query and change tables in relational
databases.

Zope does not store its information this way. Zope's object database allows for many different types of objects
that have many different types of relationships to each other. Relational data does not easily map onto objects
since relational data assumes a much simpler table−oriented data model. Zope provides several mechanisms
for taking relational data and using it in Zope's object−centric world including Database Adapters and SQL
Methods which we will discuss in detail in this chapter.

The most common use for Zope's relational database support is to put existing relational databases on the web.
For example, suppose your Human Resources Department has an employee database. Your database comes
with tools to allow administrators run reports and change data. However, it is hard for employees to see their
own records and perform simple maintenance such as updating their address when they move. By interfacing
your relational database with Zope, your employees can use any web browser to view and update their records
from the office or at home.

By using your relational data with Zope you get all of Zope's benefits including security, dynamic
presentation, networking, and more. You can use Zope to dynamically tailor your data access, data
presentation, and data management.

To use a relational database in Zope you must create two different Zope objects, a Database Connection and a
Z SQL Method. Database Connections tell Zope how to connect to a relational database. Z SQL Methods
describe an action to take on a database. Z SQL Methods use Database Connections to connect to relational
databases. We'll look more closely at these two types of objects in this chapter.

Using Database Connections

Database Connections are used to establish and manage connections to external relational databases. Database
Connections must be established before database methods can be defined. Moreover, every Z SQL Method
must be associated with a database connection. Database adapters (or DAs for short) are available for a
number of databases:

Oracle
Oracle is a powerful and popular commercial relational database. This DA is written and
commercially supported by Zope Corporation. Oracle can be purchased or evaluated from the Oracle
Website.

Sybase
Sybase is another popular commercial relational database. The Sybase DA is written and
commercially supported by Zope Corporation. Sybase can be purchased or evaluated from the Sybase
Website.

ODBC
ODBC is a cross−platform, industry standard database protocol supported by many commercial and
open source databases. The ODBC DA is written and commercially supported by Zope Corporation.

PostgreSQL
PostgreSQL is a leading open source relational database. There are several database adapters for
PostgreSQL including ZPoPy which is maintained by Zope community member Thierry Michel. You
can find more information about PostgreSQL at the PostgreSQL web site.

MySQL
MySQL is a fast open source relational database. You can find more information about MySQL at the
MySQL web site. The MySQL DA is maintained by Zope community member Monty Taylor.

Interbase
Interbase is an open source relational database from Borland/Inprise. You can find more information
about Interbase at the Borland web site. You may also be interested in FireBird which is a community
maintained offshoot of Interbase. The Zope Interbase adapter is maintained by Zope community
member Bob Tierney.

Gadfly
Gadfly is a relational database written in Python by Aaron Waters. Gadfly is included with Zope for
demonstration purposes and small data sets. Gadfly is fast, but is not intended for large amounts of
information since it reads the entire database into memory. You can find out more about Gadfly at the
Chordate website.

Other than Gadfly, all relational databases run as processes external to Zope. In fact, your relational database
need not even run on the same machine as Zope, so long as Zope can connect to the machine that the database
is running on. Installing and setting up relational databases is beyond the scope of this book. All of the
relational databases mentioned have their own installation and configuration documentation that you should
consult for specific details.

Chapter 12: Relational Database Connectivity 212

http://www.oracle.com/
http://www.oracle.com/
http://www.sybase.com/
http://www.sybase.com/
http://sourceforge.net/projects/zpopyda/
http://www.postgresql.org/
http://www.mysql.com/
http://www.borland.com/interbase/
http://sourceforge.net/projects/firebird
http://www.chordate.com/gadfly.html

Because Gadfly runs inside Zope, you do not need to specify any connection information for Zope to find the
database. Since all other kinds of databases run externally to Zope, they require you to specify how to connect
to the database. This specification, called a connection string, is different for each kind of database. For
example, Figure 10−2 shows the PostgreSQL database connection add form.

Figure 10−2 PostgreSQL Database Connection

For PostgreSQL, the connection string format is shown above in Figure 10−2.

In order to use your relational database of choice from Zope, you must download and install the database
adapter for your specific relational database. Database adapters can be downloaded from the Products section
of Zope.org The exception to this is Gadfly, which is included with Zope. All the examples in this chapter use
Gadfly, but the procedures described apply to all databases.

After installing the database adapter product for your database, you can create a new database connection by
selecting it from the Add List. All database connections are fairly similar. Select the Z Gadfly Database
Connection from the add list. This will take you to the add form for a Gadfly database connection.

Select the Demo data source, specify Gadfly_database_connection for the id, and click the Add button. This
will create a new Gadfly Database Connection. Select the new connection by clicking on it.

You are looking at the Status view of the Gadfly Database Connection. This view tells you if you are
connected to the database, and there is a button to connect or disconnect. In general Zope will manage the
connection to your database for you so there is little reason to manually control the connection. For Gadfly
connecting and disconnecting are meaningless, but for external databases you may wish to connect or
disconnect manually to do database maintenance.

The next view is the Properties view. This view shows you the data source and other properties of the
Database Connection. This is useful if you want to move your Database Connection from one data source to
another. Figure 10−3 shows the Properties view.

Chapter 12: Relational Database Connectivity 213

http://www.zope.org/Products/
http://www.zope.org/Products/

Figure 10−3 The Properties view

You can test your connection to a database by going to the Test view. This view lets you type SQL code
directly and run it on your database. This view is just for testing your database and issuing one time SQL
commands (like creating tables). This is not the place where you will enter most of your SQL code. SQL
commands reside in Z SQL Methods which are discussed later in this chapter.

Let's create a table in your database to use in this chapter's examples. The Test view of the Database
Connection allows you to send SQL statements directly to your database. You can create tables by typing
SQL code directly into the Test view; there is no need to use a SQL Method to create tables. Create a table
called employees with the following SQL code:

 CREATE TABLE employees
 (
 emp_id integer,
 first varchar,
 last varchar,
 salary float
)

Click the Submit Query button to run the SQL command. Zope should return a confirmation screen that tells
you what SQL code was run and the results if any.

The SQL used here may differ depending on your database. For the exact details of creating tables with your
database, check the user documentation from your specific database vendor.

This SQL will create a new table in your Gadfly database called employees. This table will have four columns,
emp_id, first, last and salary. The first column is the employee id, which is a unique number that identifies the
employee. The next two columns have the type varchar which is similar to a string. The salary column has
the type float which holds a floating point number. Every database supports different kinds of types, so
consult your documentation to find out what kind of types your database supports.

Chapter 12: Relational Database Connectivity 214

To ensure that the employee id is a unique number you can create an index on your table. Type the following
SQL code in the Test view:

 CREATE UNIQUE INDEX emp_id ON employees
 (
 emp_id
)

Now you have a table and an index. To examine your table, go to the Browse view. This view lets you view
your database's tables and their schemas. Here, you can see that there is an employees table, and if you click
on the plus symbol, the table expands to show four columns, emp_id, first, last and salary as shown in Figure
10−4.

Figure 10−4 Browsing the Database Connection

This information is very useful when creating complex SQL applications with lots of large tables as it lets you
discover the schemas of your tables. Not all databases support browsing of tables.

Now that you've created a database connection and have defined a table, you can create Z SQL Methods to
operate on your database.

Using Z SQL Methods

Z SQL Methods are Zope object that execute SQL code through a Database Connection. All Z SQL Methods
must be associated with a Database Connection. Z SQL Methods can both query databases and change data. Z
SQL Methods can also contain more than one SQL command.

Next, you need to create a new Z SQL Method called hire_employee that inserts a new employee in the
employees table. When a new employee is hired this method is called and a new record is inserted in the
employees table that contains the information about the new employee. Select Z SQL Method from the Add
List. This will take you to the add form for Z SQL Methods, as shown in Figure 10−5.

Chapter 12: Relational Database Connectivity 215

Figure 10−5 The Add form for Z SQL Methods

As usual, you must specify an id and title for the Z SQL Method. In addition you need to select a Database
Connection to use with this Z SQL Methods. Give this new method the id hire_employee and select the
Gadfly_database_connection that you created in the last section.

Next you can specify arguments to the Z SQL Method. Just like Scripts, Z SQL Methods can take arguments.
Arguments are used to construct SQL statements. In this case your method needs four arguments, the
employee id number, the first name, the last name and the employee's salary. Type "emp_id first last salary"
into the Arguments field. You can put each argument on its own line, or you can put more than one argument
on the same line separated by spaces. You can also provide default values for argument just like with Python
Scripts. For example, empid=100 gives the empid argument a default value of 100.

The last form field is the Query template. This field contains the SQL code that is executed when the Z SQL
Method is called. In this field, enter the following code:

 insert into employees (emp_id, first, last, salary) values
 (<dtml−sqlvar emp_id type="int">,
 <dtml−sqlvar first type="string">,
 <dtml−sqlvar last type="string">,
 <dtml−sqlvar salary type="float">
)

Notice that this SQL code also contains DTML. The DTML code in this template is used to insert the values
of the arguments into the SQL code that gets executed on your database. So, if the emp_id argument had the
value 42, the first argument had the value Bob your last argument had the value Uncle and the salary
argument had the value 50000.00 then the query template would create the following SQL code:

 insert into employees (emp_id, first, last, salary) values
 (42,
 'Bob',
 'Uncle',
 50000.00
)

Chapter 12: Relational Database Connectivity 216

The query template and SQL−specific DTML tags are explained further in the next section.

You have your choice of three buttons to click to add your new Z SQL Method. The Add button will create the
method and take you back to the folder containing the new method. The Add and Edit button will create the
method and make it the currently selected object in the Workspace. The Add and Test button will create the
method and take you to the method's Test view so you can test the new method. To add your new Z SQL
Method, click the Add button.

Now you have a Z SQL Method that inserts new employees in the employees table. You'll need another Z
SQL Method to query the table for employees. Create a new Z SQL Method with the id list_all_employees. It
should have no arguments and contain the SQL code:

 select * from employees

This simple SQL code selects all the rows from the employees table. Now you have two Z SQL Methods, one
to insert new employees and one to view all of the employees in the database. Let's test your two new methods
by inserting some new employees in the employees table and then listing them. To do this, click on the
hire_employee Method and click the Test tab. This will take you to the Test view of the Method, as shown in
Figure 10−6.

Figure 10−6 The hire_employee Test view

Here, you see a form with four input boxes, one for each argument to the hire_employee Z SQL Method. Zope
automatically generates this form for you based on the arguments of your Z SQL Method. Because the
hire_employee Method has four arguments, Zope creates this form with four input boxes. You can test the
method by entering an employee number, a first name, a last name, and a salary for your new employee. Enter
the employee id "42", "Bob" for the first name, "McBob" for the last name and a salary of "50000.00". Then
click the Test button. You will then see the results of your test.

The screen says This statement returned no results. This is because the hire_employee method only inserts
new information in the table, it does not select any information out of the table, so no records were returned.
The screen also shows you how the query template get rendered into SQL. As expected, the sqlvar DTML

Chapter 12: Relational Database Connectivity 217

tags rendered the four arguments into valid SQL code that your database executed. You can add as many
employees as you'd like by repeatedly testing this method.

To verify that the information you added is being inserted into the table, select the list_all_employees Z SQL
Method and click on its Test tab.

This view says This query requires no input, indicating the list_all_employees does not have any argument
and thus, requires no input to execute. Click on the Submit Query button to test the method.

The list_all_employees method returns the contents of your employees table. You can see all the new
employees that you added. Zope automatically generates this tabular report screen for you. Next we'll show
how you can create your own user interface to your Z SQL Methods to integrate them into your web site.

Calling Z SQL Methods

Querying a relational database returns a sequence of results. The items in the sequence are called result rows.
SQL query results are always a sequence. Even if the SQL query returns only one row, that row is the only
item contained in a list of results. Hence, Z SQL Methods always return a sequence of results which contains
zero or more results records.

The items in the sequence of results returned by a Z SQL Method are called Result objects. Result objects can
be thought of as rows from the database table turned into Zope objects. These objects have attributes that
match the schema of the database results.

An important difference between result objects and other Zope objects is that result objects do not get created
and permanently added to Zope. Result objects are not persistent. They exist for only a short period of time;
just long enough for you to use them in a result page or to use their data for some other purpose. As soon as
you are done with a request that uses result objects they go away, and the next time you call a Z SQL Method
you get a new set of fresh result objects.

Result objects can be used from DTML to display the results of calling a Z SQL Method. For example, add a
new DTML Method to your site called listEmployees with the following DTML content:

 <dtml−var standard_html_header>

 <dtml−in list_all_employees>
 <dtml−var emp_id>: <dtml−var last>, <dtml−var first>
 makes <dtml−var salary fmt=dollars−and−cents> a year.

 </dtml−in>

 <dtml−var standard_html_footer>

This method calls the list_all_employees Z SQL Method from DTML. The in tag is used to iterate over each
Result object returned by the list_all_employees Z SQL Method. Z SQL Methods always return a list of
objects, so you will almost certainly use them from the DTML in tag unless you are not interested in the
results or if the SQL code will never return any results, like hire_employee.

The body of the in tag is a template that defines what gets rendered for each Result object in the sequence
returned by list_all_employees. In the case of a table with three employees in it, listEmployees might return
HTML that looks like this:

Chapter 12: Relational Database Connectivity 218

 <html>
 <body>

 42: Roberts, Bob
 makes $50,000 a year.

 101: leCat, Cheeta
 makes $100,000 a year.

 99: Junglewoman, Jane
 makes $100,001 a year.

 </body>
 </html>

The in tag rendered an HTML list item for each Result object returned by list_all_employees.

Next we'll look at how to create user interfaces in order to collect data and pass it to Z SQL Methods.

Providing Arguments to Z SQL Methods

So far, you have the ability to display employees with the the listEmployees DTML Method which calls the
list_all_employees Z SQL Method. Now let's look at how to build a user interface for the hire_employee Z
SQL Method. Recall that the hire_employee accepts four arguments, emp_id, first, last, and salary. The Test
tab on the hire_employee method lets you call this method, but this is not very useful for integrating into a
web application. You need to create your own input form for your Z SQL Method or call it manually from
your application.

The Z Search Interface can create an input form for you automatically. In Chapter 11, "Searching and
Categorizing Content", you used the Z Search Interface to build a form/action pair of methods that
automatically generated an HTML search form and report screen that queried the Catalog and returned results.
The Z Search Interface also works with Z SQL Methods to build a similar set of search/result screens.

Select Z Search Interface from the add list and specify hire_employee as the Searchable object. Enter the
value "hireEmployee" for the Report Id and "hireEmployeeForm" for the Search Id and click Add.

Click on the newly created hireEmployeeForm and click the View tab. Enter an employee_id, a first name, a
last name, and salary for a new employee and click Submit. Zope returns a screen that says "There was no data
matching this query". Because the report form generated by the Z Search Interface is meant to display the
result of a Z SQL Method, and the hire_employee Z SQL Method does not return any results; it just inserts a
new row in the table. Edit the hireEmployee DTML Method a little to make it more informative. Select the
hireEmployee Method. It should contain the following long stretch of DTML:

 <dtml−var standard_html_header>

 <dtml−in hire_employee size=50 start=query_start>

 <dtml−if sequence−start>

 <dtml−if previous−sequence>

 <a href="<dtml−var URL><dtml−var sequence−query
 >query_start=<dtml−var
 previous−sequence−start−number>">
 (Previous <dtml−var previous−sequence−size> results)

Chapter 12: Relational Database Connectivity 219

 </dtml−if previous−sequence>

 <table border>
 <tr>
 </tr>

 </dtml−if sequence−start>

 <tr>
 </tr>

 <dtml−if sequence−end>

 </table>
 <dtml−if next−sequence>

 <a href="<dtml−var URL><dtml−var sequence−query
 >query_start=<dtml−var
 next−sequence−start−number>">
 (Next <dtml−var next−sequence−size> results)

 </dtml−if next−sequence>

 </dtml−if sequence−end>

 <dtml−else>

 There was no data matching this <dtml−var title_or_id> query.

 </dtml−in>

 <dtml−var standard_html_footer>

This is a pretty big piece of DTML! All of this DTML is meant to dynamically build a batch−oriented tabular
result form. Since we don't need this, let's change the hireEmployee method to be much simpler:

 <dtml−var standard_html_header>

 <dtml−call hire_employee>

 <h1>Employee <dtml−var first> <dtml−var last> was Hired!</h1>

 <p>List Employees</p>

 <p>Back to hiring</p>

 <dtml−var standard_html_footer>

Now view hireEmployeeForm and hire another new employee. Notice how the hire_employee method is
called from the DTML call tag. This is because we know there is no output from the hire_employee method.
Since there are no results to iterate over, the method does not need to be called with the in tag. It can be called
simply with the call tag.

Now you have a complete user interface for hiring new employees. Using Zope's security system, you can
now restrict access to this method to only a certain group of users whom you want to have permission to hire
new employees. Keep in mind, the search and report screens generated by the Z Search Interface are just
guidelines that you can easily customize to suite your needs.

Chapter 12: Relational Database Connectivity 220

Next we'll take a closer look at precisely controlling SQL queries. You've already seen how Z SQL Methods
allow you to create basic SQL query templates. In the next section you'll learn how to make the most of your
query templates.

Dynamic SQL Queries

A Z SQL Method query template can contain DTML that is evaluated when the method is called. This DTML
can be used to modify the SQL code that is executed by the relational database. Several SQL specific DTML
tags exist to assist you in the construction of complex SQL queries. In the next sections you'll learn about the
sqlvar, sqltest, and sqlgroup tags.

Inserting Arguments with the Sqlvar Tag

It's pretty important to make sure you insert the right kind of data into a column in a database. You database
will complain if you try to use the string "12" where the integer 12 is expected. SQL requires that different
types be quoted differently. To make matters worse, different databases have different quoting rules.

In addition to avoiding errors, SQL quoting is important for security. Suppose you had a query that makes a
select:

 select * from employees
 where emp_id=<dtml−var emp_id>

This query is unsafe since someone could slip SQL code into your query by entering something like 12; drop
table employees as an emp_id. To avoid this problem you need to make sure that your variables are properly
quoted. The sqlvar tag does this for you. Here is a safe version of the above query that uses sqlvar:

 select * from employees
 where emp_id=<dtml−sqlvar emp_id type=int>

The sqlvar tag operates similarly to the regular DTML var tag in that it inserts values. However it has some
tag attributes targeted at SQL type quoting, and dealing with null values. The sqlvar tag accepts a number of
arguments:

name
The name argument is identical to the name argument for the var tag. This is the name of a Zope
variable or Z SQL Method argument. The value of the variable or argument is inserted into the SQL
Query Template. A name argument is required, but the "name=" prefix may be omitted.

type
The type argument determines the way the sqlvar tag should format the value of the variable or
argument being inserted in the query template. Valid values for type are string, int, float, or nb. nb
stands for non−blank and means a string with at least one character in it. The sqlvar tag type argument
is required.

optional
The optional argument tells the sqlvar tag that the variable or argument can be absent or be a null
value. If the variable or argument does not exist or is a null value, the sqlvar tag does not try to render
it. The sqlvar tag optional argument is optional.

The type argument is the key feature of the sqlvar tag. It is responsible for correctly quoting the inserted
variable. See Appendix A for complete coverage of the sqlvar tag.

You should always use the sqlvar tag instead of the var tag when inserting variables into a SQL code since it
correctly quotes variables and keeps your SQL safe.

Chapter 12: Relational Database Connectivity 221

Equality Comparisons with the Sqltest Tag

Many SQL queries involve equality comparison operations. These are queries that ask for all values from the
table that are in some kind of equality relationship with the input. For example, you may wish to query the
employees table for all employees with a salary greater than a certain value.

To see how this is done, create a new Z SQL Method named employees_paid_more_than. Give it one
argument, salary, and the following SQL template:

 select * from employees
 where <dtml−sqltest salary op=gt type=float>

Now click Add and Test. The op tag attribute is set to gt, which stands for greater than. This Z SQL Method
will only return records of employees that have a higher salary than what you enter in this input form. The
sqltest builds the SQL syntax necessary to safely compare the input to the table column. Type "10000" into
the salary input and click the Test button. As you can see the sqltest tag renders this SQL code:

 select * from employees
 where salary > 10000

The sqltest tag renders these comparisons to SQL taking into account the type of the variable and the
particularities of the database. The sqltest tag accepts the following tag parameters:

name
The name of the variable to insert.

type
The data type of the value to be inserted. This attribute is required and may be one of string, int, float,
or nb. The nb data type stands for "not blank" and indicates a string that must have a length that is
greater than 0. When using the nb type, the sqltest tag will not render if the variable is an empty
string.

column
The name of the SQL column, if different than the name attribute.

multiple
A flag indicating whether multiple values may be provided. This lets you test if a column is in a set of
variables. For example when name is a list of strings "Bob" , "Billy" , <dtml−sqltest name
type="string" multiple> renders to this SQL: name in ("Bob", "Billy").

optional
A flag indicating if the test is optional. If the test is optional and no value is provided for a variable
then no text is inserted. If the value is an empty string, then no text will be inserted only if the type is
nb.

op
A parameter used to choose the comparison operator that is rendered. The comparisons are: eq (equal
to), gt (greater than), lt (less than), ge (greater than or equal to), le (less than or equal to), and ne (not
equal to).

See Appendix A for more information on the sqltest tag. If your database supports additional comparison
operators such as like you can use them with sqlvar. For example if name is the string "Mc%", the SQL code:

 <dtml−sqltest name type="string" op="like">

would render to:

 name like 'Mc%'

Chapter 12: Relational Database Connectivity 222

The sqltest tag helps you build correct SQL queries. In general your queries will be more flexible and work
better with different types of input and different database if you use sqltest rather than hand coding
comparisons.

Creating Complex Queries with the Sqlgroup Tag

The sqlgroup tag lets you create SQL queries that support a variable number of arguments. Based on the
arguments specified, SQL queries can be made more specific by providing more arguments, or less specific by
providing less or no arguments.

Here is an example of an unqualified SQL query:

 select * from employees

Here is an example of a SQL query qualified by salary:

 select * from employees
 where(
 salary > 100000.00
)

Here is an example of a SQL query qualified by salary and first name:

 select * from employees
 where(
 salary > 100000.00
 and
 first in ('Jane', 'Cheetah', 'Guido')
)

Here is an example of a SQL query qualified by a first and a last name:

 select * from employees
 where(
 first = 'Old'
 and
 last = 'McDonald'
)

All three of these queries can be accomplished with one Z SQL Method that creates more specific SQL
queries as more arguments are specified. The following SQL template can build all three of the above queries:

 select * from employees
 <dtml−sqlgroup where>
 <dtml−sqltest salary op=gt type=float optional>
 <dtml−and>
 <dtml−sqltest first op=eq type=nb multiple optional>
 <dtml−and>
 <dtml−sqltest last op=eq type=nb multiple optional>
 </dtml−sqlgroup>

The sqlgroup tag renders the string where if the contents of the tag body contain any text and builds the
qualifying statements into the query. This sqlgroup tag will not render the where clause if no arguments are
present.

The sqlgroup tag consists of three blocks separated by and tags. These tags insert the string and if the
enclosing blocks render a value. This way the correct number of ands are included in the query. As more

Chapter 12: Relational Database Connectivity 223

arguments are specified, more qualifying statements are added to the query. In this example, qualifying
statements restricted the search with and tags, but or tags can also be used to expand the search.

This example also illustrates multiple attribute on sqltest tags. If the value for first or last is a list, then the
right SQL is rendered to specify a group of values instead of a single value.

You can also nest sqlgroup tags. For example:

 select * from employees
 <dtml−sqlgroup where>
 <dtml−sqlgroup>
 <dtml−sqltest first op=like type=nb>
 <dtml−and>
 <dtml−sqltest last op=like type=nb>
 </dtml−sqlgroup>
 <dtml−or>
 <dtml−sqltest salary op=gt type=float>
 </dtml−sqlgroup>

Given sample arguments, this template renders to SQL like so:

 select * from employees
 where
 ((first like 'A%'
 and
 last like 'Smith'
)
 or
 salary > 20000.0
)

You can construct very complex SQL statements with the sqlgroup tag. For simple SQL code you won't need
to use the sqlgroup tag. However, if you find yourself creating a number of different but related Z SQL
Methods you should see if you can't accomplish the same thing with one method that uses the sqlgroup tag.

Advanced Techniques

So far you've seen how to connect to a relational database, send it queries and commands, and create a user
interface. These are the basics of relational database conductivity in Zope.

In the following sections you'll see how to integrate your relational queries more closely with Zope and
enhance performance. We'll start by looking at how to pass arguments to Z SQL Methods both explicitly and
by acquisition. Then you'll find out how you can call Z SQL Methods directly from URLs using traversal to
result objects. Next you'll find out how to make results objects more powerful by binding them to classes.
Finally we'll look at caching to improve performance and how Zope handles database transactions.

Calling Z SQL Methods with Explicit Arguments

If you call a Z SQL Method without argument from DTML, the arguments are automatically collected from
the environment. This is the technique that we have used so far in this chapter. It works well when you want
to query a database from a search form, but sometimes you want to manually or programmatically query a
database. Z SQL Methods can be called with explicit arguments from DTML or Python. For example, to
query the employee_by_id Z SQL Method manually, the following DTML can be used:

 <dtml−var standard_html_header>

Chapter 12: Relational Database Connectivity 224

 <dtml−in expr="employee_by_id(emp_id=42)">
 <h1><dtml−var last>, <dtml−var first></h1>

 <p><dtml−var first>'s employee id is <dtml−var emp_id>. <dtml−var
 first> makes <dtml−var salary fmt=dollars−and−cents> per year.</p>
 </dtml−in>

 <dtml−var standard_html_footer>

Remember, the employee_by_id method returns only one record, so the body of the in tag in this method will
execute only once. In the example you calling the Z SQL Method like any other method and passing it a
keyword argument for emp_id. The same can be done easily from Python:

 ## Script (Python) "join_name"
 ##parameters=id
 ##
 for result in context.employee_by_id(emp_id=id):
 return result.last + ', ' + result.first

This script accepts an id argument and passes it to employee_by_id as the emp_id argument. It then iterates
over the single result and joins the last name and the first name with a comma.

You can provide more control over your relational data by calling Z SQL Methods with explicit arguments.
It's also worth noting that from DTML and Python Z SQL Methods can be called with explicit arguments just
like you call other Zope methods.

Acquiring Arguments from other Objects

Z SQL can acquire information from other objects and be used to modify the SQL query. Consider Figure
10−7, which shows a collection of Folders in a organization's web site.

Figure 10−7 Folder structure of an organizational web site

Suppose each department folder has a department_id string property that identifies the accounting ledger id
for that department. This property could be used by a shared Z SQL Method to query information for just that
department. To illustrate, create various nested folders with different department_id string properties and then
create a Z SQL Method with the id requisition_something in the root folder that takes three arguments,
description, quantity, and unit_cost. and the following query template:

 INSERT INTO requisitions
 (
 department_id, description, quantity, unit_cost
)
 VALUES
 (
 <dtml−sqlvar department_id type=string>,
 <dtml−sqlvar description type=string>,
 <dtml−sqlvar quantity type=int>,
 <dtml−sqlvar unit_cost type=float>
)

Chapter 12: Relational Database Connectivity 225

Now, create a Z Search Interface with a Search Id of "requisitionSomethingForm" and the Report id of
"requisitionSomething". Select the requisition_something Z SQL Method as the Searchable Object and click
Add.

Edit the requisitionSomethingForm and remove the first input box for the department_id field. We don't want
the value of department_id to come from the form, we want it to come from a property that is acquired.

Now, you should be able to go to a URL like:

 http://example.org/Departments/Support/requisitionSomethingForm

and requisition some punching bags for the Support department. Alternatively, you could go to:

 http://example.org/Departments/Sales/requisitionSomethingForm

And requisition some tacky rubber key−chains with your logo on them for the Sales department. Using Zope's
security system as described in Chapter 7, "Users and Security", you can now restrict access to these forms so
personnel from departments can requisition items just for their department and not any other.

The interesting thing about this example is that department_id was not one of the arguments provided to the
query. Instead of getting the value of this variable from an argument, it acquires the value from the folder
where the Z SQL Method is accessed. In the case of the above URLs, the requisition_something Z SQL
Method acquires the value from the Sales and Support folders. This allows you to tailor SQL queries for
different purposes. All the departments can share a query but it is customized for each department.

By using acquisition and explicit argument passing you can tailor your SQL queries to your web application.

Traversing to Result Objects

So far you've provided arguments to Z SQL Methods from web forms, explicit argument, and acquisition.
You can also provide arguments to Z SQL Methods by calling them from the web with special URLs. This is
called traversing to results objects. Using this technique you can walk directly up to result objects using
URLs.

In order to traverse to result objects with URLs, you must be able to ensure that the SQL Method will return
only one result object given one argument. For example, create a new Z SQL Method named employee_by_id
that accepts one argument, emp_id, and has the following SQL Template:

 select * from employees where
 <dtml−sqltest emp_id op=eq type=int>

This method selects one employee out of the employees table based on their employee id. Since each
employee has a unique id, only one record will be returned. Relational databases can provide these kinds of
uniqueness guarantees.

Zope provides a special URL syntax to access ZSQL Methods that always return a single result. The URL
consists of the URL of the ZSQL Method followed by the argument name followed by the argument value.
For example, http://localhost:8080/employee_by_id/emp_id/42. Note, this URL will return a single result
object where as if you queried the ZSQL Method from DTML and passed it a single argument it would return
a list of results that happend to only have one item in it.

Unfortunately the result object you get with this URL is not very interesting to look at. It has no way to
display itself in HTML. You still need to display the result object. To do this, you can call a DTML Method

Chapter 12: Relational Database Connectivity 226

on the result object. This can be done using the normal URL acquisition rules described in Chapter 10,
"Advanced Zope Scripting". For example, consider the following URL:

 http://localhost:8080/employee_by_id/emp_id/42/viewEmployee

Here we see the employee_by_id Z SQL Method being passed the emp_id argument by URL. The
viewEmployee method is then called on the result object. Let's create a viewEmployee DTML Method and try
it out. Create a new DTML Method named viewEmployee and give it the following content:

 <dtml−var standard_html_header>

 <h1><dtml−var last>, <dtml−var first></h1>

 <p><dtml−var first>'s employee id is <dtml−var emp_id>. <dtml−var
 first> makes <dtml−var salary fmt=dollars−and−cents> per year.</p>

 <dtml−var standard_html_footer>

Now when you go to the URL http://localhost:8080/employee_by_id/emp_id/42/viewEmployee the
viewEmployee DTML Method is bound the result object that is returned by employee_by_id. The
viewEmployee method can be used as a generic template used by many different Z SQL Methods that all
return employee records.

