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Abstract. Current linguistic research on sign language is often based
on analysing large corpora of video recordings. The videos must be an-
notated either manually or automatically. Automatic methods for es-
timating the signer body configuration—especially the hand positions
and shapes—would thus be of great practical interest. Methods based on
rigorous 3D and 2D modelling of the body parts have been presented.
However, they face insurmountable problems of computational complex-
ity due to the large sizes of modern linguistic corpora. In this paper we
look at an alternative approach and investigate what can be achieved
with the use of straightforward local 2D appearance based methods:
template matching-based tracking of local image neighbourhoods and
supervised skin blob category detection based on local appearance fea-
tures. After describing these techniques, we construct a signer configu-
ration estimation system using the described techniques among others,
and demonstrate the system in the video material of Suvi dictionary of
Finnish Sign Language.

1 Introduction

In automatic analysis of sign language videos it is necessary to detect and keep
track of the configuration of the signer’s body. On the coarsest level, the con-
figuration modelling might correspond to roughly estimating the locations of
the signer’s hands. Estimates of handshapes, body poses, head poses and facial
expressions add more details to the configuration modelling. However, estimat-
ing the configuration of the body, which is inherently three-dimensional, from
a single 2D projection is not an easy task. The estimation can be done by fit-
ting rendered complex 3D models to the observed image, as is done for example
in [3] for a detailed model of the hand. Unfortunately these methods tend to be
computationally far too expensive for amounts of video data that would need
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to be analysed in the context of automatic analysis of sign language corpora of
any practical significance. After all, there are 25 frames in every second of video
footage.

Models based on pictorial structures [5] come closer to appearance-based
modelling by operating directly in two dimensions. The model of [1] rather ac-
curately manages to estimate the configuration of a 2D arm model with three
joints—shoulders, elbows and wrists. However, estimating pictorial structure
models is computationally quite heavy, too. The application of [1] to practical
analysis is hindered also by another serious issue: the estimation needs extensive
manually annotated training data, separately for each person to be modelled, and
for each imaging condition, for example each clothing of the signer. [10] solves
the issues of run-time computational complexity, but with the price of even more
extreme training data requirements. Actually the method was demonstrated by
training it with a huge video collection first processed with [1].

In this paper we go further in the 2D appearance based direction where the
underlying models get simpler and simpler. The philosophy here is that simple
methods should be preferred over more complicated ones if they are able to
perform the same tasks. In this spirit we investigate whether techniques based on
straightforward detection and tracking of local 2D appearance primitives would
be sufficient for deducing the signer configuration in video material—at least in
most cases. In such cases one could omit the more advanced and computationally
complex modelling, which can be prohibitively cumbersome in practice.

This work studies the application of two kinds of local appearance based tech-
niques. In the first technique (Section 2) we consider tracking of constellations
of nearby small local image neighbourhoods. In sign language videos the ob-
jects of interest—primarily hands—are not rigid, but their shape and projection
constantly changes. Furthermore, their appearance may vary also for technical
reasons: in the video material we have cosidered, motion blur and coding arti-
facts are often quite severe. This quality is not unrealistically poor as the videos
are from the Suvi online dictionary of Finnish Sign Language (FinSL) and of-
fer perfectly naturalistic viewing experience for human viewers. The model of
the object that is tracked thus consists of nearby image neighbourhoods that
may gradually change their appearance from frame to frame and whose relative
positions may also change. This technique was originally described in [16].

