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Abstract

We consider the problem of relating itemsets mined on
binary attributes of a data set to numerical attributes of the
same data. An example is biogeographical data, where the
numerical attributes correspond to environmental variables
and the binary attributes encode the presence or absence
of species in different environments. From the viewpoint
of itemset mining, the task is to select a small collection
of interesting itemsets using the numerical attributes; from
the viewpoint of the numerical attributes, the task is to con-
strain the search for local patterns (e.g. clusters) using the
binary attributes. We give a formal definition of the prob-
lem, discuss it theoretically, give a simple constant-factor
approximation algorithm, and show by experiments on bio-
geographical data that the algorithm can capture interest-
ing patterns that would not have been found using either
itemset mining or clustering alone.

1. Introduction

One of the most extensively studied problems in binary
data is to find collections of itemsets that frequently occur
together [1]. After several years of research many efficient
algorithms have been developed to mine frequent itemsets,
e.g. Apriori [2] or FP-growth [6] among others. Other vari-
ations of the problem are mining frequent closed sets [18]
or mining maximal frequent sets [3]. In all cases, finding
such frequent collections of items efficiently for the binary
attributes of the data is not an issue anymore. In fact, it can
be argued that when real-world data sets are concerned, the
original Apriori algorithm can find in a short time a much
larger collection of itemsets than is needed for applications
such as classification [21]. However, defining good inter-
estingness measures for the final patterns seems to be a hard
problem that typically depends on the targeted application.

Many real-world data sets have not only binary attributes
but also numerical ones. Therefore it would be sensible to
connect the two kinds of attributes when mining the data.

One possibility is to use the numerical attributes to mea-
sure the interestingness of the itemsets consisting of binary
attributes, or, from another viewpoint, to use the itemsets
to assess the interestingness of clusters or other local mod-
els found by mining the numerical attributes. For example,
consider spatial data where species occur over a set of loca-
tions. A relevant goal in such spatial data is to uncover how
environmental variates, such as rainfall or temperature, af-
fect the coexistence of species across the locations.

As another example, consider movie recommendation by
collaborative filtering [8]. The binary data corresponds to
movies rated by users, and the numerical data to demo-
graphic statistics of those same users. A key problem is
to segment the market into groups of customers who like
similar movies, but it is also in the interest of the service
provider to produce descriptions of the groups for market-
ing purposes. To enable this kind of descriptions one must
combine the binary movie rating data with the numeric de-
mographics, which is exactly our cross-mining task.

Motivated by such applications calling for segmentations
of the data characterized by relevant features, we develop
on the idea that itemsets found within the binary attributes
of the data reflect structure embodied in the real-valued at-
tributes in the same data. A natural kind of such structure
is clustering, but other examples include approximating the
real-valued points with a low-dimensional subspace, or hav-
ing low fractal dimension [4]. Given any such class of lo-
cal models for the numerical data, each corresponding to an
itemset in the binary data, we wish to cover the observa-
tions with itemsets, each supported by a set of rows whose
numerical attributes are well explained by a local model.

To make the discussion more concrete, we now focus
on a simple biogeographical case. Imagine a rectangular
grid drawn on a map, each of whose cells corresponds to a
row in a database, recording what bird species occur in the
cell, and the geographical coordinates of the cell as well as
the average yearly rainfall within the cell. The bird species
data is binary in nature, while the coordinates and rainfall
attributes are numerical. An itemset X (of birds) defines a
segment of cells, consisting of those cells where all the birds



in X occur. For each segment we can fit a local model. If
our models are defined by means, the model corresponding
to the segment defined byX tells us the centroid of the cells
where all birds in X co-occur, and the average rainfall in
these cells. If the birds occur close together and in areas
with similar rainfall, this model is a good fit to the segment.

Once we have mined all frequent itemsets (or,
e.g., closed itemsets), we seek to select k itemsets whose
segments cover the numerical data with as well-fitting mod-
els as possible. Formally this corresponds to minimizing the
error when each tuple is modeled by the best itemset model
from the solution set. Other variations of this optimization
problem, such as partitioning or when k does not need to
be specified a priori are also natural. We will refer to these
optimization problems as itemset segmentation problems.

