
UPS-IRIT, 118 route de Narbonne, 31062 Toulouse CEDEX 9

+33 (0) 561 55 67 65 info@irit.fr www.irit.fr

TECHNICAL REPORT

IRIT/RT–2013-14–FR

Integrating verifiable Assume/Guarantee
contracts in UML/SysML

Iulia Dragomir — Iulian Ober — Christian Percebois

Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

{iulia.dragomir,iulian.ober,christian.percebois}@irit.fr

July 15, 2013

Abstract

A compositional approach based on components and driven by requirements
is a common method used in the development of critical real-time embedded
systems. Since the satisfaction of a requirement is subject to the composition
of several components, defining abstract and partial behaviors for components
with respect to the point of view of the requirement allows for a manageable
design of systems. In this paper we consider such specifications in the form of
contracts. A contract for a component is a pair (assumption, guarantee) where
the assumption is an abstraction of the component’s environment behavior
and the guarantee is an abstraction of the component’s behavior given that the
environment behaves like the assumption. In previous work we have defined
a formal contract-based theory for Timed Input/Output Automata with the
aim of using it to express the semantics UML/SysML models. In this paper
we propose an extension of the UML/SysML language with a syntax and
semantics for contracts and for the relations they must satisfy. Besides the
important role that contracts have in design, they can also be used for the
verification of requirement satisfaction and for their traceability.

Keywords

component, contract, compositional reasoning, UML/SysML, meta-model,
design, well-formedness, V&V

1

Contents

Abstract & keywords 1

1 Introduction 5

2 Background 5
2.1 Timed input/output automata . 5
2.2 A UML/SysML profile based on timed input/output automata 5
2.3 A theory of contracts for timed input/output automata 6

3 Extending UML/SysML for modeling contracts 7
3.1 A meta-model for contracts in UML/SysML . 7
3.2 Well-formedness rules for verifiable contracts 11
3.3 Instantiating the meta-model in the OMEGA profile 15

4 The ATV Solar Generation System case study 15

5 Related work 17

6 Conclusions 18

A Contract meta-model: Formalization of constraints (in UML 2.3) 20

B Making contracts verifiable: Formalization of well-formedness rules (in UML 2.3) 25

C OMEGA Contract Profile: Formalization of well-formedness rules 31

3

1 Introduction

Nowadays critical real-time embedded systems grow larger is size and more complex. Their de-
velopment is a challenging task and is often error-prone. A way for system designers to tackle this
issue is to use a compositional approach driven by requirements. For example, process-oriented
standards such as DO-178C [12] highlight the need to model requirements at different levels of
abstractions during development and to ensure their traceability at each design iteration step.

However, requirements are often difficult to be mapped to components: several components
combine together to satisfy a requirement and a component may be involved in the satisfaction
of several requirements. In order to achieve provably correct compositional design, one needs a
way to abstractly specify how a particular component K participates in fulfilling a requirement
ϕ. Such a specification can take the form of a contract: a pair (assumption, guarantee) where the
assumption is an abstraction of K’s environment behavior and the guarantee is an abstraction of
K’s behavior given that the environment behaves according to the assumption. Such a contract
can then be used to model the point of view of the component with respect to the requirement ϕ.
Contracts for reactive and real-time components have received a lot of attention from the research
community recently, as discussed in §5.

Besides the important role contracts play in system design, they can also be used as ba-
sic blocks for compositional verification of requirement satisfaction. In [9] we have introduced
a contract-based theory for compositional verification of systems of communicating Timed In-
put/Output Automata (TIOA) with the intention to use it as underlying semantics for contract-
based UML [17]/SysML [16] modeling and verification. This paper complements the formal
theory by extending UML/SysML with the language elements needed for modeling contracts and
their relations.

Paper structure. In §2 we summarize the contract-based reasoning theory we have defined and
we present the OMEGA UML/SysML Profile [7] on which we want to apply the formal theory. In
§3 we propose a meta-model for the contract theory and a set of constraints and well-formedness
rules needed to make the system model verifiable with contracts. Then, an instantiation of the
meta-model for the OMEGA UML/SysML Profile is discussed. §4 presents the application of
this technique to an industry-grade system model, the ATV SGS case study previously described
without contracts in [8], before concluding.