Since the employee_by_id method only accepts one argument, it isn't even necessary to specify emp_id in the
URL to qualify the numeric argument. If your Z SQL Method has one argument, then you can configure the Z
SQL Method to accept only one extra path element argument instead of a pair of arguments. This example can
be simplified even more by selecting the employee_by_id Z SQL Method and clicking on the Advanced tab.
Here, you can see a check box called Allow "Simple" Direct Traversal. Check this box and click Change.
Now, you can browse employee records with simpler URLs like
http://localhost:8080/employee_by_id/42/viewEmployee. Notice how no emp_id qualifier is declared in the
URL.

Traversal gives you an easy way to provide arguments and bind methods to Z SQL Methods and their results.
Next we'll show you how to bind whole classes to result objects to make them even more powerful.

Binding Classes to Result Objects

A result object has an attribute for each column in results row. However, result objects do not have any
methods, just attributes.

There are two ways to bind a method to a Result object. As you saw in the previous section, you can bind
DTML and other methods to Z SQL Method Result objects using traversal to the results object coupled with
the normal URL based acquisition bind mechanism described in Chapter 10, "Advanced Zope Scripting". You
can also bind methods to Result objects by defining a Python class that gets mixed in with the normal, simple
Result object class. These classes are defined in the same location as External Methods in the filesystem, in
Zope's Extensions directory. Python classes are collections of methods and attributes. By associating a class
with a Result object, you can make the Result object have a rich API and user interface.

Classes used to bind methods and other class attributes to Result classes are called Pluggable Brains, or just
Brains. Consider the example Python class:

 class Employee:

 def fullName(self):
 """ The full name in the form 'John Doe' """

Chapter 12: Relational Database Connectivity 227

 return self.first + ' ' + self.last

When result objects with this Brains class are created as the result of a Z SQL Method query, the Results
objects will have Employee as a base class. This means that the record objects will have all the methods
defined in the Employee class, giving them behavior, as well as data.

To use this class, create the above class in the Employee.py file in the Extensions directory. Go the Advanced
tab of the employee_by_id Z SQL Method and enter Employee in the Class Name field, and Employee in the
Class File field and click Save Changes. Now you can edit the employeeView DTML Method to contain:

 <dtml−var standard_html_header>

 <h1><dtml−var fullName></h1>

 <p><dtml−var first>'s employee id is <dtml−var emp_id>. <dtml−var
 first> makes <dtml−var salary fmt=dollars−and−cents> per year.</p>

 <dtml−var standard_html_footer>

Now when you go to the URL http://localhost:8080/employee_by_id/42/viewEmployee the fullName method
is called by the viewEmployee DTML Method. The fullName method is defined in the Employee class of the
Employee module and is bound to the result object returned by employee_by_id

Brains provide a very powerful facility which allows you to treat your relational data in a more object−centric
way. For example, not only can you access the fullName method using direct traversal, but you can use it
anywhere you handle result objects. For example:

 <dtml−in employee_by_id>
 <dtml−var fullName>
 </dtml−in>

For all practical purposes your Z SQL Method returns a sequence of smart objects, not just data.

This example only scratches the surface of what can be done with Brains classes. Python programming is
beyond the scope of this book so we will only go a little farther here. However, you could create brains classes
that accessed network resources, called other Z SQL Methods, performed all kinds of business logic.

Here's a more powerful example of brains. Suppose that you have an managers table to go with the employees
table that you've used so far. Suppose also that you have a manager_by_id Z SQL Method that returns a
manager id manager given an emp_id argument:

 select manager_id from managers where
 <dtml−sqltest emp_id type=int op=eq>

You could use this Z SQL Method in your brains class like so:

 class Employee:

 def manager(self):
 """
 Returns this employee's manager or None if the
 employee does not have a manager.
 """
 # Calls the manager_by_id Z SQL Method.
 records=self.manager_by_id(emp_id=self.emp_id)
 if records:
 manager_id=records[0].manager_id
 # Return an employee object by calling the

Chapter 12: Relational Database Connectivity 228

 # employee_by_id Z SQL Method with the manager's emp_id
 return self.employee_by_id(emp_id=manager_id)[0]

This Employee class shows how methods can use other Zope objects to weave together relational data to
make it seem like a collection of objects. The manager method calls two Z SQL Methods, one to figure out
the emp_id of the employee's manager, and another to return a new Result object representing the manager.
You can now treat employee objects as though they have simple references to their manager objects. For
example you could add something like this to the viewEmployee DTML Method:

 <dtml−if manager>
 <dtml−with manager>
 <p> My manager is <dtml−var first> <dtml−var last>.</p>
 </dtml−with>
 </dtml−if>

As you can see brains can be both complex and powerful. When designing relational database applications
you should try to keep things simple and add complexity slowly. It's important to make sure that your brains
classes don't add lots of unneeded overhead.

Caching Results

You can increase the performance of your SQL queries with caching. Caching stores Z SQL Method results so
that if you call the same method with the same arguments frequently, you won't have to connect to the
database every time. Depending on your application, caching can dramatically improve performance.

To control caching, go to the Advanced tab of a SQL Method. You have three different cache controls as
shown in Figure 10−8.

Figure 10−8 Caching controls for Z SQL Methods

The Maximum number of rows received field controls how much data to cache for each query. The Maximum
number of results to cache field controls how many queries to cache. The Maximum time (in seconds) to
cache results controls how long cached queries are saved for. In general, the larger you set these values the

Chapter 12: Relational Database Connectivity 229

greater your performance increase, but the more memory Zope will consume. As with any performance
tuning, you should experiment to find the optimum settings for your application.

In general you will want to set the maximum results to cache to just high enough and the maximum time to
cache to be just long enough for your application. For site with few hits you should cache results for longer,
and for sites with lots of hits you should cache results for a shorter period of time. For machines with lots of
memory you should increase the number of cached results. To disable caching set the cache time to zero
seconds. For most queries, the default value of 1000 for the maximum number of rows retrieved will be
adequate. For extremely large queries you may have to increase this number in order to retrieve all your
results.

Transactions

A transaction is a group of operations that can be undone all at once. As you saw in Chapter 1, "Introducing
Zope", all changes done to Zope are done within transactions. Transactions ensure data integrity. When using
a system that is not transactional and one of your web actions changes ten objects, and then fails to change the
eleventh, then your data is now inconsistent. Transactions allow you to revert all the changes you made during
a request if an error occurs.

Imagine the case where you have a web page that bills a customer for goods received. This page first deducts
the goods from the inventory, and then deducts the amount from the customers account. If the second
operations fails for some reason you want to make sure the change to the inventory doesn't take effect.

Most commercial and open source relational databases support transactions. If your relational database
supports transactions, Zope will make sure that they are tied to Zope transactions. This ensures data integrity
across both Zope and your relational database. If either Zope or the relational database aborts the transaction,
the entire transaction is aborted.

Summary

Zope allows you to build web applications with relational databases. Unlike many web application servers,
Zope has its own object database and does not require the use of relational databases to store information.

Zope lets you use relational data just like you use other Zope objects. You can connect your relational data to
business logic with scripts and brains, you can query your relational data with Z SQL Methods and
presentation tools like DTML, and your can even use advanced Zope features like URL traversal, acquisition,
undo and security while working with relational data.

Chapter 12: Relational Database Connectivity 230

Chapter 13: Scalability and ZEO
When a web site gets more requests than it can handle it can become slow and unresponsive. In the worst case
too many requests to a web site can cause the server to completely overload, stop handling requests and
possibly even crash. This can be a problem for any kind of server application, not just Zope. The obvious
solution to this problem is to use more than one computer, so in case one computer fails, another computer
can continue to serve up your web site.

Using multiple computers has obvious benefits, but it also has some drawbacks. For example, if you had five
computers running Zope then you must ensure that all five Zope installations have the same information on
them. This is not a very hard task if you're the only user and you have only a few static objects, but for large
organizations with thousands of rapidly changing objects, keeping five separate Zope installations
synchronized manually would be a nightmare. To solve this problem, Zope Corporation created Zope
Enterprise Objects, or ZEO. This chapter gives you a brief overview on installing ZEO, but there are many
other options we don't cover. For more in−depth information, see the documentation that comes with the ZEO
package, and also take a look at the ZEO discussion area.

What is ZEO?

ZEO is a system that allows you to run your site on more than one computer. This is often called clustering
and load balancing. By running Zope on multiple computers, you can spread the requests evenly around and
add more computers as the number of requests grows. Further, if one computer fails or crashes, other
computers can still service requests while you fix the broken one.

ZEO runs Zope on multiple computers and takes care of making sure all the Zope installations share the exact
same database at all times. ZEO uses a client/server architecture. The Zope installations on multiple
computers are the ZEO Clients. All of the clients connect to one, central ZEO Storage Server, as shown in
Figure 11−1.

http://www.zope.org/Products/ZEO
http://www.zope.org/Products/ZEO
http://www.zope.org/Wikis/ZODB/FrontPage

Figure 11−1 Simple ZEO illustration

The terminology can be a bit confusing, because normally you think of Zope as a server, not a client. When
using ZEO, your Zope processes act as both servers (for web requests) and clients (for data from the ZEO
server).

ZEO clients and servers communicate using standard Internet protocols, so they can be in the same room or in
different countries. ZEO, in fact, can distribute a Zope site all over the world. In this chapter we'll explore
some interesting ways you can distribute your ZEO clients.

When you should use ZEO

ZEO serves many hits in a fail−safe way. If your site does not get millions of hits, then you probably don't
need ZEO. There is no hard−and−fast rule about when you should and should not use ZEO, but for the most
part you should not need to run ZEO unless:

Your site is getting too many hits for your computer to handle them quickly. Zope is a
high−performance system, and one Zope can handle millions of hits per day (depending on your
hardware, of course). If you need to serve more hits than that, then you should use ZEO.

•

Your site is very critical and requires constant, 24/7 uptime. In this case, ZEO will allow you to have
multiple fail−over servers.

•

You want to distribute your site globally to many different mirror ZEO clients.•
You want to debug one ZEO client while others are still serving requests. This is a very advanced
technique for Python developers and is not covered in this book.

•

Chapter 13: Scalability and ZEO 232

All of these cases are fairly advanced, high−end uses of Zope. Installing, configuring, and maintaining
systems like these requires advanced system administration knowledge and resources. Most Zope users will
not need ZEO, or may not have the expertise necessary to maintain a distributed server system like ZEO. ZEO
is fun, and can be very useful, but before jumping head−first and installing ZEO in your system you should
weigh the extra administrative burden ZEO creates against the simplicity of running just a simple,
stand−alone Zope.

Installing and Running ZEO

The most common ZEO setup is one ZEO server and multiple ZEO clients. Before installing and configuring
ZEO though, consider the following issues:

All of the ZEO clients and servers must run the same version of Zope. Make sure all of your
computers use the latest version. This is necessary, or Zope may behave abnormally or not work at all.

•

All of your ZEO clients must have the same third party Products installed and they must be the same
version. This is necessary, or your third−party objects may behave abnormally or not work at all.

•

If your Zope system requires access to external resources, like mail servers or relational databases,
ensure that all of your ZEO clients have access to those resources.

•

Slow or intermittent network connections between clients and server degrade the performance of your
ZEO clients. Your ZEO clients should have a good connection to their server.

•

ZEO is not distributed with Zope, you must download it from the Products Section of Zope.org.

Installing ZEO requires a little bit of manual preparation. To install ZEO, download the ZEO−1.0.tgz from the
Zope.org web site and place it in your Zope installation directory. Now, unpack the tarball. On Unix, this can
be done with the following command:

 $ tar −zxf ZEO−1.0.tgz

On Windows, you can unpack the archive with WinZip. Before installing ZEO, make sure you back up your
Zope system first.

Now you should have a ZEO−1.0 directory. Next, you have to copy some files into your Zope top level
lib/python directory. This can be done on UNIX with:

 $ cp −R ZEO−1.0/ZEO lib/python

If you're running windows, you can use the following DOS commands to copy your ZEO files:

 C:\...Zope\>xcopy ZEO−1.0* lib\python /S

Now, you have to create a special file in your Zope root directory called custom_zodb.py. In that file, put the
following python code:

 import ZEO.ClientStorage
 Storage=ZEO.ClientStorage.ClientStorage(('localhost',7700))

This will configure your Zope to run as a ZEO client. If you pass ClientStorage a tuple, as this code does, the
tuple must have two elements, a string which contains the address to the server, and the port that the server is
listening on. In this example, we're going to show you how to run both the clients and the servers on the same
machine, so the machine name is set to localhost.

Now, you have ZEO properly configured to run on one computer. Try it out by first starting the server. Go to

Chapter 13: Scalability and ZEO 233

http://www.zope.org/Products/ZEO
http://www.zope.org/Products/ZEO

your Zope top level directory in a terminal window or DOS box and type:

 python lib/python/ZEO/start.py −p 7700

This will start the ZEO server listening on port 7700 on your computer. Now, in another window, start up
Zope like you normally would, with the z2.py script:

 $ python z2.py −D

 −−−−−−
 2000−10−04T20:43:11 INFO(0) client Trying to connect to server
 −−−−−−
 2000−10−04T20:43:11 INFO(0) ClientStorage Connected to storage
 −−−−−−
 2000−10−04T20:43:12 PROBLEM(100) ZServer Computing default pinky
 −−−−−−
 2000−10−04T20:43:12 INFO(0) ZServer Medusa (V1.19) started at Wed Oct 4 15:43:12 2000
 Hostname: pinky.zopezoo.org
 Port:8080

Notice how in the above example, Zope tells you client Trying to connect to server and then ClientStorage
Connected to storage. This means your ZEO client has successfully connected to your ZEO server. Now, you
can visit http://localhost:8080/manage (or whatever URL your ZEO client is listening on) and log into Zope
as usual.

As you can see, everything looks the same. Go to the Control Panel and click on Database Managment. Here,
you see that Zope is connected to a ZEO Storage and that its state is connected.

Running ZEO on one computer is a great way to familiarize yourself with ZEO and how it works. Running
ZEO on one computer does not, however, improve the speed of your site, and in fact, it may slow it down just
a little. To really get the speed benefits that ZEO provides, you need to run ZEO on several computers, which
is explained in the next section.

How to Run ZEO on Many Computers

Setting up ZEO to run on multiple computers is very similar to running ZEO on one computer. There are
generally two steps, the first step is to start the ZEO server, and the second step is to start one or more ZEO
clients.

For example, let's say you have four computers. One computer named zooserver will be your ZEO server, and
the other three computers, named zeoclient1, zeoclient2 and zeoclient3, will be your ZEO clients.

The first step is to run the server on zooserver. To tell your ZEO server to listen on the tcp socket at port 9999
on the zooserver interface, run the server with the start.py script like this:

 $ python lib/python/ZEO/start.py −p 9999 −h zooserver.zopezoo.org

This will start the ZEO server. Now, you can start up your clients by going to each client and configuring each
of them with the following custom_zodb.py:

 import ZEO.ClientStorage
 Storage=ZEO.ClientStorage.ClientStorage(('zooserver.zopezoo.org',9999))

Now, you can start each client's z2.py script as shown in the previous section, Installing and Running ZEO.
Notice how the host and port for each client is the same, this is so they all connect to the same server. By

Chapter 13: Scalability and ZEO 234

following this procedure for each of your three clients you will have three different Zope's all serving the
same Zope site. You can verify this by going visiting port 8080 on all three of your ZEO client machines.

You probably want to run ZEO on more than one computer so that you can take advantage of the speed
increase this gives you. Running more computers means that you can serve more hits per second than with
just one computer. Distributing the load of your web site's visitors however does require a bit more
elaboration in your system. The next section describes why, and how, you distribute the load of your visitors
among many computers.

How to Distribute Load

In the previous example you have a ZEO server named zooServer and three ZEO clients named zeoclient1,
zeoclient2, and zeoclient3. The three ZEO clients are connected to the ZEO server and each client is verified
to work properly.

Now you have three computers that serve content to your users. The next problem is how to actually spread
the incoming web requests evenly among the three ZEO clients. Your users only know about
www.zopezoo.org, not zeoclient1, zeoclient2 or zeoclient3. It would be a hassle to tell only some users to use
zeoclient1, and others to use zeoclient3, and it wouldn't be very good use of your computing resources. You
want to automate, or at least make very easy, the process of evenly distributing requests to your various ZEO
clients.

There are a number of solutions to this problem, some easy, some advanced, and some expensive. The next
section goes over the more common ways of spreading web requests around various computers using different
kinds of technology, some of them based on freely−available or commercial software, and some of them
based on special hardware.

User Chooses a Mirror

The easiest way to distribute requests across many web servers is to pick from a list of mirrored sites, each of
which is a ZEO client. Using this method requires no extra software or hardware, it just requires the
maintenance of a list of mirror servers. By presenting your users with a menu of mirrors, they can use to
choose which server to use.

Note that this method of distributing requests is passive (you have no active control over which clients are
used) and voluntary (your users need to make a voluntary choice to use another ZEO client). If your users do
not use a mirror, then the requests will go to your ZEO client that serves www.zopezoo.org.

If you do not have any administrative control over your mirrors, then this can be a pretty easy solution. If your
mirrors go off−line, your users can always choose to come back to the master site which you do have
administrative control over and choose a different mirror.

On a global level, this method improves performance. Your users can choose to use a server that is
geographically closer to them, which probably results in faster access. For example, if your main server was in
Portland, Oregon on the west coast of the USA and you had users in London, England, they could choose your
London mirror and their request would not have to go half−way across the world and back.

To use this method, create a property in your root folder of type lines named "mirror_servers". On each line of
this property, put the URL to your various ZEO clients, as shown in Figure 11−2.

Chapter 13: Scalability and ZEO 235

Figure 11−2 Figure of property with URLs to mirrors

Now, add some simple DTML to your site to display a list of your mirrors:

 <h2>Please choose from the following mirrors:

 <dtml−in mirror_servers>
 <dtml−var
 sequence−item>
 </dtml−in>

This DTML displays a list of all mirrors your users can choose from. When using this model, it is good to
name your computers in ways that assist your users in their choice of mirror. For example, if you spread the
load geographically, then choose names of countries for your computer names.

Alternatively, if you do not want users voluntarily choosing a mirror, you can have the index_html method of
your www.zopezoo.org site issue HTTP redirects. For example, use the following code in your
www.zopezoo.org site's index_html method:

 <dtml−call expr="RESPONSE.redirect(_.whrandom.choice(mirror_servers))">

This code will redirect any visitors to www.zopezoo.org to a random mirror server.

Using Round−robin DNS to Distribute Load

The Domain Name System, or DNS, is the Internet mechanism that translates computer names (like
"www.zope.org") into numeric addresses. This mechanism can map one name to many addresses.

The simplest method for load−balancing is to use round−robin DNS, as illustrated in Figure 11−3.

Chapter 13: Scalability and ZEO 236

Figure 11−3 Load balancing with round−robin DNS.

When www.zopezoo.org gets resolved, BIND answers with the address of either zeoclient1, zeoclient2, or
zeoclient3 − but in a rotated order every time. For example, one user may resolve www.zopezoo.org and get
the address for zeoclient1, and another user may resolve www.zopezoo.org and get the address for zeoclient2.
This way your users are spread over the various ZEO clients.

This not a perfect load balancing scheme, because DNS resolve information gets cached by the other
nameservers on the net. Once a user has resolved www.zopezoo.org to a particular ZEO client, all subsequent
requests for that user also go to the same ZEO client. The final result is generally alright, because the total
sum of the requests are really spread over your various ZEO clients.

One down−side to this solution is that it can take from hours to days for name servers to refresh their cached
copy of what they think the address of www.zopezoo.org is. If you are not responsible for the maintenance of
your ZEO clients and one fails, then 1/Nth of your users (where N is the number of ZEO clients) will not be
able to reach your site until their name server cache refreshes.

Configuring your DNS server to do round−robin name resolution is a pretty advanced technique that is not
covered in this book. A good reference on how to do this can be found in the Apache Documentation.

Distributing the load with round−robin DNS is useful, and cheap, but not 100% effective. DNS servers can
have strange caching policies, and you are relying on a particular quirk in the way DNS works to distribute the
load. The next section describes a more complex, but much more powerful way of distributing load called
Layer 4 Switching.

Chapter 13: Scalability and ZEO 237

http://www.engelschall.com/pw/apache/rewriteguide/#ToC29

Using Layer 4 Switching to Distribute Load

Layer 4 switching lets one computer transparently hand requests to a farm of computers. This is a pretty
advanced technique that is beyond the scope of this book, but it is worth pointing out several products that do
Layer 4 switching for you.

Layer 4 switching involves a switch that, according to your preferences, chooses from a group of ZEO clients
whenever a request comes in, as shown in Figure 11−4.

Figure 11−4 Illustration of Layer 4 switching

There are hardware and software Layer 4 switches. There are a number of software solutions, but one in
general that stands out is the Linux Virtual Server (LVS). This is an extension to the free Linux operating
system that lets you turn a Linux computer into a Layer 4 switch. More information on the LVS can be found
on its web site.

There are also a number of hardware solutions that claim higher performance than software based solutions
like LVS. Cisco Systems has a hardware router called LocalDirector that works as a Layer 4 switch, and
Alteon also makes a popular Layer 4 switch.

Dealing with a Single Point of Failure

Without ZEO, your entire Zope system is a single point of failure. ZEO allows you to spread that point of
failure around to many different computers. If one of your ZEO clients fails, other clients can answer requests
on the failed clients behalf.

Chapter 13: Scalability and ZEO 238

http://www.linuxvirtualserver.org

Note that as of this writing, the single point of failure can't be entirely eliminated, because there is still one
central storage server. The methods described in this section, however, do minimize the risks of failure by
spreading most of Zope across many computers.

What this means is that, while this does remove a lot of risk away from your web servers as a single point of
failure, it does not eliminate all risk because now the ZEO server is a single point of failure. There are several
ways of dealing with this issue.

One popular method is to accept the single point of failure risk and mitigate that risk as much as possible by
using very high−end, reliable equipment for your ZEO server, frequently backing up your data, and using
inexpensive, off−the−shelf hardware for your ZEO clients. By investing the bulk of your infrastructure budget
on making your ZEO server rock solid (redundant power supplies, RAID, and other fail−safe methods) you
can be pretty well assured that your ZEO server will remain up, even if a handful of your inexpensive ZEO
clients fail.

Some applications, however, require absolute 100% up−time. There is still a chance, with the solution
described above, that your ZEO server will fail. If this happens, you want a backup ZEO server to jump in and
take over for the failed server right away.

Like Layer 4 switching, there are a number of products, software and hardware, that help you mitigate this
kind of risk. One popular software solution for linux is called fake. Fake is a Linux based utility that can make
a backup computer take over for a failed primary computer by "faking out" network addresses. When used in
conjunction with monitoring utilities like mon or heartbeat, fake can guarantee almost 100% up−time of your
ZEO server and Layer 4 switches. Using fake in this way is beyond the scope of this book.

So far, we've explained these techniques for mitigating a single point of failure:

Various tools (mirrors, round−robin DNS, Layer 4 switching) can be used to multiplex requests
across multiple computers.

•

ZEO can be used to distribute your database (ZEO server) to multiple ZEO clients.•
fake, and other tools can be used to provide redundant servers and Layer 4 switches.•

The final piece of the puzzle is the ZEO server itself, and where it stores its information. If your primary ZEO
server fails, how can your backup ZEO server ensure it has the most recent information that was contained in
the primary server? As usual, there are several ways to solve this problem, and they are covered in the next
section.

ZEO Server Details

Before explaining the details of how the ZEO server works, it is worth understanding some details about how
Zope storages work in general.

Zope does not save any of its object or information directly to disk. Instead, Zope uses a storage component
that takes care of all the details of where objects should be saved.

This is a very flexible model, because Zope no longer needs to be concerned about opening files, or reading
and writing from databases, or sending data across a network (in the case of ZEO). Each particular storage
takes care of that task on Zope's behalf.

For example, a plain, stand−alone Zope system can be illustrated in Figure 11−5.

Chapter 13: Scalability and ZEO 239

http://vergenet.net/linux/fake/
http://www.kernel.org/software/mon/
http://www.linux-ha.org/

Figure 11−5 Zope connected to a filestorage

You can see there is one Zope application which plugs into a FileStorage. This storage, as its name implies,
saves all of its information to a file on the computer's filesystem.

When using ZEO, you simple replace the FileStorage with a ClientStorage, as illustrated in Figure 11−6.

Chapter 13: Scalability and ZEO 240

Figure 11−6 Zope with a Client Storage and Storage server

Instead of saving objects to a file, a ClientStorage sends objects over a network connection to a Storage
Server. As you can see in the illustration, the Storage Server uses a FileStorage to save that information to a
file on the ZEO server's filesystem.

Storages are interchangeable and easy to implement. Because of their interchangeable nature, ZEO Storage
Servers can use ZEO ClientStorages to pass on object data to yet another ZEO Storage Server. This is
illustrated in Figure 11−7.

Chapter 13: Scalability and ZEO 241

Figure 11−7 Multi−tiered ZEO system

Here, you can see a number of ZEO clients funnel down through three ZEO servers, which in turn act as ZEO
clients themselves and funnel down into the final, central ZEO server than saves its information in a
FileStorage. Now, that central ZEO server is the single point of failure in the system. If any of your other
clients, or intermediate servers fail, the system will still continue to work, but if the central server fails, then
you need an alternative.

Using fake you can have a back−up storage server strategy, but this method is not very well proven and
hasn't been explored by the authors. In the future, ZEO will have a "multiple−server" feature, that allows a
group of storage servers to act as a quorum, so if one or more storage servers fail, the remaining servers in the
quorum can continue to serve objects.

There are a number of advantages to an approaches like these, especially if you are interested in creating a
massively distributed network object database. Of course, with any system of advantages, there are some
drawbacks as well, which are discussed in the next section.

ZEO Caveats

For the most part, running ZEO is exactly like running Zope by itself, but there are a few issues to keep in
mind.

First, it takes longer for information to be written to the Zope object database. This does not slow down your
ability to use Zope (because Zope does not block you during this write operation) but it does increase your
chances of getting a ConflictError. Conflict errors happen when two ZEO clients try to write to the same
object at the same time. One of the ZEO clients wins the conflict and continues on normally. The other ZEO

Chapter 13: Scalability and ZEO 242

client looses the conflict and has to try again.

Conflict errors should be as infrequent as possible because they could slow down your system. While it's
normal to have a few conflict errors (due to the concurrent nature of Zope) it is abnormal to have a lot of
conflict errors. The pathological case is when more than one ZEO client tries to write to the same object over
and over again very quickly. In this case, there will be lots of conflict errors, and therefore lots of retries. If a
ZEO client tries to write to the database three times and gets three conflict errors in a row, then the request is
aborted and the data is not written.

Because ZEO takes longer to write this information, the chances of getting a ConflictError are higher than if
you are not running ZEO. Because of this, ZEO is more write sensitive than running Zope without ZEO. You
may have to keep this in mind when you are designing your network or application. As a rule of thumb, more
and more frequent writes to the database increase your chances of getting a ConflictError. On the flip side,
faster and more reliable network connections and computers lower your chances of getting a ConflictError. By
taking these two factors into account, conflict errors can be mostly avoided.

Finally, as of this writing, there is no built in encryption or authentication between ZEO servers and clients.
This means that you must be very careful about who you expose your ZEO servers to. If you leave your ZEO
servers open to the whole Internet, then anyone can connect to your ZEO server and write data into your
database, and that can be bad news.

This is not an unsolveable problem however, because you can use other tools, like firewalls, to protect your
ZEO servers. If you are running a ZEO client/server connection over an unsecure network and you want
guarantee that your information is kept private, you can use tools like OpenSSH and stunnel to set up secure,
encrypted communication channels between your ZEO clients and servers. How these tools work and how to
set them up is beyond the scope of this book, but both packages are adequately documented on their web sites.
For more information on firewalls, with Linux in particular, we recommend the book "Linux Firewalls" by
Robert Ziegler, which is published by New Riders.

Conclusion

In this chapter we looked at ZEO, and how ZEO can substantially increases the capacity of your website. In
addition to running ZEO on one computer to get familiarized, we looked at running ZEO on many computers,
and various techniques for spreading the load of your visitors among those many computers.

ZEO is not a magic bullet solution, and like other system designed to work with many computers, it adds
another level of complexity to your web site. This complexity pays off however when you need to serve up
lots of dynamic content to your audience.

Chapter 13: Scalability and ZEO 243

http://www.openssh.org
http://www.stunnel.org/

Chapter 14: Extending Zope
You can extend Zope by creating your own types of objects that are customized to your applications needs.
New kinds of objects are installed in Zope by Products. Products are extensions to Zope that Zope
Corporation and many other third party developers create. There are hundreds of different Products and many
serve very specific purposes. A complete library of Products is at the Download Section. of Zope.org.

Products can be developed two ways, through the web using ZClasses, and in the Python programming
language. Products can even be a hybrid of both through the web products and Python code. This chapter
discusses building new products through the web, a topic which you've already have some brief exposure to in
Chapter 11, "Searching and Categorizing Content". Developing a Product entirely in Python product
programming is the beyond its scope and you should visit Zope.org for specific Product developer
documentation.

This chapter shows you how to:

Create new Products in Zope•
Define ZClasses in Products•
Integrating Python with ZClasses•
Distribute Products to other Zope users•

The first step in customizing Zope starts in the next section, where you learn how to create new Zope
Products.

Creating Zope Products

Through the web Products are stored in the Product Management folder in the Control Panel. Click on the
Control_Panel in the root folder and then click Products. You are now in the screen shown in Figure 12−1.

Figure 12−1 Installed Products

http://www.zope.org/Products/

Each blue box represents an installed Product. From this screen, you can manage these Products. Some
Products are built into Zope by default or have been installed by you or your administrator. These products
have a closed box icon, as shown in Figure 12−1. Closed−box products cannot be managed through the web.
You can get information about these products by clicking on them, but you cannot change them.

You can also create your own Products that you can manage through the web. Your products let you create
new kinds of objects in Zope. These through the web managable product have open−box icons. If you
followed the examples in Chapter 11, "Searching and Categorizing Content", then you have a News open−box
product.