This itemset segmentation problem has an apparent simi-
larity to the segmentation problems defined for catalog seg-
mentation [14, 13], to facility location problems [11, 19]
and also to clustering [5, 10]. Our contribution lies in the
border of all these problems and moreover provides a char-
acterization of the final segments with the itemsets found
on the same data. This allows for a very intuitive interpre-
tation of our results. Another perspective is that we give
a solution to the problem of ranking frequent itemsets: the
measure is an itemset’s relevance in describing the structure
of the numerical features. Our contribution can also be seen
as a new kind of constrained clustering [20], where instead
of must-link and cannot-link, the constraints arise from the
frequent itemsets of the binary part of the data. A thorough
discussion of the related work is presented in Section 5.

By using an analysis framework based on submodular
functions, we show in this paper that a simple greedy strat-
egy obtains a solution which is within 1− 1

e for the itemset
segmentation problems defined here. Unfortunately, min-
imizing the error function, commonly defined with L2–
norm, does not satisfy the submodularity requirements to
achieve such approximation bound. Thus, we transform the
score function by measuring the error gap of each candi-
date segment (itemset) from a default worst-score model
that always covers all the data. With this transformation
the problem becomes that of maximizing the deviation of
the solution set from the default model.

A difficulty arising when using itemsets is that a single
data point may be covered by multiple itemsets. We address
this problem by letting each data point select the itemset
that fits it best. However, each model is selected using the
whole subset of data that supports the corresponding item-
set, instead of only the data whose error is computed from
the model. This is because of two reasons: first, otherwise
the optimal model for each data point could keep changing
when other data points are assigned to models, leading to a
possibly difficult optimization problem already in comput-
ing the score of the itemset; second, this solution ensures

that adding overlapping itemsets to the collection has di-
minishing returns, thus encouraging the algorithm to seek
itemsets covering different parts of the data.

2. Description of the framework

Consider a set T of tuples where each tuple contains two
types of attributes, binary-valued attributes and real-valued
attributes. We refer to this vertical split on T by denoting
each t ∈ T as t = [tB , tR], where tB is a binary vector and
tR is a real-valued vector. Also let I denote the universe
of items defining the binary attributes of T . It is sometimes
more convenient to refer to the binary part of each tuple as
a subset of the universe of items, i.e., tB ⊆ I containing
all those binary attributes with value 1 in the tuple. For an
itemset X ⊆ I and a tuple t = [tB , tR], we will use the
indicator function t(X) that returns 1 if X ⊆ tB , and 0
otherwise. We say that an itemset X ⊆ I covers all those
tuples t ∈ T such that t(X) = 1.

We denote a class of models by M. Given an item-
set X ⊆ I, we define the segment characterized by X as
s = (X,m), where m is the best model from the class
M that can be assigned to the real-valued attributes of the
tuples covered by X , that is m = M({tR | t(X), t =
[tB , tR] ∈ T}). To simplify the discussion we assume that
the local models concern clustering around a mean, so that
m = mean({tR | t(X), t = [tB , tR] ∈ T}). However,
more complex models are also possible, like the local di-
mension of the data, or an entropy measure.

It is convenient to assume the existence of a default seg-
ment that always covers all the data in T . This will be the
segment characterized by the empty set, default = (∅,m0)
with m0 being the mean of the real-valued attributes of all
tuples. In this way all the tuples of the data are initially
assigned to at least the default segment.

For a segment s = (X,m), the score (error) of a tuple
t = [tB , tR] ∈ T with respect to s is defined as follows.

e(t | s) =

{
∞ if t(X) 6= 1,
‖tR −m‖2 otherwise.

(1)

The score of a tuple t ∈ T for a set of segments S =
{s1, . . . , sn} is defined as the error obtained by choosing
the best segment in S. As will become clear later, we define
it as the reduction in error from the default model.

e(t | S) = max
i
{e(t | default)− e(t | si), 0} (2)

So, given a fixed set of models in S, we usually say that
a tuple t ∈ T is assigned (or modeled) by the best segment
(model) in S, corresponding to the argument of the maxi-
mum of Equation 2.



Note that the score e(t | S) of Equation 2 could be also
defined as a minimization function of the form mini{e(t |
default), {e(t | si)}. In such case, it would resemble the
minimization function of a facility location problem [19] in
which the goal is to open some number of facilities to serve
customers. However, the algorithmic issues of our problem
turn out to be technically quite different from those in fa-
cility location problems, but still closer to the segmentation
problems presented in [14]. As in the general segmentation
problems, the space of our possible decisions is exponential
– arising from the exponential combinations of I items that
can define the segments – and thus, an analysis based on
submodularity properties is clearly more appropriate.

The problem we study can be defined as follows.