2 Background

2.1 Timed input/output automata

Many mathematical formalisms have been proposed in the literature for modeling communicating
timed reactive components. Our work is based on a variant of Timed Input/Output Automata
of [11] since it is one of the most general formalisms, thoroughly defined and for which several
interesting compositionality results are already available. A TIOA specifies a state space and a set
of admitted timed behaviors for a component. The parallel composition of TIOAs (denoted ‖ in
the following) is based on synchronization of corresponding inputs/outputs and the interleaving of
other actions. For full definitions of all these notions, the reader is referred to [11].

2.2 A UML/SysML profile based on timed input/output automata

In previous work [4] we have considered the high-level modeling of embedded real-time systems
in UML/SysML with a semantics provided in terms of the TIOA. The result of this work is a

5

semantic profile for UML and SysML called OMEGA and a set of tools for simulating and model-
checking OMEGA models.

In OMEGA, the architecture of a system is expressed in the usual way in UML (class diagrams)
and in SysML (block definition diagrams and internal block diagrams). Classes/blocks may use
most of their features: properties (attributes and parts), signals receptions, interconnection ele-
ments (port, connector, interface) and relations (association, composition and generalization). The
hierarchical architecture of components (and systems) is specified through composite structures.

The behavior of atomic components is modeled by state machines with usual UML actions
on transitions. The operational semantics of each component instance is a timed input/output
automaton. The TIOAs corresponding to components are composed in parallel and communicate
by asynchronous signal exchanges. This imposes that all communications between objects/block
instances are defined as signal outputs and receptions that are transferred via ports and connectors.
Ports need to be typed with interfaces that contain the list of signals transferred to or from the
component’s environment.

The temporal elements of TIOA, such as clocks, clock actions and timed guards actions have
corresponding language constructs in the OMEGA profile. The elapsing of time is constrained
by transition urgency stereotypes inspired from timed automata with urgency [3]: time delay is
blocked if one of the active transitions in the current state is stereotyped �eager�, it is upper-
bounded if an active transition is stereotyped�delayable� and is unbounded otherwise (i.e., if
all active transitions are stereotyped�lazy�, which is the default).

The profile also proposes mechanisms for formalizing requirements, in particular in the form of
real-time safety properties described by observer classes (identified by a stereotype�observer�).
The state machine of these classes uses special primitives for monitoring the system state and
events and give verdicts about the (non-)satisfaction of a property by using labels (e.g., stereotype
�error�) on states.

For a more complete description of the UML/SysML component model used in OMEGA and
of the mapping between the modeling concepts and the underlying TIOA semantics, the reader is
referred to [15].

2.3 A theory of contracts for timed input/output automata

In [9] we defined a theory for modeling and reasoning with contracts for TIOA. The theory is an
extension of a meta-theory defined in [18]. A contract for a TIOA component K is a pair of TIOAs
that model the assumption (A) and the guarantee (G). The satisfaction of the contract is defined
formally by a relation based on trace inclusion between K ‖ A and G ‖ A modulo the set of
actions that are of interest for the contract. The theory also provides the necessary mechanisms for
compositional reasoning with contracts, explained in the following.

Consider that the objective is to prove that a system S composed of several components
K1,K2, · · · ,Kn satisfies a property ϕ (see Fig. 1) under a certain hypothesis A on the behav-
ior of its environment. The method consists in defining a more abstract specification G of the
system such that A ‖ G satisfies ϕ (conformance step in Fig. 1). However, it is often impossible to
verify directly (i.e. by checking trace set inclusion) that the composite system S satisfies the con-
tract because of the combinatorial explosion of the state space. To avoid this problem, the method
defined in [9, 18] uses a decomposition of the proof in independent steps based on the definition
of a set of individual contracts C1, C2... for the components K1,K2..., which, when put together,
ensure the global contract C = (A,G). We say that {C1, C2, · · · } dominates C (dominance step
in Fig. 1). The theory in [9, 18] provides a set of sufficient conditions for dominance which can
be checked independently with lesser combinatorial complexity. In addition to the conditions for
dominance, one also has to check that each component Ki satisfies the contract Ci (conformance
step in Fig. 1).

6

A G

C A || G ⪯ φ

{C1, ..., Cn } dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci , ∀i S

A3 G3

C3

K3

Step 1) Satisfaction

Step 2) Dominance

Step 3) Conformance

satisfaction

bidirectional
communication

φ

⪯

E

AG

C-1

Figure 1: Contract-based reasoning for a subsystem with three components [18].