In the second technique (Section 3) we model the objects of interest as blobs
of skin-coloured pixels. We categorise the skin blobs in the image into a small
set of categories using standard off-the-shelf 2D visual descriptors combined
with standard supervising learning algorithms: support vector machines (SVM)
and extreme learning machines (ELM). In particular, we investigate whether
these standard methods of 2D visual analysis can discriminate between right
and left hand blobs, or tell which end of a blob depicting an arm is the end
with the hand and the fingers. The left-right separation task has the practical
motivation that in our video material, skin blob detection works rather well in
identifying the skin areas that may be either hands or the face. In configuration
estimation, the next task would then be to decide which skin blobs correspond



to which body part. Locating facial details is relatively easy, but hands are more
problematic, especially deciding which hand is right and which one is left. In
the video, the skin blobs can often be associated together by kinematic grounds
when the movements are smooth, thus making the category estimation easier.
A helpful clue is also provided by the areas where a skin blob moves: the right
hand usually moves right of the left hand. However, these cues alone are not
reliable enough to always correctly determine the configuration. Sometimes the
movement is so fast that between subsequent frames the skin blobs have moved
so much that associating the blobs in different frames is not straightforward. It
may even be so that right hand appears nearly in the place where the left hand
was previously and vice versa, throwing the kinematic analysis completely off
the scent. Sometimes the image becomes temporarily unintelligible because of
motion blur or the hands combine in a single blob with each other and/or the
face, making it difficult to keep track of the position of each individual body
part. Occasionally these factors combine. All in all, at times the tracking of
configuration gets invalidated. Appearance-based blob categorisation can then
come to help and re-establish the tracking.

After detailing the two techniques of main interest, we describe in Section 4
how we construct a system that performs signer body part identification and
labelling in sign language videos. The system applies the two proposed techniques
in several of its processing steps, as well as other image processing techniques.
Section 5 demonstrates the system in labelling of videos of the Suvi dictionary.
Section 6 discusses the findings and presents conclusions that can be drawn from
this study.

2 Tracking of Local Image Neighbourhoods

Template matching based tracking of local image neighbourhoods—small rectan-
gular patches in particular—is an important ingredient in our signer configura-
tion tracking system. This elementary tracking method has been chosen because
preliminary experiments with the video material at our disposal have indicated
that some more advanced descriptors such as SIFT do not remain stable enough
between the frames to make it possible to base the tracking on them. Partly this
is because the appearance of the tracked objects keeps changing due to them
being non-rigid, and also due to viewpoint changes. Image compression artifacts
and motion blur are additional factors in our video material. In order to make
the tracking more reliable, instead of tracking individual visual features we tie
together a collection of multiple nearby points and track them collectively.

In the following we consider tracking a set of M points from a reference frame
r to a target frame t. Let the coordinates of the tracked points be {ri}Mi=1 in the
reference frame. We impose a topology {N(i)}Mi=1 upon the points. Here the set
N(i) specifies the indices of points that are neighbours of the ith point. There is
no necessity of the topology to reflect any specific geometric notion of adjacency
in the original image plane. In our formulation, the goal of the tracking is to find
the coordinates {ti}Mi=1 in the target frame so that the tracking cost function C



is minimised:

min
{ti}M

i=1

C =

M∑
i=1

A(Ir(ri), It(ti)
)

+ α
∑

j∈N(i)

B
(
|‖ti − tj‖ − ‖ri − rj‖|

) . (1)

Here Ir(ri) and It(ti) are the image neighbourhoods of the points ri and ti in
the reference and target frames, respectively, and A(·, ·) is the template matching
distance. α is a weight parameter of the method and B(·) is a scalar weighting
function of distance differences. The cost function thus balances the sum of
template matching costs of individual points with a measure how much the
inter-point distances in the target frame differ from the corresponding distances
in the reference frame. In this paper, the following iterative algorithm has been
used for the approximate minimisation of the cost function:

1. Initialise tracking, i.e. select initial values for {ti}Mi=1 e.g. on the basis of the
estimated motion field.

2. Denote the set of indices of the target points requiring update with R. Ini-
tialise R by inserting all the indices 1, . . . ,M into it.

3. Repeat until R is empty or some external stopping criterion is met (e.g.
number of iterations reaches a set maximum):
(a) Randomly select an index j from R.
(b) Set told = tj and remove j from R.
(c) Search a new location for the point tj that minimises C of Eq. (1).
(d) If tj 6= told, add indices in N(j) into R.