Problem 1 (ITEMSET SEGMENTATION PROBLEM). Given
a set of tuples T and a set of all candidate segments C de-
fined by a collection of itemsets, find a subset S ⊆ C of size
k such that the sum

∑
t∈T e(t | S) is maximized.

As in [14], we can also consider the equivalent parti-
tioning version of this problem which corresponds to com-
muting the max operators in the maximization function.
It can be defined as follows: Given a set of tuples T , a
set of segments S and an integer k, find a partition of
T into k sets T1, . . . , Tk such that it maximizes the sum∑

j∈1...k maxs∈S

∑
t∈Tj

e(t | s). It is easy to see that this
partitioning variant is equivalent to Problem 1.

Still more interesting however, is to consider the problem
where k is not fixed a priori.

Problem 2 (ITEMSET SEGMENTATION PROBLEM, VARI-
ABLE k VERSION). Given a set of tuples T , a set of all
candidate segments C defined by some collection of item-
sets, and an integer γ, find k segments S ⊆ C such that the
sum

(∑
t∈T e(t | S)

)
− γk is maximized.

Notice that these problems are defined for a general col-
lection of itemsets C. In practice, this collection C may
correspond to frequent sets, closed sets or maximal fre-
quent sets mined on the binary tuples of the data. Because
closed sets are a non-redundant representation of frequent
sets – i.e, an itemset X is not closed if there exits a superset
X ⊂ Y with exactly the same cover [18] – it will be better
in practice to directly consider frequent closed sets over the
regular frequent itemsets.

To conclude this section, we discuss the complexity of
the problems. Proofs of these and other theorems are omit-
ted for space constraints.

Theorem 1. The itemset segmentation problem is NP-hard.

If the number of itemsets defining the possible segments
S is constant, the number of possible k solutions will also
bounded constant. In such cases the problems could be

solved in time proportional to the |T |c, where c is the possi-
ble number of all solutions. Of course, the number of pos-
sible itemsets may be exponentially large if a very low fre-
quency threshold has been used.

After Theorem 1 it follows now that the maximization
of the variable segmentation of Problem 2 is also NP-hard.
Indeed, as we will later see, the function there is a profit
function which is known to be a basic NP problem.

3. Algorithms

To show approximation guarantees on the ITEMSET
SEGMENTATION PROBLEM, we will follow an analysis
based on submodular functions. A function is said to
be submodular if it satisfies the following property: the
marginal gain from adding an element s to the solution set
S decreases if the element s was added on a superset of S:
f(S ∪ {s})− f(S) ≥ f(S′ ∪ {s})− f(S′) for S ⊆ S′.

Submodular functions have been extensively studied
for optimization problems. Particularly interesting for
our problem is the following result shown by Nemhauser,
Wolsey, and Fisher [17].

Theorem 2 ([17]). For a non-negative, monotone submod-
ular function f , let S be a solution set of size k obtained
by selecting an element s /∈ S one at a time, each time
choosing that element that provides the largest marginal
gain f(S ∪ {s}) − f(S). Let S∗ be a set that maximizes
the value of f , then f(S) ≥ (1− 1/e) · f(S∗).

The use of this submodularity result for Problem 1 has
similar flavor as maximizing the spread influence through
a social network of [12]. By showing that the function we
wish to maximize here, namely E(T, S) =

∑
t∈T e(t | S),

satisfies the assumptions of Theorem 2, we can show that
the following greedy algorithm has approximation guaran-
tee 1− 1/e for Problem 1.

Algorithm 1. GREEDY ALGORITHM FOR PROBLEM 1.
Given a set of tuples T and the set of all segments C defined
by all possible itemsets. At all times maintain a candidate
solution set S. Choose the next element s ∈ C such that s /∈
S having the best marginal gain E(T, S ∪ {s})− E(T, S)
until |S| = k.

We now consider the itemset segmentation problem in
the variable case that an integer k is not fixed a priori to
limit the solution set (Problem 2). In this case we wish to
maximize a monotone submodular function minus a fixed-
cost function that depends on the number of elements in the
solution set penalized by a fixed constant γ. These kind of
functions are typically called profit functions. The analysis
we follow for this problem is exactly the same proposed
in [14]. The following result is useful for our application.



Theorem 3 ([14]). For a profit function f , let S be the a
solution set of size k obtained by selecting elements s /∈ S
for which the marginal gain f(S ∪ {s}) − f(S) is at least
γ. Let S∗ be the minimum-size optimal solution set, then
this greedy algorithm achieves a performance guarantee of
at least (

√
1 + µ− 1)2/(1 + µ), where µ = f(S∗)/|S∗|

Given that our function E(T, S) is already proven to be
submodular and then, E(T, S) − kγ is a profit function by
definition, we can directly approximate our Problem 2 by
means of the greedy strategy defined by Theorem 3. More-
over, by re-scaling E(T, S) we can assume without loss of
generality that γ = 1.