The method described before does not explicitly prescribe how to derive the contracts for the
whole system and for the components. In the case study described in §4, this task was relatively
straightforward: since we make no additional assumption (A) about the environment, G is roughly
the same as ϕ, and the component guarantees are a projection of the desired global guarantee.
There may however be cases where the definition of contracts is less obvious and further work will
be needed to define methodological guidelines for constructing the intermediate contracts, but this
is outside the scope of this paper.

3 Extending UML/SysML for modeling contracts

In this section we present the UML/SysML extensions that we propose in order to support mod-
eling and reasoning with contracts. We first describe a domain meta-model of the contract-related
concepts in §3.1. We then discuss in §3.2 the constraints and well-formedness rules imposed on
the key notions in order to make models with contracts compliant with the theory from [9] and thus
verifiable. Finally, in §3.3 we discuss the mapping of the meta-model concepts as UML/SysML
profile, using the standard extension mechanisms (stereotypes).

3.1 A meta-model for contracts in UML/SysML

Within the contract theory we have presented there are two categories of concepts: (1) those
related to contract modeling represented in the upper part of the meta-model given in Figure 2
and (2) those related to modeling relations between contracts, used for example in verification,
represented in the lower part of Figure 2.

The requirement ϕ that the component model has to satisfy is represented by the meta-class
SafetyProperty. This meta-class is left unspecified at this point since different formalisms could be
used to model a property, such as temporal logics, automata-based languages (observers), etc. In
§3.3 we instantiate the meta-model in the OMEGA profile, which uses an observer for modeling a
SafetyProperty.

7

Figure 2: UML/SysML metamodel extended with Contract

The assumption/guarantee of a contract is modeled by the corresponding meta-class Assump-
tion/Guarantee type of Class. So, both elements are modeled by a class that has a behavior ex-
pressed by one state machine and communicates through ports. The latter constraint imposes the
following: an Assumption/Guarantee is not involved in associations, generalizations, realizations
(except the interface realizations demanded by ports) and dependencies. However, the Assump-
tion/Guarantee may define a composite sub-structure. Such an example is provided in the case
study of §4.

Constraint 1 An Assumption has no relations: associations, generalizations, realization and de-
pendency are forbidden.

context Assumption

-- Rule: An assumption has only properties with predefined types (i.e. an
assumption is not involved in associations, aggregations and
compositions)

def: assumptionHasNoPropertiesClassType : Boolean =
self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.

name<>’Timer’ and not a.isComposite)->size() = 0

def: assumptionPropertiesWellFormed : Boolean =
self.assumptionHasNoPropertiesClassType

inv assumptionPropertiesWellFormed : self.assumptionPropertiesWellFormed

-- Rule: An assumption is not involved in any generalization relations (has
no parents)

8

def: assumptionHasNoGenerals : Boolean =
self.general->size() = 0

inv assumptionGeneralizationsWellFormed : self.assumptionHasNoGenerals

-- Rule: An assumption does not depend on any model element
def: assumptionHasNoDependencies : Boolean =

self.clientDependency->reject(oclIsTypeOf(uml::InterfaceRealization))->
size() = 0

inv assumptionDependenciesWellFormed : self.assumptionHasNoDependencies

Constraint 2 A Guarantee has no relations: associations, generalizations, realization and de-
pendency are forbidden.

context Guarantee

-- Rule: A guarantee has only properties with predefined types (i.e. an
assumption is not involved in associations, aggregations and
compositions)

def: guaranteeHasNoPropertiesClassType : Boolean =
self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.

name<>’Timer’ and not a.isComposite)->size() = 0

def: guaranteePropertiesWellFormed : Boolean =
self.guaranteeHasNoPropertiesClassType

inv guaranteePropertiesWellFormed : self.guaranteePropertiesWellFormed

-- Rule: A guarantee is not involved in any generalization relations (has no
parents)

def: guaranteeHasNoGenerals : Boolean =
self.general->size() = 0

inv guaranteeGeneralizationsWellFormed : self.guaranteeHasNoGenerals

-- Rule: A guarantee does not depend on any model element
def: guaranteeHasNoDependencies : Boolean =

self.clientDependency->reject(oclIsTypeOf(uml::InterfaceRealization))->
size() = 0

inv guaranteeDependenciesWellFormed : self.guaranteeHasNoDependencies

A contract is represented by the meta-class Contract as a composite structure, containing ex-
actly one assumption and one guarantee (i.e. any other properties are forbidden). The only rela-
tions a contract may be involved in are those that represent the verification relations used in our
theory, as described below.

