
Finding Low-Entropy Sets and Trees from Binary Data

Hannes Heikinheimo
HIIT, CIS Lab, Helsinki

University of Technology

Eino Hinkkanen
HIIT, Dept. Computer Science,

University of Helsinki

Heikki Mannila
HIIT, Dept. Computer Science,

University of Helsinki

Taneli Mielikäinen
HIIT, Dept. Computer Science,

Univ. Helsinki and Nokia
Research Center Palo Alto

Jouni K. Seppänen
HIIT, CIS Lab, Helsinki

University of Technology

ABSTRACT
The discovery of subsets with special properties from bi-
nary data has been one of the key themes in pattern dis-
covery. Pattern classes such as frequent itemsets stress the
co-occurrence of the value 1 in the data. While this choice
makes sense in the context of sparse binary data, it disre-
gards potentially interesting subsets of attributes that have
some other type of dependency structure.
We consider the problem of finding all subsets of attributes

that have low complexity. The complexity is measured by
either the entropy of the projection of the data on the sub-
set, or the entropy of the data for the subset when modeled
using a Bayesian tree, with downward or upward pointing
edges. We show that the entropy measure on sets has a
monotonicity property, and thus a levelwise approach can
find all low-entropy itemsets. We also show that the tree-
based measures are bounded above by the entropy of the cor-
responding itemset, allowing similar algorithms to be used
for finding low-entropy trees. We describe algorithms for
finding all subsets satisfying an entropy condition. We give
an extensive empirical evaluation of the performance of the
methods both on synthetic and on real data. We also discuss
the search for high-entropy subsets and the computation of
the Vapnik-Chervonenkis dimension of the data.
Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—data mining
General Terms: Algorithms, Experimentation, Theory
Keywords: Local Models, Pattern Discovery

1. INTRODUCTION
Pattern discovery is the subarea of data mining concerned

with finding combinations of variables that are in some sense
locally interesting. The archetypical example is the pattern
class of frequent itemsets [2], and it sometimes seems that
this is the only such class that attracts significant research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

Our aim in this paper is to chart one part of the space of
more general pattern classes in binary data. Perhaps the
most obvious way to generalize frequent itemsets is to al-
low not only combinations of variables that have the value 1
in the same records but also combinations whose distribu-
tion of values is significantly skewed in other ways. This
leads naturally to examining the entropy of the variables: if
the combination of variables has a skewed joint distribution,
their joint entropy is low. Finding all low-entropy itemsets is
easy because entropy is monotonic with respect to set inclu-
sion: adding a variable to a set cannot decrease the entropy.
While the property of having low entropy is interesting

in itself, it would often be beneficial to have an explanation
of how the variables in the set are connected to each other.
This leads us to examine two other pattern classes, which we
call U-trees and D-trees (seen as Bayes networks, the trees
have edges going up and down, respectively). U-trees are
a subclass of tree-structured Bayes networks. We give an
algorithm for mining U-trees and show by experiments that
it is feasible for moderate-sized data. On the other hand, D-
trees are also Bayes nets, but simpler than U-trees as every
node has at most one parent. The best D-tree can be com-
puted fast even for very large data sets. They have also been
called Bayes trees, Markov trees [21], dependence trees [6],
and Chow-Liu trees [18], but an important distinction is that
we do not attempt to model the complete joint distribution
but to find interesting local patterns. In other words, a D-
tree is the Chow-Liu tree for some subset of the variables.
Thus there is a continuum of local pattern classes starting

from frequent itemsets, which are inflexible but for which a
multitude of fast mining algorithms has been developed. D-
trees are more flexible and still fairly easy to find; U-trees
are still more flexible, but our current algorithms are not
as efficient as those for the less flexible classes. At the high
end of flexibility are arbitrary low-entropy itemsets, which
can capture any kind of interaction, and somewhat para-
doxically can be found efficiently using an algorithm similar
to frequent itemset mining algorithms. However, while the
algorithm is efficient, the size of the output can be very
large, which motivates the more direct algorithms for find-
ing low-entropy trees. A drawback to low-entropy itemsets
compared to the less flexible trees is that they are not as
easily interpreted. From another viewpoint, there is a con-
tinuum from frequent itemsets via fragments of order [10]
and the trees of [14] to U-trees, where each pattern class
has more structure than the previous one.

Scientific Writing

Maturity Test

Software
Engineering
Project

Theory of
Computation

Probability
Theory 1

Figure 1: An example U-tree in course data.

Comp. Prob.

no no 1887
yes no 156
no yes 143
yes yes 219

Wri. Mat.

no no 1636
yes no 74
no yes 14
yes yes 681

Mat. Eng. Comp.

no no no 1570
yes no no 79
no yes no 99
yes yes no 282
no no yes 28
yes no yes 164
no yes yes 13
yes yes yes 170

Table 1: The marginal distributions related to the
tree in Figure 1. Legend: Comp. = Theory of Com-
putation; Prob. = Probability Theory; Wri. = Sci-
entific Writing; Mat. = Maturity Test.

