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Abstract

This document contains gradients for the rotation speed-ups presented
in the paper Fast Variational Bayesian Linear State-Space Model (Lut-
tinen, ECML 2013). This document is available under the CC-BY-SA
license (any version) or the GNU GPL license (any version).

1 Useful matrix formulas

dR™'= -R!'dR)R™!
dlog |R| = tr(R™*dR)
dtr(AR) = tr(AdR)
dtr(ARBR") = tr ((ARB + ATRB™)dR)

2 Rotations

2.1 Simple Gaussian

Prior:
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Lower bound terms:
(log ¢(X))r = —N log |R| 4 const
(logp(X))r = —% tr ((XXT>RA) + const
Gradient terms:
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2.2 Gaussian with ARD prior

Prior:

]
B
L

[
=

N (x,]0, diag(a) ")

3
I
-

=3
L

I
o

G(aalao, bo)
d=1
Transformed posteriors:
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Lower bound terms:

(log ¢(X))r = —N log |R| + const
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2.3 Gaussian Markov chain
Prior:
p(x0) = N (xo|p, A7)
p(Xn‘Xn—la A) = N(Xn‘Axn—la I)

some gaussian model for A



Transformed posteriors:
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Lowerbound terms:

(logq(X))r = —(N + 1) log |R| + const
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Relevant moments:
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2.4 Left-right rotation of Gaussian with ARD prior

Prior:
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Transformed posteriors, inspired by (but not exactly) RXQ™:
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Lower bound terms:
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Gradient terms with respect to R:
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Let us define a helpful function:

U(v) = tr (dlag( )(XXT>*)

3Q 2
= Q(X)"R" diag(v)R(X)
-1 tr (RT diag(v)RX:)
1 - 1 Q
1 -1 tr (RT diag(v)REy)

Gradient terms with respect to Q:
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