Constraint 3 A Contract does not own any properties (except the composite assumption and guar-
antee), any operations or signal receptions and any state machines. A Contract is not involved in
other relations besides Implementation, Refinement and Conformance (i.e. associations, general-
izations and aggregations/compositions are forbidden).

context Contract

9

-- Rule: A contract has no properties besides one part typed assumption and
one part typed guarantee (i.e. no properties with predefined type and no
properties from associations, aggregations or compositions)

def: contractHasNoPropertiesPredefinedType : Boolean =
self.ownedAttribute->select(a | not a.type.oclIsTypeOf(uml::Class))->size

() = 0
def: contractHasNoPropertiesClassType : Boolean =

self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and
((not a.type.oclAsType(uml::Class).isAssumption) or (a.type.oclAsType(uml

::Class).isAssumption and not a.isComposite)) and
((not a.type.oclAsType(uml::Class).isGuarantee) or (a.type.oclAsType(uml::

Class).isGuarantee and not a.isComposite)))->size() = 0
def: contractPropertiesWellFormed : Boolean =

self.contractHasNoPropertiesPredefinedType and self.
contractHasNoPropertiesClassType

inv contractPropertiesWellFormed: self.contractPropertiesWellFormed

-- Rule: A contract has no operations
def: contractHasNoOperations : Boolean =

self.ownedOperation->size() = 0

inv contractOperationsWellFormed : self.contractHasNoOperations

-- Rule: A contract has no statemachine
def : contractHasNoStateMachine : Boolean =

self.ownedBehavior->size() = 0

inv contractStateMachineWellFormed : self.contractHasNoStateMachine

-- Rule: A contract is not involved in any generalization relations (has no
parents)

def : contractHasNoGenerals : Boolean =
self.general->size() = 0

inv contractGeneralizationsWellFormed : self.contractHasNoGenerals

If a contract serves in the conformance step in the methodology depicted in Fig. 1, this is
modeled using a Conformance relation (a kind of Dependency) between the Contract and the
corresponding SafetyProperty. One can use the same contract for several safety properties.

The dominance relation is represented by the meta-class Refinement type of Dependency. One
contract is refined by a set of contracts. Note that this is possible since UML/SysML defines
Dependency from n clients to n suppliers. To ensure that no cycles may be modeled, the following
constraint is imposed: the target of a Refinement is not a member of the source set.

Constraint 4 The target of a Refinement relation is not a member of the source set.

context Refinement

-- Rule: The target of a Refinement relation is not a member of the source
set

def: refinementTargetIsNotSource : Boolean =
not self.refSource->includes(self.refTarget)

inv refinementTargetWellFormed : self.refinementTargetIsNotSource

Finally, the relation between a component and a contract that it must satisfy is represented by
two relations: one at the level of the type of the component and one at the level of the instance

10

(the part which participates in a composite structure where the contract is relevant and which is
modeled by the meta-class Property). On the level of the type, an Implementation relation (a
kind of Dependency) between a class and a contract models the fact that the class satisfies the
contract. One class can satisfy several distinct contracts. On the level of instances, a ContextUse
relation (also a kind of Dependency) between a Property, which is part of a composite structure,
and a Contract models the fact that the contract is used for verification within the context of that
composite structure. A Property may use a contract if and only if its class implements that contract.

Constraint 5 A Contract can be used by a Property if and only if the property’s type implements
the contract.

context ContextUse

-- Rule: A contract can be used in a proof tree if and only if the type of
the property using it implements the contract

def: getImplementationsForTarget : Set(Class) = self.useTarget.oclAsType(uml
::Classifier).getModel().getDependencies->select(d | d.isImplementation
and d.implTarget = useTarget).implSource.oclAsType(uml::Class)->asSet()

def: canContractBeUsed : Boolean = self.getImplementationsForTarget->
includes(self.useSource.type.oclAsType(uml::Class))

def: contractUseWellFormed : Boolean = self.canContractBeUsed

inv contractUseWellFormed : self.contractUseWellFormed

3.2 Well-formedness rules for verifiable contracts

In order to be able to apply the contract-based verification theory from [9] we need to make sure
that the hypotheses and constraints imposed by the formal framework are satisfied by the system
model. In the following we formalize these constraints at the meta-model level by a set of well-
formedness rules.