Figure 1 shows an example U-tree found from course en-
rolment data at the University of Helsinki Department of
Computer Science. The tree is the lowest-entropy 5-node
U-tree found in one of the experiments described later. All
courses in the tree are required for graduating, and the tree
shows that students have completed different combinations
of them. Table 1 shows the marginal distributions whose
entropies are embodied in the tree. We see that the two the-
oretical courses are correlated quite strongly with each other
and less strongly with the other courses. Scientific Writing
and Maturity Test1 are even more strongly correlated, which
makes sense since both are related to the final phase of writ-
ing the Bachelor’s thesis. Software Engineering Project is a
demanding practical course, which theoretically minded stu-
dents may leave for last, while practical students often post-
pone taking the theoretical courses perceived as difficult.
Related to low-entropy itemsets are of course high-entropy

itemsets, and itemsets having high Vapnik-Chervonenkis di-

1The Maturity Test is required in the Finnish system to
complete a Bachelor’s degree after submitting the thesis;
the candidate has to answer questions regarding the subject
of the thesis in his or her mother tongue.

mension; we discuss these pattern classes briefly. Since the
entropy function is decreasing with respect to itemset in-
clusion, high-entropy itemsets cannot be found with the
same approach as low-entropy ones, and in fact the highest-
entropy itemset is always the one containing all items. Thus
we introduce two kinds of scaling for entropy, defining an
itemset to be interesting either if its entropy is high among
all itemsets of the same size, or if its entropy is high when
compared to the entropies of its singleton subsets. We show
that these properties are weakly monotonic: if an item-
set X has high scaled entropy, then it has at least one sub-
set X \ {A } having even higher scaled entropy. This again
allows a levelwise algorithm to be used, albeit with less effi-
cient pruning.
The rest of this paper is structured as follows. We in-

troduce entropy and discuss finding low-entropy sets in Sec-
tion 2. Then we move to low-entropy trees in Section 3, and
address high-entropy sets and sets of high Vapnik-Chervo-
nenkis dimension in Section 4. Section 5 describes extensive
experiments, Section 6 discusses related work, and Section 7
is a brief conclusion.

2. LOW-ENTROPY SETS
We start by defining some notation and terminology. A

0/1 dataset D is an n×m binary matrix. The columns are
often called items and the set of all items is denoted by I.
A set of items is called an itemset. We denote items by
A,B, . . . and itemsets by X,Y, Z, We omit the braces
around singleton sets, e.g., we write A instead of {A }. We
also follow the convention in information theory of denoting
set union by a comma within the parentheses of entropy
and information functions; e.g., H (X,Y) is the entropy of
the random variable X ∪ Y , and I (X,Y ;Z) is the mutual
information between the two random variables X∪Y and Z.
We denote by ΩX the set { 0, 1 }|X| of all 0/1 vectors of

length |X|. For a vector ~x ∈ ΩX , the probability P(X = ~x)
is the fraction of rows whose projection onto X is equal to ~x.
We sometimes use the shorthand P(~x) to denote P(X = ~x).
The entropy of an itemset X in D is

H (D, X) = −
X

~x∈ΩX

P(X = ~x) log P(X = ~x).

All logarithms are in base 2, and 0 log 0 = 0 by convention.
We denote H (X) = H (D, X), leaving out the D when it is
clear from the context. Entropy can be seen as a measure
of how surprising the outcome is likely to be when we select
a random vector ~x ∈ ΩX . Intuitively, entropy is increased
by outcomes that are unlikely, because then − log P(X = ~x)
is high; but since these contributions are weighted by the
probabilities, a single unlikely outcome contributes little,
and entropy is only maximized when each outcome is un-
likely. Indeed, a simple application of Lagrange multipliers
shows that the entropy function H (X) has its maximum
value when all probabilities P(X = ~x) are equal; in this
case the entropy is log |ΩX | = |X|.
Entropy is small when the most outcome are not surpris-

ing. The minimum value H (X) = 0 is achieved when there
is one value ~x1 that is always the outcome, i.e., when P(X =
~x1) = 1. This can be contrasted with frequent itemsets: an
itemset X has maximal frequency if P(X = ~1) = 1. Choos-
ing ~x1 = ~1 shows that then entropy is also minimized. More
generally, high frequency implies low entropy, but not neces-

sarily vice versa. This motivates the following generalization
of frequent itemsets:

Definition 1. Given an entropy threshold ε, an item-
set X is a low-entropy set in D if H (X) ≤ ε.

Low-entropy sets have a monotonicity property like that
of frequent itemsets, which allows us to use e.g. the levelwise
search [3] to find low-entropy sets.

Proposition 2. For all datasets D,

H (X) ≥ H (X \A)

for all A ∈ X and X 6= ∅.
Proof. H (X) = H (X \ A) + H (A | X \ A) ≥ H (X \ A)

with equality holding only when H (A | X \ A) = 0, i.e.,
when there is a functional dependency X \A→ A.

In the proof, we used the concept of conditional entropy:
H (X | Y) is defined as H (X,Y) − H (Y), and it measures
the uncertainty about X when Y is known. We used the
fact that conditional entropy is always nonnegative. For the
proof of this fact and other basic properties of entropy, the
reader is referred to e.g. [8, Chapter 2].
Proposition 2 implies that low-entropy sets can be found

by using a levelwise approach. One seeming complication in
mining low-entropy sets is that the entropy H(X) is a sum
over all possible combinations of values that the attributes
inX can take, which involves 2|X| different values. However,
because of the convention 0 log 0 = 0 used in the definition
of entropy, we only need to count those value combinations
that appear in the data. Thus the database pass of the
levelwise algorithm can be done using O(c`n logn) auxiliary
space, where c is the number of candidate itemsets being
examined, ` is the size of the candidates, and n is the number
of records in the data. For each candidate X, we keep track
of the combinations seen and a count for each combination;
there are at most n combinations, each requiring space O(`),
and each count takes O(logn) space. Further savings can be
obtained by storing the combinations in a binary tree. If the
data fits into main memory, then the entropy computation
can easily be performed individually for each itemset.

3. LOW-ENTROPY TREES
A potential drawback of mining low-entropy itemsets is

that the sets do not have any structure that would help in
interpretation. In this section we consider replacing itemsets
by two kinds of tree patterns; the patterns impose a model
on the attribute sets, and it is the entropy of the model
that we seek to minimize. We call the tree patterns D-
and U-trees; D-trees can be seen as tree-structured Bayesian
networks where the edges are directed away from the root,
i.e., down in the usual way of drawing trees in computer
science. Correspondingly, in U-trees the edges are directed
up, towards the root.

