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Abstract

The Hypercube Segmentation problem was recently introduced by Kleinberg et al.
[J. ACM 51 (2004) 263–280], along with several algorithms that select each segment’s proto-
type vector from the segment. The algorithms were shown to have an approximation ratio
of at least 2(

√
2 − 1) ≈ 0.828. We show that a lemma used in this proof is tight, and that

the asymptotic approximation ratio of no algorithm of this type can exceed 5/6 ≈ 0.833.

1 Introduction

The Hypercube Segmentation task [KPR04] is to find for a set S of d-dimensional binary
vectors a partitioning S = S1 ∪S2 ∪ · · · ∪Sk and corresponding prototype vectors P1, P2, . . . , Pk,
so as to maximize the sum

k∑
j=1

∑
t∈Sj

t� Pj , (1)

where the Hamming overlap operator � counts the number of positions where two vectors have
the same value. Kleinberg et al. [KPR04] give three approximation algorithms for the task,
all of which have the property that the prototype vectors are chosen from the input set S. The
approximation ratio of one algorithm is shown to be at least 2(

√
2−1); the other two are sampling

versions of the same algorithm, and have approximation ratios approaching that of the first one.
The proofs rely on the following result:

Lemma 1. For any set S,

1
|S|

∑
v∈S

∑
t∈S

t� v ≥ 2(
√

2− 1)
∑
t∈S

t� P ∗, (2)

where P ∗ is the optimal prototype for S, i.e., agreeing in each position with the majority of S.

Kleinberg et al. give an example showing that the constant 2(
√

2 − 1) ≈ 0.828 in Lemma 1
cannot be increased beyond 5/6 ≈ 0.833. In this paper we give two different generalizations of
this example: we show in Section 2 that the constant of the lemma cannot in fact be increased

∗Accepted for publication in Information Processing Letters, http://www.elsevier.com/locate/issn/

00200190, doi:10.1016/j.ipl.2004.10.006
†HIIT Basic Research Unit, Laboratory of Computer and Information Science, P.O. Box 5400, FI-02015

Helsinki University of Technology, Finland

1

http://www.elsevier.com/locate/issn/00200190
http://www.elsevier.com/locate/issn/00200190
http://dx.doi.org/10.1016/j.ipl.2004.10.006


at all, and give in Section 3 an upper bound of 5/6 for all k-segmentation algorithms that select
the prototypes from the data.

While a polynomial approximation scheme exists [AS99], the cited algorithms are still of
interest, since the sampling versions have a running time linear in the size of the input and may
thus be applicable for data mining tasks, where data sets are often very large.

2 Tightness of the lemma

Since the sum (1) is always an integer, it is clearly impossible to obtain equality in (2). However,
we can prove that no larger bound is possible by constructing examples that approach the optimal
bound in the limit d →∞.

Theorem 2. For any constant C > 2(
√

2−1), there exists a set S such that for every vector v ∈
S, ∑

t∈S

t� v < C
∑
t∈S

t� P ∗, (3)

where P ∗ is the optimal prototype for S.

Proof. Choose an integer d ≥ 3, and let c be the integer nearest to d/
√

2. Consider the set S of
all m =

(
d
c

)
dimension-d binary vectors that have exactly c ones. The fraction of vectors that

have a one in any given position is c/d > 1/2, so the optimal prototype P ∗ has a one in every
position. The right-hand side of (3) is thus Ccm.

For a fixed prototype v ∈ S, consider a vector t selected uniformly at random from S. For
a randomly selected position, the probability that both vectors have a one is (c/d)2, and the
probability that both have a zero is ((d− c)/d)2. Thus the expected contribution of this position
towards v � t is (d2 − 2cd + 2c2)/d2, and

E(v � t) =
d2 − 2cd + 2c2

d
.

By summing over all t ∈ S we find that the left-hand side of (3) divided by cm is

m · E(v � t)
cm

=
d2 − 2cd + 2c2

cd
=

d

c
− 2 +

2c

d
. (4)

By increasing d we can obtain values of d/c that are arbitrarily good approximations of
√

2, so
we can bring the value of (4) arbitrarily close to

√
2− 2 + 2/

√
2 = 2(

√
2− 1).

In fact, S need not include all
(
d
c

)
possible vectors. A smaller construction yielding the same

result is obtained by taking an arbitrary vector v having c ones and all cyclic shifts of v.