Within the formal framework, a contract is modeled by a pair (A,G) of TIOA such that the set
of inputs/outputs of G is a subset of the set of inputs/outputs of the component implementing the
contract and the composition of A and G is a closed system. To ensure this, the set of ports of a
Guarantee must correspond to a subset of the set of ports of the component for which the guarantee
is defined. The correspondence is based on the port name, and the port type and direction must
coincide. We consider that when a port is present in the guarantee, all the corresponding signal
receptions defined by the port type are handled in the guarantee.

Rule 1 Given an Implementation, the set of ports of the contracts’ Guarantee is included in the
set of ports of the component source.

context Port

def: isIdenticalTo(p:Port) : Boolean = self.name = p.name and self.provided
= p.provided and self.required = p.required

context Implementation

-- Rule: The set of ports of the Guarantee is a subset or equal to the set
of ports of the Part implementing it

-- Two ports are identical if they have the same name, direction and type

11

def: guaranteePortsSubsetPartPorts : Boolean =
self.implTarget.itsGuarantee.ownedPort->forAll(p1 | self.implSource.

ownedPort->select(p2 | p2.isIdenticalTo(p1))->size() = 1)

def: guaranteePortsWellFormed : Boolean =
self.guaranteePortsSubsetPartPorts

inv implementationGuaranteePortsWellFormed : self.guaranteePortsWellFormed

For the composition between an Assumption and a Guarantee to be closed, every port of the
Guarantee must have a corresponding conjugated port on the side of the Assumption, with the
same type and reversed direction.

Rule 2 Given a Contract, the Assumption and the Guarantee define a closed system: all ports of
each entity have a correspondent within the ports of the other entity.

context Port

def: isConjugated(p:Port) : Boolean = self.provided = p.required and self.
required = p.provided

context Contract

-- Rule: The assumption and guarantee of a contract define a closed system
with respect to ports

def: assumptionPortsSubsetGuaranteePorts : Boolean =
self.itsAssumption.ownedPort->forAll(p1 | self.itsGuarantee.ownedPort->

select(p2| p1.isConjugated(p2))->size() = 1)
def: guaranteePortsSubsetAssumptionPorts : Boolean =

self.itsGuarantee.ownedPort->forAll(p1 | self.itsAssumption.ownedPort->
select(p2 | p1.isConjugated(p2))->size() = 1)

def: contractAGPortsWellFormed : Boolean =
self.assumptionPortsSubsetGuaranteePorts and self.

guaranteePortsSubsetAssumptionPorts

inv contractClosedSystem : self.contractAGPortsWellFormed

The dominance relation is also subject to refinement of provided/required requests. This rule
is also expressed with respect to ports: a port of the guarantee which is the target of the refinement
must be a matched (by name and type) by a port of one of the refining guarantees, and must not be
matched by a corresponding conjugated port (i.e. with reversed directionnality) of another of the
refining guarantees.

Rule 3 Given a Refinement, the set of ports of the target’s guarantee is a subset or equal to the
union of not matched ports of its set of sources.

context Port

def: isSubtypeConjugated(p:Port) : Boolean = self.direction <> p.direction
and p.interfaces->includesAll(self.interfaces)

context Class

def: getPart : Set(Property) = self.ownedAttribute->select(a | a.type.
oclIsTypeOf(uml::Class) and a.isComposite)

def: getUsedContractsOfParts(target:Class) : Set(Class) =

12

self.getPart->iterate(p:Property; res:Set(Class)=Set{} | res->union(p.
clientDependency->select(d1:Dependency | d1.isUsage and d1.useTarget.
clientDependency->select(d2:Dependency | d2.isRefinement and d2.
refTarget = target)->size() > 0).useTarget.oclAsType(uml::Class)))

def: getPortsFromUsedContractsOfParts(target:Class) : Set(Port) =
self.getUsedContractsOfParts(target)->iterate(c:Class; res:Set(Port)=Set{}