Why do you want to create products? For example, all of the various caretakers in the Zoo want an easy way
to build simple on−line exhibits about the Zoo. The exhibits must all be in the same format and contain
similar information structure, and each will be specific to a certain animal in the Zoo.

To accomplish this, you could build an exhibit for one animal, and then copy and paste it for each exhibit, but
this would be a difficult and manual process. All of the information and properties would have to be changed
for each new exhibit. Further, there may be thousands of exhibits.

To add to this problem, let's say you now want to have information on each exhibit that tells whether the
animal is endangered or not. You would have to change each exhibit, one by one, to do this by using copy and
paste. Clearly, copying and pasting does not scale up to a very large zoo, and could be very expensive.

You also need to ensure each exhibit is easy to manage. The caretakers of the individual exhibits should be the
ones providing information, but none of the Zoo caretakers know much about Zope or how to create web sites
and you certainly don't want to waste their time making them learn. You just want them to type some simple
information into a form about their topic of interest, click submit, and walk away.

By creating a Zope product, you can acomplish these goals quickly and easily. You can create easy to manage
objects that your caretakers can use. You can define exhibit templates that you can change once and effect all
of the exhibits. You can do these things by creating Zope Products.

Creating A Simple Product

Using Products you can solve the exhibit creation and management problems. Let's begin with an example of
how to create a simple product that will allow you to collect information about exhibits and create a
customized exhibit. Later in the chapter you see more complex and powerful ways to use products.

The chief value of a Zope product is that it allows you to create objects in a central location and it gives you
access to your objects through the product add list. This gives you the ability to build global services and
make them available via a standard part of the Zope management interface. In other words a Product allows
you to customize Zope.

Begin by going to the Products folder in the Control Panel. To create a new Product, click the Add Product
button on the Product Management folder. This will take you to the Product add form. Enter the id
"ZooExhibit" and click Generate. You will now see your new Product in the Product Management folder. It
should be a blue box with an open lid. The open lid means you can click on the Product and manage it through
the web.

Select the ZooExhibit Product. This will take you to the Product management screen.

The management screen for a Product looks and acts just like a Folder except for a few differences:

Chapter 14: Extending Zope 245

There is a new view, called Distribution, all the way to the right. This gives you the ability to package
and distribute your Product. This is discussed later.

1.

If you select the add list, you will see some new types of objects you can add including ZClass,
Factory, and Permission.

2.

The folder with a question mark on it is the ZooExhibit Product's Help Folder. This folder can contain
Help Topics that tell people how to use your Product.

3.

There is also a new view Define Permissions that define the permissions associated with this Product.
This is advanced and is not necessary for this example.

4.

In the Contents View create a DTML Method named hello with these contents:

 <dtml−var standard_html_header>

 <h2>Hello from the Zoo Exhibit Product</h2>

 <dtml−var standard_html_footer>

This method will allow you to test your product. Next create a Factory. Select Zope Factory from the product
add list. You will be taken to a Factory add form as shown in Figure 12−2.

Figure 12−2 Adding A Factory

Factories create a bridge from the product add list to your Product. Give your Factory an id of myFactory. In
the Add list name field enter Hello and in the Method selection, choose hello. Now click Generate. Now click
on the new Factory and change the Permission to Add Document, Images, and Files and click on Save
Changes. This tells Zope that you must have the Add Documents, Images, and Files permission to use the
Factory. Congratulations, you've just customized the Zope management interface. Go to the root folder and
click the product add list. Notice that it now includes an entry named Hello. Choose Hello from the product
add list. It calls your hello method.

One of the most common things to do with methods that you link to with Factories is to copy objects into the
current Folder. In other words your methods can get access to the location from which they were called and
can then perform operations on that Folder including copy objects into it. Just because you can do all kinds of

Chapter 14: Extending Zope 246

crazy things with Factories and Products doesn't mean that you should. In general people expect that when
they select something from the product add list that they will be taken to an add form where they specify the
id of a new object. Then they expect that when they click Add that a new object with the id they specified will
be created in their folder. Let's see how to fulfill these expectations.

First create a new Folder named exhibitTemplate in your Product. This will serve as a template for exhibits.
Also in the Product folder create a DTML Method named addForm, and Python Script named add. These
objects will create new exhibit instances. Now go back to your Factory and change it so that the Add list name
is Zoo Exhibit and the method is addForm.

So what's going to happen is that when someone chooses Zoo Exhibit from the product add list, the addForm
method will run. This method should collect information about the id and title of the exhibit. When the user
clicks Add it should call the add script that will copy the exhibitTemplate folder into the calling folder and will
rename it to have the specified id. The next step is to edit the addForm method to have these contents:

 <dtml−var manage_page_header>

 <h2>Add a Zoo Exhibit</h2>

 <form action="add" method="post">
 id <input type="text" name="id">

 title <input type="text" name="title">

 <input type="submit" value=" Add ">
 </form>

 <dtml−var manage_page_footer>

Admittedly this is a rather bleak add form. It doesn't collect much data and it doesn't tell the user what a Zoo
Exhibit is and why they'd want to add one. When you create your own web applications you'll want to do
better than this example.

Notice that this method doesn't include the standard HTML headers and footers. By convention Zope
management screens don't use the same headers and footers that your site uses. Instead management screens
use manage_page_header and manage_page_footer. The management view header and footer
ensure that management views have a common look and feel.

Also notice that the action of the form is the add script. Now paste the following body into the add script:

 ## Script (Python) "add"
 ##parameters=id ,title, REQUEST=None
 ##
 """
 Copy the exhibit template to the calling folder
 """

 # Clone the template, giving it the new ID. This will be placed
 # in the current context (the place the factory was called from).
 exhibit=context.manage_clone(container.exhibitTemplate,id)

 # Change the clone's title
 exhibit.manage_changeProperties(title=title)

 # If we were called through the web, redirect back to the context
 if REQUEST is not None:
 try: u=context.DestinationURL()
 except: u=REQUEST['URL1']
 REQUEST.RESPONSE.redirect(u+'/manage_main?update_menu=1')

Chapter 14: Extending Zope 247

This script clones the exhibitTemplate and copies it to the current folder with the specified id. Then it changes
the title property of the new exhibit. Finally it returns the current folder's main management screen by calling
manage_main.

Congratulations, you've now extended Zope by creating a new product. You've created a way to copy objects
into Zope via the product add list. However, this solution still suffers from some of the problems we discussed
earlier in the chapter. Even though you can edit the exhibit template in a centralized place, it's still only a
template. So if you add a new property to the template, it won't affect any of the existing exhibits. To change
existing exhibits you'll have to modify each one manually.

ZClasses take you one step farther by allowing you to have one central template that defines a new type of
object, and when you change that template, all of the objects of that type change along with it. This central
template is called a ZClass. In the next section, we'll show you how to create ZClasses that define a new
Exhibit ZClass.

Creating ZClasses

ZClasses are tools that help you build new types of objects in Zope by defining a class. A class is like a
blueprint for objects. When defining a class, you are defining what an object will be like when it is created. A
class can define methods, properties, and other attributes.

Objects that you create from a certain class are called instances of that class. For example, there is only one
Folder class, but you many have many Folder instances in your application.

Instances have the same methods and properties as their class. If you change the class, then all of the instances
reflect that change. Unlike the templates that you created in the last section, classes continue to exert control
over instances. Keep in mind this only works one way, if you change an instance, no changes are made to the
class or any other instances.

A good real world analogy to ZClasses are word processor templates. Most word processors come with a set
of predefined templates that you can use to create a certain kind of document, like a resume. There may be
hundreds of thousands of resumes in the world based on the Microsoft Word Resume template, but there is
only one template. Like the Resume template is to all those resumes, a ZClass is a template for any number of
similar Zope objects.

ZClasses are classes that you can build through the web using Zope's management interface. Classes can also
be written in Python, but this is not covered in this book.

ZClasses can inherit attributes from other classes. Inheritance allows you to define a new class that is based on
another class. For example, say you wanted to create a new kind of document object that had special
properties you were interested in. Instead of building all of the functionality of a document from scratch, you
can just inherit all of that functionality from the DTML Document class and add only the new information you
are interested in.

Inheritance also lets you build generalization relationships between classes. For example, you could create a
class called Animal that contains information that all animals have in general. Then, you could create Reptile
and Mammal classes that both inherit from Animal. Taking it even further, you could create two additional
classes Lizard and Snake that both inherit from Reptile, as shown in Figure 12−3.

Chapter 14: Extending Zope 248

Figure 12−3 Example Class Inheritance

ZClasses can inherit from most of the objects you've used in this book. In addition, ZClasses can inherit from
other ZClasses defined in the same Product. We will use this technique and others in this chapter.

Before going on with the next example, you should rename the existing ZooExhibit Product in your Zope
Products folder to something else, like ZooTemplate so that it does not conflict with this example. Now, create
a new Product in the Product folder called ZooExhibit.

Select ZClass from the add list of the ZooExhibit Contents view and go to the ZClass add form. This form is
complex, and has lots of elements. We'll go through them one by one:

Id
This is the name of the class to create. For this example, choose the name ZooExhibit.

Meta Type
The Meta Type of an object is a name for the type of this object. This should be something short but
descriptive about what the object does. For this example, choose the meta type "Zoo Exhibit".

Base Classes
Base classes define a sequence of classes that you want your class to inherit attributes from. Your new
class can be thought of as extending or being derived from the functionality of your base classes. You
can choose one or more classes from the list on the left, and click the −> button to put them in your
base class list. The <− button removes any base classes you select on the right. For this example, don't
select any base classes. Later in this chapter, we'll explain some of the more interesting base classes,
like ObjectManager.

Create constructor objects?
You usually want to leave this option checked unless you want to take care of creating form/action

Chapter 14: Extending Zope 249

constructor pairs and a Factory object yourself. If you want Zope to do this task for you, leave this
checked. Checking this box means that this add form will create five objects, a Class, a Constructor
Form, a Constructor Action, a Permission, and a Factory. For this example, leave this box checked.

Include standard Zope persistent object base classes?
This option should be checked unless you don't want your object to be saved in the database. This is
an advanced option and should only be used for Pluggable Brains. For this example, leave this box
checked.

Now click Add. This will take you back to the ZooExhibit Product and you will see five new objects, as shown
in Figure 12−4.

Figure 12−4 Product with a ZClass

The five objects Zope created are all automatically configured to work properly, you do not need to change
them for now. Here is a brief description of each object that was created:

ZooExhibit
This is the ZClass itself. It's icon is a white box with two horizontal lines in it. This is the traditional
symbol for a class.

ZooExhibit_addForm
This DTML Method is the constructor form for the ZClass. It is a simple form that accepts an id and
title. You can customize this form to accept any kind of input your new object requires. The is very
similar to the add form we created in the first example.

ZooExhibit_add
This DTML Method gets called by the constructor form, ZooExhibit_addForm. This method actually
creates your new object and sets its id and title. You can customize this form to do more advanced
changes to your object based on input parameters from the ZooExhibit_addForm. This has the same
functionality as the Python script we created in the previous example.

ZooExhibit_add_permission
The curious looking stick−person carrying the blue box is a Permission. This defines a permission
that you can associate with adding new ZooExhibit objects. This lets you protect the ability to add
new Zoo exhibits. If you click on this Permission, you can see the name of this new permission is

Chapter 14: Extending Zope 250

"Add ZooExhibits".
ZooExhibit_factory

The little factory with a smokestack icon is a Factory object. If you click on this object, you can
change the text that shows up in the add list for this object in the Add list name box. The Method is
the method that gets called when a user selects the Add list name from the add list. This is usually the
constructor form for your object, in this case, ZooExhibit_addForm. You can associate the Permission
the user must have to add this object, in this case, ZooExhibit_add_permission. You can also specify a
regular Zope permission instead.

That's it, you've created your first ZClass. Click on the new ZClass and click on its Basic tab. The Basic view
on your ZClass lets you change some of the information you specified on the ZClass add form. You cannot
change the base classes of a ZClass. As you learned earlier in the chapter, these settings include:

meta−type
The name of your ZClass as it appears in the product add list.

class id
A unique identifier for your class. You should only change this if you want to use your class
definition for existing instances of another ZClass. In this case you should copy the class id of the old
class into your new class.

icon
The path to your class's icon image. There is little reason to change this. If you want to change your
class's icon, upload a new file with the Browse button.

At this point, you can start creating new instances of the ZooExhibit ZClass. First though, you probably want a
common place where all exhibits are defined, so go to your root folder and select Folder from the add list and
create a new folder with the id "Exhibits". Now, click on the Exhibits folder you just created and pull down
the Add list. As you can see, ZooExhibit is now in the add list.

Go ahead and select ZooExhibit from the add list and create a new Exhibit with the id "FangedRabbits". After
creating the new exhibit, select it by clicking on it.

As you can see your object already has three views, Undo, Ownership, and Security. You don't have to define
these parts of your object, Zope does that for you. In the next section, we'll add some more views for you to
edit your object.

Creating Views of Your ZClass

All Zope objects are divided into logical screens called Views. Views are used commonly when you work with
Zope objects in the management interface, the tabbed screens on all Zope objects are views. Some views like
Undo, are standard and come with Zope.

Views are defined on the Views view of a ZClass. Go to your ZooExhibit ZClass and click on the Views tab.
The Views view looks like Figure 12−5.

Chapter 14: Extending Zope 251

Figure 12−5 The Views view.

On this view you can see the three views that come automatically with your new object, Undo, Ownership,
and Security. They are automatically configured for you as a convenience, since almost all objects have these
interfaces, but you can change them or remove them from here if you really want to (you generally won't).

The table of views is broken into three columns, Name, Method, and Help Topic. The Name is the name of the
view and is the label that gets drawn on the view's tab in the management interface. The Method is the method
of the class or property sheet that gets called to render the view. The Help Topic is where you associate a Help
Topic object with this view. Help Topics are explained more later.

Views also work with the security system to make sure users only see views on an object that they have
permission to see. Security will be explained in detail a little further on, but it is good to know at this point
that views now only divide an object management interfaces into logical chunks, but they also control who
can see which view.

The Method column on the Methods view has select boxes that let you choose which method generates which
view. The method associated with a view can be either an object in the Methods view, or a Property Sheet in
the Property Sheets view.

Creating Properties on Your ZClass

Properties are collections of variables that your object uses to store information. A Zoo Exhibit object, for
example, would need properties to contain information about the exhibit, like what animal is in the exhibit, a
description, and who the caretakers are.

Properties for ZClasses work a little differently than properties on Zope objects. In ZClasses, Properties come
in named groups called Property Sheets. A Property Sheet is a way of organizing a related set of properties
together. Go to your ZooExhibit ZClass and click on the Property Sheets tab. To create a new sheet, click Add
Common Instance Property Sheet. This will take you to the Property Sheet add form. Call your new Property
Sheet "ExhibitProperties" and click Add.

Chapter 14: Extending Zope 252

Now you can see that your new sheet, ExhibitProperties, has been created in the Property Sheets view of your
ZClass. Click on the new sheet to manage it, as shown in Figure 12−6.

Figure 12−6 A Property Sheet

As you can see, this sheet looks very much like the Properties view on Zope objects. Here, you can create
new properties on this sheet. Properties on Property Sheets are exactly like Properties on Zope objects, they
have a name, a type, and a value.

Create three new properties on this sheet:

animal
This property should be of type string. It will hold the name of the animal this exhibit features.

description
This property should be of type text. It will hold the description of the exhibit.

caretakers
This property should be of type lines. It will hold a list of names for the exhibit caretakers.

Property Sheets have two uses. As you've seen with this example, they are a tool for organizing related sets of
properties about your objects, second to that, they are used to generate HTML forms and actions to edit those
set of properties. The HTML edit forms are generated automatically for you, you only need to associate a
view with a Property Sheet to see the sheet's edit form. For example, return to the ZooExhibit ZClass and
click on the Views tab and create a new view with the name Edit and associate it with the method
propertysheets/ExhibitProperties/manage_edit.

Since you can use Property Sheets to create editing screens you might want to create more than one Property
Sheet for your class. By using more than one sheet you can control which properties are displayed together for
editing purposes. You can also separate private from public properties on different sheets by associating them
with different permissions.

Now, go back to your Exhibits folder and either look at an existing ZooExhibit instance or create a new one.
As you can see, a new view called Edit has been added to your object, as shown in Figure Figure 12−7.

Chapter 14: Extending Zope 253

Figure 12−7 A ZooExhibit Edit view

This edit form has been generated for you automatically. You only needed to create the Property Sheet, and
then associate that sheet with a View. If you add another property to the ExhibitProperties Property Sheet, all
of your instances will automatically get a new updated edit form, because when you change a ZClass, all of
the instances of that class inherit the change.

It is important to understand that changes made to the class are reflected by all of the instances, but changes to
an instance are not reflected in the class or in any other instance. For example, on the Edit view for your
ZooExhibit instance (not the class), enter "Fanged Rabbit" for the animal property, the description "Fanged,
carnivorous rabbits plagued early medieval knights. They are known for their sharp, pointy teeth." and two
caretakers, "Tim" and "Somebody Else". Now click Save Changes.

As you can see, your changes have obviously effected this instance, but what happened to the class? Go back
to the ZooExhibit ZClass and look at the ExhibitProperties Property Sheet. Nothing has changed! Changes to
instances have no effect on the class.

You can also provide default values for properties on a Property Sheet. You could, for example, enter the text
"Describe your exhibit in this box" in the description property of the ZooExhibit ZClass. Now, go back to
your Exhibits folder and create a new , ZooExhibit object and click on its Edit view. Here, you see that the
value provided in the Property Sheet is the default value for the instance. Remember, if you change this
instance, the default value of the property in the Property Sheet is not changed. Default values let you set up
useful information in the ZClass for properties that can later be changed on an instance−by−instance basis.

You may want to go back to your ZClass and click on the Views tab and change the "Edit" view to be the first
view by clicking the First button. Now, when you click on your instances, they will show the Edit view first.

Creating Methods on your ZClass

The Methods View of your ZClass lets you define the methods for the instances of your ZClass. Go to your
ZooExhibit ZClass and click on the Methods tab. The Methods view looks like Figure 12−8.

Chapter 14: Extending Zope 254

Figure 12−8 The Methods View

You can create any kind of Zope object on the Methods view, but generally only callable objects (DTML
Methods and Scripts, for example) are added.

Methods are used for several purposes:

Presentation
When you associate a view with a method, the method is called when a user selects that view on an
instance. For example, if you had a DTML Method called showAnimalImages, and a view called
Images, you could associate the showAnimalImages method with the Images view. Whenever anyone
clicked on the Images view on an instance of your ZClass, the showAnimalImages method would get
called.

Logic
Methods are not necessarily associated with views. Methods are often created that define how you can
work with your object.
For example, consider the isHungry method of the ZooExhibit ZClass defined later in this section. It
does not define a view for a ZooExhibit, it just provide very specific information about the
ZooExhibit. Methods in a ZClass can call each other just like any other Zope methods, so logic
methods could be used from a presentation method, even though they don't define a view.

Shared Objects
As was pointed out earlier, you can create any kind of object on the Methods view of a ZClass. All
instances of your ZClass will share the objects on the Methods view. For example, if you create a Z
Gadfly Connection in the Methods view of your ZClass, then all instances of that class will share the
same Gadfly connection. Shared objects can be useful to your class's logic or presentation methods.

A good example of a presentation method is a DTML Method that displays a Zoo Exhibit to your web site
viewers. This is often called the public interface to an object and is usually associated with the View view
found on most Zope objects.

Chapter 14: Extending Zope 255

Create a new DTML Method on the Methods tab of your ZooExhibit ZClass called index_html. Like all
objects named index_html, this will be the default representation for the object it is defined in, namely,
instances of your ZClass. Put the following DTML in the index_html Method you just created:

 <dtml−var standard_html_header>

 <h1><dtml−var animal></h1>

 <p><dtml−var description></p>

 <p>The <dtml−var animal> caretakers are:

 <dtml−in caretakers>
 <dtml−var sequence−item>

 </dtml−in>
 </p>

 <dtml−var standard_html_footer>

Now, you can visit one of your ZooExhibit instances directly through the web, for example,
http://www.zopezoo.org/Exhibits/FangedRabbits/ will show you the public interface for the Fanged Rabbit
exhibit.

You can use Python−based or Perl−based Scripts, and even Z SQL Methods to implement logic. Your logic
objects can call each other, and can be called from your presentation methods. To create the isHungry method,
first create two new properties in the ExhibitProperties property sheet named "last_meal_time" that is of the
type date and "isDangerous" that is of the type boolean. This adds two new fields to your Edit view where
you can enter the last time the animal was fed and select whether or not the animal is dangerous.

Here is an example of an implementation of the isHungry method in Python:

 ## Script (Python) "isHungry"
 ##
 """
 Returns true if the animal hasn't eaten in over 8 hours
 """
 from DateTime import DateTime
 if (DateTime().timeTime()
 − container.last_meal_time.timeTime() > 60 * 60 * 8):
 return 1
 else:
 return 0

The container of this method refers to the ZClass instance. So you can use the container in a ZClass
instance in the same way as you use self in normal Python methods.

You could call this method from your index_html display method using this snippet of DTML:

 <dtml−if isHungry>
 <p><dtml−var animal> is hungry</p>
 </dtml−if>

You can even call a number of logic methods from your display methods. For example, you could improve the
hunger display like so:

 <dtml−if isHungry>

 <p><dtml−var animal> is hungry.

 <dtml−if isDangerous>

Chapter 14: Extending Zope 256

 Tell an authorized
 caretaker.

 <dtml−else>

 Feed the <dtml−var animal>.

 </dtml−if>

 </p>

 </dtml−if>

Your display method now calls logic methods to decide what actions are appropriate and creates links to those
actions. For more information on Properties, see Chapter 3, "Using Basic Zope Objects".

ObjectManager ZClasses

If you choose ZClasses:ObjectManager as a base class for your ZClass then instances of your class will be
able to contain other Zope objects, just like Folders. Container classes are identical to other ZClasses with the
exception that they have an addition view Subobjects.

From this view you can control what kinds of objects your instances can contain. For example if you created a
FAQ container class, you might restrict it to holding Question and Answer objects. Select one or more
meta−types from the select list and click the Change button. The Objects should appear in folder lists check
box control whether or not instances of your container class are shown in the Navigator pane as expandable
objects.

Container ZClasses can be very powerful. A very common pattern for web applications is to have two classes
that work together. One class implements the basic behavior and hold data. The other class contains instances
of the basic class and provides methods to organize and list the contained instances. You can model many
problems this way, for example a ticket manager can contain problem tickets, or a document repository can
contain documents, or an object router can contain routing rules, and so on. Typically the container class will
provide methods to add, delete, and query or locate contained objects.

ZClass Security Controls

When building new types of objects, security can play an important role. For example, the following three
Roles are needed in your Zoo:

Manager
This role exists by default in Zope. This is you, and anyone else who you want to be able to
completely manage your Zope system.

Caretaker
After you create a ZooExhibit instance, you want users with the Caretaker role to be able to edit
exhibits. Only users with this role should be able to see the Edit view of a ZooExhibit instance.

Anonymous
This role exists by default in Zope. People with the Anonymous role should be able to view the
exhibit, but not manage it or change it in any way.

As you learned in Chapter 7, "Users and Security", creating new roles is easy, but how can you control who
can create and edit new ZooExhibit instances? To do this, you must define some security policies on the
ZooExhibit ZClass that control access to the ZClass and its methods and property sheets.

Chapter 14: Extending Zope 257

Controlling access to Methods and Property Sheets

By default, Zope tries to be sensible about ZClasses and security. You may, however, want to control access
to instances of your ZClass in special ways.

For example, Zoo Caretakers are really only interested in seeing the Edit view (and perhaps the Undo view,
which we'll show later), but definitely not the Security or Ownership views. You don't want Zoo caretakers
changing the security settings on your Exhibits; you don't even want them to see those aspects of an Exhibit,
you just want to give them the ability to edit an exhibit and nothing else.

To do this, you need to create a new Zope Permission object in the ZooExhibit Product (not the ZClass,
permissions are defined in Products only). To do this, go to the ZooExhibit Product and select Zope
Permission from the add list. Give the new permission the Id "edit_exhibit_permission" and the Name "Edit
Zoo Exhibits" and click Generate.

Now, select your ZooExhibit ZClass, and click on the Permissions tab. This will take you to the Permissions
view as shown in Figure Figure 12−9.

Figure 12−9 The Permissions view

This view shows you what permissions your ZClass uses and lets you choose additional permissions to use.
On the right is a list of all of the default Zope permissions your ZClass inherits automatically. On the left is a
multiple select box where you can add new permissions to your class. Select the Edit Zoo Exhibits permission
in this box and click Save Changes. This tells your ZClass that it is interested in this permission as well as the
permissions on the right.

Now, click on the Property Sheets tab and select the ExhibitProperties Property Sheet. Click on the Define
Permissions tab.

You want to tell this Property Sheet that only users who have the Edit Zoo Exhibits permission you just
created can manage the properties on the ExhibitProperties sheet. On this view, pull down the select box and

Chapter 14: Extending Zope 258

choose Edit Zoo Exhibits. This will map the Edit Zoo Exhibits to the Manage Properties permission on the
sheet. This list of permissions you can select from comes from the ZClass Permissions view you were just on,
and because you selected the Edit Zoo Exhibits permission on that screen, it shows up on this list for you to
select. Notice that all options default to disabled which means that the property sheet cannot be edited by
anyone.

Now, you can go back to your Exhibits folder and select the Security view. Here, you can see your new
Permission is on the left in the list of available permission. What you want to do now is create a new Role
called Caretaker and map that new Role to the Edit Zoo Exhibits permission.

Now, users must have the Caretaker role in order to see or use the Edit view on any of your ZooExhibit
instances.

Access to objects on your ZClass's Methods view are controlled in the same way.

Controlling Access to instances of Your ZClass

The previous section explained how you can control access to instances of your ZClass's Methods and
Properties. Access control is controlling who can create new instances of your ZClass. As you saw earlier in
the chapter, instances are created by Factories. Factories are associated with permissions. In the case of the
Zoo Exhibit, the Add Zoo Exhibits permission controls the ability to create Zoo Exhibit instances.

Normally only Managers will have the Add Zoo Exhibits permission, so only Managers will be able to create
new Zoo Exhibits. However, like all Zope permissions, you can change which roles have this permissions in
different locations of your site. It's important to realize that this permission is controlled separately from the
Edit Zoo Exhibits permission. This makes it possible to allow some people such as Caretakers to change, but
not create Zoo Exhibits.

Providing Context−Sensitive Help for your ZClass

On the View screen of your ZClass, you can see that each view can be associated with a Help Topic. This
allows you to provide a link to a different help topics depending on which view the user is looking at. For
example, let's create a Help Topic for the Edit view of the ZooExhibit ZClass.

First, you need to create an actual help topic object. This is done by going to the ZooExhibit Product which
contains the ZooExhibit ZClass, and clicking on the Help folder. The icon should look like a folder with a blue
question mark on it.

Inside this special folder, pull down the add list and select Help Topic. Give this topic the id
"ExhibitEditHelp" and the title "Help for Editing Exhibits" and click Add.

Now you will see the Help folder contains a new help topic object called ExhibitEditHelp. You can click on
this object and edit it, it works just like a DTML Document. In this document, you should place the help
information you want to show to your users:

 <dtml−var standard_html_header>

 <h1>Help!</h1>

 <p>To edit an exhibit, click on either the animal,
 description, or caretakers boxes to edit
 them.</p>

Chapter 14: Extending Zope 259

 <dtml−var standard_html_footer>

Now that you have created the help topic, you need to associate with the Edit view of your ZClass. To do this,
select the ZooExhibit ZClass and click on the Views tab. At the right, in the same row as the Edit view is
defined, pull down the help select box and select ExhibitEditHelp and click Change. Now go to one of your
ZooExhibit instances, the Edit view now has a *Help!* link that you can click to look at your Help Topic for
this view.

In the next section, you'll see how ZClasses can be cobined with standard Python classes to extend their
functionality into raw Python.

Using Python Base Classes

ZClasses give you a web managable interface to design new kinds of objects in Zope. In the beginning of this
chapter, we showed you how you can select from a list of base classes to subclass your ZClass from. Most of
these base classes are actually written in Python, and in this section you'll see how you can take your own
Python classes and include them in that list so that your ZClasses can extend their methods.

Writing Python base classes is easy, but it involves a few installation details. To create a Python base class
you need access to the filesystem. Create a directory inside your lib/python/Products directory named
AnimalBase. In this directory create a file named Animal.py with these contents:

 class Animal:
 """
 A base class for Animals
 """

 _hungry=0

 def eat(self, food, servings=1):
 """
 Eat food
 """
 self._hungry=0

 def sleep(self):
 """
 Sleep
 """
 self._hungry=1

 def hungry(self):
 """
 Is the Animal hungry?
 """
 return self._hungry

This class defines a couple related methods and one default attribute. Notice that like External Methods, the
methods of this class can access private attributes.

Next you need to register your base class with Zope. Create an __init__.py file in the AnimalBase directory
with these contents:

 from Animal import Animal

 def initialize(context):
 """
 Register base class

Chapter 14: Extending Zope 260

 """
 context.registerBaseClass(Animal)

Now you need to restart Zope in order for it find out about your base class. After Zope restarts you can verify
that your base class has been registered in a couple different ways. First go to the Products Folder in the
Control Panel and look for an AnimalBase package. You should see a closed box product. If you see broken
box, it means that there is something wrong with your AnimalBase product.

Click on the Traceback view to see a Python traceback showing you what problem Zope ran into trying to
register your base class. Once you resolve any problems that your base class might have you'll need to restart
Zope again. Continue this process until Zope successfully loads your product. Now you can create a new
ZClass and you should see AnimalBase:Animal as a choice in the base classes selection field.

To test your new base class create a ZClass that inherits from AnimalBase:Animal. Embellish you animal
however you wish. Create a DTML Method named care with these contents:

 <dtml−var standard_html_header>

 <dtml−if give_food>
 <dtml−call expr="eat('cookie')">
 </dtml−if>

 <dtml−if give_sleep>
 <dtml−call sleep>
 </dtml−if>

 <dtml−if hungry>
 <p>I am hungry</p>
 <dtml−else>
 <p>I am not hungry</p>
 </dtml−if>

 <form>
 <input type="submit" value="Feed" name="give_food">
 <input type="submit" value="Sleep" name="give_sleep">
 </form>

 <dtml−var standard_html_footer>

Now create an instance of your animal class and test out its care method. The care method lets you feed your
animal and give it sleep by calling methods defined in its Python base class. Also notice how after feeding
your animal is not hungry, but if you give it a nap it wakes up hungry.