3 Skin Blob Category Detection

For category detection, the object of interest is modelled as a blob, i.e. some
contiguous sub-area of an image. Set of standard 2D visual features is extracted
from the blob. Based on the features, the blob is assigned to one out of a pre-
specified set of categories by supervised learning, i.e. using classifiers that have
been trained previously with manually labelled data. In practice, the blobs we
consider in our system result from skin colour detection. Here we consider as-
signing the blobs into two sets of categories that 1) distinguish between left and
right hands, and 2) determine which end of an arm blob is the hand end. In [15]
we have used similar methods for recognising pre-specified classes of handshapes.

The rest of this section describes an experiment that we performed in left-
right hand separation in order to see which visual features are suitable as input
to classifiers. Based on these results and those reported in [15], we have selected
the sPACT statistical texture feature [19] for use in our system. In addition
to classifier accuracy, also the computational lightness and ease of extracting
the feature was a factor in the decision as we perform feature extraction and
classification on-line for each video frame in our analysis system. For the same
reason we also want to re-use the same features for all categorisation tasks,
including handedness detection and handshape classification. sPACT provides
decent performance in both tasks.



Table 1. The extracted features.

Shape Fourier descriptors of the contour
Zernike moments of the blob silhoutte

Texture statistics SIFT [7] histograms (Harris-Laplace interest points)
(BOV) Opponent colour ColorSIFT [13] histograms (dense sampling)

Texture statistics Edge co-occurrence matrix
(non-BOV) Edge histogram variants

Fourier transform of edges
Directional local brightness variation
Spatial PCA of Census Transform histograms (sPACT) [19]
Various Local Binary Pattern (LBP) histograms [9]
Various Histogram of Oriented Gradients (HoG) features [2]

3.1 Right and Left Hand Discrimination Experiment

Our experiments were performed on a set of 7022 right hand blobs extracted
from a number of sign language videos of the S-pot benchmark [14] that uses
the material of the Suvi video dictionary [12] of Finnish Sign Language (FinSL).
The blobs were mirrored to produce an artificial set of left hands. Half of the
blobs was used for training and the other half for testing. In the experiment, a
large set of visual features was extracted from the blobs (Table 1). A couple of
features measure the shape of the extracted hand silhouettes (Fourier descriptors,
Zernike moments). The remaining majority of features statistically describe the
content of the blob area. When calculating statistical features, two independent
design choices were explored: 1) extracting the feature from the actual skin blob
area or its bounding box, and 2) calculating one feature vector for the whole
blob or sub-dividing the blob area into parts and form the feature vector by
concatenating the sub-part feature vectors.

In the experiment we systematically evaluated a large number of feature
extraction parameter combinations. An SVM detector was trained for each of
them, and the detector performance was then measured in the test set. For our
on-line analysis system (Section 4), however, we use optimally pruned extreme
learning machine (OP-ELM) classifiers [8] instead of SVMs because of the com-
putational lightness of ELMs. Their classification accuracy almost equals that
of SVMs. Table 2 highlights some of the SVM results. There we have included
our best results for each feature type, as well as results that demonstrate some
specific aspect of parameter selection. In the table, the first performance mea-
sure is the average precision (AP) in the task of ranking all the blobs in the
test set according to their individual likelihood of showing a right hand. The
pairwise error percentage measures the error in such a classification where the
blob is compared with its mirror image and classified to be a right hand if the
unmirrored blob has greater estimated right hand probability.