| res->union(c.itsGuarantee.ownedPort))

context Dependency

def: getPartsUsingRefinementTarget : Set(Property) =
self.refTarget.oclAsType(uml::Classifier).getModel().getDependencies->

select(d:Dependency | d.isUsage and d.useTarget = self.refTarget).
useSource->asSet()

def: getRequiredPorts(sp:Set(Port)) : Set(Port) = sp->select(p:Port | p.
direction = ’required’)

def: getProvidedPorts(sp:Set(Port)) : Set(Port) = sp->select(p:Port | p.
direction = ’provided’)

context Refinement

-- Rule: The set of Ports of the Guarantee of the Source is a subset or
equal to the (union of) sets of ports of the Gurantees of the Target

def: nonMatchedPorts(sp:Set(Port)) : Set(Port) =
let spr: Set(Port) = self.getRequiredPorts(sp),

spp: Set(Port) = self.getProvidedPorts(sp) in
spr->iterate(p1:Port; res:Set(Port)=Set{} | if not spp->exists(p2 | p1.

isSubtypeConjugated(p2)) then res->union(p1->asSet()) else res endif)
->union(

spp->iterate(p1:Port; res:Set(Port)=Set{} | if not spr->exists(p2 | p1.
isSubtypeConjugated(p2)) then res->union(p1->asSet()) else res endif))

def: refTargetPortsSubsetSourcesPorts(p:Property) : Boolean =
let r:Class = self.refTarget,

sp:Set(Port) = self.nonMatchedPorts(p.type.oclAsType(uml::Class).
getPortsFromUsedContractsOfParts(r)) in

r.itsGuarantee.ownedPort->forAll(p1 | sp->select(p2 | p1.isIdenticalTo(p2)
)->size() = 1)

def: targetGuaranteePortsWellFormed : Boolean =
self.getPartsUsingRefinementTarget->forAll(p:Property | self.

refTargetPortsSubsetSourcesPorts(p))

inv refinementTargetGuaranteePortsWellFormed : self.
targetGuaranteePortsWellFormed

One of the advantages of contracts is their reusability: different components can implement
the same contract and one contract can be subject to several refinement relations. However, the
latter case may introduce inconsistencies when verifying a property. Assume a part K that uses
a contract C having two possible refinements {C1, C2} and {C3, C4}. This introduces a non-
determinism in the computed proof tree and complicates the verification steps. In order to avoid
such situations, we demand for a contract to be refined only once within the context implementing
it (i.e. each part whose type implements the contract can refine it only once with respect to the
part’s parts).

Rule 4 Within a context, a contract can only be refined once.

context Class

13

def: refinementUniqueWithinContext(target:Class) : Boolean =
self.getPart->forAll(p:Property | p.clientDependency->select(d1:Dependency

| d1.isUsage and d1.useTarget.clientDependency->select(d2:Dependency
| d2.isRefinement and d2.refTarget = target)->size() > 0)->size() = 1)

context Refinement

-- Rule: Within a context (i.e. the part implementing the contract), the
target contract has only one possible refinement

def: refinementUniqueWithinContext : Boolean =
self.getPartsUsingRefinementTarget->forAll(p:Property | p.type.oclAsType(

uml::Class).refinementUniqueWithinContext(refTarget))

inv refinementUniqueWithinContext : self.refinementUniqueWithinContext

The theory from [9] also induces some constraints on the state machines of assumptions and
guarantees. In particular, the behavior of a guarantee or assumption should not impose constraints
on time progress. This is realized on the UML/SysML level ensuring that all transitions in these
state machines are stereotyped�lazy�, and that there is at most one output action on any transi-
tion.

Furthermore, for a model with contracts to be used in compositional verification according
to the methodology described in §2, the model must describe a unique and complete proof tree:
all implemented contracts are used within a context and for all SafetyProperty there is a contract
conforming to it.