As you can see, creating your own Products and ZClasses is an involved process, but simple to understand
once you grasp the basics. With ZClasses alone, you can create some pretty complex web applications right in
your web browser.

In the next section, you'll see how to create a distribution of your Product, so that you can share it with others
or deliver it to a customer.

Distributing Products

Now you have created your own Product that lets you create any number of exhibits in Zope. Suppose you
have a buddy at another Zoo who is impressed by your new online exhibit system, and wants to get a similar
system for his Zoo.

Chapter 14: Extending Zope 261

Perhaps you even belong to the Zoo keeper's Association of America and you want to be able to give your
product to anyone interested in an exhibit system similar to yours. Zope lets you distribute your Products as
one, easy to transport package that other users can download from you and install in their Zope system.

To distribute your Product, click on the ZooExhibit Product and select the Distribution tab. This will take you
to the Distribution view.

The form on this view lets you control the distribution you want to create. The Version box lets you specify
the version for your Product distribution. For every distribution you make, Zope will increment this number
for you, but you may want to specify it yourself. Just leave it at the default of "1.0" unless you want to change
it.

The next two radio buttons let you select whether or not you want others to be able to customize or
redistribute your Product. If you want them to be able to customize or redistribute your Product with no
restrictions, select the Allow Redistribution button. If you want to disallow their ability to redistribute your
Product, select the Disallow redistribution and allow the user to configure only the selected objects: button. If
you disallow redistribution, you can choose on an object by object basis what your users can customize in
your Product. If you don't want them to be able to change anything, then don't select any of the items in this
list. If you want them to be able to change the ZooExhibit ZClass, then select only that ZClass. If you want
them to be able to change everything (but still not be able to redistribute your Product) then select all the
objects in this list.

Now, you can create a distribution of your Product by clicking Create a distribution archive. Zope will now
automatically generate a file called ZooExhibit−1.0.tar.gz. This Product can be installed in any Zope just like
any other Product, by unpacking it into the root directory of your Zope installation.

Don't forget that when you distribute your Product you'll also need to include any files such as External
Method files and Python base classes that your class relies on. This requirement makes distribution more
difficult and for this reason folks sometimes try to avoid relying on Python files when creating through the
web Products for distribution.

Chapter 14: Extending Zope 262

Appendix A: DTML Reference
DTML is the Document Template Markup Language, a handy presentation and templating language that
comes with Zope. This Appendix is a reference to all of DTMLs markup tags and how they work.

call: Call a method

The call tag lets you call a method without inserting the results into the DTML output.

Syntax

call tag syntax:

 <dtml−call Variable|expr="Expression">

If the call tag uses a variable, the methods arguments are passed automatically by DTML just as with the var
tag. If the method is specified in a expression, then you must pass the arguments yourself.

Examples

Calling by variable name:

 <dtml−call UpdateInfo>

This calls the UpdateInfo object automatically passing arguments.

Calling by expression:

 <dtml−call expr="RESPONSE.setHeader('content−type', 'text/plain')">

See Also

var tag

comment: Comments DTML

The comment tag lets you document your DTML with comments. You can also use it to temporarily disable
DTML tags by commenting them out.

Syntax

comment tag syntax:

 <dtml−comment>
 </dtml−comment>

The comment tag is a block tag. The contents of the block are not executed, nor are they inserted into the
DTML output.

Examples

Documenting DTML:

 <dtml−comment>
 This content is not executed and does not appear in the
 output.
 </dtml−comment>

Commenting out DTML:

 <dtml−comment>
 This DTML is disabled and will not be executed.
 <dtml−call someMethod>
 </dtml−comment>

functions: DTML Functions

DTML utility functions provide some Python built−in functions and some DTML−specific functions.

Functions

abs(number)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

chr(integer)
Return a string of one character whose ASCII code is the integer, e.g., chr(97) returns the string a.
This is the inverse of ord(). The argument must be in the range 0 to 255, inclusive; ValueError
will be raised if the integer is outside that range.

DateTime()
Returns a Zope DateTime object given constructor arguments. See the DateTime API reference for
more information on constructor arguments.

divmod(number, number)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (q, a % b), where q is usually math.floor(a / b) but
may be 1 less than that. In any case 'q * b + a % b' is very close to a, if a % b is non−zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

float(number)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly
signed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(number). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python's floating point
precision) is returned.

getattr(object, string)
Return the value of the named attributed of object. name must be a string. If the string is the name of
one of the object's attributes, the result is the value of that attribute. For example, getattr(x,
"foobar") is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

getitem(variable, render=0)
Returns the value of a DTML variable. If render is true, the variable is rendered. See the render
function.

Appendix A: DTML Reference 264

hasattr(object, string)
The arguments are an object and a string. The result is 1 if the string is the name of one of the object's
attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing whether it raises
an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the
same hash value (even if they are of different types, e.g. 1 and 1.0).

has_key(variable)
Returns true if the DTML namespace contains the named variable.

hex(integer)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32−bit machine, hex(−1) yields
0xffffffff. When evaluated on a machine with the same word size, this literal is evaluated as −1;
at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

int(number)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly embedded in whitespace; this
behaves identical to 'string.atoi(number[, radix]'). The radix parameter gives the base for the
conversion and may be any integer in the range 2 to 36. If radix is specified and the number is not a
string, TypeError is raised. Otherwise, the argument may be a plain or long integer or a floating
point number. Conversion of floating point numbers to integers is defined by the C semantics;
normally the conversion truncates towards zero.

len(sequence)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple
or list) or a mapping (dictionary).

max(s)
With a single argument s, return the largest item of a non−empty sequence (e.g., a string, tuple or list).
With more than one argument, return the largest of the arguments.

min(s)
With a single argument s, return the smallest item of a non−empty sequence (e.g., a string, tuple or
list). With more than one argument, return the smallest of the arguments.

namespace([name=value]...)
Returns a new DTML namespace object. Keyword argument name=value pairs are pushed into the
new namespace.

oct(integer)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.
Note: this always yields an unsigned literal, e.g. on a 32−bit machine, oct(−1) yields
037777777777. When evaluated on a machine with the same word size, this literal is evaluated as
−1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

ord(character)
Return the ASCII value of a string of one character. E.g., ord("a") returns the integer 97. This is
the inverse of chr().

pow(x, y [,z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than 'pow(x, y) % z'). The arguments must have numeric types. With mixed operand types, the rules
for binary arithmetic operators apply. The effective operand type is also the type of the result; if the
result is not expressible in this type, the function raises an exception; e.g., pow(2, −1) or pow(2,
35000) is not allowed.

range([start,] stop [,step])

Appendix A: DTML Reference 265

This is a versatile function to create lists containing arithmetic progressions. The arguments must be
plain integers. If the step argument is omitted, it defaults to 1. If the start argument is omitted, it
defaults to 0. The full form returns a list of plain integers '[start, start + step, start + 2 * step, ...]'. If
step is positive, the last element is the largest 'start + i step' less than stop; if step is negative, the last
element is the largest 'start + i step' greater than stop. step must not be zero (or else ValueError is
raised).

round(x [,n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults
to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the
power minus n; if two multiples are equally close, rounding is done away from 0 (so e.g. round(0.5) is
1.0 and round(−0.5) is −1.0).

render(object)
Render object. For DTML objects this evaluates the DTML code with the current namespace. For
other objects, this is equivalent to str(object).

reorder(s [,with] [,without])
Reorder the items in s according to the order given in with and without the items mentioned in
without. Items from s not mentioned in with are removed. s, with, and without are all either
sequences of strings or sequences of key−value tuples, with ordering done on the keys. This function
is useful for constructing ordered select lists.

SecurityCalledByExecutable()
Return a true if the current object (e.g. DTML document or method) is being called by an executable
(e.g. another DTML document or method, a script or a SQL method).

SecurityCheckPermission(permission, object)
Check whether the security context allows the given permission on the given object. For example,
'SecurityCheckPermission("Add Documents, Images, and Files", this())' would return true if the
current user was authorized to create documents, images, and files in the current location.

SecurityGetUser()
Return the current user object. This is normally the same as the
REQUEST.AUTHENTICATED_USER object. However, the AUTHENTICATED_USER object is
insecure since it can be replaced.

SecurityValidate([object] [,parent] [,name] [,value])
Return true if the value is accessible to the current user. object is the object the value was accessed
in, parent is the container of the value, and name is the named used to access the value (for
example, if it was obtained via 'getattr'). You may omit some of the arguments, however it is best to
provide all available arguments.

SecurityValidateValue(object)
Return true if the object is accessible to the current user. This function is the same as calling
SecurityValidate(None, None, None, object).

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns the
string itself.

test(condition, result [,condition, result]... [,default])
Takes one or more condition, result pairs and returns the result of the first true condition. Only one
result is returned, even if more than one condition is true. If no condition is true and a default is given,
the default is returned. If no condition is true and there is no default, None is returned.

unichr(number)
Return a unicode string representing the value of number as a unicode character. This is the inverse of
ord() for unicode characters.

unicode(string[, encoding[, errors]])
Decodes string using the codec for encoding. Error handling is done according to errors. The default
behavior is to decode UTF−8 in strict mode, meaning that encoding errors raise ValueError.

Appendix A: DTML Reference 266

Attributes

None
The None object is equivalent to the Python built−in object None. This is usually used to represent a
Null or false value.

See Also

string module

random module

math module

sequence module

Built−in Python Functions

if: Tests Conditions

The if tags allows you to test conditions and to take different actions depending on the conditions. The if
tag mirrors Python's if/elif/else condition testing statements.

Syntax

If tag syntax:

 <dtml−if ConditionVariable|expr="ConditionExpression">
 [<dtml−elif ConditionVariable|expr="ConditionExpression">]
 ...
 [<dtml−else>]
 </dtml−if>

The if tag is a block tag. The if tag and optional elif tags take a condition variable name or a condition
expression, but not both. If the condition name or expression evaluates to true then the if block is executed.
True means not zero, an empty string or an empty list. If the condition variable is not found then the condition
is considered false.

If the initial condition is false, each elif condition is tested in turn. If any elif condition is true, its block
is executed. Finally the optional else block is executed if none of the if and elif conditions were true.
Only one block will be executed.

Examples

Testing for a variable:

 <dtml−if snake>
 The snake variable is true
 </dtml−if>

Testing for expression conditions:

 <dtml−if expr="num > 5">

Appendix A: DTML Reference 267

http://www.python.org/doc/current/lib/built-in-funcs.html

 num is greater than five
 <dtml−elif expr="num < 5">
 num is less than five
 <dtml−else>
 num must be five
 </dtml−if>

See Also

Python Tutorial: If Statements

in: Loops over sequences

The in tag gives you powerful controls for looping over sequences and performing batch processing.

Syntax

in tag syntax:

 <dtml−in SequenceVariable|expr="SequenceExpression">
 [<dtml−else>]
 </dtml−in>

The in block is repeated once for each item in the sequence variable or sequence expression. The current item
is pushed on to the DTML namespace during each executing of the in block.

If there are no items in the sequence variable or expression, the optional else block is executed.

Attributes

mapping
Iterates over mapping objects rather than instances. This allows values of the mapping objects to be
accessed as DTML variables.

reverse
Reverses the sequence.

sort=string
Sorts the sequence by the given attribute name.

start=int
The number of the first item to be shown, where items are numbered from 1.

end=int
The number of the last item to be shown, where items are numbered from 1.

size=int
The size of the batch.

skip_unauthorized
Don't raise an exception if an unauthorized item is encountered.

orphan=int
The desired minimum batch size. This controls how sequences are split into batches. If a batch
smaller than the orphan size would occur, then no split is performed, and a batch larger than the batch
size results.
For example, if the sequence size is 12, the batch size is 10 the orphan size is 3, then the result is one
batch with all 12 items since splitting the items into two batches would result in a batch smaller than
the orphan size.

Appendix A: DTML Reference 268

http://www.python.org/doc/current/tut/node6.html#SECTION006100000000000000000

The default value is 0.

overlap=int
The number of items to overlap between batches. The default is no overlap.

previous
Iterates once if there is a previous batch. Sets batch variables for previous sequence.

next
Iterates once if there is a next batch. Sets batch variables for the next sequence.

prefix=string
Provide versions of the tag variables that start with this prefix instead of "sequence", and that use
underscores (_) instead of hyphens (−). The prefix must start with a letter and contain only
alphanumeric characters and underscores (_).

sort_expr=expression
Sorts the sequence by an attribute named by the value of the expression. This allows you to sort on
different attributes.

reverse_expr=expression
Reverses the sequence if the expression evaluates to true. This allows you to selectively reverse the
sequence.

Tag Variables

Current Item Variables

These variables describe the current item.

sequence−item
The current item.

sequence−key
The current key. When looping over tuples of the form (key,value), the in tag interprets them as
(sequence−key, sequence−item).

sequence−index
The index starting with 0 of the current item.

sequence−number
The index starting with 1 of the current item.

sequence−roman
The index in lowercase Roman numerals of the current item.

sequence−Roman
The index in uppercase Roman numerals of the current item.

sequence−letter
The index in lowercase letters of the current item.

sequence−Letter
The index in uppercase letters of the current item.

sequence−start
True if the current item is the first item.

sequence−end
True if the current item is the last item.

sequence−even
True if the index of the current item is even.

sequence−odd
True if the index of the current item is odd.

sequence−length
The length of the sequence.

Appendix A: DTML Reference 269

sequence−var−variable
A variable in the current item. For example, sequence−var−title is the title variable of the
current item. Normally you can access these variables directly since the current item is pushed on the
DTML namespace. However these variables can be useful when displaying previous and next batch
information.

sequence−index−variable
The index of a variable of the current item.

Summary Variables

These variable summarize information about numeric item variables. To use these variable you must loop
over objects (like database query results) that have numeric variables.

total−variable
The total of all occurrences of an item variable.

count−variable
The number of occurrences of an item variable.

min−variable
The minimum value of an item variable.

max−variable
The maximum value of an item variable.

mean−variable
The mean value of an item variable.

variance−variable
The variance of an item variable with count−1 degrees of freedom.

variance−n−variable
The variance of an item variable with n degrees of freedom.

standard−deviation−variable
The standard−deviation of an item variable with count−1 degrees of freedom.

standard−deviation−n−variable
The standard−deviation of an item variable with n degrees of freedom.

Grouping Variables

These variables allow you to track changes in current item variables.

first−variable
True if the current item is the first with a particular value for a variable.

last−variable
True if the current item is the last with a particular value for a variable.

Batch Variables

sequence−query
The query string with the start variable removed. You can use this variable to construct links to
next and previous batches.

sequence−step−size
The batch size.

previous−sequence
True if the current batch is not the first one. Note, this variable is only true for the first loop iteration.

previous−sequence−start−index
The starting index of the previous batch.

Appendix A: DTML Reference 270

previous−sequence−start−number
The starting number of the previous batch. Note, this is the same as
previous−sequence−start−index + 1.

previous−sequence−end−index
The ending index of the previous batch.

previous−sequence−end−number
The ending number of the previous batch. Note, this is the same as
previous−sequence−end−index + 1.

previous−sequence−size
The size of the previous batch.

previous−batches
A sequence of mapping objects with information about all previous batches. Each mapping object has
these keys batch−start−index, batch−end−index, and batch−size.

next−sequence
True if the current batch is not the last batch. Note, this variable is only true for the last loop iteration.

next−sequence−start−index
The starting index of the next sequence.

next−sequence−start−number
The starting number of the next sequence. Note, this is the same as
next−sequence−start−index + 1.

next−sequence−end−index
The ending index of the next sequence.

next−sequence−end−number
The ending number of the next sequence. Note, this is the same as next−sequence−end−index
+ 1.

next−sequence−size
The size of the next index.

next−batches
A sequence of mapping objects with information about all following batches. Each mapping object
has these keys batch−start−index, batch−end−index, and batch−size.

Examples

Looping over sub−objects:

 <dtml−in objectValues>
 title: <dtml−var title>

 </dtml−in>

Looping over two sets of objects, using prefixes:

 <dtml−let rows="(1,2,3)" cols="(4,5,6)">
 <dtml−in rows prefix="row">
 <dtml−in cols prefix="col">
 <dtml−var expr="row_item * col_item">

 <dtml−if col_end>
 <dtml−var expr="col_total_item * row_mean_item">
 </dtml−if>
 </dtml−in>
 </dtml−in>
 </dtml−let>

Looping over a list of (key, value) tuples:

 <dtml−in objectItems>

Appendix A: DTML Reference 271

 id: <dtml−var sequence−key>, title: <dtml−var title>

 </dtml−in>

Creating alternate colored table cells:

 <table>
 <dtml−in objectValues>
 <tr <dtml−if sequence−odd>bgcolor="#EEEEEE"
 <dtml−else>bgcolor="#FFFFFF"
 </dtml−if>
 <td><dtml−var title></td>
 </tr>
 </dtml−in>
 </table>

Basic batch processing:

 <p>
 <dtml−in largeSequence size=10 start=start previous>
 <a href="<dtml−var absolute_url><dtml−var sequence−query>start=<dtml−var previous−sequence−start−number>">Previous
 </dtml−in>

 <dtml−in largeSequence size=10 start=start next>
 <a href="<dtml−var absolute_url><dtml−var sequence−query>start=<dtml−var next−sequence−start−number>">Next
 </dtml−in>
 </p>

 <p>
 <dtml−in largeSequence size=10 start=start>
 <dtml−var sequence−item>
 </dtml−in>
 </p>

This example creates Previous and Next links to navigate between batches. Note, by using
sequence−query, you do not lose any GET variables as you navigate between batches.

let: Defines DTML variables

The let tag defines variables in the DTML namespace.

Syntax

let tag syntax:

 <dtml−let [Name=Variable][Name="Expression"]...>
 </dtml−let>

The let tag is a block tag. Variables are defined by tag arguments. Defined variables are pushed onto the
DTML namespace while the let block is executed. Variables are defined by attributes. The let tag can
have one or more attributes with arbitrary names. If the attributes are defined with double quotes they are
considered expressions, otherwise they are looked up by name. Attributes are processed in order, so later
attributes can reference, and/or overwrite earlier ones.

Examples

Basic usage:

Appendix A: DTML Reference 272

 <dtml−let name="'Bob'" ids=objectIds>
 name: <dtml−var name>
 ids: <dtml−var ids>
 </dtml−let>

Using the let tag with the in tag:

 <dtml−in expr="(1,2,3,4)">
 <dtml−let num=sequence−item
 index=sequence−index
 result="num*index">
 <dtml−var num> * <dtml−var index> = <dtml−var result>
 </dtml−let>
 </dtml−in>

This yields:

 1 * 0 = 0
 2 * 1 = 2
 3 * 2 = 6
 4 * 3 = 12

See Also

with tag

mime: Formats data with MIME

The mime tag allows you to create MIME encoded data. It is chiefly used to format email inside the
sendmail tag.

Syntax

mime tag syntax:

 <dtml−mime>
 [<dtml−boundry>]
 ...
 </dtml−mime>

The mime tag is a block tag. The block is can be divided by one or more boundry tags to create a multi−part
MIME message. mime tags may be nested. The mime tag is most often used inside the sendmail tag.

Attributes

Both the mime and boundry tags have the same attributes.

encode=string
MIME Content−Transfer−Encoding header, defaults to base64. Valid encoding options include
base64, quoted−printable, uuencode, x−uuencode, uue, x−uue, and 7bit. If the
encode attribute is set to 7bit no encoding is done on the block and the data is assumed to be in a
valid MIME format.

type=string
MIME Content−Type header.

type_expr=string

Appendix A: DTML Reference 273

MIME Content−Type header as a variable expression. You cannot use both type and type_expr.
name=string

MIME Content−Type header name.
name_expr=string

MIME Content−Type header name as a variable expression. You cannot use both name and
name_expr.

disposition=string
MIME Content−Disposition header.

disposition_expr=string
MIME Content−Disposition header as a variable expression. You cannot use both disposition
and disposition_expr.

filename=string
MIME Content−Disposition header filename.

filename_expr=string
MIME Content−Disposition header filename as a variable expression. You cannot use both
filename and filename_expr.

skip_expr=string
A variable expression that if true, skips the block. You can use this attribute to selectively include
MIME blocks.

Examples

Sending a file attachment:

 <dtml−sendmail>
 To: <dtml−recipient>
 Subject: Resume
 <dtml−mime type="text/plain" encode="7bit">

 Hi, please take a look at my resume.

 <dtml−boundary type="application/octet−stream" disposition="attachment"
 encode="base64" filename_expr="resume_file.getId()"><dtml−var expr="resume_file.read()"></dtml−mime>
 </dtml−sendmail>

See Also

Python Library: mimetools

raise: Raises an exception

The raise tag raises an exception, mirroring the Python raise statement.

Syntax

raise tag syntax:

 <dtml−raise ExceptionName|ExceptionExpression>
 </dtml−raise>

The raise tag is a block tag. It raises an exception. Exceptions can be an exception class or a string. The
contents of the tag are passed as the error value.

Appendix A: DTML Reference 274

http://www.python.org/doc/current/lib/module-mimetools.html

Examples

Raising a KeyError:

 <dtml−raise KeyError></dtml−raise>

Raising an HTTP 404 error:

 <dtml−raise NotFound>Web Page Not Found</dtml−raise>

See Also

try tag

Python Tutorial: Errors and Exceptions

Python Built−in Exceptions

return: Returns data

The return tag stops executing DTML and returns data. It mirrors the Python return statement.

Syntax

return tag syntax:

 <dtml−return ReturnVariable|expr="ReturnExpression">

Stops execution of DTML and returns a variable or expression. The DTML output is not returned. Usually a
return expression is more useful than a return variable. Scripts largely obsolete this tag.

Examples

Returning a variable:

 <dtml−return result>

Returning a Python dictionary:

 <dtml−return expr="{'hi':200, 'lo':5}">

sendmail: Sends email with SMTP

The sendmail tag sends an email message using SMTP.

Syntax

sendmail tag syntax:

 <dtml−sendmail>
 </dtml−sendmail>

Appendix A: DTML Reference 275

http://www.python.org/doc/current/tut/node10.html
http://www.python.org/doc/current/lib/module-exceptions.html

The sendmail tag is a block tag. It either requires a mailhost or a smtphost argument, but not both.
The tag block is sent as an email message. The beginning of the block describes the email headers. The
headers are separated from the body by a blank line. Alternately the To, From and Subject headers can be
set with tag arguments.

Attributes

mailhost
The name of a Zope MailHost object to use to send email. You cannot specify both a mailhost and a
smtphost.

smtphost
The name of a SMTP server used to send email. You cannot specify both a mailhost and a smtphost.

port
If the smtphost attribute is used, then the port attribute is used to specify a port number to connect to.
If not specified, then port 25 will be used.

mailto
The recipient address or a list of recipient addresses separated by commas. This can also be specified
with the To header.

mailfrom
The sender address. This can also be specified with the From header.

subject
The email subject. This can also be specified with the Subject header.

Examples

Sending an email message using a Mail Host:

 <dtml−sendmail mailhost="mailhost">
 To: <dtml−var recipient>
 From: <dtml−var sender>
 Subject: <dtml−var subject>

 Dear <dtml−var recipient>,

 You order number <dtml−var order_number> is ready.
 Please pick it up at your soonest convenience.
 </dtml−sendmail>

See Also

RFC 821 (SMTP Protocol)

mime tag

sqlgroup: Formats complex SQL expressions

The sqlgroup tag formats complex boolean SQL expressions. You can use it along with the sqltest tag
to build dynamic SQL queries that tailor themselves to the environment. This tag is used in SQL Methods.

Syntax

sqlgroup tag syntax:

Appendix A: DTML Reference 276

http://www.ietf.org/rfc/rfc0821.txt

 <dtml−sqlgroup>
 [<dtml−or>]
 [<dtml−and>]
 ...
 </dtml−sqlgroup>

The sqlgroup tag is a block tag. It is divided into blocks with one or more optional or and and tags.
sqlgroup tags can be nested to produce complex logic.

Attributes

required=boolean
Indicates whether the group is required. If it is not required and contains nothing, it is excluded from
the DTML output.

where=boolean
If true, includes the string "where". This is useful for the outermost sqlgroup tag in a SQL
select query.

Examples

Sample usage:

 select * from employees
 <dtml−sqlgroup where>
 <dtml−sqltest salary op="gt" type="float" optional>
 <dtml−and>
 <dtml−sqltest first type="nb" multiple optional>
 <dtml−and>
 <dtml−sqltest last type="nb" multiple optional>
 </dtml−sqlgroup>

If first is Bob and last is Smith, McDonald it renders:

 select * from employees
 where
 (first='Bob'
 and
 last in ('Smith', 'McDonald')
)

If salary is 50000 and last is Smith it renders:

 select * from employees
 where
 (salary > 50000.0
 and
 last='Smith'
)

Nested sqlgroup tags:

 select * from employees
 <dtml−sqlgroup where>
 <dtml−sqlgroup>
 <dtml−sqltest first op="like" type="nb">
 <dtml−and>
 <dtml−sqltest last op="like" type="nb">
 <dtml−sqlgroup>

Appendix A: DTML Reference 277

 <dtml−or>
 <dtml−sqltest salary op="gt" type="float">
 </dtml−sqlgroup>

Given sample arguments, this template renders to SQL like so:

 select * form employees
 where
 (
 (
 name like 'A*'
 and
 last like 'Smith'
)
 or
 salary > 20000.0
)

See Also

sqltest tag

sqltest: Formats SQL condition tests

The sqltest tag inserts a condition test into SQL code. It tests a column against a variable. This tag is used
in SQL Methods.

Syntax

sqltest tag syntax:

 <dtml−sqltest Variable|expr="VariableExpression">

The sqltest tag is a singleton. It inserts a SQL condition test statement. It is used to build SQL queries.
The sqltest tag correctly escapes the inserted variable. The named variable or variable expression is tested
against a SQL column using the specified comparison operation.

Attributes

type=string
The type of the variable. Valid types include: string, int, float and nb. nb means non−blank
string, and should be used instead of string unless you want to test for blank values. The type
attribute is required and is used to properly escape inserted variable.

column=string
The name of the SQL column to test against. This attribute defaults to the variable name.

multiple=boolean
If true, then the variable may be a sequence of values to test the column against.

optional=boolean
If true, then the test is optional and will not be rendered if the variable is empty or non−existent.

op=string
The comparison operation. Valid comparisons include:
eq

equal to
gt

Appendix A: DTML Reference 278

greater than
lt

less than
ne

not equal to
ge

greater than or equal to
le

less than or equal to
The comparison defaults to equal to. If the comparison is not recognized it is used anyway. Thus you
can use comparisons such as like.

Examples

Basic usage:

 select * from employees
 where <dtml−sqltest name type="nb">

If the name variable is Bob then this renders:

 select * from employees
 where name = 'Bob'

Multiple values:

 select * from employees
 where <dtml−sqltest empid type=int multiple>

If the empid variable is (12,14,17) then this renders:

 select * from employees
 where empid in (12, 14, 17)

See Also

sqlgroup tag

sqlvar tag

sqlvar: Inserts SQL variables

The sqlvar tag safely inserts variables into SQL code. This tag is used in SQL Methods.

Syntax

sqlvar tag syntax:

 <dtml−sqlvar Variable|expr="VariableExpression">

The sqlvar tag is a singleton. Like the var tag, the sqlvar tag looks up a variable and inserts it. Unlike
the var tag, the formatting options are tailored for SQL code.

Appendix A: DTML Reference 279

Attributes

type=string
The type of the variable. Valid types include: string, int, float and nb. nb means non−blank
string and should be used in place of string unless you want to use blank strings. The type attribute
is required and is used to properly escape inserted variable.

optional=boolean
If true and the variable is null or non−existent, then nothing is inserted.

Examples

Basic usage:

 select * from employees
 where name=<dtml−sqlvar name type="nb">

This SQL quotes the name string variable.

See Also

sqltest tag

tree: Inserts a tree widget

The tree tag displays a dynamic tree widget by querying Zope objects.

Syntax

tree tag syntax:

 <dtml−tree [VariableName|expr="VariableExpression"]>
 </dtml−tree>

The tree tag is a block tag. It renders a dynamic tree widget in HTML. The root of the tree is given by
variable name or expression, if present, otherwise it defaults to the current object. The tree block is rendered
for each tree node, with the current node pushed onto the DTML namespace.

Tree state is set in HTTP cookies. Thus for trees to work, cookies must be enabled. Also you can only have
one tree per page.

Attributes

branches=string
Finds tree branches by calling the named method. The default method is tpValues which most
Zope objects support.

branches_expr=string
Finds tree branches by evaluating the expression.

id=string
The name of a method or id to determine tree state. It defaults to tpId which most Zope objects
support. This attribute is for advanced usage only.

url=string

Appendix A: DTML Reference 280

The name of a method or attribute to determine tree item URLs. It defaults to tpURL which most
Zope objects support. This attribute is for advanced usage only.

leaves=string
The name of a DTML Document or Method used to render nodes that don't have any children. Note:
this document should begin with <dtml−var standard_html_header> and end with
<dtml−var standard_html_footer> in order to ensure proper display in the tree.

header=string
The name of a DTML Document or Method displayed before expanded nodes. If the header is not
found, it is skipped.

footer=string
The name of a DTML Document or Method displayed after expanded nodes. If the footer is not
found, it is skipped.

nowrap=boolean
If true then rather than wrap, nodes may be truncated to fit available space.

sort=string
Sorts the branches by the named attribute.

reverse
Reverses the order of the branches.

assume_children=boolean
Assumes that nodes have children. This is useful if fetching and querying child nodes is a costly
process. This results in plus boxes being drawn next to all nodes.

single=boolean
Allows only one branch to be expanded at a time. When you expand a new branch, any other
expanded branches close.

skip_unauthorized
Skips nodes that the user is unauthorized to see, rather than raising an error.

urlparam=string
A query string which is included in the expanding and contracting widget links. This attribute is for
advanced usage only.

prefix=string
Provide versions of the tag variables that start with this prefix instead of "tree", and that use
underscores (_) instead of hyphens (−). The prefix must start with a letter and contain only
alphanumeric characters and underscores (_).