Algorithm 2. GREEDY ALGORITHM FOR PROBLEM 2.
Given a set of tuples T , a fixed cost γ and the set of all seg-
ments C defined by all possible itemsets. At all times main-
tain a candidate solution set S. Choose the next element s ∈
C such that s /∈ S a marginal gainE(T, S∪{s})−E(T, S)
of at least γ.

4. Experimental evaluation

To verify the applicability of itemset segmentation we
implemented the proposed algorithms and tested their be-
haviour on various data sets. In this version of the paper
we report on an experiment using presence/absence data on
European mammals [16]. The geographical region under
study is divided into 2183 grid cells, in which the presence
of 124 species is recorded 1. As numerical attributes we
used mean temperature, mean annual rain fall, mean annual
temperature range and average elevation.2

Figure 1(a) shows the itemset segmentation of Europe.
The top-6 segments were selected by the greedy algorithm
from the 55,130 closed sets with minimum support over
25%. Each segment, represented by a closed set, uses as
a model the mean of the real-valued transactions supported
by the itemset. Figure 1(b) shows each one of the chosen
segments separately. The final coverage is not necessarily
equal to the support of the itemset characterizing the model.
E.g., the default model corresponding to the empty set ini-
tially covers all data points, but most points are eventually
assigned to other models.

Table 1 describes the top 6 segments of Figure 1 in terms
of itemsets. The empty set corresponds to the default model
that initially supports all the data points and has a final cover
of 392 points. Graphically, the final coverage of the de-
fault model lies around the center part of Europe (Figure 1).

1The information is collected by the Societas Europaea Mammalogica,
www.european-mammals.org, and is used in this paper with their
permission. The preprocessed binary data used here is available as part of
the supplementary information accompanying the article [7].

2The climate and elevation observations were obtained from the
dataset [9], available online at www.worldclim.org.

These are the points closer to the mean of the real-valued
attributes of the whole data set. The segments are listed in
order of addition by the greedy algorithm. As expected, the
marginal gain decreases with the order.

Scandinavian countries are modeled by segments 1st and
6th: The first segment describes locations with low temper-
ature and low altitude, while the sixth segment defines a
specific subarea of the Nordic characterized by extremely
low temperatures and high altitude. Elks are the prototyp-
ical mammals of the first segment, while a specific type of
rabbits characterize the sixth segment. The second segment
chosen by the greedy algorithm describes a flat area with
high precipitation characterized by hedgehogs and mice.
The third segment defines the mountain systems across Alps
and Pyrenees; and the fourth segment defines southern Eu-
ropean countries, characterized mainly by the high temper-
ature where typically the wildcat mammals live. Notice that
although coordinates were not included in the analysis of
real-valued attributes, the final segments show a very good
spatial coherence.

For this specific spatial data set, the segments chosen
by the greedy algorithm are very stable, that is, decreasing
the support (thus having more specific candidate segments)
does not change the segmented areas very much. How-
ever, when using maximal frequent sets instead of closed
frequent sets we obtain segments with less coverage with a
better characterization of the species cohabiting in it. For
example, with maximal itemsets of minimum support of
25%, the first 5 selected segments cover areas similar to the
ones shown above; obviously the itemset descriptions are
more specific and thus have smaller support in each one of
these subareas. Only the 6th segment changes: with maxi-
mal sets, it spreads across the Dutch area of Europe charac-
terized by different species of mice.

5. Related work

The problems defined here exhibit an apparent similar-
ity to facility location problems, where one seeks to “open”
some number of facilities to serve customers [11, 19] and
typically, there is a fixed cost for each opened facility plus
a penalty for each customer-facility distance. The nature of
this problem has produced mainly results on the minimiza-
tion of the proper score function. As mentioned in Section
2, the score e(t | S) of Equation 2 could be also defined as
a minimization function of the form e(t | S) = mini{e(t |
default), {e(t | si)}. Then the problem would be trans-
formed into minimizing the sum Ê(S, T ) =

∑
t∈T e(t | S).