Definitions.
Both kinds of trees are formed by imposing a tree struc-

ture on some set of attributes, and the differences lie in the
semantics of the structure, i.e., how the entropy of the tree
is defined. Formally, a tree T = 〈A, T1, . . . , Tk〉 consists of a
root attribute A ∈ I and k ≥ 0 subtrees T1, . . . , Tk, each of
which is a tree. We will only be interested in trees in which
no attribute appears more than once.

A

B C

A

B

C

Figure 2: Two example D-trees

A

B C

A

B

C

Figure 3: Two example U-trees

We define the entropy of a D-tree T = 〈A, T1, . . . , Tk〉 as

HD(T) = H (A | parent(T)) +

kX
j=1

HD(Tj),

where parent(T) denotes the attribute at the root of the
tree whose subtree T is. If T has no parent, we define H (A |
parent(T)) = H (A). Thus we start summing entropies from
the root, and for child nodes always condition the entropy on
the parent node, but not on further ancestors. This implies
that when we seek low-entropy D-trees, we will prefer trees
where each child node is as closely determined by its parent
as possible. For example, consider Figure 2. The left-hand
tree has entropy

H (A) + H (B | A) + H (C | A)

and the right hand tree has entropy

H (A) + H (B | A) + H (C | B).

Therefore the left-hand tree is preferred if knowingA reduces
one’s uncertainty about C more than does knowing B, and
vice versa. A D-tree can be viewed as a Bayes network in
which the edges are directed away from the root node.

Definition 3. Given an entropy threshold ε, a tree T is
a low-entropy D-tree in D if HD(T) ≤ ε. The set of low-
entropy D-trees is denoted by T PD(D, ε).

For a U-tree T = 〈A, T1, . . . , Tk〉, we define the entropy as
follows. Let Tj = 〈Aj , . . . 〉, i.e., denote by Aj the attribute
at the root of Tj . Then

HU (T) = H (A | A1, . . . , Ak) +

kX
j=1

HU (Tj).

That is, each node that has children contributes the entropy
of the root attribute conditioned on (the joint distribution
of) all the child attributes. Leaf nodes contribute the un-
conditional entropy (i.e., H (A | ∅) = H (A)).
As an example of U-trees, consider Figure 3. The left-

hand tree has entropy H (A | B,C) + H (B) + H (C) and the

right hand tree has entropy H (A | B) + H (B | C) + H (C).
The difference between the entropies,

(H (A | B,C)−H (A | B)) + (H (B)−H (B | C)),

is positive or negative depending on whether adding C as a
condition in H (A | B) or H (B) gives more information.

In the same way that low-entropy itemsets give little infor-
mation about the interconnections between items, U-trees
where the nodes have many children pointing to them do
not really explain the interconnections: they simply say
that H(X | A1, . . . , Ak) is small for a possibly large set of
child attributes A1, . . . , Ak. Therefore we add a parameter β
to control the branching of the tree.

Definition 4. Given an entropy threshold ε and a branch-
ing limit β, a tree T is a low-entropy U-tree in D if HU (T) ≤
ε and each node in T has at most β child nodes. The set of
all low-entropy U-trees in D is denoted by T PU (D, ε, β).

Properties.
The following result shows that the tree-structured pat-

terns are indeed less flexible than the arbitrary low-entropy
itemsets of Section 2 in the sense that any low-entropy tree
is necessarily a low-entropy itemset.

Proposition 5. Let X be an itemset. If T is a D-tree
for X, then H(X) ≤ HD(T). If T is a U-tree for X,
then H(X) ≤ HU (T).

Proof. The tree T imposes a partial order on the vari-
ables in X: A ≺ B if there is a directed path from A
to B in T . List the elements of X in any linearization of
this partial order: X = {A1, A2, . . . , An }, where i < j
whenever Ai ≺ Aj . Denote by pred(Aj) the set of at-
tributes in X from which there is an arc to Aj . Now we
can write

H (X) = H (A1) + H (A2 | A1) + . . .

+ H (An | A1, A2, . . . , An−1) (1)

and

HD/U (T) = H (A1) + H (A2 | pred(A2)) + . . .

+ H (An | pred(An)). (2)

Because pred(Aj) ⊆ {A1, . . . , Aj−1 }, every term on the
right-hand side of (1) is less than or equal to the corre-
sponding term on the right-hand side of (2).

This proposition implies also that one possible way to
mine low-entropy trees is to mine first the low-entropy item-
sets using e.g. the levelwise search and then fit tree struc-
tures into each itemset.
Notice that in the proof of Proposition 5 we have equality

if pred(Aj) = {A1, . . . , Aj−1 }. This is not possible for trees
larger than two nodes, but it requires that the Bayesian
network is fully connected.

Corollary 6. Let G be a fully connected directed acyclic
graph and G is interpreted as a Bayesian network whose
every node has the maximum-likelihood distribution from the
data D. Then we have H(X) = H(G).

The root of a D-tree T can be selected arbitrarily, because
HD(T) can be written as a sum depending only on the en-
tropies of the edges and the nodes, and the degrees of the
nodes:

P
(A,B)∈E H (A,B)−

P
A∈V (deg(A, T)− 1)H (A).

Proposition 7. For D-trees the choice of root does not
matter.

However, it is easy to see that for U-trees the topology of
the tree can make a large difference. For example, consider
the case where we have three binary variables: two inde-
pendent variables with marginal probabilities 1/2, and their
exclusive or. Then any U-tree with a root with two children
has entropy 2 whereas any stick-shaped U-tree has entropy
3: a single attribute does not tell anything about the other
two, but any two of the attributes determine the third one
completely.
The above example also shows that the entropy of the

best D-tree for the attribute set X can be larger than the
entropy of the best U-tree for X.