Tag Variables

tree−item−expanded
True if the current node is expanded.

tree−item−url
The URL of the current node.

tree−root−url
The URL of the root node.

tree−level
The depth of the current node. Top−level nodes have a depth of zero.

tree−colspan
The number of levels deep the tree is being rendered. This variable along with the tree−level
variable can be used to calculate table rows and colspan settings when inserting table rows into the
tree table.

tree−state
The tree state expressed as a list of ids and sub−lists of ids. This variable is for advanced usage only.

Appendix A: DTML Reference 281

Tag Control Variables

You can control the tree tag by setting these variables.

expand_all
If this variable is true then the entire tree is expanded.

collapse_all
If this variable is true then the entire tree is collapsed.

Examples

Display a tree rooted in the current object:

 <dtml−tree>
 <dtml−var title_or_id>
 </dtml−tree>

Display a tree rooted in another object, using a custom branches method:

 <dtml−tree expr="folder.object" branches="objectValues">
 Node id : <dtml−var getId>
 </dtml−tree>

try: Handles exceptions

The try tag allows exception handling in DTML, mirroring the Python try/except and try/finally
constructs.

Syntax

The try tag has two different syntaxes, try/except/else and try/finally.

try/except/else Syntax:

 <dtml−try>
 <dtml−except [ExceptionName] [ExceptionName]...>
 ...
 [<dtml−else>]
 </dtml−try>

The try tag encloses a block in which exceptions can be caught and handled. There can be one or more
except tags that handles zero or more exceptions. If an except tag does not specify an exception, then it
handles all exceptions.

When an exception is raised, control jumps to the first except tag that handles the exception. If there is no
except tag to handle the exception, then the exception is raised normally.

If no exception is raised, and there is an else tag, then the else tag will be executed after the body of the
try tag.

The except and else tags are optional.

try/finally Syntax:

Appendix A: DTML Reference 282

 <dtml−try>
 <dtml−finally>
 </dtml−try>

The finally tag cannot be used in the same try block as the except and else tags. If there is a
finally tag, its block will be executed whether or not an exception is raised in the try block.

Attributes

except
Zero or more exception names. If no exceptions are listed then the except tag will handle all
exceptions.

Tag Variables

Inside the except block these variables are defined.

error_type
The exception type.

error_value
The exception value.

error_tb
The traceback.

Examples

Catching a math error:

 <dtml−try>
 <dtml−var expr="1/0">
 <dtml−except ZeroDivisionError>
 You tried to divide by zero.
 </dtml−try>

Returning information about the handled exception:

 <dtml−try>
 <dtml−call dangerousMethod>
 <dtml−except>
 An error occurred.
 Error type: <dtml−var error_type>
 Error value: <dtml−var error_value>
 </dtml−try>

Using finally to make sure to perform clean up regardless of whether an error is raised or not:

 <dtml−call acquireLock>
 <dtml−try>
 <dtml−call someMethod>
 <dtml−finally>
 <dtml−call releaseLock>
 </dtml−try>

Appendix A: DTML Reference 283

See Also

raise tag

Python Tutorial: Errors and Exceptions

Python Built−in Exceptions

unless: Tests a condition

The unless tag provides a shortcut for testing negative conditions. For more complete condition testing use
the if tag.

Syntax

unless tag syntax:

 <dtml−unless ConditionVariable|expr="ConditionExpression">
 </dtml−unless>

The unless tag is a block tag. If the condition variable or expression evaluates to false, then the contained
block is executed. Like the if tag, variables that are not present are considered false.

Examples

Testing a variable:

 <dtml−unless testMode>
 <dtml−call dangerousOperation>
 </dtml−unless>

The block will be executed if testMode does not exist, or exists but is false.

See Also

if tag

var: Inserts a variable

The var tags allows you insert variables into DTML output.

Syntax

var tag syntax:

 <dtml−var Variable|expr="Expression">

The var tag is a singleton tag. The var tag finds a variable by searching the DTML namespace which
usually consists of current object, the current object's containers, and finally the web request. If the variable is
found, it is inserted into the DTML output. If not found, Zope raises an error.

Appendix A: DTML Reference 284

http://www.python.org/doc/current/tut/node10.html
http://www.python.org/doc/current/lib/module-exceptions.html

var tag entity syntax:

 &dtml−variableName;

Entity syntax is a short cut which inserts and HTML quotes the variable. It is useful when inserting variables
into HTML tags.

var tag entity syntax with attributes:

 &dtml.attribute1[.attribute2]...−variableName;

To a limited degree you may specify attributes with the entity syntax. You may include zero or more attributes
delimited by periods. You cannot provide arguments for attributes using the entity syntax. If you provide zero
or more attributes, then the variable is not automatically HTML quoted. Thus you can avoid HTML quoting
with this syntax, &dtml.−variableName;.

Attributes

html_quote
Convert characters that have special meaning in HTML to HTML character entities.

missing=string
Specify a default value in case Zope cannot find the variable.

fmt=string
Format a variable. Zope provides a few built−in formats including C−style format strings. For more
information on C−style format strings see the Python Library Reference If the format string is not a
built−in format, then it is assumed to be a method of the object, and it called.
whole−dollars

Formats the variable as dollars.
dollars−and−cents

Formats the variable as dollars and cents.
collection−length

The length of the variable, assuming it is a sequence.
structured−text

Formats the variable as Structured Text. For more information on Structured Text see
Structured Text How−To on the Zope.org web site.

null=string
A default value to use if the variable is None.

lower
Converts upper−case letters to lower case.

upper
Converts lower−case letters to upper case.

capitalize
Capitalizes the first character of the inserted word.

spacify
Changes underscores in the inserted value to spaces.

thousands_commas
Inserts commas every three digits to the left of a decimal point in values containing numbers for
example 12000 becomes 12,000.

url
Inserts the URL of the object, by calling its absolute_url method.

url_quote
Converts characters that have special meaning in URLs to HTML character entities.

url_quote_plus

Appendix A: DTML Reference 285

http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.zope.org/Members/millejoh/structuredText

URL quotes character, like url_quote but also converts spaces to plus signs.
sql_quote

Converts single quotes to pairs of single quotes. This is needed to safely include values in SQL
strings.

newline_to_br
Convert newlines (including carriage returns) to HTML break tags.

size=arg
Truncates the variable at the given length (Note: if a space occurs in the second half of the truncated
string, then the string is further truncated to the right−most space).

etc=arg
Specifies a string to add to the end of a string which has been truncated (by setting the size attribute
listed above). By default, this is ...

Examples

Inserting a simple variable into a document:

 <dtml−var standard_html_header>

Truncation:

 <dtml−var colors size=10 etc=", etc.">

will produce the following output if colors is the string 'red yellow green':

 red yellow, etc.

C−style string formatting:

 <dtml−var expr="23432.2323" fmt="%.2f">

renders to:

 23432.23

Inserting a variable, link, inside an HTML A tag with the entity syntax:

 Link

Inserting a link to a document doc, using entity syntax with attributes:

 <dtml−var doc fmt="title_or_id">

This creates an HTML link to an object using its URL and title. This example calls the object's
absolute_url method for the URL (using the url attribute) and its title_or_id method for the title.

with: Controls DTML variable look up

The with tag pushes an object onto the DTML namespace. Variables will be looked up in the pushed object
first.

Appendix A: DTML Reference 286

Syntax

with tag syntax:

 <dtml−with Variable|expr="Expression">
 </dtml−with>

The with tag is a block tag. It pushes the named variable or variable expression onto the DTML namespace
for the duration of the with block. Thus names are looked up in the pushed object first.

Attributes

only
Limits the DTML namespace to only include the one defined in the with tag.

mapping
Indicates that the variable or expression is a mapping object. This ensures that variables are looked up
correctly in the mapping object.

Examples

Looking up a variable in the REQUEST:

 <dtml−with REQUEST only>
 <dtml−if id>
 <dtml−var id>
 <dtml−else>
 'id' was not in the request.
 </dtml−if>
 </dtml−with>

Pushing the first child on the DTML namespace:

 <dtml−with expr="objectValues()[0]">
 First child's id: <dtml−var id>
 </dtml−with>

See Also

let tag

Appendix A: DTML Reference 287

Appendix B: API Reference
This reference describes the interfaces to the most common set of basic Zope objects. This reference is useful
while writing DTML, Perl, and Python scripts that create and manipulate Zope objects.

module AccessControl

AccessControl: Security functions and classes

The functions and classes in this module are available to Python−based Scripts and Page Templates.

class SecurityManager

A security manager provides methods for checking access and managing executable context and policies

calledByExecutable(self)

Return a boolean value indicating if this context was called by an executable.

permission
Always available

validate(accessed=None, container=None, name=None, value=None,
roles=None)

Validate access.

Arguments:

accessed
the object that was being accessed

container
the object the value was found in

name
The name used to access the value

value
The value retrieved though the access.

roles
The roles of the object if already known.

The arguments may be provided as keyword arguments. Some of these arguments may be omitted, however,
the policy may reject access in some cases when arguments are omitted. It is best to provide all the values
possible.

permission
Always available

checkPermission(self, permission, object)

Check whether the security context allows the given permission on the given object.

permission
Always available

getUser(self)

Get the current authenticated user. See the AuthenticatedUser class.

permission
Always available

validateValue(self, value, roles=None)

Convenience for common case of simple value validation.

permission
Always available

def getSecurityManager()

Returns the security manager. See the SecurityManager class.

module AuthenticatedUser

class AuthenticatedUser

This interface needs to be supported by objects that are returned by user validation and used for access
control.

getUserName()

Return the name of a user

Permission
Always available

getId()

Get the ID of the user. The ID can be used from Python to get the user from the user's UserDatabase.

Permission
Always available

has_role(roles, object=None)

Return true if the user has at least one role from a list of roles, optionally in the context of an object.

Permission

Appendix B: API Reference 289

Always available

getRoles()

Return a list of the user's roles.

Permission
Always available

has_permission(permission, object)

Return true if the user has a permission on an object.

Permission
Always available

getRolesInContext(object)

Return the list of roles assigned to the user, including local roles assigned in context of an object.

Permission
Always available

getDomains()

Return the list of domain restrictions for a user.

Permission
Always available

module DTMLDocument

class DTMLDocument(ObjectManagerItem, PropertyManager)

A DTML Document is a Zope object that contains and executes DTML code. It is useful to represent web
pages.

manage_edit(data, title)

Change the DTML Document, replacing its contents with data and changing its title.

The data argument may be a file object or a string.

Permission
Change DTML Documents

document_src()

Returns the unrendered source text of the DTML Document.

Permission
View management screens

Appendix B: API Reference 290

__call__(client=None, REQUEST={}, RESPONSE=None, **kw)

Calling a DTMLDocument causes the Document to interpret the DTML code that it contains. The method
returns the result of the interpretation, which can be any kind of object.

To accomplish its task, DTML Document often needs to resolve various names into objects. For example,
when the code '<dtml−var spam>' is executed, the DTML engine tries to resolve the name spam.

In order to resolve names, the Document must be passed a namespace to look them up in. This can be done
several ways:

By passing a client object −− If the argument client is passed, then names are looked up as
attributes on the argument.

•

By passing a REQUEST mapping −− If the argument REQUEST is passed, then names are looked up
as items on the argument. If the object is not a mapping, an TypeError will be raised when a name
lookup is attempted.

•

By passing keyword arguments −− names and their values can be passed as keyword arguments to the
Document.

•

The namespace given to a DTML Document is the composite of these three methods. You can pass any
number of them or none at all. Names are looked up first in the keyword arguments, then in the client, and
finally in the mapping.

A DTMLDocument implicitly pass itself as a client argument in addition to the specified client, so names are
looked up in the DTMLDocument itself.

Passing in a namespace to a DTML Document is often referred to as providing the Document with a context.

DTML Documents can be called three ways.

From DTML

A DTML Document can be called from another DTML Method or Document:

 <dtml−var standard_html_header>
 <dtml−var aDTMLDocument>
 <dtml−var standard_html_footer>

In this example, the Document aDTMLDocument is being called from another DTML object by name. The
calling method passes the value this as the client argument and the current DTML namespace as the
REQUEST argument. The above is identical to this following usage in a DTML Python expression:

 <dtml−var standard_html_header>
 <dtml−var "aDTMLDocument(_.None, _)">
 <dtml−var standard_html_footer>

From Python

Products, External Methods, and Scripts can call a DTML Document in the same way as calling a DTML
Document from a Python expression in DTML; as shown in the previous example.

Appendix B: API Reference 291

By the Publisher

When the URL of a DTML Document is fetched from Zope, the DTML Document is called by the publisher.
The REQUEST object is passed as the second argument to the Document.

Permission
View

get_size()

Returns the size of the unrendered source text of the DTML Document in bytes.

Permission
View

ObjectManager Constructor

manage_addDocument(id, title)

Add a DTML Document to the current ObjectManager

module DTMLMethod

class DTMLMethod(ObjectManagerItem)

A DTML Method is a Zope object that contains and executes DTML code. It can act as a template to display
other objects. It can also hold small pieces of content which are inserted into other DTML Documents or
DTML Methods.

The DTML Method's id is available via the document_id variable and the title is available via the
document_title variable.

manage_edit(data, title)

Change the DTML Method, replacing its contents with data and changing its title.

The data argument may be a file object or a string.

Permission
Change DTML Methods

document_src()

Returns the unrendered source text of the DTML Method.

Permission
View management screens

__call__(client=None, REQUEST={}, **kw)

Calling a DTMLMethod causes the Method to interpret the DTML code that it contains. The method returns
the result of the interpretation, which can be any kind of object.

Appendix B: API Reference 292

To accomplish its task, DTML Method often needs to resolve various names into objects. For example, when
the code '<dtml−var spam>' is executed, the DTML engine tries to resolve the name spam.

In order to resolve names, the Method must be passed a namespace to look them up in. This can be done
several ways:

By passing a client object −− If the argument client is passed, then names are looked up as
attributes on the argument.

•

By passing a REQUEST mapping −− If the argument REQUEST is passed, then names are looked up
as items on the argument. If the object is not a mapping, an TypeError will be raised when a name
lookup is attempted.

•

By passing keyword arguments −− names and their values can be passed as keyword arguments to the
Method.

•

The namespace given to a DTML Method is the composite of these three methods. You can pass any number
of them or none at all. Names will be looked up first in the keyword argument, next in the client and finally in
the mapping.

Unlike DTMLDocuments, DTMLMethods do not look up names in their own instance dictionary.

Passing in a namespace to a DTML Method is often referred to as providing the Method with a context.

DTML Methods can be called three ways:

From DTML

A DTML Method can be called from another DTML Method or Document:

 <dtml−var standard_html_header>
 <dtml−var aDTMLMethod>
 <dtml−var standard_html_footer>

In this example, the Method aDTMLMethod is being called from another DTML object by name. The calling
method passes the value this as the client argument and the current DTML namespace as the REQUEST
argument. The above is identical to this following usage in a DTML Python expression:

 <dtml−var standard_html_header>
 <dtml−var "aDTMLMethod(_.None, _)">
 <dtml−var standard_html_footer>

From Python

Products, External Methods, and Scripts can call a DTML Method in the same way as calling a DTML
Method from a Python expression in DTML; as shown in the previous example.

By the Publisher

When the URL of a DTML Method is fetched from Zope, the DTML Method is called by the publisher. The
REQUEST object is passed as the second argument to the Method.

Permission
View

Appendix B: API Reference 293

get_size()

Returns the size of the unrendered source text of the DTML Method in bytes.

Permission
View

ObjectManager Constructor

manage_addDTMLMethod(id, title)

Add a DTML Method to the current ObjectManager

module DateTime

class DateTime

The DateTime object provides an interface for working with dates and times in various formats. DateTime
also provides methods for calendar operations, date and time arithmetic and formatting.

DateTime objects represent instants in time and provide interfaces for controlling its representation without
affecting the absolute value of the object.

DateTime objects may be created from a wide variety of string or numeric data, or may be computed from
other DateTime objects. DateTimes support the ability to convert their representations to many major
timezones, as well as the ability to create a DateTime object in the context of a given timezone.

DateTime objects provide partial numerical behavior:

Two date−time objects can be subtracted to obtain a time, in days between the two.•
A date−time object and a positive or negative number may be added to obtain a new date−time object
that is the given number of days later than the input date−time object.

•

A positive or negative number and a date−time object may be added to obtain a new date−time object
that is the given number of days later than the input date−time object.

•

A positive or negative number may be subtracted from a date−time object to obtain a new date−time
object that is the given number of days earlier than the input date−time object.

•

DateTime objects may be converted to integer, long, or float numbers of days since January 1, 1901, using the
standard int, long, and float functions (Compatibility Note: int, long and float return the number of days since
1901 in GMT rather than local machine timezone). DateTime objects also provide access to their value in a
float format usable with the python time module, provided that the value of the object falls in the range of the
epoch−based time module.

A DateTime object should be considered immutable; all conversion and numeric operations return a new
DateTime object rather than modify the current object.

A DateTime object always maintains its value as an absolute UTC time, and is represented in the context of
some timezone based on the arguments used to create the object. A DateTime object's methods return values
based on the timezone context.

Note that in all cases the local machine timezone is used for representation if no timezone is specified.

Appendix B: API Reference 294

DateTimes may be created with from zero to seven arguments.

If the function is called with no arguments, then the current date/time is returned, represented in the
timezone of the local machine.

•

If the function is invoked with a single string argument which is a recognized timezone name, an
object representing the current time is returned, represented in the specified timezone.

•

If the function is invoked with a single string argument representing a valid date/time, an object
representing that date/time will be returned.

•

As a general rule, any date−time representation that is recognized and unambiguous to a resident of
North America is acceptable.(The reason for this qualification is that in North America, a date like:
2/1/1994 is interpreted as February 1, 1994, while in some parts of the world, it is interpreted as
January 2, 1994.) A date/time string consists of two components, a date component and an optional
time component, separated by one or more spaces. If the time component is omitted, 12:00am is
assumed. Any recognized timezone name specified as the final element of the date/time string will be
used for computing the date/time value. (If you create a DateTime with the string Mar 9, 1997
1:45pm US/Pacific, the value will essentially be the same as if you had captured time.time() at
the specified date and time on a machine in that timezone):

 e=DateTime("US/Eastern")
 # returns current date/time, represented in US/Eastern.

 x=DateTime("1997/3/9 1:45pm")
 # returns specified time, represented in local machine zone.

 y=DateTime("Mar 9, 1997 13:45:00")
 # y is equal to x

The date component consists of year, month, and day values. The year value must be a one−, two−, or
four−digit integer. If a one− or two−digit year is used, the year is assumed to be in the twentieth
century. The month may be an integer, from 1 to 12, a month name, or a month abbreviation, where a
period may optionally follow the abbreviation. The day must be an integer from 1 to the number of
days in the month. The year, month, and day values may be separated by periods, hyphens, forward
slashes, or spaces. Extra spaces are permitted around the delimiters. Year, month, and day values may
be given in any order as long as it is possible to distinguish the components. If all three components
are numbers that are less than 13, then a month−day−year ordering is assumed.

The time component consists of hour, minute, and second values separated by colons. The hour value
must be an integer between 0 and 23 inclusively. The minute value must be an integer between 0 and
59 inclusively. The second value may be an integer value between 0 and 59.999 inclusively. The
second value or both the minute and second values may be omitted. The time may be followed by am
or pm in upper or lower case, in which case a 12−hour clock is assumed.

If the DateTime function is invoked with a single Numeric argument, the number is assumed to be a
floating point value such as that returned by time.time().

•

A DateTime object is returned that represents the gmt value of the time.time() float represented in the
local machine's timezone.

If the function is invoked with two numeric arguments, then the first is taken to be an integer year and
the second argument is taken to be an offset in days from the beginning of the year, in the context of
the local machine timezone. The date−time value returned is the given offset number of days from the
beginning of the given year, represented in the timezone of the local machine. The offset may be
positive or negative. Two−digit years are assumed to be in the twentieth century.

•

Appendix B: API Reference 295

If the function is invoked with two arguments, the first a float representing a number of seconds past
the epoch in gmt (such as those returned by time.time()) and the second a string naming a recognized
timezone, a DateTime with a value of that gmt time will be returned, represented in the given
timezone.:

•

 import time
 t=time.time()

 now_east=DateTime(t,'US/Eastern')
 # Time t represented as US/Eastern

 now_west=DateTime(t,'US/Pacific')
 # Time t represented as US/Pacific

 # now_east == now_west
 # only their representations are different

If the function is invoked with three or more numeric arguments, then the first is taken to be an
integer year, the second is taken to be an integer month, and the third is taken to be an integer day. If
the combination of values is not valid, then a DateTimeError is raised. Two−digit years are assumed
to be in the twentieth century. The fourth, fifth, and sixth arguments specify a time in hours, minutes,
and seconds; hours and minutes should be positive integers and seconds is a positive floating point
value, all of these default to zero if not given. An optional string may be given as the final argument
to indicate timezone (the effect of this is as if you had taken the value of time.time() at that time on a
machine in the specified timezone).

•

If a string argument passed to the DateTime constructor cannot be parsed, it will raise DateTime.SyntaxError.
Invalid date, time, or timezone components will raise a DateTime.DateTimeError.

The module function Timezones() will return a list of the timezones recognized by the DateTime module.
Recognition of timezone names is case−insensitive.

strftime(format)

Return date time string formatted according to format

See Python's time.strftime function.

dow()

Return the integer day of the week, where Sunday is 0

Permission
Always available

aCommon()

Return a string representing the object's value in the format: Mar 1, 1997 1:45 pm

Permission
Always available

Appendix B: API Reference 296

http://www.python.org/doc/current/lib/module-time.html

h_12()

Return the 12−hour clock representation of the hour

Permission
Always available

Mon_()

Compatibility: see pMonth

Permission
Always available

HTML4()

Return the object in the format used in the HTML4.0 specification, one of the standard forms in ISO8601.

See HTML 4.0 Specification

Dates are output as: YYYY−MM−DDTHH:MM:SSZ T, Z are literal characters. The time is in UTC.

Permission
Always available

greaterThanEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time greater than or equal to
the specified DateTime or time module style time. Revised to give more correct results through comparison of
long integer milliseconds.

Permission
Always available

dayOfYear()

Return the day of the year, in context of the timezone representation of the object

Permission
Always available

lessThan(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time less than the specified
DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission
Always available

Appendix B: API Reference 297

http://www.w3.org/TR/NOTE-datetime

AMPM()

Return the time string for an object to the nearest second.

Permission
Always available

isCurrentHour()

Return true if this object represents a date/time that falls within the current hour, in the context of this object's
timezone representation

Permission
Always available

Month()

Return the full month name

Permission
Always available

mm()

Return month as a 2 digit string

Permission
Always available

ampm()

Return the appropriate time modifier (am or pm)

Permission
Always available

hour()

Return the 24−hour clock representation of the hour

Permission
Always available

aCommonZ()

Return a string representing the object's value in the format: Mar 1, 1997 1:45 pm US/Eastern

Permission
Always available

Appendix B: API Reference 298

Day_()

Compatibility: see pDay

Permission
Always available

pCommon()

Return a string representing the object's value in the format: Mar. 1, 1997 1:45 pm

Permission
Always available

minute()

Return the minute

Permission
Always available

day()

Return the integer day

Permission
Always available

earliestTime()

Return a new DateTime object that represents the earliest possible time (in whole seconds) that still falls
within the current object's day, in the object's timezone context

Permission
Always available

Date()

Return the date string for the object.

Permission
Always available

Time()

Return the time string for an object to the nearest second.

Permission
Always available

Appendix B: API Reference 299

isFuture()

Return true if this object represents a date/time later than the time of the call

Permission
Always available

greaterThan(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time greater than the specified
DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission
Always available

TimeMinutes()

Return the time string for an object not showing seconds.

Permission
Always available

yy()

Return calendar year as a 2 digit string

Permission
Always available

isCurrentDay()

Return true if this object represents a date/time that falls within the current day, in the context of this object's
timezone representation

Permission
Always available

dd()

Return day as a 2 digit string

Permission
Always available

rfc822()

Return the date in RFC 822 format

Permission
Always available

Appendix B: API Reference 300

isLeapYear()

Return true if the current year (in the context of the object's timezone) is a leap year

Permission
Always available

fCommon()

Return a string representing the object's value in the format: March 1, 1997 1:45 pm

Permission
Always available

isPast()

Return true if this object represents a date/time earlier than the time of the call

Permission
Always available

fCommonZ()

Return a string representing the object's value in the format: March 1, 1997 1:45 pm US/Eastern

Permission
Always available

timeTime()

Return the date/time as a floating−point number in UTC, in the format used by the python time module. Note
that it is possible to create date/time values with DateTime that have no meaningful value to the time module.

Permission
Always available

toZone(z)

Return a DateTime with the value as the current object, represented in the indicated timezone.

Permission
Always available

lessThanEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time less than or equal to the
specified DateTime or time module style time. Revised to give more correct results through comparison of
long integer milliseconds.

Permission
Always available

Appendix B: API Reference 301

Mon()

Compatibility: see aMonth

Permission
Always available

parts()

Return a tuple containing the calendar year, month, day, hour, minute second and timezone of the object

Permission
Always available

isCurrentYear()

Return true if this object represents a date/time that falls within the current year, in the context of this object's
timezone representation

Permission
Always available

PreciseAMPM()

Return the time string for the object.

Permission
Always available

AMPMMinutes()

Return the time string for an object not showing seconds.

Permission
Always available

equalTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time equal to the specified
DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission
Always available

pDay()

Return the abbreviated (with period) name of the day of the week

Permission
Always available

Appendix B: API Reference 302

notEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is
returned by the python time module. Returns true if the object represents a date/time not equal to the specified
DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission
Always available

h_24()

Return the 24−hour clock representation of the hour

Permission
Always available

pCommonZ()

Return a string representing the object's value in the format: Mar. 1, 1997 1:45 pm US/Eastern

Permission
Always available

isCurrentMonth()

Return true if this object represents a date/time that falls within the current month, in the context of this
object's timezone representation

Permission
Always available

DayOfWeek()

Compatibility: see Day

Permission
Always available

latestTime()

Return a new DateTime object that represents the latest possible time (in whole seconds) that still falls within
the current object's day, in the object's timezone context

Permission
Always available

dow_1()

Return the integer day of the week, where Sunday is 1

Permission

Appendix B: API Reference 303

Always available

timezone()

Return the timezone in which the object is represented.

Permission
Always available

year()

Return the calendar year of the object

Permission
Always available

PreciseTime()

Return the time string for the object.

Permission
Always available

ISO()

Return the object in ISO standard format

Dates are output as: YYYY−MM−DD HH:MM:SS

Permission
Always available

millis()

Return the millisecond since the epoch in GMT.

Permission
Always available

second()

Return the second

Permission
Always available

month()

Return the month of the object as an integer

Permission
Always available

Appendix B: API Reference 304

pMonth()

Return the abbreviated (with period) month name.

Permission
Always available

aMonth()

Return the abbreviated month name.

Permission
Always available

isCurrentMinute()

Return true if this object represents a date/time that falls within the current minute, in the context of this
object's timezone representation

Permission
Always available

Day()

Return the full name of the day of the week

Permission
Always available

aDay()

Return the abbreviated name of the day of the week

Permission
Always available

module ExternalMethod

class ExternalMethod

Web−callable functions that encapsulate external Python functions.

The function is defined in an external file. This file is treated like a module, but is not a module. It is not
imported directly, but is rather read and evaluated. The file must reside in the Extensions subdirectory of
the Zope installation, or in an Extensions subdirectory of a product directory.

Due to the way ExternalMethods are loaded, it is not currently possible to import Python modules that reside
in the Extensions directory. It is possible to import modules found in the lib/python directory of the
Zope installation, or in packages that are in the lib/python directory.

Appendix B: API Reference 305

manage_edit(title, module, function, REQUEST=None)

Change the External Method.

See the description of manage_addExternalMethod for a description of the arguments module and
function.

Note that calling manage_edit causes the "module" to be effectively reloaded. This is useful during
debugging to see the effects of changes, but can lead to problems of functions rely on shared global data.

__call__(*args, **kw)

Call the External Method.

Calling an External Method is roughly equivalent to calling the original actual function from Python.
Positional and keyword parameters can be passed as usual. Note however that unlike the case of a normal
Python method, the "self" argument must be passed explicitly. An exception to this rule is made if:

The supplied number of arguments is one less than the required number of arguments, and•
The name of the function's first argument is self.•

In this case, the URL parent of the object is supplied as the first argument.

ObjectManager Constructor

manage_addExternalMethod(id, title, module, function)

Add an external method to an ObjectManager.

In addition to the standard object−creation arguments, id and title, the following arguments are defined:

function
The name of the python function. This can be a an ordinary Python function, or a bound method.

module
The name of the file containing the function definition.

The module normally resides in the Extensions directory, however, the file name may have a prefix of
product., indicating that it should be found in a product directory.

For example, if the module is: ACMEWidgets.foo, then an attempt will first be made to use the file
lib/python/Products/ACMEWidgets/Extensions/foo.py. If this failes, then the file
Extensions/ACMEWidgets.foo.py will be used.

module File

class File(ObjectManagerItem, PropertyManager)

A File is a Zope object that contains file content. A File object can be used to upload or download file
information with Zope.

Using a File object in Zope is easy. The most common usage is to display the contents of a file object in a web
page. This is done by simply referencing the object from DTML:

Appendix B: API Reference 306

 <dtml−var standard_html_header>
 <dtml−var FileObject>
 <dtml−var standard_html_footer>

A more complex example is presenting the File object for download by the user. The next example displays a
link to every File object in a folder for the user to download:

 <dtml−var standard_html_header>

 <dtml−in "ObjectValues('File')">
 <a href="<dtml−var absolute_url>"><dtml−var
 id>
 </dtml−in>

 <dtml−var standard_html_footer>

In this example, the absolute_url method and id are used to create a list of HTML hyperlinks to all of
the File objects in the current Object Manager.

Also see ObjectManager for details on the objectValues method.

getContentType()

Returns the content type of the file.

Permission
View

update_data(data, content_type=None, size=None)

Updates the contents of the File with data.

The data argument must be a string. If content_type is not provided, then a content type will not be set.
If size is not provided, the size of the file will be computed from data.

Permission
Python only

getSize()

Returns the size of the file in bytes.

Permission
View

ObjectManager Constructor

manage_addFile(id, file="", title="", precondition="", content_type="")

Add a new File object.