3 Upper bound for the algorithm

The result of the previous section implies that the analysis by Kleinberg et al. of their algorithm
is tight in the case k = 1. In the more interesting case of larger k, the example does not
seem to be easily generalizable: the similarity between two vectors in the constructed set S
can be as low as 2c − d, which for sufficiently large d is less than half of d. Modifying the
construction so that the minimum within-segment similarity is d/2 helps guarantee that the
induced segmentation coincides with the optimal one. Thus the following example works with
arbitrarily many segments but gives a slightly larger bound of 5/6. The result applies to all
algorithms that select the prototype vectors from the input data; we shall call such prototypes
and algorithms constrained.
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Theorem 3. Any constrained algorithm for the k-segmentation problem with k ≥ 2 has an
approximation ratio of at most 5/6.

Before proving the theorem, we state a lemma needed in the proof. For a vector vj , we shall
denote by vj,i the i-th coordinate of vj .

Lemma 4. For any k ≥ 2, there is a number b and a set { v1, . . . , vk } of b-dimensional binary
vectors such that vp � vq = b/2 for all 1 ≤ p < q ≤ k.

Proof. In the case k = 2, we can choose v1 = (0, 0) and v2 = (0, 1). For larger k, let a = bk/2c
and m =

(
k
a

)
, and enumerate all a-element subsets J1, . . . , Jm of { 1, . . . , k }. Then let vj,i = 1

whenever j ∈ Ji, and vj,i = 0 whenever j /∈ Ji. For any two vectors, there now are
(
k−2
a−2

)
+

(
k−2

a

)
coordinates in which the vectors agree, and 2

(
k−2
a−1

)
coordinates in which they disagree. With

k ≥ 3 and our choice of a, the number of disagreements is never smaller than the number of
agreements. Indeed, a − 1 = b(k − 2)/2c, and thus

(
k−2
a−1

)
≥

(
k−2
a−2

)
and

(
k−2
a−1

)
≥

(
k−2

a

)
. We can

thus add some number z of coordinates in which every vector has value 0 until the number of
agreements

(
k−2
a−2

)
+

(
k−2

a

)
+ z is exactly half of the number of coordinates b = m + z.

Proof of Theorem 3. We shall construct a set S along with a segmentation S = S1 ∪ · · · ∪ Sk

and corresponding unconstrained prototypes P1, . . . , Pk. We shall show that for any constrained
prototypes Q1, . . . , Qk the induced segmentation has an approximation ratio of at most 5/6,
compared to the unconstrained prototypes. The dimensionality of the vectors will be d = 4b
with the value of b determined by Lemma 4, and each segment Sj will consist of 4 vectors.

We first invoke Lemma 4 to get k vectors v1, . . . , vk in the b-dimensional binary cube such
that any two vectors have Hamming overlap b/2. From each vector vj we create a segment Sj

of four vectors as follows. We denote by ep the four-dimensional basis vector that has ep,q = 1
if p = q, 0 if p 6= q, and by ēp its complement 1− ep. To construct the p-th vector of Sj , we start
from the empty vector, and then for each i = 1, . . . , b we add to the end of the vector either ep

if vj,i = 0, or ēp if vj,i = 1. For the unconstrained prototype Pj corresponding to segment Sj ,
we take the median of Sj , which can be obtained by repeating each coordinate of vj four times.

The value of the segmentation S1∪· · ·∪Sk with the unconstrained prototypes Pj is 12bk, since
each prototype agrees with each vector in its corresponding segment at exactly 3b positions. To
complete the proof, we must show for any constrained prototypes Q1, . . . , Qk and a corresponding
segmentation S = T1 ∪ · · · ∪ Tk that the sum

k∑
j=1

∑
t∈Tj

t�Qj =
∑
t∈S

max
1≤j≤k

t�Qj (5)

is at most 10bk.
For any two vectors t, u ∈ S, t 6= u, we have t � u = 2b. To see this, we consider two cases.

In the first case, both t and u are constructed of copies of the same basis vector ep and its
complement ēp. They must therefore belong to different segments, say t ∈ Si and u ∈ Sj . We
then use the facts vi � vj = b/2, ep � ep = 4, and ep � ēp = 0. In the second case, t and u are
constructed of copies of different basis vectors ep and eq and their complements, and we can use
the fact ep � eq = ep � ēq = ēp � eq = ēp � ēq = 2. Therefore sum (5) is

Q1 �Q1 + · · ·+ Qk �Qk + (|S| − k) · 2b = k · 4b + 3k · 2b = 10bk.
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