Conjecture 8. If T is a D-tree for X, then there is a
U-tree S for X such that HD(T) ≥ HU (S).

Algorithms.
We next turn to the question of how to mine D-trees and

U-trees. As noted above Proposition 5, the entropy of the
set gives a lower bound for the entropy of the best D- and
U-trees. However, the lower bound can be rather loose.
In the case of D-trees we look for the best tree for the

given set of attributes. It turns out that the best D-tree for
an itemset X can be obtained by adding an edge to the best
D-tree for X \A for some A ∈ X.

Proposition 9. Let D(X) = (X,E) denote the mini-
mum entropy D-tree for the itemset X. Then we have

HD(D(X)) ≥ HD(D(X \ v))

and D(X \ v) is a subtree of D(X) for some v ∈ X and all
X 6= ∅.

Proof. Observe that D(X \ v) is a subtree of D(X) for

v = argmax
v∈X

{H (v | u) : {v, u} ∈ E, deg(v,D(X)) = 1}

and hence the claim holds.

Hence the low-entropy D-trees can be found by e.g. breadth-
first search by setting

D(X) = argmin
A∈X

min
B∈X\A

HD(D(X \A)) + H (A | B).

There are |I \X| |X| possible extensions of D(X) and each
can be evaluated in constant time as there is no need to look
at the data after computing the pairwise entropies of the
items. Furthermore, the approach can be adapted to mine
top-k D-trees instead of the D-trees with entropies below
the given threshold.
Also in the case of U-trees, the entropy is defined as a sum

of local conditional entropies. We proceed by finding first
low U-trees where the leaves are immediate children of the
root, and then using the low trees as building blocks. Low
U-trees correspond closely to sets, as demonstrated by the
following result.

Proposition 10. The entropy of a low U-tree on the at-
tribute set X is at least as large as the entropy of X.

Proof. Let A ∈ X be the root of the tree andX ′ = X\A
the set of the leaves. The entropy of the tree is by definitionX
B∈X′

H (B)+H (A | X ′) ≥ H (X ′)+H (X)−H (X ′) = H (X).

To mine low U-trees, we simply use the levelwise algorithm
to find all low-entropy sets, let each attribute be the root in
turn, and list the U-trees in the order of increasing entropy.
We construct larger U-trees by connecting low-entropy low

U-trees to already found low-entropy U-trees. In more de-
tail, we maintain a priority queue of low-entropy U-trees.
The queue is initialized by the low U-trees with sufficiently
small entropy. Then the first tree is extended replacing a leaf
by a low-entropy U-tree. A U-tree T and a low U-tree U may
only be combined if the root of U is a leaf of T ; then the
entropy of the combined tree V is

HU (V) = HU (U) +HU (T)−H (root(U)),

because in T the entropy of the subtree consisting of root(U)
is simply H (root(U)), but in V it is HU (U). If this entropy
falls below the threshold, the combined tree is inserted in the
list, and the process is continued until no more combinations
have sufficiently low entropy.

Proposition 11. The U-tree mining algorithm described
above finds all low-entropy U-trees.

The algorithm lists the low-entropy U-trees in increasing
order in entropy. So, adapting it for top-k mining of low-
entropy U-trees is quite straightforward.

4. HIGH-ENTROPY SETS
So far we have considered itemsets and trees that have

low entropy, i.e., whose values are highly concentrated on
one or a few combinations. If, on the contrary, the values
are spread out more than for most itemsets, this may also be
an interesting pattern. Thus an obvious pattern class could
be the itemsets whose entropies are highest.
Intuitively, a high-entropy set is a set of maximum di-

versity: a set of attributes whose value assignments shatter
the data maximally. An example of such an itemset in the
Course enrolment dataset is the set consisting of the courses
Calculus I, Computer Uses in Education, Introduction to
the Use of Computers, The metalanguage XML, and Unix
Platform. The courses in the set are not excluding, but do
not depend on each other either.
However, since entropy is increasing with respect to set

inclusion, the itemset containing all items always has maxi-
mal entropy, and thus high-entropy sets do not form a local
pattern class in the usual sense. Instead, we define versions
of entropy scaled such that small itemsets have a chance of
attaining a high score.
The discussion in Section 2 shows that the maximum pos-

sible value of H (X) increases linearly with the number of
items in X. In order to compare entropies of different-sized
sets, we define the scaled entropy of X to be Hs(X) =
H (X)/|X|. Another possibility is to consider the maxi-
mum possible value of H (X) given the frequencies of all
items A ∈ X. If these frequencies are fixed, it follows

from the chain rule of entropy [8, Chapter 2] that the en-
tropy H (X) of the set X is maximized when the items con-
stitute independent random variables, and in this case the
entropy is

P
A∈X H (A). Thus we define the normalized en-

tropy of X to be Hn(X) = H (X)/
P

A∈X H (A).

Definition 12. Given a threshold ε, an itemset X is a
high-scaled-entropy (HSE) set in D if Hs(X) ≥ ε, and a
high-normalized-entropy (HNE) set if Hn(X) ≥ ε.

For normalized and scaled entropies, we do not have a
monotonicity property like that of frequent itemsets. How-
ever, the following weaker properties can be proved. We
prove that any HSE or HNE itemset X contains at least one
HSE or HNE itemset X ′ ⊂ X with |X ′| = |X| − 1. This
enables us to use a modified levelwise algorithm: we can
prune those itemsets that have no HSE or HNE subsets.

Proposition 13. For all datasets D and for all sets X 6=
∅ of attributes there is an attribute A ∈ X such that

Hs(X) ≤ Hs(X \A).

Proof. By definition, H (X) = H (A | X \ A) + H (A).
Hence, we can write

|X|H (X) =
X
A∈X

H (A | X \A) + H (A).