Creates a new File object id with the contents of file

Appendix B: API Reference 307

module Folder

class Folder(ObjectManagerItem, ObjectManager,
PropertyManager)

A Folder is a generic container object in Zope.

Folders are the most common ObjectManager subclass in Zope.

ObjectManager Constructor

manage_addFolder(id, title)

Add a Folder to the current ObjectManager

Permission
Add Folders

module Image

class Image(File)

An Image is a Zope object that contains image content. An Image object can be used to upload or download
image information with Zope.

Image objects have two properties the define their dimension, height and width. These are calculated
when the image is uploaded. For image types that Zope does not understand, these properties may be
undefined.

Using a Image object in Zope is easy. The most common usage is to display the contents of an image object in
a web page. This is done by simply referencing the object from DTML:

 <dtml−var standard_html_header>
 <dtml−var ImageObject>
 <dtml−var standard_html_footer>

This will generate an HTML IMG tag referencing the URL to the Image. This is equivalent to:

 <dtml−var standard_html_header>
 <dtml−with ImageObject>
 <img src="<dtml−var absolute_url>">
 </dtml−with>
 <dtml−var standard_html_footer>

You can control the image display more precisely with the tag method. For example:

 <dtml−var "ImageObject.tag(border='5', align='left')">

tag(height=None, width=None, alt=None, scale=0, xscale=0, yscale=0,
**args)

This method returns a string which contains an HTML IMG tag reference to the image.

Appendix B: API Reference 308

Optionally, the height, width, alt, scale, xscale and yscale arguments can be provided which are
turned into HTML IMG tag attributes. Note, height and width are provided by default, and alt comes
from the title_or_id method.

Keyword arguments may be provided to support other or future IMG tag attributes. The one exception to this
is the HTML Cascading Style Sheet tag class. Because the word class is a reserved keyword in Python,
you must instead use the keyword argument css_class. This will be turned into a class HTML tag
attribute on the rendered img tag.

Permission
View

ObjectManager Constructor

manage_addImage(id, file, title="", precondition="", content_type="")

Add a new Image object.

Creates a new Image object id with the contents of file.

module MailHost

class MailHost

MailHost objects work as adapters to Simple Mail Transfer Protocol (SMTP) servers. MailHosts are used by
DTML sendmail tags to find the proper host to deliver mail to.

send(messageText, mto=None, mfrom=None, subject=None, encode=None)

Sends an email message. The arguments are:

messageText
The body of the mail message.

mto
A string or list of recipient(s) of the message.

mfrom
The address of the message sender.

subject
The subject of the message.

encode
The rfc822 defined encoding of the message. The default of None means no encoding is done. Valid
values are base64, quoted−printable and uuencode.

ObjectManager Constructor

manage_addMailHost(id, title="", smtp_host=None, localhost=localhost, smtp_port=25,
timeout=1.0)

Add a mailhost object to an ObjectManager.

Appendix B: API Reference 309

module ObjectManager

class ObjectManager

An ObjectManager contains other Zope objects. The contained objects are Object Manager Items.

To create an object inside an object manager use manage_addProduct:

 self.manage_addProduct['OFSP'].manage_addFolder(id, title)

In DTML this would be:

 <dtml−call "manage_addProduct['OFSP'].manage_addFolder(id, title)">

These examples create a new Folder inside the current ObjectManager.

manage_addProduct is a mapping that provides access to product constructor methods. It is indexed by
product id.

Constructor methods are registered during product initialization and should be documented in the API docs
for each addable object.

objectItems(type=None)

This method returns a sequence of (id, object) tuples.

Like objectValues and objectIds, it accepts one argument, either a string or a list to restrict the results to
objects of a given meta_type or set of meta_types.

Each tuple's first element is the id of an object contained in the Object Manager, and the second element is the
object itself.

Example:

 <dtml−in objectItems>
 id: <dtml−var sequence−key>,
 type: <dtml−var meta_type>
 <dtml−else>
 There are no sub−objects.
 </dtml−in>

Permission
Access contents information

superValues(type)

This method returns a list of objects of a given meta_type(es) contained in the Object Manager and all its
parent Object Managers.

The type argument specifies the meta_type(es). It can be a string specifying one meta_type, or it can be a list
of strings to specify many.

Permission

Appendix B: API Reference 310

Python only

objectValues(type=None)

This method returns a sequence of contained objects.

Like objectItems and objectIds, it accepts one argument, either a string or a list to restrict the results to objects
of a given meta_type or set of meta_types.

Example:

 <dtml−in expr="objectValues('Folder')">
 <dtml−var icon>
 This is the icon for the: <dtml−var id> Folder
.
 <dtml−else>
 There are no Folders.
 </dtml−in>

The results were restricted to Folders by passing a meta_type to objectValues method.

Permission
Access contents information

objectIds(type=None)

This method returns a list of the ids of the contained objects.

Optionally, you can pass an argument specifying what object meta_type(es) to restrict the results to. This
argument can be a string specifying one meta_type, or it can be a list of strings to specify many.

Example:

 <dtml−in objectIds>
 <dtml−var sequence−item>
 <dtml−else>
 There are no sub−objects.
 </dtml−in>

This DTML code will display all the ids of the objects contained in the current Object Manager.

Permission
Access contents information

module ObjectManagerItem

class ObjectManagerItem

A Zope object that can be contained within an Object Manager. Almost all Zope objects that can be managed
through the web are Object Manager Items.

ObjectMangerItems have these instance attributes:

title
The title of the object.

Appendix B: API Reference 311

This is an optional one−line string description of the object.

meta_type
A short name for the type of the object.
This is the name that shows up in product add list for the object and is used when filtering objects by
type.

This attribute is provided by the object's class and should not be changed directly.

REQUEST
The current web request.
This object is acquired and should not be set.

title_or_id()

If the title is not blank, return it, otherwise return the id.

Permission
Always available

getPhysicalRoot()

Returns the top−level Zope Application object.

Permission
Python only

manage_workspace()

This is the web method that is called when a user selects an item in a object manager contents view or in the
Zope Management navigation view.

Permission
View management screens

getPhysicalPath()

Get the path of an object from the root, ignoring virtual hosts.

Permission
Always available

unrestrictedTraverse(path, default=None)

Return the object obtained by traversing the given path from the object on which the method was called. This
method begins with "unrestricted" because (almost) no security checks are performed.

If an object is not found then the default argument will be returned.

Permission
Python only

Appendix B: API Reference 312

getId()

Returns the object's id.

The id is the unique name of the object within its parent object manager. This should be a string, and can
contain letters, digits, underscores, dashes, commas, and spaces.

This method replaces direct access to the id attribute.

Permission
Always available

absolute_url(relative=None)

Return the absolute url to the object.

If the relative argument is provided with a true value, then the URL returned is relative to the site object.
Note, if virtual hosts are being used, then the path returned is a logical, rather than a physical path.

Permission
Always available

this()

Return the object.

This turns out to be handy in two situations. First, it provides a way to refer to an object in DTML
expressions.

The second use for this is rather deep. It provides a way to acquire an object without getting the full context
that it was acquired from. This is useful, for example, in cases where you are in a method of a non−item
subobject of an item and you need to get the item outside of the context of the subobject.

Permission
Always available

restrictedTraverse(path, default=None)

Return the object obtained by traversing the given path from the object on which the method was called,
performing security checks along the way.

If an object is not found then the default argument will be returned.

Permission
Always available

title_and_id()

If the title is not blank, the return the title followed by the id in parentheses. Otherwise return the id.

Permission
Always available

Appendix B: API Reference 313

module PropertyManager

class PropertyManager

A Property Manager object has a collection of typed attributes called properties. Properties can be managed
through the web or via DTML.

In addition to having a type, properties can be writable or read−only and can have default values.

propertyItems()

Return a list of (id, property) tuples.

Permission
Access contents information

propertyValues()

Returns a list of property values.

Permission
Access contents information

propertyMap()

Returns a tuple of mappings, giving meta−data for properties. The meta−data includes id, type, and mode.

Permission
Access contents information

propertyIds()

Returns a list of property ids.

Permission
Access contents information

getPropertyType(id)

Get the type of property id. Returns None if no such property exists.

Permission
Access contents information

getProperty(id, d=None)

Return the value of the property id. If the property is not found the optional second argument or None is
returned.

Permission
Access contents information

Appendix B: API Reference 314

hasProperty(id)

Returns a true value if the Property Manager has the property id. Otherwise returns a false value.

Permission
Access contents information

module PropertySheet

class PropertySheet

A PropertySheet is an abstraction for organizing and working with a set of related properties. Conceptually it
acts like a container for a set of related properties and meta−data describing those properties. A PropertySheet
may or may not provide a web interface for managing its properties.

xml_namespace()

Return a namespace string usable as an xml namespace for this property set. This may be an empty string if
there is no default namespace for a given property sheet (especially property sheets added in ZClass
definitions).

Permission
Python only

propertyItems()

Return a list of (id, property) tuples.

Permission
Access contents information

propertyValues()

Returns a list of actual property values.

Permission
Access contents information

getPropertyType(id)

Get the type of property id. Returns None if no such property exists.

Permission
Python only

propertyInfo()

Returns a mapping containing property meta−data.

Permission
Python only

Appendix B: API Reference 315

getProperty(id, d=None)

Get the property id, returning the optional second argument or None if no such property is found.

Permission
Python only

manage_delProperties(ids=None, REQUEST=None)

Delete one or more properties with the given ids. The ids argument should be a sequence (tuple or list)
containing the ids of the properties to be deleted. If ids is empty no action will be taken. If any of the
properties named in ids does not exist, an error will be raised.

Some objects have "special" properties defined by product authors that cannot be deleted. If one of these
properties is named in ids, an HTML error message is returned.

If no value is passed in for REQUEST, the method will return None. If a value is provided for REQUEST (as it
will be when called via the web), the property management form for the object will be rendered and returned.

This method may be called via the web, from DTML or from Python code.

Permission
Manage Properties

manage_changeProperties(REQUEST=None, **kw)

Change existing object properties by passing either a mapping object as REQUEST containing name:value
pairs or by passing name=value keyword arguments.

Some objects have "special" properties defined by product authors that cannot be changed. If you try to
change one of these properties through this method, an error will be raised.

Note that no type checking or conversion happens when this method is called, so it is the caller's responsibility
to ensure that the updated values are of the correct type. This should probably change.

If a value is provided for REQUEST (as it will be when called via the web), the method will return an HTML
message dialog. If no REQUEST is passed, the method returns None on success.

This method may be called via the web, from DTML or from Python code.

Permission
Manage Properties

manage_addProperty(id, value, type, REQUEST=None)

Add a new property with the given id, value and type.

These are the property types:

boolean
1 or 0.

date

Appendix B: API Reference 316

A DateTime value, for example 12/31/1999 15:42:52 PST.
float

A decimal number, for example 12.4.
int

An integer number, for example, 12.
lines

A list of strings, one per line.
long

A long integer, for example 12232322322323232323423.
string

A string of characters, for example This is a string.
text

A multi−line string, for example a paragraph.
tokens

A list of strings separated by white space, for example one two three.
selection

A string selected by a pop−up menu.
multiple selection

A list of strings selected by a selection list.

This method will use the passed in type to try to convert the value argument to the named type. If the
given value cannot be converted, a ValueError will be raised.

The value given for selection and multiple selection properites may be an attribute or method
name. The attribute or method must return a sequence values.

If the given type is not recognized, the value and type given are simply stored blindly by the object.

If no value is passed in for REQUEST, the method will return None. If a value is provided for REQUEST (as it
will when called via the web), the property management form for the object will be rendered and returned.

This method may be called via the web, from DTML or from Python code.

Permission
Manage Properties

propertyMap()

Returns a tuple of mappings, giving meta−data for properties.

Permssion
Python only

propertyIds()

Returns a list of property ids.

Permission
Access contents information

Appendix B: API Reference 317

hasProperty(id)

Returns true if self has a property with the given id, false otherwise.

Permission
Access contents information

module PropertySheets

class PropertySheets

A PropertySheet is an abstraction for organizing and working with a set of related properties. Conceptually it
acts like a container for a set of related properties and meta−data describing those properties. PropertySheet
objects are accessed through a PropertySheets object that acts as a collection of PropertySheet instances.

Objects that support property sheets (objects that support the PropertyManager interface or ZClass objects)
have a propertysheets attribute (a PropertySheets instance) that is the collection of PropertySheet
objects. The PropertySheets object exposes an interface much like a Python mapping, so that individual
PropertySheet objects may be accessed via dictionary−style key indexing.

get(name, default=None)

Return the PropertySheet identified by name, or the value given in default if the named PropertySheet is
not found.

Permission
Python only

values()

Return a sequence of all of the PropertySheet objects in the collection.

Permission
Python only

items()

Return a sequence containing an (id, object) tuple for each PropertySheet object in the collection.

Permission
Python only

module PythonScript

class PythonScript(Script)

Python Scripts contain python code that gets executed when you call the script by:

Calling the script through the web by going to its location with a web browser.•
Calling the script from another script object.•
Calling the script from a method object, such as a DTML Method.•

Appendix B: API Reference 318

Python Scripts can contain a "safe" subset of the python language. Python Scripts must be safe because they
can be potentially edited by many different users through an insecure medium like the web. The following
safety issues drive the need for secure Python Scripts:

Because many users can use Zope, a Python Script must make sure it does not allow a user to do
something they are not allowed to do, like deleting an object they do not have permission to delete.
Because of this requirement, Python Scripts do many security checks in the course of their execution.

•

Because Python Scripts can be edited through the insecure medium of the web, they are not allowed
access to the Zope server's file−system. Normal Python builtins like open are, therefore, not allowed.

•

Because many standard Python modules break the above two security restrictions, only a small subset
of Python modules may be imported into a Python Scripts with the "import" statement unless they
have been validated by Zope's security policy. Currently, the following standard python modules have
been validated:

string♦
math♦
whrandom and random♦
Products.PythonScripts.standard♦

•

Because it allows you to execute arbitrary python code, the python "exec" statement is not allowed in
Python methods.

•

Because they may represent or cause security violations, some Python builtin functions are not
allowed. The following Python builtins are not allowed:

open♦
input♦
raw_input♦
eval♦
execfile♦
compile♦
type♦
coerce♦
intern♦
dir♦
globals♦
locals♦
vars♦
buffer♦
reduce♦

•

Other builtins are restricted in nature. The following builtins are restricted:
range

Due to possible memory denial of service attacks, the range builtin is restricted to creating
ranges less than 10,000 elements long.

filter, map, tuple, list
For the same reason, builtins that construct lists from sequences do not operate on strings.

getattr, setattr, delattr
Because these may enable Python code to circumvent Zope's security system, they are
replaced with custom, security constrained versions.

•

In order to be consistent with the Python expressions available to DTML, the builtin functions are
augmented with a small number of functions and a class:

test♦
namespace♦
render♦
same_type♦
DateTime♦

•

Appendix B: API Reference 319

Because the "print" statement cannot operate normally in Zope, its effect has been changed. Rather
than sending text to stdout, "print" appends to an internal variable. The special builtin name "printed"
evaluates to the concatenation of all text printed so far during the current execution of the script.

•

document_src(REQUEST=None, RESPONSE=None)

Return the text of the read method, with content type text/plain set on the RESPONSE.

ZPythonScript_edit(params, body)

Change the parameters and body of the script. This method accepts two arguments:

params
The new value of the Python Script's parameters. Must be a comma seperated list of values in valid
python function signature syntax. If it does not contain a valid signature string, a SyntaxError is
raised.

body
The new value of the Python Script's body. Must contain valid Python syntax. If it does not contain
valid Python syntax, a SyntaxError is raised.

ZPythonScript_setTitle(title)

Change the script's title. This method accepts one argument, title which is the new value for the script's
title and must be a string.

ZPythonScriptHTML_upload(REQUEST, file="")

Pass the text in file to the write method.

write(text)

Change the script by parsing the text argument into parts. Leading lines that begin with ## are stripped off,
and if they are of the form ##name=value, they are used to set meta−data such as the title and parameters.
The remainder of the text is set as the body of the Python Script.

ZScriptHTML_tryParams()

Return a list of the required parameters with which to test the script.

read()

Return the body of the Python Script, with a special comment block prepended. This block contains
meta−data in the form of comment lines as expected by the write method.

ZPythonScriptHTML_editAction(REQUEST, title, params, body)

Change the script's main parameters. This method accepts the following arguments:

REQUEST
The current request.

title
The new value of the Python Script's title. This must be a string.

Appendix B: API Reference 320

params
The new value of the Python Script's parameters. Must be a comma seperated list of values in valid
python function signature syntax. If it does not contain a valid signature string, a SyntaxError is
raised.

body
The new value of the Python Script's body. Must contain valid Python syntax. If it does not contain
valid Python syntax, a SyntaxError is raised.

ObjectManager Constructor

manage_addPythonScript(id, REQUEST=None)

Add a Python script to a folder.

module Request

class Request

The request object encapsulates all of the information regarding the current request in Zope. This includes, the
input headers, form data, server data, and cookies.

The request object is a mapping object that represents a collection of variable to value mappings. In addition,
variables are divided into five categories:

Environment variables•

These variables include input headers, server data, and other request−related data. The variable names
are as specified in the CGI specification

Form data•

These are data extracted from either a URL−encoded query string or body, if present.

Cookies•

These are the cookie data, if present.

Lazy Data•

These are callables which are deferred until explicitly referenced, at which point they are resolved
(called) and the result stored as "other" data, ie regular request data.

Thus, they are "lazy" data items. An example is SESSION objects.

Lazy data in the request may only be set by the Python method set_lazy(name,callable) on the
REQUEST object. This method is not callable from DTML or through the web.

Other•

Data that may be set by an application object.

Appendix B: API Reference 321

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

The request object may be used as a mapping object, in which case values will be looked up in the order:
environment variables, other variables, form data, and then cookies.

These special variables are set in the Request:

PARENTS
A list of the objects traversed to get to the published object. So, PARENTS[0] would be the ancestor
of the published object.

REQUEST
The Request object.

RESPONSE
The Response object.

PUBLISHED
The actual object published as a result of url traversal.

URL
The URL of the Request without query string.

URLn
URL0 is the same as URL. URL1 is the same as URL0 with the last path element removed. URL2 is
the same as URL1 with the last element removed. Etcetera.
For example if URL='http://localhost/foo/bar', then URL1='http://localhost/foo' and
URL2='http://localhost'.

URLPATHn
URLPATH0 is the path portion of URL, URLPATH1 is the path portion of URL1, and so on.
For example if URL='http://localhost/foo/bar', then URLPATH1='/foo' and URLPATH2='/'.

BASEn
BASE0 is the URL up to but not including the Zope application object. BASE1 is the URL of the
Zope application object. BASE2 is the URL of the Zope application object with an additional path
element added in the path to the published object. Etcetera.
For example if URL='http://localhost/Zope.cgi/foo/bar', then BASE0='http://localhost',
BASE1='http://localhost/Zope.cgi', and BASE2='http://localhost/Zope.cgi/foo'.

BASEPATHn
BASEPATH0 is the path portion of BASE0, BASEPATH1 is the path portion of BASE1, and so on.
BASEPATH1 is the externally visible path to the root Zope folder, equivalent to CGI's
SCRIPT_NAME, but virtual−host aware.
For example if URL='http://localhost/Zope.cgi/foo/bar', then BASEPATH0='/',
BASEPATH1='/Zope.cgi', and BASEPATH2='/Zope.cgi/foo'.

get_header(name, default=None)

Return the named HTTP header, or an optional default argument or None if the header is not found. Note that
both original and CGI header names without the leading HTTP_ are recognized, for example,
Content−Type, CONTENT_TYPE and HTTP_CONTENT_TYPE should all return the Content−Type
header, if available.

Permission
Always available

Appendix B: API Reference 322

items()

Returns a sequence of (key, value) tuples for all the keys in the REQUEST object.

Permission
Always available

keys()

Returns a sorted sequence of all keys in the REQUEST object.

Permission
Always available

setVirtualRoot(path, hard=0)

Alters URL, URLn, URLPATHn, BASEn, BASEPATHn, and absolute_url() so that the current object
has path path. If hard is true, PARENTS is emptied.

Provides virtual hosting support. Intended to be called from publishing traversal hooks.

Permission
Always available

values()

Returns a sequence of values for all the keys in the REQUEST object.

Permission
Always available

set(name, value)

Create a new name in the REQUEST object and assign it a value. This name and value is stored in the Other
category.

Permission
Always available

has_key(key)

Returns a true value if the REQUEST object contains key, returns a false value otherwise.

Permission
Always available

setServerURL(protocol=None, hostname=None, port=None)

Sets the specified elements of SERVER_URL, also affecting URL, URLn, BASEn, and absolute_url().

Provides virtual hosting support.

Appendix B: API Reference 323

Permission
Always available

module Response

class Response

The Response object represents the response to a Zope request.

setHeader(name, value)

Sets an HTTP return header "name" with value "value", clearing the previous value set for the header, if one
exists. If the literal flag is true, the case of the header name is preserved, otherwise word−capitalization will
be performed on the header name on output.

Permission
Always available

setCookie(name, value, **kw)

Set an HTTP cookie on the browser

The response will include an HTTP header that sets a cookie on cookie−enabled browsers with a key "name"
and value "value". This overwrites any previously set value for the cookie in the Response object.

Permission
Always available

addHeader(name, value)

Set a new HTTP return header with the given value, while retaining any previously set headers with the same
name.

Permission
Always available

appendHeader(name, value, delimiter=,)

Append a value to a cookie

Sets an HTTP return header "name" with value "value", appending it following a comma if there was a
previous value set for the header.

Permission
Always available

write(data)

Return data as a stream

HTML data may be returned using a stream−oriented interface. This allows the browser to display partial
results while computation of a response to proceed.

Appendix B: API Reference 324

The published object should first set any output headers or cookies on the response object.

Note that published objects must not generate any errors after beginning stream−oriented output.

Permission
Always available

setStatus(status, reason=None)

Sets the HTTP status code of the response; the argument may either be an integer or one of the following
strings:

OK, Created, Accepted, NoContent, MovedPermanently, MovedTemporarily, NotModified, BadRequest,
Unauthorized, Forbidden, NotFound, InternalError, NotImplemented, BadGateway, ServiceUnavailable

that will be converted to the correct integer value.

Permission
Always available

setBase(base)

Set the base URL for the returned document.

Permission
Always available

expireCookie(name, **kw)

Cause an HTTP cookie to be removed from the browser

The response will include an HTTP header that will remove the cookie corresponding to "name" on the client,
if one exists. This is accomplished by sending a new cookie with an expiration date that has already passed.
Note that some clients require a path to be specified − this path must exactly match the path given when
creating the cookie. The path can be specified as a keyword argument.

Permission
Always available

appendCookie(name, value)

Returns an HTTP header that sets a cookie on cookie−enabled browsers with a key "name" and value "value".
If a value for the cookie has previously been set in the response object, the new value is appended to the old
one separated by a colon.

Permission
Always available

redirect(location, lock=0)

Cause a redirection without raising an error. If the "lock" keyword argument is passed with a true value, then
the HTTP redirect response code will not be changed even if an error occurs later in request processing (after

Appendix B: API Reference 325

redirect() has been called).

Permission
Always available

module Script

class Script

Web−callable script base interface.

ZScriptHTML_tryAction(REQUEST, argvars)

Apply the test parameters provided by the dictionary argvars. This will call the current script with the
given arguments and return the result.

module SessionInterfaces

Session API

See Also

Transient Object API•

class SessionDataManagerErr

Error raised during some session data manager operations, as explained in the API documentation of the
Session Data Manager.

This exception may be caught in PythonScripts. A successful import of the exception for PythonScript use
would need to be:

 from Products.Sessions import SessionDataManagerErr

class BrowserIdManagerInterface

Zope Browser Id Manager interface.

A Zope Browser Id Manager is responsible for assigning ids to site visitors, and for servicing requests from
Session Data Managers related to the browser id.

getBrowserId(self, create=1)

If create=0, returns a the current browser id or None if there is no browser id associated with the current
request. If create=1, returns the current browser id or a newly−created browser id if there is no browser id
associated with the current request. This method is useful in conjunction with getBrowserIdName if you wish
to embed the browser−id−name/browser−id combination as a hidden value in a POST−based form. The
browser id is opaque, has no business meaning, and its length, type, and composition are subject to change.

Permission required: Access contents information

Appendix B: API Reference 326

Raises: BrowserIdManagerErr if ill−formed browser id is found in REQUEST.

isBrowserIdFromCookie(self)

Returns true if browser id comes from a cookie.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

isBrowserIdNew(self)

Returns true if browser id is new. A browser id is new when it is first created and the client has therefore not
sent it back to the server in any request.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

encodeUrl(self, url)

Encodes a provided URL with the current request's browser id and returns the result. For example, the call
encodeUrl('http://foo.com/amethod') might return
http://foo.com/amethod?_ZopeId=as9dfu0adfu0ad.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

flushBrowserIdCookie(self)

Deletes the browser id cookie from the client browser, iff the cookies browser id namespace is being used.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If the cookies namespace isn't a browser id namespace at the time of the
call.

getBrowserIdName(self)

Returns a string with the name of the cookie/form variable which is used by the current browser id manager as
the name to look up when attempting to obtain the browser id value. For example, _ZopeId.

Permission required: Access contents information

isBrowserIdFromForm(self)

Returns true if browser id comes from a form variable (query string or post).

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

Appendix B: API Reference 327

hasBrowserId(self)

Returns true if there is a browser id for this request.

Permission required: Access contents information

setBrowserIdCookieByForce(self, bid)

Sets the browser id cookie to browser id bid by force. Useful when you need to chain browser id cookies
across domains for the same user (perhaps temporarily using query strings).

Permission required: Access contents information

Raises: BrowserIdManagerErr. If the cookies namespace isn't a browser id namespace at the time of the
call.

class BrowserIdManagerErr

Error raised during some browser id manager operations, as explained in the API documentation of the
Browser Id Manager.

This exception may be caught in PythonScripts. A successful import of the exception for PythonScript use
would need to be:

 from Products.Sessions import BrowserIdManagerErr

class SessionDataManagerInterface

Zope Session Data Manager interface.

A Zope Session Data Manager is responsible for maintaining Session Data Objects, and for servicing requests
from application code related to Session Data Objects. It also communicates with a Browser Id Manager to
provide information about browser ids.

getSessionDataByKey(self, key)

Returns a Session Data Object associated with key. If there is no Session Data Object associated with key
return None.

Permission required: Access arbitrary user session data

getSessionData(self, create=1)

Returns a Session Data Object associated with the current browser id. If there is no current browser id, and
create is true, returns a new Session Data Object. If there is no current browser id and create is false, returns
None.

Permission required: Access session data

Appendix B: API Reference 328

getBrowserIdManager(self)

Returns the nearest acquirable browser id manager.

Raises SessionDataManagerErr if no browser id manager can be found.

Permission required: Access session data

hasSessionData(self)

Returns true if a Session Data Object associated with the current browser id is found in the Session Data
Container. Does not create a Session Data Object if one does not exist.

Permission required: Access session data

module TransienceInterfaces

Transient Objects

class TransientObject

A transient object is a temporary object contained in a transient object container.

Most of the time you'll simply treat a transient object as a dictionary. You can use Python sub−item notation:

 SESSION['foo']=1
 foo=SESSION['foo']
 del SESSION['foo']

When using a transient object from Python−based Scripts or DTML you can use the get, set, and delete
methods instead.

Methods of transient objects are not protected by security assertions.

It's necessary to reassign mutuable sub−items when you change them. For example:

 l=SESSION['myList']
 l.append('spam')
 SESSION['myList']=l

This is necessary in order to save your changes. Note that this caveat is true even for mutable subitems which
inherit from the Persistence.Persistent class.

delete(self, k)

Call __delitem__ with key k.

Permission
Always available

Appendix B: API Reference 329

setLastAccessed(self)

Cause the last accessed time to be set to now.

Permission
Always available

getCreated(self)

Return the time the transient object was created in integer seconds−since−the−epoch form.

Permission
Always available

values(self)

Return sequence of value elements.

Permission
Always available

has_key(self, k)

Return true if item referenced by key k exists.

Permission
Always available

getLastAccessed(self)

Return the time the transient object was last accessed in integer seconds−since−the−epoch form.

Permission
Always available

getId(self)

Returns a meaningful unique id for the object.

Permission
Always available

update(self, d)

Merge dictionary d into ourselves.

Permission
Always available

Appendix B: API Reference 330

clear(self)

Remove all key/value pairs.

Permission
Always available

items(self)

Return sequence of (key, value) elements.

Permission
Always available

keys(self)

Return sequence of key elements.

Permission
Always available

get(self, k, default=marker)

Return value associated with key k. If k does not exist and default is not marker, return default, else raise
KeyError.

Permission
Always available

set(self, k, v)

Call __setitem__ with key k, value v.

Permission
Always available

getContainerKey(self)

Returns the key under which the object is "filed" in its container. getContainerKey will often return a differnt
value than the value returned by getId.

Permission
Always available

invalidate(self)

Invalidate (expire) the transient object.

Causes the transient object container's "before destruct" method related to this object to be called as a side
effect.

Permission

Appendix B: API Reference 331

Always available

class MaxTransientObjectsExceeded

An exception importable from the Products.Transience.Transience module which is raised when an attempt is
made to add an item to a TransientObjectContainer that is full.

This exception may be caught in PythonScripts through a normal import. A successful import of the exception
can be achieved via:

 from Products.Transience import MaxTransientObjectsExceeded

class TransientObjectContainer

TransientObjectContainers hold transient objects, most often, session data.

You will rarely have to script a transient object container. You'll almost always deal with a TransientObject
itself which you'll usually get as REQUEST.SESSION.

new(self, k)

Creates a new subobject of the type supported by this container with key "k" and returns it.

If an object already exists in the container with key "k", a KeyError is raised.

"k" must be a string, else a TypeError is raised.

If the container is full, a MaxTransientObjectsExceeded will be raised.

Permission
Create Transient Objects

setDelNotificationTarget(self, f)

Cause the before destruction function to be f.

If f is not callable and is a string, treat it as a Zope path to a callable function.

before destruction functions need accept a single argument: item, which is the item being destroyed.

Permission
Manage Transient Object Container

getTimeoutMinutes(self)

Return the number of minutes allowed for subobject inactivity before expiration.