From the table we see that the handedness can be decided with a quite high
accuracy based on the best of the blob appearance features. However, the ac-
curacy drops markedly when instead of the complex texture features simpler
elementary feature extraction methods are used (exemplified by the line “Edge



Table 2. Selection of left/right hand separation results.

pairwise extraction time/
Feature skin/bbox sub-divisions AP error-% blob

random guess 0.5 50

Fourier descriptors skin 0.844 24.1 20 ms

Edge co-occurrence skin 0.646 32.2 21 ms
matrix bbox 5-part 0.852 21.1 22 ms

Edge skin 4 × 4 0.907 14.8 18 ms
histogram bbox 4 × 4 0.903 14.5 18 ms

bbox 5-part ⊗ (4 × 4) 0.924 12.6 22 ms

sPACT skin 0.966 9.6 11 ms
bbox 0.977 7.1 11 ms

LBP skin 0.873 18.4 8 ms
bbox 0.890 18.2 8 ms
bbox 5 × 5 0.980 7.3 9 ms

HoG skin 1 × 1 0.884 17.1 13 ms
bbox 1 × 1 0.883 17.8 13 ms
bbox 2 × 2 0.950 10.0 13 ms
bbox (2 × 2) ⊗ (2 × 2) 0.956 8.9 13 ms

ColorSIFT bbox 0.975 7.3 380 ms
(512 bin codebook) bbox 3 × 3 soft 0.983 6.2 390 ms

co-occurrence”). Overall the best performing feature is the most complex Col-
orSIFT feature we tested, the one with 3× 3 soft spatial sub-division of the im-
age area [17]. However, this feature implements the bag-of-visual-words (BOV)
paradigm, making the feature extraction process computationally too heavy for
on-line use in our system. We thus turn our attention to the best of other statisti-
cal texture features: LBP and sPACT. Subdividing the image area appears to be
very beneficial in case of the LBP features (the sPACT feature already includes
this internally). The 3 × 3 and 5 × 5 partitionings both appear to work well.
Combining several different partitionings to a spatial pyramid does not bring
further gains. The HoG features provide decent accuracy but are still clearly
worse than LBP and sPACT. In case of LBP and sPACT, features extracted
from the whole bounding box of the hand work better than limiting to the exact
skin area of the hand. These results can be contrasted to the handshape recog-
nition experiment [15] where HoG features extracted from the exact skin area
worked best.

4 System for Signer Configuration Detection

We have devised a system for estimating the configuration of the signer in video
recordings of sign language. More specifically, the system labels the skin pixels
that correspond to the left and right hands of the signer and also identifies a
single representative point for each hand. The videos have the constraint that
they must portray a single signer filmed in a nearly frontal angle, without too



distracting background objects. In practice this is the video format used in the
material of the Suvi dictionary. Our system utilises the techniques of Sections 2
and 3 among others and consists of the following processing steps:

1. Face detection with the Viola-Jones method [18]
2. Colour-based skin detection with an ELM detector
3. Overall skin blob progression tracking
4. Identification and elimination of unoccluded facial areas
5. Seed hand blob identification
6. Hand area tracking forward and backward in time from the seed blobs
7. Representative point selection for hand blobs
8. Normalisation of detected hand coordinates according to the shoulders

The system has been implemented in the SLMotion video analysis software
framework [6]. Steps 1–4 refine the methods of [16] and are not described any
closer here for space reasons. It may be said, however, that the steps 3 and 4
build heavily on point constellation tracking.

Hand seed selection in step 5 considers the hand blobs that are separate from
head and the other hand and decides, which of the blobs corresponds to which
hand. Seed selection divides into two cases by the sleeve length of the signer,
which is detected automatically by considering the skin blob shape statistics.
For short-sleeved signers, identification can be performed rather reliably on ge-
ometric grounds as the visible elbows constrain how far left the rightmost point
in the right hand can be found, and similarly for the left hand. For long-sleeved
signers, geometric cues are no longer reliable enough as only small areas of skin
are visible. Hands often cross and the left hand appears right of the right hand.
The decision of which hand is which is thus done by the methods of Section 3:
sPACT features of the hand blobs are extracted and fed into pre-trained ELM
classifiers. The temporal consistency of the handedness labelling is additionally
improved by temporal smoothing.