Let X = {A1, . . . , Ak}. Then we can write

H (X) =

kX
i=1

H (Ai | {Ai+1, . . . , Ak})

≥
kX

i=1

H (Ai | X \Ai) =
X
A∈X

H (A | X \A).

Combining the observations above we get

(|X| − 1)H (X) ≤
X
A∈X

H (X \A)

≤ |X| min
A∈X

H (X \A)

as claimed.

Proposition 14. For all datasets D and for all sets X 6=
∅ of attributes there is an attribute A ∈ X such that

Hn(X) ≤ Hn(X \A).

Proof. Observe that if p/q ≤ r/s, we have

p

q
≤ p+ r

q + s
≤ r

s
.

The left-hand inequality follows from p(q + s) = pq + ps ≤
pq + qr = q(p + r), and the right-hand inequality is proven
similarly. Using this inequality inductively on the fractions
f(A) = H (A | X \A)/H (A) for all A ∈ X, we find that if A
minimizes f(A),

H (A | X \A)

H (A)
≤

P
B∈X\A H (B | X \B)P

B∈X\A H (B)
. (3)

Denote X \ A by X ′, and enumerate the attributes in X ′

arbitrarily so that X \ A = {B1, B2, . . . , Bn }. Consider
the numerator of the fraction on the right-hand side. By

weakening the conditions of the conditional entropies we can
only increase the entropies, and thusX

B∈X′

H (B | X \B) ≤
nX

j=1

H (Bj | B1, . . . , Bj−1) = H (X ′).

Thus we obtain from (3)

H (A | X ′)
H (A)

≤ H (X ′)P
B∈X′ H (B)

and using again the inequality at the beginning of the proof,

H (A | X ′) + H (X ′)P
B∈X H (B)

≤ H (X ′)P
B∈X′ H (B)

Since the numerator on the left-hand side is equal to H(X),
we have shown that Hn(X) ≤ Hn(X ′) = Hn(X \A).

As the weak monotonicity results in a larger number of can-
didates, optimizations in candidate counting are of interest.
In practice many candidates can be eliminated by utilizing
the fact that H (X) ≤ H (X \ Y) + H (Y) for any Y ⊆ X.
An interesting combinatorial variant of high-entropy sets

is obtained by looking, for an itemset X, at the number of
different value combinations for X that occur in the data.
This corresponds to projecting the data to the columns of X
and discarding duplicate rows. If there is a set X such that
all the 2|X| combinations occur, then the Vapnik-Chervo-
nenkis dimension [4] of the data is at least |X|.
The property of all 2|X| combinations occurring is down-

wards closed, so the levelwise algorithm can be used. Such
sets X are in a way maximally diverse in a combinatorial
sense, and listing them could be useful in some situations.

5. EXPERIMENTS

5.1 Generated data
In this section we briefly discuss our experiments on gener-

ated data. We used a simple procedures to plant low-entropy
itemsets into generated data. First, for each row u the set
of attributes of an itemset X were all set to one with prob-
ability 0.5, or all to zero with 0.5 probability respectively.
Notice that, this will results to an itemset pattern with an
entropy score of 1. Second, some noise was added to the
rows by independently flipping each bit with probability r.
Using this procedure we generated data sets with low-

entropy patterns of four attributes ranging the noise parame-
ter r from 0.0 to 0.3. For each data set the generated number
of rows was 100000. The results for this experiment showed
that using either D-trees, U-trees or low-entropy itemsets
the best 4 size patterns always correctly corresponded to the
attributes of the planted patterns. The number of planted
patterns used in the experiments were 2 and 4.

5.2 Real data
Next we describe experiments on two real data sets, one

about courses completed by computer science students at
the University of Helsinki, and another about terms used in
computer science bibliographies. We show that it is feasible
to run our algorithms on these data sets, and give examples
of interesting patterns found in them. We also show that
the patterns found are significant in the sense that when
the data sets are permuted, the number of patterns found
at a given entropy threshold decreases by a large factor.

σ ε trees cands items max time

0.25 3.0 532 5778 27 3 2
0.25 3.5 2763 21856 27 4 4
0.25 4.0 5290 49432 27 5 9

0.2 3.0 1146 17525 34 3 3
0.2 3.5 6090 59623 34 4 11
0.2 4.0 13854 180499 34 5 31

0.15 3.0 3980 75063 43 4 11
0.15 3.5 15567 226530 43 5 40
0.15 4.0 44156 784541 43 6 140

Table 2: D-tree results for the course data. The
number of D-trees in the collection T PD(D, ε)
with various values of the preprocessing frequency
threshold σ and entropy threshold ε. Legend:
trees = number of trees found; cands = number of
candidates examined; items = number of attributes
in the data after preprocessing; max = size of the
largest tree; time = running time in seconds.

In each case, we preprocess the data by removing at-
tributes whose frequencies are outside a range. In both data
sets there are many rarely occurring attributes – the course
data includes seminars that were only given once, and the
bibliography data has typographical errors, author names,
and other rare words. Such attributes have low entropy but
cannot be considered interesting, since the reasons for their
rarity are known. We include the frequency threshold used
as a parameter of the experiments. From the bibliography
data we also remove very frequently occurring stop words.