Permission
View management screens

Appendix B: API Reference 332

has_key(self, k)

Return true if container has value associated with key k, else return false.

Permission
Access Transient Objects

setAddNotificationTarget(self, f)

Cause the after add function to be f.

If f is not callable and is a string, treat it as a Zope path to a callable function.

after add functions need accept a single argument: item, which is the item being added to the container.

Permission
Manage Transient Object Container

getId(self)

Returns a meaningful unique id for the object.

Permission
Always available

setTimeoutMinutes(self, timeout_mins)

Set the number of minutes of inactivity allowable for subobjects before they expire.

Permission
Manage Transient Object Container

new_or_existing(self, k)

If an object already exists in the container with key "k", it is returned.

Otherwiser, create a new subobject of the type supported by this container with key "k" and return it.

"k" must be a string, else a TypeError is raised.

If the container is full, a MaxTransientObjectsExceeded exception be raised.

Permission
Create Transient Objects

get(self, k, default=None)

Return value associated with key k. If value associated with k does not exist, return default.

Permission
Access Transient Objects

Appendix B: API Reference 333

getAddNotificationTarget(self)

Returns the current after add function, or None.

Permission
View management screens

getDelNotificationTarget(self)

Returns the current before destruction function, or None.

Permission
View management screens

module UserFolder

class UserFolder

User Folder objects are containers for user objects. Programmers can work with collections of user objects
using the API shared by User Folder implementations.

userFolderEditUser(name, password, roles, domains, **kw)

API method for changing user object attributes. Note that not all user folder implementations support
changing of user object attributes. Implementations that do not support changing of user object attributes will
raise an error for this method.

Permission
Manage users

userFolderDelUsers(names)

API method for deleting one or more user objects. Note that not all user folder implementations support
deletion of user objects. Implementations that do not support deletion of user objects will raise an error for
this method.

Permission
Manage users

userFolderAddUser(name, password, roles, domains, **kw)

API method for creating a new user object. Note that not all user folder implementations support dynamic
creation of user objects. Implementations that do not support dynamic creation of user objects will raise an
error for this method.

Permission
Manage users

getUsers()

Returns a sequence of all user objects which reside in the user folder.

Appendix B: API Reference 334

Permission
Manage users

getUserNames()

Returns a sequence of names of the users which reside in the user folder.

Permission
Manage users

getUser(name)

Returns the user object specified by name. If there is no user named name in the user folder, return None.

Permission
Manage users

module Vocabulary

class Vocabulary

A Vocabulary manages words and language rules for text indexing. Text indexing is done by the ZCatalog
and other third party Products.

words()

Return list of words.

insert(word)

Insert a word in the Vocabulary.

query(pattern)

Query Vocabulary for words matching pattern.

ObjectManager Constructor

manage_addVocabulary(id, title, globbing=None, REQUEST=None)

Add a Vocabulary object to an ObjectManager.

module ZCatalog

class ZCatalog

ZCatalog object

A ZCatalog contains arbitrary index like references to Zope objects. ZCatalog's can index either Field
values of object, Text values, or KeyWord values:

Appendix B: API Reference 335

ZCatalogs have three types of indexes:

Text
Text indexes index textual content. The index can be used to search for objects containing certain
words.

Field
Field indexes index atomic values. The index can be used to search for objects that have certain
properties.

Keyword
Keyword indexes index sequences of values. The index can be used to search for objects that match
one or more of the search terms.

The ZCatalog can maintain a table of extra data about cataloged objects. This information can be used on
search result pages to show information about a search result.

The meta−data table schema is used to build the schema for ZCatalog Result objects. The objects have the
same attributes as the column of the meta−data table.

ZCatalog does not store references to the objects themselves, but rather to a unique identifier that defines how
to get to the object. In Zope, this unique identifier is the object's relative path to the ZCatalog (since two Zope
objects cannot have the same URL, this is an excellent unique qualifier in Zope).

schema()

Returns a sequence of names that correspond to columns in the meta−data table.

__call__(REQUEST=None, **kw)

Search the catalog, the same way as searchResults.

uncatalog_object(uid)

Uncatalogs the object with the unique identifier uid.

getobject(rid, REQUEST=None)

Return a cataloged object given a data_record_id_

indexes()

Returns a sequence of names that correspond to indexes.

getpath(rid)

Return the path to a cataloged object given a data_record_id_

index_objects()

Returns a sequence of actual index objects.

Appendix B: API Reference 336

searchResults(REQUEST=None, **kw)

Search the catalog. Search terms can be passed in the REQUEST or as keyword arguments.

Search queries consist of a mapping of index names to search parameters. You can either pass a mapping to
searchResults as the variable REQUEST or you can use index names and search parameters as keyword
arguments to the method, in other words:

 searchResults(title='Elvis Exposed',
 author='The Great Elvonso')

is the same as:

 searchResults({'title' : 'Elvis Exposed',
 'author : 'The Great Elvonso'})

In these examples, title and author are indexes. This query will return any objects that have the title
Elvis Exposed AND also are authored by The Great Elvonso. Terms that are passed as keys and values in a
searchResults() call are implicitly ANDed together. To OR two search results, call searchResults() twice and
add concatenate the results like this:

 results = (searchResults(title='Elvis Exposed') +
 searchResults(author='The Great Elvonso'))

This will return all objects that have the specified title OR the specified author.

There are some special index names you can pass to change the behavior of the search query:

sort_on
This parameters specifies which index to sort the results on.

sort_order
You can specify reverse or descending. Default behavior is to sort ascending.

There are some rules to consider when querying this method:

an empty query mapping (or a bogus REQUEST) returns all items in the catalog.•
results from a query involving only field/keyword indexes, e.g. {'id':'foo'} and no sort_on will be
returned unsorted.

•

results from a complex query involving a field/keyword index and a text index, e.g.
{'id':'foo','PrincipiaSearchSource':'bar'} and no sort_on will be returned unsorted.

•

results from a simple text index query e.g.{'PrincipiaSearchSource':'foo'} will be returned sorted in
descending order by score. A text index cannot beused as a sort_on parameter, and attempting to
do so will raise an error.

•

Depending on the type of index you are querying, you may be able to provide more advanced search
parameters that can specify range searches or wildcards. These features are documented in The Zope Book.

uniqueValuesFor(name)

returns the unique values for a given FieldIndex named name.

Appendix B: API Reference 337

catalog_object(obj, uid)

Catalogs the object obj with the unique identifier uid.

ObjectManager Constructor

manage_addZCatalog(id, title, vocab_id=None)

Add a ZCatalog object.

vocab_id is the name of a Vocabulary object this catalog should use. A value of None will cause the
Catalog to create its own private vocabulary.

module ZSQLMethod

class ZSQLMethod

ZSQLMethods abstract SQL code in Zope.

SQL Methods behave like methods of the folders they are accessed in. In particular, they can be used from
other methods, like Documents, ExternalMethods, and even other SQL Methods.

Database methods support the Searchable Object Interface. Search interface wizards can be used to build user
interfaces to them. They can be used in joins and unions. They provide meta−data about their input parameters
and result data.

For more information, see the searchable−object interface specification.

Database methods support URL traversal to access and invoke methods on individual record objects. For
example, suppose you had an employees database method that took a single argument employee_id.
Suppose that employees had a service_record method (defined in a record class or acquired from a
folder). The service_record method could be accessed with a URL like:

 employees/employee_id/1234/service_record

Search results are returned as Record objects. The schema of a Record objects matches the schema of the table
queried in the search.

manage_edit(title, connection_id, arguments, template)

Change database method properties.

The connection_id argument is the id of a database connection that resides in the current folder or in a
folder above the current folder. The database should understand SQL.

The arguments argument is a string containing an arguments specification, as would be given in the SQL
method creation form.

The template argument is a string containing the source for the SQL Template.

Appendix B: API Reference 338

__call__(REQUEST=None, **kw)

Call the ZSQLMethod.

The arguments to the method should be passed via keyword arguments, or in a single mapping object. If no
arguments are given, and if the method was invoked through the Web, then the method will try to acquire and
use the Web REQUEST object as the argument mapping.

The returned value is a sequence of record objects.

ObjectManager Constructor

manage_addZSQLMethod(id, title, connection_id, arguments, template)

Add an SQL Method to an ObjectManager.

The connection_id argument is the id of a database connection that resides in the current folder or in a
folder above the current folder. The database should understand SQL.

The arguments argument is a string containing an arguments specification, as would be given in the SQL
method cration form.

The template argument is a string containing the source for the SQL Template.

module ZTUtils

ZTUtils: Page Template Utilities

The classes in this module are available from Page Templates.

class Batch

Batch − a section of a large sequence.

You can use batches to break up large sequences (such as search results) over several pages.

Batches provide Page Templates with similar functions as those built−in to <dtml−in>.

You can access elements of a batch just as you access elements of a list. For example:

 >>> b=Batch(range(100), 10)
 >>> b[5]
 4
 >>> b[10]
 IndexError: list index out of range

Batches have these public attributes:

start
The first element number (counting from 1).

first
The first element index (counting from 0). Note that this is that same as start − 1.

end

Appendix B: API Reference 339

The last element number (counting from 1).
orphan

The desired minimum batch size. This controls how sequences are split into batches. If a batch
smaller than the orphan size would occur, then no split is performed, and a batch larger than the batch
size results.

overlap
The number of elements that overlap between batches.

length
The actual length of the batch. Note that this can be different than size due to orphan settings.

size
The desired size. Note that this can be different than the actual length of the batch due to orphan
settings.

previous
The previous batch or None if this is the first batch.

next
The next batch or None if this is the last batch.

__init__(self, sequence, size, start=0, end=0, orphan=0, overlap=0)

Creates a new batch given a sequence and a desired batch size.

sequence
The full sequence.

size
The desired batch size.

start
The index of the start of the batch (counting from 0).

end
The index of the end of the batch (counting from 0).

orphan
The desired minimum batch size. This controls how sequences are split into batches. If a batch
smaller than the orphan size would occur, then no split is performed, and a batch larger than the batch
size results.

overlap
The number of elements that overlap between batches.

module math

math: Python math module

The math module provides trigonometric and other math functions. It is a standard Python module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

Pythonmath module documentation at Python.org

module random

Appendix B: API Reference 340

http://www.python.org/doc/current/lib/module-math.html
http://www.python.org/doc/current/lib/module-math.html

random: Python random module

The random module provides pseudo−random number functions. With it, you can generate random numbers
and select random elements from sequences. This module is a standard Python module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

Pythonrandom module documentation at Python.org

module sequence

sequence: Sequence sorting module

This module provides a sort function for use with DTML, Page Templates, and Python−based Scripts.

def sort(seq, sort)

Sort the sequence seq of objects by the optional sort schema sort. sort is a sequence of tuples (key, func,
direction) that describe the sort order.

key
Attribute of the object to be sorted.

func
Defines the compare function (optional). Allowed values:
"cmp"

Standard Python comparison function
"nocase"

Case−insensitive comparison
"strcoll" or "locale"

Locale−aware string comparison
"strcoll_nocase" or "locale_nocase"

Locale−aware case−insensitive string comparison
other

A specified, user−defined comparison function, should return 1, 0, −1.
direction

defines the sort direction for the key (optional). (allowed values: "asc", "desc")

DTML Examples

Sort child object (using the objectValues method) by id (using the getId method), ignoring case:

 <dtml−in expr="_.sequence.sort(objectValues(),
 (('getId', 'nocase'),))">
 <dtml−var getId>

 </dtml−in>

Sort child objects by title (ignoring case) and date (from newest to oldest):

 <dtml−in expr="_.sequence.sort(objectValues(),
 (('title', 'nocase'),

Appendix B: API Reference 341

http://www.python.org/doc/current/lib/module-random.html
http://www.python.org/doc/current/lib/module-random.html

 ('bobobase_modification_time',
 'cmp', 'desc')
))">
 <dtml−var title> <dtml−var bobobase_modification_time>

 </dtml−in>

Page Template Examples

You can use the sequence.sort function in Python expressions to sort objects. Here's an example that
mirrors the DTML example above:

 <table tal:define="objects here/objectValues;
 sort_on python:(('title', 'nocase', 'asc'),
 ('bobobase_modification_time', 'cmp', 'desc'));
 sorted_objects python:sequence.sort(objects, sort_on)">
 <tr tal:repeat="item sorted_objects">
 <td tal:content="item/title">title</td>
 <td tal:content="item/bobobase_modification_time">
 modification date</td>
 </tr>
 </table>

This example iterates over a sorted list of object, drawing a table row for each object. The objects are sorted
by title and modification time.

See Also

Python cmp function

module standard

PythonScripts.standard: Utility functions and classes1.

The functions and classes in this module are available from Python−based scripts, DTML, and Page
Templates.

def structured_text(s)

Convert a string in structured−text format to HTML.

See Also

Structured−Text Rules

def html_quote(s)

Convert characters that have special meaning in HTML to HTML character entities.

See Also

Pythoncgi module_in_cgi_module.html escape function.

Appendix B: API Reference 342

http://www.python.org/doc/lib/built-in-funcs.html
http://dev.zope.org/Members/jim/StructuredTextWiki/StructuredTextNGRules
http://www.python.org/doc/current/lib/Functions
http://www.python.org/doc/current/lib/Functions

def url_quote_plus(s)

Like url_quote but also replace blank space characters with +. This is needed for building query strings in
some cases.

See Also

Pythonurllib module url_quote_plus function.

def dollars_and_cents(number)

Show a numeric value with a dollar symbol and two decimal places.

def sql_quote(s)

Convert single quotes to pairs of single quotes. This is needed to safely include values in Standard Query
Language (SQL) strings.

def whole_dollars(number)

Show a numeric value with a dollar symbol.

def url_quote(s)

Convert characters that have special meaning in URLS to HTML character entities using decimal values.

See Also

Pythonurllib module url_quote function.

class DTML

DTML − temporary, security−restricted DTML objects

__init__(source, **kw)

Create a DTML object with source text and keyword variables. The source text defines the DTML source
content. The optinal keyword arguments define variables.

call(client=None, REQUEST={}, **kw)

Render the DTML.

To accomplish its task, DTML often needs to resolve various names into objects. For example, when the code
<dtml−var spam> is executed, the DTML engine tries to resolve the name spam.

In order to resolve names, you must be pass a namespace to the DTML. This can be done several ways:

By passing a client object − If the argument client is passed, then names are looked up as
attributes on the argument.

•

Appendix B: API Reference 343

http://www.python.org/doc/current/lib/module-urllib.html
http://www.python.org/doc/current/lib/module-urllib.html
http://www.python.org/doc/current/lib/module-urllib.html
http://www.python.org/doc/current/lib/module-urllib.html

By passing a REQUEST mapping − If the argument REQUEST is passed, then names are looked up as
items on the argument. If the object is not a mapping, an TypeError will be raised when a name
lookup is attempted.

•

By passing keyword arguments −− names and their values can be passed as keyword arguments to the
Method.

•

The namespace given to a DTML object is the composite of these three methods. You can pass any number of
them or none at all. Names will be looked up first in the keyword argument, next in the client and finally in
the mapping.

def thousand_commas(number)

Insert commas every three digits to the left of a decimal point in values containing numbers. For example, the
value, "12000 widgets" becomes "12,000 widgets".

def newline_to_br(s)

Convert newlines and carriage−return and newline combinations to break tags.

module string

string: Python string module

The string module provides string manipulation, conversion, and searching functions. It is a standard
Python module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

Pythonstring module documentation at Python.org

Appendix B: API Reference 344

http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/current/lib/module-string.html

Appendix C: Zope Page Templates Reference
Zope Page Templates are an HTML/XML generation tool. This appendix is a reference to Zope Page
Templates standards: Tag Attribute Language (TAL), TAL Expression Syntax (TALES), and Macro
Expansion TAL (METAL).

TAL Overview

The Template Attribute Language (TAL) standard is an attribute language used to create dynamic templates. It
allows elements of a document to be replaced, repeated, or omitted.

The statements of TAL are XML attributes from the TAL namespace. These attributes can be applied to an
XML or HTML document in order to make it act as a template.

A TAL statement has a name (the attribute name) and a body (the attribute value). For example, an content
statement might look like tal:content="string:Hello". The element on which a statement is
defined is its statement element. Most TAL statements require expressions, but the syntax and semantics of
these expressions are not part of TAL. TALES is recommended for this purpose.

TAL Namespace

The TAL namespace URI and recommended alias are currently defined as:

 xmlns:tal="http://xml.zope.org/namespaces/tal"

This is not a URL, but merely a unique identifier. Do not expect a browser to resolve it successfully.

Zope does not require an XML namespace declaration when creating templates with a content−type of
text/html. However, it does require an XML namespace declaration for all other content−types.

TAL Statements

These are the tal statements:

tal:attributes − dynamically change element attributes.•
tal:define − define variables.•
tal:condition − test conditions.•
tal:content − replace the content of an element.•
tal:omit−tag − remove an element, leaving the content of the element.•
tal:on−error − handle errors.•
tal:repeat − repeat an element.•
tal:replace − replace the content of an element and remove the element leaving the content.•

Expressions used in statements may return values of any type, although most statements will only accept
strings, or will convert values into a string representation. The expression language must define a value named
nothing that is not a string. In particular, this value is useful for deleting elements or attributes.

Order of Operations

When there is only one TAL statement per element, the order in which they are executed is simple. Starting
with the root element, each element's statements are executed, then each of its child elements is visited, in

order, to do the same.

Any combination of statements may appear on the same elements, except that the content and replace
statements may not appear together.

When an element has multiple statements, they are executed in this order:

define1.
condition2.
repeat3.
content or replace4.
attributes5.
omit−tag6.

Since the on−error statement is only invoked when an error occurs, it does not appear in the list.

The reasoning behind this ordering goes like this: You often want to set up variables for use in other
statements, so define comes first. The very next thing to do is decide whether this element will be included
at all, so condition is next; since the condition may depend on variables you just set, it comes after
define. It is valuable be able to replace various parts of an element with different values on each iteration of
a repeat, so repeat is next. It makes no sense to replace attributes and then throw them away, so
attributes is last. The remaining statements clash, because they each replace or edit the statement
element.

See Also

TALES Overview

METAL Overview

tal:attributes

tal:define

tal:condition

tal:content

tal:omit−tag

tal:on−error

tal:repeat

tal:replace

attributes: Replace element attributes

Syntax

tal:attributes syntax:

Appendix C: Zope Page Templates Reference 346

 argument ::= attribute_statement [';' attribute_statement]*
 attribute_statement ::= attribute_name expression
 attribute_name ::= [namespace ':'] Name
 namespace ::= Name

Note: If you want to include a semi−colon (;) in an expression, it must be escaped by doubling it (;;).

Description

The tal:attributes statement replaces the value of an attribute (or creates an attribute) with a dynamic
value. You can qualify an attribute name with a namespace prefix, for example html:table, if you are
generating an XML document with multiple namespaces. The value of each expression is converted to a
string, if necessary.

If the expression associated with an attribute assignment evaluates to nothing, then that attribute is deleted
from the statement element. If the expression evaluates to default, then that attribute is left unchanged. Each
attribute assignment is independent, so attributes may be assigned in the same statement in which some
attributes are deleted and others are left alone.

If you use tal:attributes on an element with an active tal:replace command, the
tal:attributes statement is ignored.

If you use tal:attributes on an element with a tal:repeat statement, the replacement is made on
each repetition of the element, and the replacement expression is evaluated fresh for each repetition.

Examples

Replacing a link:

 <a href="/sample/link.html"
 tal:attributes="href here/sub/absolute_url">

Replacing two attributes:

 <textarea rows="80" cols="20"
 tal:attributes="rows request/rows;cols request/cols">

condition: Conditionally insert or remove an element

Syntax

tal:condition syntax:

 argument ::= expression

Description

The tal:condition statement includes the statement element in the template only if the condition is met,
and omits it otherwise. If its expression evaluates to a true value, then normal processing of the element
continues, otherwise the statement element is immediately removed from the template. For these purposes, the
value nothing is false, and default has the same effect as returning a true value.

Appendix C: Zope Page Templates Reference 347

Note: Zope considers missing variables, None, zero, empty strings, and empty sequences false; all other
values are true.

Examples

Test a variable before inserting it (the first example tests for existence and truth, while the second only tests
for existence):

 <p tal:condition="request/message | nothing"
 tal:content="request/message">message goes here</p>

 <p tal:condition="exists:request/message"
 tal:content="request/message">message goes here</p>

Test for alternate conditions:

 <div tal:repeat="item python:range(10)">
 <p tal:condition="repeat/item/even">Even</p>
 <p tal:condition="repeat/item/odd">Odd</p>
 </div>

content: Replace the content of an element

Syntax

tal:content syntax:

 argument ::= (['text'] | 'structure') expression

Description

Rather than replacing an entire element, you can insert text or structure in place of its children with the
tal:content statement. The statement argument is exactly like that of tal:replace, and is interpreted
in the same fashion. If the expression evaluates to nothing, the statement element is left childless. If the
expression evaluates to default, then the element's contents are unchanged.

Note: The default replacement behavior is text.

Examples

Inserting the user name:

 <p tal:content="user/getUserName">Fred Farkas</p>

Inserting HTML/XML:

 <p tal:content="structure here/getStory">marked up
 content goes here.</p>

See Also

tal:replace

Appendix C: Zope Page Templates Reference 348

define: Define variables

Syntax

tal:define syntax:

 argument ::= define_scope [';' define_scope]*
 define_scope ::= (['local'] | 'global') define_var
 define_var ::= variable_name expression
 variable_name ::= Name

Note: If you want to include a semi−colon (;) in an expression, it must be escaped by doubling it (;;).

Description

The tal:define statement defines variables. You can define two different kinds of TAL variables: local
and global. When you define a local variable in a statement element, you can only use that variable in that
element and the elements it contains. If you redefine a local variable in a contained element, the new
definition hides the outer element's definition within the inner element. When you define a global variables,
you can use it in any element processed after the defining element. If you redefine a global variable, you
replace its definition for the rest of the template.

Note: local variables are the default

If the expression associated with a variable evaluates to nothing, then that variable has the value nothing, and
may be used as such in further expressions. Likewise, if the expression evaluates to default, then the variable
has the value default, and may be used as such in further expressions.

Examples

Defining a global variable:

 tal:define="global company_name string:Zope Corp, Inc."

Defining two variables, where the second depends on the first:

 tal:define="mytitle template/title; tlen python:len(mytitle)"

omit−tag: Remove an element, leaving its contents

Syntax

tal:omit−tag syntax:

 argument ::= [expression]

Description

The tal:omit−tag statement leaves the contents of a tag in place while omitting the surrounding start and
end tag.

Appendix C: Zope Page Templates Reference 349

If its expression evaluates to a false value, then normal processing of the element continues and the tag is not
omitted. If the expression evaluates to a true value, or there is no expression, the statement tag is replaced
with its contents.

Zope treats empty strings, empty sequences, zero, None, nothing, and default at false. All other values are
considered true.

Examples

Unconditionally omitting a tag:

 <div tal:omit−tag="" comment="This tag will be removed">
 <i>...but this text will remain.</i>
 </div>

Conditionally omitting a tag:

 <b tal:omit−tag="not:bold">I may be bold.

The above example will omit the b tag if the variable bold is false.

Creating ten paragraph tags, with no enclosing tag:

 <span tal:repeat="n python:range(10)"
 tal:omit−tag="">
 <p tal:content="n">1</p>

on−error: Handle errors

Syntax

tal:on−error syntax:

 argument ::= (['text'] | 'structure') expression

Description

The tal:on−error statement provides error handling for your template. When a TAL statement produces
an error, the TAL interpreter searches for a tal:on−error statement on the same element, then on the
enclosing element, and so forth. The first tal:on−error found is invoked. It is treated as a
tal:content statement.

A local variable error is set. This variable has these attributes:

type
the exception type

value
the exception instance

traceback
the traceback object

The simplest sort of tal:on−error statement has a literal error string or nothing for an expression. A more

Appendix C: Zope Page Templates Reference 350

complex handler may call a script that examines the error and either emits error text or raises an exception to
propagate the error outwards.

Examples

Simple error message:

 <b tal:on−error="string: Username is not defined!"
 tal:content="here/getUsername">Ishmael

Removing elements with errors:

 <b tal:on−error="nothing"
 tal:content="here/getUsername">Ishmael

Calling an error−handling script:

 <div tal:on−error="structure here/errorScript">
 ...
 </div>

Here's what the error−handling script might look like:

 ## Script (Python) "errHandler"
 ##bind namespace=_
 ##
 error=_['error']
 if error.type==ZeroDivisionError:
 return "<p>Can't divide by zero.</p>"
 else
 return """<p>An error ocurred.</p>
 <p>Error type: %s</p>
 <p>Error value: %s</p>""" % (error.type,
 error.value)

See Also

Python Tutorial: Errors and Exceptions

Python Built−in Exceptions

repeat: Repeat an element

Syntax

tal:repeat syntax:

 argument ::= variable_name expression
 variable_name ::= Name

Description

The tal:repeat statement replicates a sub−tree of your document once for each item in a sequence. The
expression should evaluate to a sequence. If the sequence is empty, then the statement element is deleted,
otherwise it is repeated for each value in the sequence. If the expression is default, then the element is left

Appendix C: Zope Page Templates Reference 351

http://www.python.org/doc/current/tut/node10.html
http://www.python.org/doc/current/lib/module-exceptions.html

unchanged, and no new variables are defined.

The variable_name is used to define a local variable and a repeat variable. For each repetition, the local
variable is set to the current sequence element, and the repeat variable is set to an iteration object.

Repeat Variables

You use repeat variables to access information about the current repetition (such as the repeat index). The
repeat variable has the same name as the local variable, but is only accessible through the built−in variable
named repeat.

The following information is available from the repeat variable:

index − repetition number, starting from zero.•
number − repetition number, starting from one.•
even − true for even−indexed repetitions (0, 2, 4, ...).•
odd − true for odd−indexed repetitions (1, 3, 5, ...).•
start − true for the starting repetition (index 0).•
end − true for the ending, or final, repetition.•
first − true for the first item in a group − see note below•
last − true for the last item in a group − see note below•
length − length of the sequence, which will be the total number of repetitions.•
letter − repetition number as a lower−case letter: "a" − "z", "aa" − "az", "ba" − "bz", ..., "za" − "zz",
"aaa" − "aaz", and so forth.

•

Letter − upper−case version of letter.•
roman − repetition number as a lower−case roman numeral: "i", "ii", "iii", "iv", "v", etc.•
Roman − upper−case version of roman.•

You can access the contents of the repeat variable using path expressions or Python expressions. In path
expressions, you write a three−part path consisting of the name repeat, the statement variable's name, and
the name of the information you want, for example, repeat/item/start. In Python expressions, you use
normal dictionary notation to get the repeat variable, then attribute access to get the information, for example,
"python:repeat['item'].start".

Note that first and last are intended for use with sorted sequences. They try to divide the sequence into
group of items with the same value. If you provide a path, then the value obtained by following that path from
a sequence item is used for grouping, otherwise the value of the item is used. You can provide the path by
passing it as a parameter, as in "python:repeat['item'].first('color')", or by appending it to the path from the
repeat variable, as in "repeat/item/first/color".

Examples

Iterating over a sequence of strings::

Inserting a sequence of table rows, and using the repeat variable to number the rows:

 <table>
 <tr tal:repeat="item here/cart">
 <td tal:content="repeat/item/number">1</td>
 <td tal:content="item/description">Widget</td>
 <td tal:content="item/price">$1.50</td>
 </tr>
 </table>

Appendix C: Zope Page Templates Reference 352

Nested repeats:

 <table border="1">
 <tr tal:repeat="row python:range(10)">
 <td tal:repeat="column python:range(10)">
 <span tal:define="x repeat/row/number;
 y repeat/column/number;
 z python:x*y"
 tal:replace="string:$x * $y = $z">1 * 1 = 1
 </td>
 </tr>
 </table>

Insert objects. Seperates groups of objects by meta−type by drawing a rule between them:

 <div tal:repeat="object objects">
 <h2 tal:condition="repeat/object/first/meta_type"
 tal:content="object/meta_type">Meta Type</h2>
 <p tal:content="object/getId">Object ID</p>
 <hr tal:condition="repeat/object/last/meta_type" />
 </div>

Note, the objects in the above example should already be sorted by meta−type.

replace: Replace an element

Syntax

tal:replace syntax:

 argument ::= (['text'] | 'structure') expression

Description

The tal:replace statement replaces an element with dynamic content. It replaces the statement element
with either text or a structure (unescaped markup). The body of the statement is an expression with an
optional type prefix. The value of the expression is converted into an escaped string if you prefix the
expression with text or omit the prefix, and is inserted unchanged if you prefix it with structure.
Escaping consists of converting "&" to "&", "<" to "<", and ">" to ">".

If the value is nothing, then the element is simply removed. If the value is default, then the element is left
unchanged.

Examples

The two ways to insert the title of a template:

 Title
 Title

Inserting HTML/XML:

 <div tal:replace="structure table" />

Inserting nothing:

Appendix C: Zope Page Templates Reference 353

 <div tal:replace="nothing">This element is a comment.</div>

See Also

tal:content

TALES Overview

The Template Attribute Language Expression Syntax (TALES) standard describes expressions that supply
TAL and METAL with data. TALES is one possible expression syntax for these languages, but they are not
bound to this definition. Similarly, TALES could be used in a context having nothing to do with TAL or
METAL.

TALES expressions are described below with any delimiter or quote markup from higher language layers
removed. Here is the basic definition of TALES syntax:

 Expression ::= [type_prefix ':'] String
 type_prefix ::= Name

Here are some simple examples:

 a/b/c
 path:a/b/c
 nothing
 path:nothing
 python: 1 + 2
 string:Hello, ${user/getUserName}

The optional type prefix determines the semantics and syntax of the expression string that follows it. A given
implementation of TALES can define any number of expression types, with whatever syntax you like. It also
determines which expression type is indicated by omitting the prefix.

If you do not specify a prefix, Zope assumes that the expression is a path expression.

TALES Expression Types

These are the TALES expression types supported by Zope:

path expressions − locate a value by its path.•
exists expressions − test whether a path is valid.•
nocall expressions − locate an object by its path.•
not expressions − negate an expression•
string expressions − format a string•
python expressions − execute a Python expression•

Built−in Names

These are the names that always available to TALES expressions in Zope:

nothing − special value used by to represent a non−value (e.g. void, None, Nil, NULL).•
default − special value used to specify that existing text should not be replaced. See the
documentation for individual TAL statements for details on how they interpret default.