In step 6 point constellations are selected from the identified seed hand blobs
and tracked using the method of Section 2. The tracking is performed through
the video both forward and backward in time until the next seed hand blob is
encountered. The points that are tracked are selected among the output of a
salient point detector [11], augmented with evenly spaced points in otherwise
untracked areas. In a typical case approximately 100 constellations of 4 points
each are tracked for each seed hand blob. After this step each detected skin pixel
is labelled as either unoccluded face, right hand or left hand, based on the spatial
distribution of the tracked point constellations.

Step 7 is performed differently for different sleeve lengths. For long-sleeved
signers, the mass centre of the right hand pixels is used as the representative
point for the right hand, and similarly for the left hand. For short-sleeved signers
the hand blobs include also the visible arms and elbows, which makes the mass
centre a bad choice. Instead, the hand end of the arm is identified with an ELM
classifier based on the sPACT features (Section 3) and the reference point is
chosen near the hand end. Before feature extraction, the principal axis of the
arm is identified and rotated to be vertical.



In the final step 8 the coordinates of the labelled skin pixels and selected
reference points of the hands are normalised within each video frame against
translation and scaling by using a signer-centred coordinate system. To this
end, the shoulder positions of the signer are estimated in each video frame. This
involves colour-based torso mask estimation, shoulder template matching in the
mask, and temporal filtering. The mean point between the two detected shoul-
ders is chosen as the coordinate system origin and the inter-shoulder distance as
the length unit.

5 Experimental Demonstration

We are routinely running versions of our system on the whole Suvi dictionary
material (5539 videos) using a cluster of PC workstations. This shows that our
analysis methods come to the level of computational complexity that they can be
practically applied for relatively large linguistic corpora. Visual inspection of the
results shows that in most cases, the hand detections are rather successful from
the human observer’s point of view. Figure 1 shows some detections. However,
problems do sometimes occur in all the stages of the system, starting from the
skin detections being erroneous. Generally, long-sleeved signers present more
problems to our system than the short-sleeved ones.

Fig. 1. Sample signer configuration detections in Suvi videos. The green mask denotes
estimated right hand area, the blue mask the left hand area, and the red mask the
unoccluded parts of face. The circles are the representative points selected for the
hands.

Quantitative evaluation of the hand detection accuracy is challenging as we
would need to measure the performance in a task that is known to be solvable
well if the hand coordinates are known. Some benchmarking has been done [4] by
the distance between automatic detections and manually estimated hand point
locations. However, this task seems rather artificial in itself as it is difficult to



say, what would the accuracy level need to be in order it to be useful in solving
practical tasks. In contrast, we have tried to solve the sign spotting benchmark
task [14] using the automatically estimated hand coordinates. The problem here
is that it is not yet known how well the task can be solved even with perfect hand
location estimates. When we replaced the skin distribution histograms of our
earlier DTW-based solution with the estimated hand coordinates, the accuracy
remained on the same 48% level, which can be considered a good result since
the two hand coordinate points are a much more compact representation of the
signer configuration than the full spatial skin histograms.

6 Conclusions and Discussion

In this paper we have described two straightforward 2D appearance based tech-
niques for tracking the signer configuration in video recordings of sign language:
template matching-based tracking of local image neighbourhoods and skin blob
category detection using appearance features and supervised learning. For the
category detection, we have evaluated several types of visual features and found
that rather complicated statistical texture features work the best, despite the
typically small size of the skin blobs.

We described how to construct a system for signer configuration—here mainly
the hand location—detection and tracking using the above mentioned techniques
among others. The system has turned out to be practically feasible for inves-
tigating linguistic corpora of large size. The configuration detection accuracy
is not perfect, but seems acceptable in the majority of cases. We plan to use
the system in applications where it would not be important to get each and
every detection absolutely right, but where information of more statistical na-
ture would already be beneficial, such as information retrieval type of tasks. One
can—for example—combine the hand detection with the handshape recognition
techniques of [15] and look at the statistics of handshape distribution in signed
material, which is a linguistically interesting question. On the other hand, the
combination of hand locations and hand shapes might be used for addressing
the sign spotting benchmark task of [14].
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