Course data.
The course data describes courses taken by students at

the Department of Computer Science of the University of
Helsinki. The data has 2405 observations corresponding to
students and 5021 attributes corresponding to courses. On
average, each student has taken 26.9 courses.
Tables 2, 3 and 4 show the number of D-trees, U-trees, and

low-entropy itemsets with different parameter values com-
puted from the course data. For all three pattern classes
the number of elements in the answer set increases rapidly
with decreasing frequency threshold σ and increasing en-
tropy threshold ε. This is similar to the behavior of fre-
quent itemsets, whose number increases rapidly when the
frequency threshold is decreased, and as in the case of fre-
quent itemsets, for our pattern classes it is easy to iteratively
find thresholds that produce outputs of desired size, and
even for larger output sizes the running times stay feasible.
Some example U-trees drawn from the results are shown in

Figures 1, 4, and 5. The tree in Figure 1, already discussed
in the introduction, is the lowest-entropy 5-node tree in the
course enrolment data for a preprocessing frequency thresh-
old of 0.15. The trees in Figures 4 and 5 are the best two
5-node U-trees left when we eliminate the most frequently
taken courses (frequency > 0.18). Both trees clearly have
an AI component and a software engineering component,
corresponding to two of the specialization areas within the
department.
Similarly, the lowest-entropy 7-node D-tree (Figure 6) has

clear AI and distributed systems components. The central

σ ε trees low max cands time

0.25 2.0 411 364 3 3276 2.55
0.2 2.0 699 598 3 6546 3.61

0.15 2.0 1836 1326 4 13535 6.81

0.25 2.4 1873 904 4 4528 3.56
0.2 2.4 5070 2506 4 13078 8.67

0.15 2.4 16802 8167 4 53823 122

0.25 2.8 8027 3270 5 20040 16.8
0.2 2.8 19383 6774 5 51841 80.8

0.15 2.8 91774 21835 5 135196 600

Table 3: U-tree results for the course data. The
number of U-trees in the collection T PU (D, ε, β) with
the maximum branching factor of β = 3 for various
values of the preprocessing frequency threshold σ
and entropy threshold ε. Legend: trees = number
of trees found; low = number of low trees found;
max = size of the largest tree; cands = number of
candidates examined; time = running time in sec-
onds.

σ ε sets cands max time

0.25 2.0 434 4262 27 3 1
0.25 2.4 1569 15879 27 4 3
0.25 2.8 4837 38807 27 5 8

0.20 2.0 739 9953 34 3 2
0.20 2.4 3807 46565 34 4 8
0.20 2.8 11682 129475 34 5 25

0.15 2.0 1650 33138 43 4 5
0.15 2.4 10274 144997 43 4 25
0.15 2.8 38266 567253 43 5 105

Table 4: Low-entropy itemset results for the course
data. The number of low-entropy sets for various
values of the preprocessing frequency threshold σ
and entropy threshold ε. Legend: sets = number of
itemsets found; cands = number of candidates ex-
amined; max = size of the largest set found; time =
running time in seconds.

node of the tree is Theory of Computation. On one hand, the
students taking Artificial Intelligence and AI Languages usu-
ally consider Theory of Computation as a relevant course.
On the other hand, the test of the branches correspond to
students very close to graduation, which means that most
of them has also passed Theory of Computation.
As already discussed, low-entropy itemsets are not as eas-

ily interpretable as the tree patterns. One example of a
low-entropy set found in the course data is shown in Ta-
ble 5.

Bibliography data.
The bibliography data consists of terms used in bibliogra-

phies on theory and foundations of computer science.2 The
data set contains 67043 bibliography entries. For the experi-
ment we reduced the data set by taking a random 10% sam-
2http://liinwww.ira.uka.de/bibliography/Theory/Seiferas/

AI Languages

Artificial
Intelligence

Software
Engineering

Unix
Platform

Distributed
Systems

Figure 4: Example U-tree from course data.

CS SW DB MT ToC UI MSc

1378 (none of the courses)
114 CS SW DB MT
102 CS SW DB MT ToC MSc
88 SW MT
86 CS SW DB MT ToC UI MSc
82 CS SW DB MT ToC
65 CS
63 CS DB
55 DB
54 CS SW DB MT UI
54 CS SW DB MT ToC UI
33 CS SW MT
23 UI
19 CS SW DB MT UI MSc

Table 5: Joint distribution of an example low-
entropy itemset in the course data. Legend: CS =
Concurrent Systems; SW = Scientific Writing;
DB = Database Systems 1; MT = Maturity Test;
ToC = Theory of Computation; UI = User Inter-
faces; MSc = Master’s Thesis.

ple of the data resulting in a set of 6695 bibliography entries.
In addition to this. the frequent stop words – an, to, with,
in, on, a, for, and, the, by some, is, from, and of – were re-
moved. On average the resulting data set has 8.28 words per
bibliography entry. Tables 6, 7 and 8 show the number of
D-trees, U-trees, and low-entropy itemsets with different pa-
rameter values computed from the bibliography data. The
best D-tree of size 6 is shown as Figure 7; since the root of
a D-tree can be selected arbitrarily, the edges in the figure
are not directed.

Result validation with data randomization.
To evaluate how well the D-trees, U-trees and low-entropy

itemsets find significant structure in data we compare the
scores of the patterns found from the course data set against
the scores of patterns obtained form 10 randomized course
data set instances. For this we use the swap randomization
method described in [11]. The method preserves the row
and column margins of the given dataset, but obscures the
internal dependencies of the data. The idea is that if the

Java programming

AI Languages

Artificial
Intelligence

Unix
Platform

Distributed
Systems

Figure 5: Example U-tree from course data.

Theory of Computation

Distributed
Systems

Unix
Platform

AI Languages

Artificial
Intelligence

Master’s
Thesis

Software
Engineering

Figure 6: Example D-tree from course data.

σ ε trees cands items max time

0.025 0.6 269 2244 19 3 1
0.025 0.7 545 3795 19 4 1
0.025 0.8 1096 6852 19 4 1

0.020 0.6 3222 44048 33 4 7
0.020 0.7 12566 154186 33 4 28
0.020 0.8 32246 371959 33 5 75

0.015 0.6 83640 1680737 52 5 323
0.015 0.7 374097 7310174 52 6 1650

Table 6: D-tree results for the bibliography data.
The number of D-trees in the collection T PD(D, ε)
with various values of the preprocessing frequency
threshold σ and entropy threshold ε. Legend:
trees = number of trees found; cands = number of
candidates examined; items = number of attributes
in the data after preprocessing; max = size of the
largest tree; time = running time in seconds.

distributed

automata

data

analysis

languages

Figure 7: Example D-tree from bibliography data.