The nature of optimization problems that seek to mini-
mize a score function is very different from the ones pre-
sented here. A good summary of the approximation bounds
for facility location problems can be found in [11]. In-
deed, the approximation factor obtained in this paper can
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Figure 1. (a) Top 6 itemset segments selected by greedy algorithm. (b) Spatial coverage of each
top segment, shown separately in order of addition by the greedy strategy. The default model, not
shown, covers unassigned points.

be also expressed in terms of the minimization version of
the same problem by conveniently re-scaling with the de-
fault model. It is easy to see that the approximation fac-
tor of the minimization problem is transformed then to
Ê(T, S) ≤ (1−1/e) ·Ê(T, S∗)+1/e

∑
t∈T e(t | default).

Our contribution is also closely related to the segmen-
tation problems from [14, 13], where one seeks to find the
best segments according of an optimization function. The
bounds obtained there correspond to the catalog segmenta-
tion problem, which can be seen as a generalization of the
problem presented here. However, the idea of using collec-
tions of itemsets to bound the space of decisions to good
models is new to the best of our knowledge. Moreover, the
analysis of our greedy algorithm 1 by means of proving that
our score is a submodular function is novel and still we pro-
vide with a characterization of the final segments with a set
of relevant features corresponding to itemsets. Algorithm 2
stems directly from the results presented in [14].

A similar application of our contribution is clustering, an
important algorithmic problem starting from [10]. As men-
tioned above, the partitioning version of Problem 1 can be
seen as a specific clustering method. Our contribution here
is then two-fold: First, from the numerous clustering meth-
ods it turns usually difficult to evaluate the quality of the
partition; in our case, the partition is always properly rep-
resented by a unique itemset which defines a relevant set
of features describing the partition. Second, if one wishes
to cluster real attributes independently from the binary at-
tributes, the solution might contain different partitions that

are identified by a collection of itemsets (not a single one
as we propose here). Yet another drawback, different parti-
tions would end up being characterized by the same itemset
(or several similar itemsets).

The cross-mining problem can also be seen as a form
of constrained clustering. In typical constrained clustering
algorithms, the constraints are of the form cannot-link and
must-link [20], but in cross-mining the constraints are de-
fined by the itemset structure of the binary data. A cannot-
link constraint that says that tuples t1 and t2 must belong to
different clusters can be encoded by assigning disjoint bi-
nary parts to the tuples, and a must-link constraint can be
approximated by assigning the tuples exactly the same bi-
nary attributes; however, this does not guarantee that the
tuples end up in the same segment if they have very dif-
ferent numerical attributes. Intermediate constraints can be
represented by partially overlapping binary parts. If must-
link constraints are required in the application, they can of
course be added to the cross-mining problem.

There are other works in the current literature us-
ing submodular functions to prove approximation bounds,
e.g. [12]. To the best of our knowledge no contribution has
been made similar to the line of this paper.

Finally, our results contribute to ranking itemsets [15],
ranked in this paper by the ability to describe good parti-
tions of the real-valued data. Hence, we showed that with
a simple greedy strategy we can always provide a good ap-
proximate ranking of the best top-k itemsets in the data.



Order Itemset Mean model Marginal gain Support Final cover
(alt, prec, temp, temp-range)

− empty set (307.1, 716.8, 9.6, 27.3) − 2183 392
1st Elk (221.6, 576.2, 1.6, 33.9) 1363.6 651 308
2nd Hedgehog, Mouse (150.6, 866.4, 10.6, 21.4) 898.67 1103 603
3rd Dormouse, Vole, Roebuck (969.2, 995.5, 7.2, 26.8) 393.76 557 224
4th Wildcat (514.6, 648.6, 12.5, 28.5) 237.81 624 269
5th Racoon dog, Brown hare (126.5, 605.6, 7.6, 30.0) 160.36 552 289
6th Blue hare (693.8, 1019.1, 0.9, 25.8) 155.07 721 103

Table 1. Top 6 models for Mammals, selected from closed itemsets with support over 25%. Leg-
end: (alt, prec, temp, temp-range) = altitude, precipitation, temperature, annual temperature range;
support = # transactions where itemset occurs; final cover = # data points assigned to model.

6. Concluding remarks

We have presented the cross-mining problem of mining
binary data along with corresponding numerical data. Our
experiments show that the greedy algorithm finds interest-
ing patterns that would not be discovered by itemset mining
alone, which results in a huge number of patterns, nor by
clustering alone (comparison experiment not shown due to
lack of space). Future work includes exploration of other
model classes such as the local dimension of the data, and
new algorithms, such as a generalization of k-means to take
the itemset constraints into account.
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