•

Appendix C: Zope Page Templates Reference 354

options − the keyword arguments passed to the template. These are generally available when a
template is called from Methods and Scripts, rather than from the web.

•

repeat − the repeat variables; see the tal:repeat documentation.•
attrs − a dictionary containing the initial values of the attributes of the current statement tag.•
CONTEXTS − the list of standard names (this list). This can be used to access a built−in variable that
has been hidden by a local or global variable with the same name.

•

root − the system's top−most object: the Zope root folder.•
here − the object to which the template is being applied.•
container − The folder in which the template is located.•
template − the template itself.•
request − the publishing request object.•
user − the authenticated user object.•
modules − a collection through which Python modules and packages can be accessed. Only modules
which are approved by the Zope security policy can be accessed.

•

Note the names root, here, container, template, request, user, and modules are optional
names supported by Zope, but are not required by the TALES standard.

See Also

TAL Overview

METAL Overview

exists expressions

nocall expressions

not expressions

string expressions

path expressions

python expressions

TALES Exists expressions

Syntax

Exists expression syntax:

 exists_expressions ::= 'exists:' path_expression

Description

Exists expressions test for the existence of paths. An exists expression returns true when the path expressions
following it expression returns a value. It is false when the path expression cannot locate an object.

Appendix C: Zope Page Templates Reference 355

Examples

Testing for the existence of a form variable:

 <p tal:condition="not:exists:request/form/number">
 Please enter a number between 0 and 5
 </p>

Note that in this case you can't use the expression, not:request/form/number, since that expression
will be true if the number variable exists and is zero.

TALES Nocall expressions

Syntax

Nocall expression syntax:

 nocall_expression ::= 'nocall:' path_expression

Description

Nocall expressions avoid rendering the results of a path expression.

An ordinary path expression tries to render the object that it fetches. This means that if the object is a function,
Script, Method, or some other kind of executable thing, then expression will evaluate to the result of calling
the object. This is usually what you want, but not always. For example, if you want to put a DTML Document
into a variable so that you can refer to its properties, you can't use a normal path expression because it will
render the Document into a string.

Examples

Using nocall to get the properties of a document:

 <span tal:define="doc nocall:here/aDoc"
 tal:content="string:${doc/getId}: ${doc/title}">
 Id: Title

Using nocall expressions on a functions:

 <p tal:define="join nocall:modules/string/join">

This example defines a variable join which is bound to the string.join function.

TALES Not expressions

Syntax

Not expression syntax:

 not_expression ::= 'not:' expression

Appendix C: Zope Page Templates Reference 356

Description

Not expression evaluate the expression string (recursively) as a full expression, and returns the boolean
negation of its value. If the expression supplied does not evaluate to a boolean value, not will issue a warning
and coerce the expression's value into a boolean type based on the following rules:

the number 0 is false1.
numbers > 0 are true2.
an empty string or other sequence is false3.
a non−empty string or other sequence is true4.
a non−value (e.g. void, None, Nil, NULL, etc) is false5.
all other values are implementation−dependent.6.

If no expression string is supplied, an error should be generated.

Zope considers all objects not specifically listed above as false (including negative numbers) to be true.

Examples

Testing a sequence:

 <p tal:condition="not:here/objectIds">
 There are no contained objects.
 </p>

TALES Path expressions

Syntax

Path expression syntax:

 PathExpr ::= Path ['|' Path]*
 Path ::= variable ['/' URL_Segment]*
 variable ::= Name

Description

A path expression consists of one or more paths separated by vertical bars (|). A path consists of one or more
non−empty strings separated by slashes. The first string must be a variable name (built−in variable or a user
defined variable), and the remaining strings, the path segments, may contain letters, digits, spaces, and the
punctuation characters underscore, dash, period, comma, and tilde.

For example:

 request/cookies/oatmeal
 nothing
 here/some−file 2001_02.html.tar.gz/foo
 root/to/branch | default
 request/name | string:Anonymous Coward

When a path expression is evaluated, Zope attempts to traverse the path, from left to right, until it succeeds or
runs out of paths segments. To traverse a path, it first fetches the object stored in the variable. For each path
segment, it traverses from the current object to the subobject named by the path segment. Subobjects are

Appendix C: Zope Page Templates Reference 357

located according to standard Zope traversal rules (via getattr, getitem, or traversal hooks).

Once a path has been successfully traversed, the resulting object is the value of the expression. If it is a
callable object, such as a method or template, it is called.

If a traversal step fails, evaluation immediately proceeds to the next path. If there are no further paths, an error
results.

The expression in a series of paths seperated by vertical bars can be any TALES expression. For example,
'request/name | string:Anonymous Coward'. This is useful chiefly for providing default values such as strings
and numbers which are not expressable as path expressions.

If no path is given the result is nothing.

Since every path must start with a variable name, you need a set of starting variables that you can use to find
other objects and values. See the TALES overview for a list of built−in variables. Since variable names are
looked up first in locals, then in globals, then in this list, these names act just like built−ins in Python; They
are always available, but they can be shadowed by a global or local variable declaration. You can always
access the built−in names explicitly by prefixing them with CONTEXTS. (e.g. CONTEXTS/root,
CONTEXTS/nothing, etc).

Examples

Inserting a cookie variable or a property:

 preference

Inserting the user name:

 <p tal:content="user/getUserName">
 User name
 </p>

TALES Python expressions

Syntax

Python expression syntax:

 Any valid Python language expression

Description

Python expressions evaluate Python code in a security−restricted environment. Python expressions offer the
same facilities as those available in Python−based Scripts and DTML variable expressions.

Security Restrictions

Python expressions are subject to the same security restrictions as Python−based scripts. These restrictions
include:

Appendix C: Zope Page Templates Reference 358

access limits
Python expressions are subject to Zope permission and role security restrictions. In addition,
expressions cannot access objects whose names begin with underscore.

write limits
Python expressions cannot change attributes of Zope objects.

Despite these limits malicious Python expressions can cause problems. See The Zope Book for more
information.

Built−in Functions

Python expressions have the same built−ins as Python−based Scripts with a few additions.

These standard Python built−ins are available: None, abs, apply, callable, chr, cmp, complex,
delattr, divmod, filter, float, getattr, hash, hex, int, isinstance, issubclass, list,
len, long, map, max, min, oct, ord, repr, round, setattr, str, tuple.

The range and pow functions are available and work the same way they do in standard Python; however,
they are limited to keep them from generating very large numbers and sequences. This limitation helps protect
against denial of service attacks.

In addition, these utility functions are available: DateTime, test, and same_type. See DTML functions
for more information on these functions.

Finally, these functions are available in Python expressions, but not in Python−based scripts:

path(string)
Evaluate a TALES path expression.

string(string)
Evaluate a TALES string expression.

exists(string)
Evaluates a TALES exists expression.

nocall(string)
Evaluates a TALES nocall expression.

Python Modules

A number of Python modules are available by default. You can make more modules available. You can access
modules either via path expressions (for example 'modules/string/join') or in Python with the modules
mapping object (for example 'modules["string"].join'). Here are the default modules:

string
The standard Python string module. Note: most of the functions in the module are also available as
methods on string objects.

random
The standard Python random module.

math
The standard Python math module.

sequence
A module with a powerful sorting function. See sequence for more information.

Products.PythonScripts.standard
Various HTML formatting functions available in DTML. See Products.PythonScripts.standard for

Appendix C: Zope Page Templates Reference 359

http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/current/lib/module-random.html
http://www.python.org/doc/current/lib/module-math.html

more information.
ZTUtils

Batch processing facilities similar to those offered by dtml−in. See ZTUtils for more information.
AccessControl

Security and access checking facilities. See AccessControl for more information.

Examples

Using a module usage (pick a random choice from a list):

 <span tal:replace="python:modules['random'].choice(['one',
 'two', 'three', 'four', 'five'])">
 a random number between one and five

String processing (capitalize the user name):

 <p tal:content="python:user.getUserName().capitalize()">
 User Name
 </p>

Basic math (convert an image size to megabytes):

 <p tal:content="python:image.getSize() / 1048576.0">
 12.2323
 </p>

String formatting (format a float to two decimal places):

 <p tal:content="python:'%0.2f' % size">
 13.56
 </p>

TALES String expressions

Syntax

String expression syntax:

 string_expression ::= (plain_string | [varsub])*
 varsub ::= ('$' Path) | ('${' Path '}')
 plain_string ::= ('$$' | non_dollar)*
 non_dollar ::= any character except '$'

Description

String expressions interpret the expression string as text. If no expression string is supplied the resulting string
is empty. The string can contain variable substitutions of the form $name or ${path}, where name is a
variable name, and path is a path expression. The escaped string value of the path expression is inserted into
the string. To prevent a $ from being interpreted this way, it must be escaped as $$.

Examples

Basic string formatting:

Appendix C: Zope Page Templates Reference 360

 Spam and Eggs

Using paths:

 <p tal:content="total: ${request/form/total}">
 total: 12
 </p>

Including a dollar sign:

 <p tal:content="cost: $$$cost">
 cost: $42.00
 </p>

METAL Overview

The Macro Expansion Template Attribute Language (METAL) standard is a facility for HTML/XML macro
preprocessing. It can be used in conjunction with or independently of TAL and TALES.

Macros provide a way to define a chunk of presentation in one template, and share it in others, so that changes
to the macro are immediately reflected in all of the places that share it. Additionally, macros are always fully
expanded, even in a template's source text, so that the template appears very similar to its final rendering.

METAL Namespace

The METAL namespace URI and recommended alias are currently defined as:

 xmlns:metal="http://xml.zope.org/namespaces/metal"

Just like the TAL namespace URI, this URI is not attached to a web page; it's just a unique identifier.

Zope does not require an XML namespace declaration when creating templates with a content−type of
text/html. However, it does require an XML namespace declaration for all other content−types.

METAL Statements

METAL defines a number of statements:

metal:define−macro − Define a macro.•
metal:use−macro − Use a macro.•
metal:define−slot − Define a macro customization point.•
metal:fill−slot − Customize a macro.•

Although METAL does not define the syntax of expression non−terminals, leaving that up to the
implementation, a canonical expression syntax for use in METAL arguments is described in TALES
Specification.

See Also

TAL Overview

Appendix C: Zope Page Templates Reference 361

TALES Overview

metal:define−macro

metal:use−macro

metal:define−slot

metal:fill−slot

define−macro: Define a macro

Syntax

metal:define−macro syntax:

 argument ::= Name

Description

The metal:define−macro statement defines a macro. The macro is named by the statement expression,
and is defined as the element and its sub−tree.

In Zope, a macro definition is available as a sub−object of a template's macros object. For example, to
access a macro named header in a template named master.html, you could use the path expression
master.html/macros/header.

Examples

Simple macro definition:

 <p metal:define−macro="copyright">
 Copyright 2001, Foobar Inc.
 </p>

See Also

metal:use−macro

metal:define−slot

define−slot: Define a macro customization point

Syntax

metal:define−slot syntax:

 argument ::= Name

Appendix C: Zope Page Templates Reference 362

Description

The metal:define−slot statement defines a macro customization point or slot. When a macro is used,
its slots can be replaced, in order to customize the macro. Slot definitions provide default content for the slot.
You will get the default slot contents if you decide not to customize the macro when using it.

The metal:define−slot statement must be used inside a metal:define−macro statement.

Slot names must be unique within a macro.

Examples

Simple macro with slot:

 <p metal:define−macro="hello">
 Hello <b metal:define−slot="name">World
 </p>

This example defines a macro with one slot named name. When you use this macro you can customize the b
element by filling the name slot.

See Also

metal:fill−slot

fill−slot: Customize a macro

Syntax

metal:fill−slot syntax:

 argument ::= Name

Description

The metal:fill−slot statement customizes a macro by replacing a slot in the macro with the statement
element (and its content).

The metal:fill−slot statement must be used inside a metal:use−macro statement.

Slot names must be unique within a macro.

If the named slot does not exist within the macro, the slot contents will be silently dropped.

Examples

Given this macro:

 <p metal:define−macro="hello">
 Hello <b metal:define−slot="name">World
 </p>

Appendix C: Zope Page Templates Reference 363

You can fill the name slot like so:

 <p metal:use−macro="container/master.html/macros/hello">
 Hello <b metal:fill−slot="name">Kevin Bacon
 </p>

See Also

metal:define−slot

use−macro: Use a macro

Syntax

metal:use−macro syntax:

 argument ::= expression

Description

The metal:use−macro statement replaces the statement element with a macro. The statement expression
describes a macro definition.

In Zope the expression will generally be a path expression referring to a macro defined in another template.
See "metal:define−macro" for more information.

The effect of expanding a macro is to graft a subtree from another document (or from elsewhere in the current
document) in place of the statement element, replacing the existing sub−tree. Parts of the original subtree may
remain, grafted onto the new subtree, if the macro has slots. See metal:define−slot for more information. If the
macro body uses any macros, they are expanded first.

When a macro is expanded, its metal:define−macro attribute is replaced with the metal:use−macro
attribute from the statement element. This makes the root of the expanded macro a valid use−macro
statement element.

Examples

Basic macro usage:

 <p metal:use−macro="container/other.html/macros/header">
 header macro from defined in other.html template
 </p>

This example refers to the header macro defined in the other.html template which is in the same folder
as the current template. When the macro is expanded, the p element and its contents will be replaced by the
macro. Note: there will still be a metal:use−macro attribute on the replacement element.

See Also

metal:define−macro

metal:fill−slot

Appendix C: Zope Page Templates Reference 364

Appendix D: Zope Resources
At the time of this writing there is a multitude of sources for Zope information on the Internet, but very little
in print. We've collected a number of the most important links which you can use to find out more about
Zope.

Zope Web Sites

Zope.org is the official Zope web site. It has downloads, documentation, news, and lots of community
resources.

ZopeZen is a Zope community site that features news and a Zope job board. The site is run by noted Zope
community member Andy McKay.

Zope Newbies is a weblog that features Zope news and related information. Zope Newbies is one of the oldest
and best Zope web sites. Jeff Shelton started Zope Newbies, and the site is currently run by Luke Tymowski.

Zope Documentation

Zope.org has lots of documentation including official documentation projects and contributed community
documentation.

Zope Documentation Project is a community−run Zope documentation web site. It hosts original
documentation and has links to other sources of documentation.

Zope Developer's Guide teaches you how to write Zope products.

Mailing Lists

Zope.org maintains a collection of the many Zope mailing lists.

Zope Extensions

Zope.org has a huge collection of 3rd party Zope extensions which are called "products".

Zope Treasures is a large collection of Zope products.

Python Information

Python.org has lots of information about Python including a tutorial and reference documentation.

http://www.zope.org
http://www.zopezen.org
http://weblogs.userland.com/zopeNewbies/
http://www.zope.org/Documentation
http://zdp.zope.org/
http://www.zope.org/DocProjects/DevGuide
http://www.zope.org/Resources/MailingLists
http://www.zope.org/Products
http://www.zope-treasures.com/
http://www.python.org

	Table of Contents
	Introduction
	 Why Should I Read this Book?
	 How the Book Is Organized
	 Part I: Introducing Zope
	 Part II: Creating Web Applications with Zope
	 Part III: Developing Advanced Web Applications with Zope

	 Conventions Used in This Book
	 This book uses the following typographical conventions:

	Chapter 1: Introducing Zope
	 What Is Zope?
	 Powerful Collaboration
	 Simple Content Management
	 Web Components
	 Zope History
	 Who Can Benefit from Zope?
	 How Can You Benefit From Zope?
	 What Zope Gives You
	 Zope Alternatives
	 Zope Community

	Chapter 2: Using Zope
	 Downloading Zope
	 Installing Zope
	 Installing Zope for Windows
	 Downloading Linux and Solaris Binaries
	 Getting Zope in RPM and deb format
	 Compiling Zope from Source Code

	 Starting Zope
	 Starting Zope On Windows
	 Starting Zope on UNIX

	 Logging In
	 Controlling Zope with Management Interface
	 Using the Navigator
	 Using The Workspace
	 Understanding Users in Zope
	 Creating Users
	 Changing Logins
	 Creating Objects
	 Moving Objects
	 Undoing Mistakes
	 Undo Details and Gotchas
	 Administering and Monitoring Zope
	 Using the Help System
	 Browsing and Searching Help
	 Starting with the Zope Tutorial

	Chapter 3: Using Basic Zope Objects
	 Using Zope Folders
	 Managing Folder Contents
	 Importing and Exporting Objects
	 Temporary Folders

	 Using Zope Page Templates
	 Page templates are powerful for a few reasons:
	 Creating Zope Page Templates
	 Editing Zope Page Templates
	 Uploading Zope Page Templates

	 Using Zope Documents
	 DTML Documents
	 Creating DTML Documents
	 Editing DTML Documents
	 Uploading an HTML File
	 Viewing DTML Documents
	 Calling Through the Web
	 Calling from Another Object
	 Reviewing Changes to Documents

	 Remote Editing with FTP, WebDAV, and PUT
	 Uploading Documents and Files with WS_FTP
	 Editing Zope Objects with Emacs
	 Editing DTML Documents with WebDAV

	 Using Zope Files
	 Uploading Files
	 Editing Files
	 Viewing Files

	 Using Zope Images
	 Viewing Images with HTML
	 Viewing Images Through the Web

	 Using Object Properties
	 Coding Logic with Scripts
	 Using Methods
	 Comparing DTML Documents and Methods
	 Using Sessions
	 Session Configuration
	 Using Session Data

	 Using Versions
	 Versions and ZCatalog

	 Improving Performance with Caching
	 Adding a Cache Manager
	 Caching a Document

	 Virtual Hosting Objects
	 Sending mail with MailHost

	Chapter 4: Dynamic Content with DTML
	 Who is DTML For?
	 What is DTML Good for?
	 When Not to Use DTML
	 DTML Tag Syntax
	 Using DTML Tag Attributes

	 Inserting Variables with DTML
	 Processing Input from Forms
	 Dynamically Acquiring Content
	 Using Python Expressions from DTML
	 DTML Expression Gotchas

	 The Var Tag
	 Var Tag Attributes
	 Var Tag Entity Syntax

	 The If Tag
	 Here's an example condition:
	 Name and Expression Syntax Differences
	 Else and Elif Tags

	 Using Cookies with the If Tag
	 The In Tag
	 Iterating over Folder Contents
	 In Tag Special Variables

	Chapter 5. Using Zope Page Templates
	 Zope Page Templates versus DTML
	 How Page Templates Work
	 Creating a Page Template
	 Simple Expressions
	 Inserting Text
	 Repeating Structures
	 Conditional Elements
	 Changing Attributes
	 Creating a File Library with Page Templates
	 Remote Editing with FTP and WebDAV
	 Debugging and Testing
	 XML Templates
	 Using Templates with Content
	 Conclusion

	Chapter 6: Creating Basic Zope Applications
	 Building Applications with Folders
	 Calling Objects on Folders with URLs
	 The Special Folder Object index_html

	 Building the Zope Zoo Website
	 Navigating the Zoo
	 Adding a Front Page to the Zoo
	 Improving Navigation
	 Factoring out Style Sheets
	 Creating a File Library
	 Building a Guest Book
	 Extending the Guest Book to Generate XML

	 The Next Step

	Chapter 7: Users and Security
	 Introducing Security
	 Logging in and Logging Out of Zope
	 Authentication and Authorization

	 Authentication and Managing Users
	 Creating Users in User Folders
	 Editing Users
	 Defining a User's Location
	 Working with Alternative User Folders
	 Special User Accounts

	 Authorization and Managing Security
	 Working with Roles
	 Defining Roles
	 Understanding Local Roles
	 Understanding Permissions
	 Defining Security Policies
	 Security Policy Acquisition

	 Security Usage Patterns
	 Security Rules of Thumb
	 Global and Local Policies
	 Delegating Control to Local Managers
	 Different Levels of Access with Roles
	 Controlling Access to Locations with Roles

	 Performing Security Checks
	 Advanced Security Issues: Ownership and Executable Content
	 The Problem: Trojan Horse Attacks
	 Managing Ownership
	 Roles of Executable Content
	 Proxy Roles

	 Summary

	Chapter 8: Variables and Advanced DTML
	 How Variables are Looked up
	 DTML Namespaces
	 DTML Client Object
	 DTML Request Object
	 Rendering Variables

	 Modifying the DTML Namespace
	 In Tag Namespace Modifications
	 The With Tag
	 The Let Tag

	 DTML Namespace Utility Functions
	 DTML Security
	 Safe Scripting Limits

	 Advanced DTML Tags
	 The Call Tag
	 The Comment Tag
	 The Tree Tag
	 The Return Tag
	 The Sendmail Tag
	 The Mime Tag
	 The Unless Tag
	 Batch Processing With The In Tag
	 Exception Handling Tags
	 The Raise Tag
	 The Try Tag

	 Conclusion

	Chapter 9. Advanced Page Templates
	 Advanced TAL
	 Advanced Content Insertion
	 Advanced Tag Repetition
	 Advanced Attribute Control
	 Defining Variables
	 Omitting Tags
	 Error Handling
	 Interactions Between TAL Statements
	 Form Processing

	 Expressions
	 Built-in Variables
	 String Expressions
	 Path Expressions
	 Not Expressions
	 Nocall Expressions
	 Exists Expressions
	 Python Expressions

	 Macros
	 Using Macros
	 Macro Details
	 Using Slots
	 Customizing Default Presentation
	 Combining METAL and TAL
	 Whole Page Macros

	 Caching Templates
	 Page Template Utilities
	 Batching Large Sets of Information
	 Miscellaneous Utilities

	 Conclusion

	Chapter 10: Advanced Zope Scripting
	 Zope Scripts
	 Calling Scripts
	 Calling Scripts From the Web
	 Calling Scripts from other Objects
	 Passing Parameters to Scripts

	 Script Security
	 The Zope API
	 Using Python-based Scripts
	 The Python Language
	 Creating Python-based Scripts
	 String Processing
	 Doing Math
	 Binding Variables
	 Print Statement Support
	 Security Restrictions
	 Built-in Functions

	 Using External Methods
	 Processing XML with External Methods
	 External Method Gotchas

	 Using Perl-based Scripts
	 The Perl Language
	 Creating Perl-based Scripts
	 Perl-based Script Security

	 DTML versus Python versus Perl
	 Remote Scripting and Network Services
	 Using XML-RPC
	 Remote Scripting with HTTP

	 Conclusion

	Chapter 11: Searching and Categorizing Content
	 Getting started with Mass Cataloging
	 Search and Report Forms
	 Configuring Catalogs
	 Defining Indexes
	 Defining Meta Data

	 Searching Catalogs
	 Searching with Forms
	 Searching from Python

	 Searching and Indexing Details
	 Searching Text Indexes
	 Vocabularies
	 Searching Field Indexes
	 Searching Keyword Indexes
	 Searching Path Indexes

	 Advanced Searching with Records
	 Keyword Index Record Attributes
	 Field Index Record Attributes
	 Text Index Record Attributes
	 Path Index Record Attributes
	 Creating Records in HTML

	 Stored Queries
	 Automatic Cataloging
	 Conclusion

	Chapter 12: Relational Database Connectivity
	 Using Database Connections
	 Using Z SQL Methods
	 Calling Z SQL Methods
	 Providing Arguments to Z SQL Methods

	 Dynamic SQL Queries
	 Inserting Arguments with the Sqlvar Tag
	 Equality Comparisons with the Sqltest Tag
	 Creating Complex Queries with the Sqlgroup Tag

	 Advanced Techniques
	 Calling Z SQL Methods with Explicit Arguments
	 Acquiring Arguments from other Objects
	 Traversing to Result Objects
	 Binding Classes to Result Objects
	 Caching Results
	 Transactions

	 Summary

	Chapter 13: Scalability and ZEO
	 What is ZEO?
	 When you should use ZEO
	 Installing and Running ZEO
	 How to Run ZEO on Many Computers
	 How to Distribute Load
	 User Chooses a Mirror
	 Using Round-robin DNS to Distribute Load
	 Using Layer 4 Switching to Distribute Load
	 Dealing with a Single Point of Failure
	 ZEO Server Details

	 ZEO Caveats
	 Conclusion

	Chapter 14: Extending Zope
	 Creating Zope Products
	 Creating A Simple Product
	 Creating ZClasses
	 Creating Views of Your ZClass
	 Creating Properties on Your ZClass
	 Creating Methods on your ZClass
	 ObjectManager ZClasses
	 ZClass Security Controls
	 Controlling access to Methods and Property Sheets
	 Controlling Access to instances of Your ZClass
	 Providing Context-Sensitive Help for your ZClass

	 Using Python Base Classes
	 Distributing Products

	Appendix A: DTML Reference
	 call: Call a method
	 Syntax
	 Examples
	 See Also

	 comment: Comments DTML
	 Syntax
	 Examples

	 functions: DTML Functions
	 Functions
	 Attributes
	 See Also

	 if: Tests Conditions
	 Syntax
	 Examples
	 See Also

	 in: Loops over sequences
	 Syntax
	 Attributes
	 Tag Variables
	 Examples

	 let: Defines DTML variables
	 Syntax
	 Examples
	 See Also

	 mime: Formats data with MIME
	 Syntax
	 Attributes
	 Examples
	 See Also

	 raise: Raises an exception
	 Syntax
	 Examples
	 See Also

	 return: Returns data
	 Syntax
	 Examples

	 sendmail: Sends email with SMTP
	 Syntax
	 Attributes
	 Examples
	 See Also

	 sqlgroup: Formats complex SQL expressions
	 Syntax
	 Attributes
	 Examples
	 See Also

	 sqltest: Formats SQL condition tests
	 Syntax
	 Attributes
	 Examples
	 See Also

	 sqlvar: Inserts SQL variables
	 Syntax
	 Attributes
	 Examples
	 See Also

	 tree: Inserts a tree widget
	 Syntax
	 Attributes
	 Tag Variables
	 Tag Control Variables
	 Examples

	 try: Handles exceptions
	 Syntax
	 Attributes
	 Tag Variables
	 Examples
	 See Also

	 unless: Tests a condition
	 Syntax
	 Examples
	 See Also

	 var: Inserts a variable
	 Syntax
	 Attributes
	 Examples

	 with: Controls DTML variable look up
	 Syntax
	 Attributes
	 Examples
	 See Also

	Appendix B: API Reference
	 module AccessControl
	 AccessControl: Security functions and classes
	 class SecurityManager
	 def getSecurityManager()

	 module AuthenticatedUser
	 class AuthenticatedUser

	 module DTMLDocument
	 class DTMLDocument(ObjectManagerItem, PropertyManager)

	 module DTMLMethod
	 class DTMLMethod(ObjectManagerItem)

	 module DateTime
	 class DateTime

	 module ExternalMethod
	 class ExternalMethod

	 module File
	 class File(ObjectManagerItem, PropertyManager)

	 module Folder
	 class Folder(ObjectManagerItem, ObjectManager, PropertyManager)

	 module Image
	 class Image(File)

	 module MailHost
	 class MailHost

	 module ObjectManager
	 class ObjectManager

	 module ObjectManagerItem
	 class ObjectManagerItem

	 module PropertyManager
	 class PropertyManager

	 module PropertySheet
	 class PropertySheet

	 module PropertySheets
	 class PropertySheets

	 module PythonScript
	 class PythonScript(Script)

	 module Request
	 class Request

	 module Response
	 class Response

	 module Script
	 class Script

	 module SessionInterfaces
	 Session API
	 class SessionDataManagerErr
	 class BrowserIdManagerInterface
	 class BrowserIdManagerErr
	 class SessionDataManagerInterface

	 module TransienceInterfaces
	 class TransientObject
	 class MaxTransientObjectsExceeded
	 class TransientObjectContainer

	 module UserFolder
	 class UserFolder

	 module Vocabulary
	 class Vocabulary

	 module ZCatalog
	 class ZCatalog

	 module ZSQLMethod
	 class ZSQLMethod

	 module ZTUtils
	 ZTUtils: Page Template Utilities
	 class Batch

	 module math
	 math: Python math module

	 module random
	 random: Python random module

	 module sequence
	 sequence: Sequence sorting module
	 def sort(seq, sort)

	 module standard
	 def structured_text(s)
	 def html_quote(s)
	 def url_quote_plus(s)
	 def dollars_and_cents(number)
	 def sql_quote(s)
	 def whole_dollars(number)
	 def url_quote(s)
	 class DTML
	 def thousand_commas(number)
	 def newline_to_br(s)

	 module string
	 string: Python string module

	Appendix C: Zope Page Templates Reference
	 TAL Overview
	 TAL Namespace
	 TAL Statements
	 Order of Operations
	 See Also

	 attributes: Replace element attributes
	 Syntax
	 Description
	 Examples

	 condition: Conditionally insert or remove an element
	 Syntax
	 Description
	 Examples

	 content: Replace the content of an element
	 Syntax
	 Description
	 Examples
	 See Also

	 define: Define variables
	 Syntax
	 Description
	 Examples

	 omit-tag: Remove an element, leaving its contents
	 Syntax
	 Description
	 Examples

	 on-error: Handle errors
	 Syntax
	 Description
	 Examples
	 See Also

	 repeat: Repeat an element
	 Syntax
	 Description
	 Repeat Variables
	 Examples

	 replace: Replace an element
	 Syntax
	 Description
	 Examples
	 See Also

	 TALES Overview
	 TALES Expression Types
	 Built-in Names
	 See Also

	 TALES Exists expressions
	 Syntax
	 Description
	 Examples

	 TALES Nocall expressions
	 Syntax
	 Description
	 Examples

	 TALES Not expressions
	 Syntax
	 Description
	 Examples

	 TALES Path expressions
	 Syntax
	 Description
	 Examples

	 TALES Python expressions
	 Syntax
	 Description
	 Examples

	 TALES String expressions
	 Syntax
	 Description
	 Examples

	 METAL Overview
	 METAL Namespace
	 METAL Statements
	 See Also

	 define-macro: Define a macro
	 Syntax
	 Description
	 Examples
	 See Also

	 define-slot: Define a macro customization point
	 Syntax
	 Description
	 Examples
	 See Also

	 fill-slot: Customize a macro
	 Syntax
	 Description
	 Examples
	 See Also

	 use-macro: Use a macro
	 Syntax
	 Description
	 Examples
	 See Also

	Appendix D: Zope Resources
	 Zope Web Sites
	 Zope Documentation
	 Mailing Lists
	 Zope Extensions
	 Python Information