σ ε β trees low max cands time

0.025 0.6 2 353 249 3 892 1.96
0.025 0.6 3 353 249 3 1011 2.40
0.025 0.7 2 889 517 4 1123 2.01
0.025 0.7 3 894 522 4 1792 3.30

0.02 0.6 2 8515 3272 4 6036 7.57
0.02 0.6 3 9019 3776 4 20542 24.5
0.02 0.7 2 58234 5231 4 6513 18.3
0.02 0.7 3 67904 14901 4 35545 152

0.015 0.6 2 369755 17147 5 22615 617
0.015 0.6 3 438827 82399 5 180058 5220
0.015 0.7 2 4710983 21555 6 23376 13900

Table 7: U-tree results for the bibliography data.
The number of U-trees in the collection T PU (D, ε, β)
with the maximum branching factor of β = 3 and
β = 2 for various values of the preprocessing fre-
quency threshold σ and entropy frequency ε. Leg-
end: trees = number of trees found; low = number
of low trees found; max = size of the largest tree;
cands = number of candidates examined; time =
running time in seconds.

true structure in the data is captured by the patterns, the
number and scores of the found patterns should be better in
the original data than in the randomized data sets instances.
The results of the experiment are depicted in Figure 8, 9,

and 10. For each figure the upper image is the histogram of
the scores of patterns found from the original course data
and the lower image depicts the respective histogram for
the aggregate patterns found in the 10 swap randomized
course data sets. The mining was done using courses with
a frequency of 0.2 or higher in the data and an entropy
parameter of ε = 2.8. For U-trees the maximum branching
factor was limited to 4.
The results show that the amount of structure in terms of

the number of patterns found from the original data com-
pared to the randomized data instances is larger for all three
proposed patterns classes. With the given parameters the
number of generated D-trees is 1.8 times larger in the origi-
nal data set compared to the randomized data set instances
on the average and 1.6 time larger for the U-trees and 2.1
for the low-entropy sets. Moreover, the average score within

σ ε sets cands items max time

0.025 0.5 108 460 19 2 2
0.025 0.6 269 952 19 3 2
0.025 0.7 546 1811 19 4 4

0.0225 0.5 312 1473 25 3 5
0.0225 0.6 924 3932 25 3 15
0.0225 0.7 2267 8233 25 4 34

0.020 0.5 1414 6998 33 3 41
0.020 0.6 3230 17552 33 4 110
0.020 0.7 12608 53370 33 4 339

Table 8: Low-entropy itemset results for the bib-
liography data. The number of low-entropy sets
for various values of the preprocessing frequency
threshold σ and entropy frequency ε. Legend: sets =
number of itemsets found; cands = number of candi-
dates examined; max = size of the largest set found;
time = running time in seconds.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

500

entropy

D−trees with original course data

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5000

entropy

D−trees with swapped course data

Figure 8: Validation of D-tree results in course data.
Upper pane shows the distribution of entropies for
11648 D-trees mined from the course data with
frequency threshold 0.2 and entropy threshold 2.8.
Lower pane shows the respective distribution from
10 aggregated swap-randomized course data set in-
stances (6297 trees on average).

patterns of the same size is smaller and the average pattern
size is larger in the original data for all pattern classes.

6. RELATED WORK
Decision trees [12, Chapter 9.2] are similar to D-trees in

that low classification error implies low entropy. There are
two crucial differences. First, D-trees do not split the data
into groups corresponding to different values of an attribute,
but all data are considered in each node. In other words,
H(A | B) is used instead of e.g. H(A | B = b). Second,
decision tree algorithms seek greedily one tree, but the D-
tree algorithm finds exhaustively all D-trees satisfying the
criteria.
The work in [14] is a simple special case of the current

setting. The trees of the earlier paper were defined to be
present in a row of data if the attributes of a rooted subtree
were present simultaneously: e.g. for the tree of Figure 1,
this means that Scientific Writing and Maturity Test must

1 1.5 2 2.5
0

500

1000

1500

entropy

U−trees with original course data

1 1.5 2 2.5
0

5000

10000

15000

entropy

U−trees with swapped course data

Figure 9: Validation of U-tree results in course data.
Upper pane shows the distribution of entropies of
19380 U-trees mined from the course data, lower
pane shows the corresponding distribution in 10 ag-
gregated randomizations of the data (11967 trees on
average).

1 1.5 2 2.5
0

500

entropy

Low−entropy sets with original course data

1 1.5 2 2.5
0

5000

entropy

Low−entropy sets with swapped course data

Figure 10: Validation of low-entropy itemset results
in course data. Upper pane shows the distribution
of entropies of 13575 itemsets mined from the course
data, lower pane shows the corresponding distribu-
tion in 10 aggregated randomizations of the data
(6365 itemsets on average).

be present whenever anything lower in the tree is present,
and if Probability Theory 1 is present, then the whole branch
from Scientific Writing to Probability Theory 1 must be
present. Such a tree constitutes a low-entropy U-tree, but U-
trees are more general by allowing the distribution to be con-
centrated on other combinations than positive conjunctions.
The task of finding interesting itemsets has been addressed

mainly in the context of frequent itemset mining. Morishita
and Sese have presented a branch-and-bound method for
finding association rules like X ⇒ Y where the itemsets X
and Y are not required to have high support but high corre-
lation [19]. They also count those data rows where X and Y
appear completely, whereas our entropy-based method counts
arbitrary combinations. Similar strategies have been em-
ployed by Zimmermann et al. [24, 5]. In [5] they describe
a sequence of graph pattern classes that is to some extent
paralleled by our sequence of itemset pattern classes.
Closer to our approach are Knobbe and Ho’s maximally

informative k-itemsets, i.e., itemsets with as high entropy

as possible [16]. The difference to our high-entropy itemsets
is that Knobbe and Ho avoid the trivial result of the full
itemset by restricting their itemsets to have a fixed num-
ber k of elements, whereas we define scaled versions of en-
tropy and thus avoid having to specify an extra parameter.
Another information-theoretically motivated approach is to
select itemsets that can be used to compress the data, re-
cently introduced by Siebes et al. [22, 23]. They, however,
consider only all-1s itemsets.
In real-valued data, the task of finding interesting sub-

sets has been addressed by research areas such as subspace
clustering [20, 1] and projection pursuit [9, 15]. Another
method somewhat related to our task is the problem of
learning the structure of a Bayesian network. This problem
is computationally challenging, and the main methods are
probabilistic [7, 13]; the best current exact algorithms are
of order O(n2n) [17]. The key difference between Bayesian
network structure learning and our approach is that we seek
interesting subsets of the data, not complete models; also, of
course, we investigate only fully connected or tree-structured
networks and not arbitrary graphs, and we do not try to in-
corporate any prior knowledge into the patterns.

7. CONCLUDING REMARKS
We have considered the problem of finding low-entropy

sets and trees from binary data. The approach we have
chosen is a natural generalization of the discovery of frequent
sets and association rules: a frequent set is a particular form
of a low-entropy set.
We defined the concepts of low and high-entropy sets and

two types of trees, and gave efficient algorithms for finding
such sets. The experiments show that the methods are able
to discover interesting sets and trees and that they are fea-
sible to use also on large datasets. We also considered the
search for high-entropy sets of variables.
Our approach searches for local structure: small subsets of

variables for which the data can be modeled well, in the sense
of having a small entropy or being amenable to be described
by a tree. Such techniques are especially useful when dealing
with datasets of large dimension, and when many of the
dimensions are assumed to be relatively unimportant.

8. REFERENCES
[1] Agrawal, R., Gehrke, J., Gunopulos, D., and

Raghavan, P. Automatic subspace clustering of high
dimensional data for data mining applications. In
SIGMOD Conference (1998), pp. 94–105.

[2] Agrawal, R., Imielinski, T., and Swami, A. N.
Mining association rules between sets of items in large
databases. In SIGMOD Conference (1993),
pp. 207–216.

[3] Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H., and Verkamo, A. I. Fast discovery
of association rules. In Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, 1996,
pp. 307–328.

[4] Anthony, M., and Biggs, N. Computational
Learning Theory: An Introduction. Cambridge Tracts
in Theoretical Computer Science. Cambridge
University Press, 1997.

[5] Bringmann, B., Zimmermann, A., De Raedt, L.,
and Nijssen, S. Don’t be afraid of simpler patterns.
In PKDD (2006), pp. 55–66.

[6] Chow, C. K., and Liu, C. N. Approximating
discrete probability distributions with dependence
trees. IEEE Trans. Info. Theory 14, 3 (1968), 462–467.

[7] Cooper, G. F., and Herskovits, E. A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning 9 (1992), 309–347.

[8] Cover, T. M., and Thomas, J. A. Elements of
Information Theory. Wiley Series in
Telecommunications. Wiley Interscience, 1991.

[9] Friedman, J. H., and Tukey, J. W. A projection
pursuit algorithm for exploratory data analysis. IEEE
Trans. Comput. 23 (1974), 881–890.

[10] Gionis, A., Kujala, T., and Mannila, H.
Fragments of order. In KDD (2003), pp. 129–136.

[11] Gionis, A., Mannila, H., Mielikäinen, T., and
Tsaparas, P. Assessing data mining results via swap
randomization. In KDD (2006), pp. 167–176.

[12] Hastie, T., Tibshirani, R., and Friedman, J. The
Elements of Statistical Learning. Springer, 2001.

[13] Heckerman, D., Geiger, D., and Chickering,
D. M. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning
20, 3 (1995), 197–243.

[14] Heikinheimo, H., Mannila, H., and Seppänen,
J. K. Finding trees from unordered 0-1 data. In
PKDD (2006), pp. 175–186.

[15] Huber, P. J. Projection pursuit. The Annals of
Statistics 13, 2 (June 1985), 435–475.

[16] Knobbe, A. J., and Ho, E. K. Y. Maximally
informative k-itemsets and their efficient discovery. In
KDD (2006), pp. 237–244.

[17] Koivisto, M. Advances in exact Bayesian structure
discovery in Bayesian networks. In UAI (2006),
pp. 241–248.

[18] Meilă, M., and Jordan, M. I. Learning mixtures of
trees. Journal of Machine Learning Research 1 (2000),
1–48.

[19] Morishita, S., and Sese, J. Traversing itemset
lattice with statistical metric pruning. In PODS
(2000), ACM, pp. 226–236.

[20] Parsons, L., Haque, E., and Liu, H. Subspace
clustering for high dimensional data: a review.
SIGKDD Explor. Newsl. 6, 1 (2004), 90–105.

[21] Pearl, J. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[22] Siebes, A., Vreeken, J., and van Leeuwen, M.
Item sets that compress. In SDM (2006), J. Ghosh,
D. Lambert, D. B. Skillicorn, and J. Srivastava, Eds.,
SIAM.

[23] van Leeuwen, M., Vreeken, J., and Siebes, A.
Compression picks item sets that matter. In PKDD
(2006), pp. 585–592.

[24] Zimmermann, A., and De Raedt, L. CorClass:
Correlated association rule mining for classification. In
Discovery Science (2004), E. Suzuki and S. Arikawa,
Eds., vol. 3245 of Lecture Notes in Computer Science,
Springer, pp. 60–72.