Rule 5 Within a model, all implemented Contracts must be used by a part and for all SafetyProp-
erty there is a contract conforming to it.

context Contract

-- Rule: All contracts must be implemented
def: isImplemented : Boolean =

self.oclAsType(uml::Classifier).getModel().getDependencies->select(d
| d.isImplementation and d.implTarget = self)->size() > 0

def: isUsed : Boolean =
self.oclAsType(uml::Classifier).getModel().getDependencies->select(d

| d.isUsage and d.useTarget = self)->size() > 0
def: contractIsImplemented : Boolean =

if self.isContract
then if self.isImplemented then self.isUsed else true endif

else
true

endif

inv contractIsImplemented : self.contractIsImplemented

context SafetyProperty

-- Rule: All SafetyProperties have a contract conforming to it
def: isVerified : Boolean =

self.oclAsType(uml::Classifier).getModel().getDependencies->select(d | d.
isConformance and d.confTarget->includes(self))->size() > 0

def: spIsVerified : Boolean = self.isVerified

inv safetyPropertyIsVerified : self.spIsVerified

14

Figure 3: Contract stereotypes for the OMEGA2 Profile

3.3 Instantiating the meta-model in the OMEGA profile

In order to use contracts in a standard UML/SysML model, one needs to capture the informa-
tion from the meta-model described in the previous section in the form of standard extensions,
namely using stereotypes. Since all the new concepts introduced in the meta-model inherit from
an existing meta-class (either Class or Dependency), we choose to represent them as stereotypes
of these base meta-classes. Fig. 3 presents the Class stereotypes�contract�, �assumption�,
�guarantee�, and�observer� (which already exists in OMEGA and is reused for representing
SafetyProperty). For contract relations, the stereotypes of Dependency that correspond to the meta-
model elements are�implementation�,�usage�,�refinement� and�conformance�.

From the semantic point of view, Contracts are not handled in the same way as usual class-
es/blocks: they are of course not considered executable elements of the system. Contracts are only
used by the verification tools to check the validity of the conformance, dominance and satisfaction
relations.

4 The ATV Solar Generation System case study

The concepts and the reasoning method described previously have been applied on a case study,
an industrial-grade system model of a subsystem of the Automated Transfer Vehicle (ATV). The
ATV, developed by Astrium Space Transportation for the European Space Agency, is a spacecraft
put into orbit by the European heavy launcher Ariane-5 with the aim of supplying the International
Space Station. This case study consists of the Solar Wing Generation System (SGS) [8] responsible
for the deployment and management of the solar wings of the vehicle. The SysML model used
in the following, provided by Astrium Space Transportation, was obtained by reverse engineering
the actual SGS system for the purpose of this study.

The SGS system model illustrated in Fig. 4 summarizes the three main components involved
in the case study: the mission and vehicle management (MVM) part that initiates SGS wing de-
ployment, the SOFTWARE part of the SGS that based on requests received from the MVM executes
the corresponding automated procedures and the HARDWARE part that models the four physical
wings. The communication between components is realized via asynchronous signals transported
through ports and connectors. Due to the large number of ports (661) and connectors (504), Fig. 4
presents a simplified architectural view of SGS and only shows a link between two parts where
several connectors and ports are involved in the actual model.

Under the hypothesis that at most one hardware failure may occur during a run, which is

15

BL_ATV
«block,root»

MVM1

SGS1

SOFTWARE1

HARDWARE1

WING11

WING21

WING31

WING41

C1
«block,contract»

«usage»

C2
«block,contract»

«usage»

C3
«block,contract»

«usage»

C4
«block,contract»

«usage»

C
«block,contract»

«refinement»

«usage»

phi
«block,observer»

«conformance»

IBD_COMPLETE

Page 1 of 1

Figure 4: Architecture of the SGS system including contracts (simplified view).

embedded in the HARDWARE model, the main goal of the case study is to verify the following
property ϕ:

Property ϕ: After 10 minutes from system start-up, all four wings are deployed.

Due to the size and the complexity of the model, applying model-checking directly leads to
combinatorial explosion and the verification of ϕ does not finish. We explain in the following
how the property ϕ was verified using the contract-based reasoning methodology. We start by
modeling the property ϕ. This implies identifying what the observer corresponding to the safety
property ϕ must monitor. In our case, the block phi must observe the answer that each wing
provides with respect to its status (deployed or not deployed) when interrogated by the software.
So, the property ϕ expressed with respect to wing behavior must be satisfied by the HARDWARE
block instance that contains them. With regard to Fig. 1, the HARDWARE is the subsystem S
and WINGi, i = 1, 4, are the components Ki. The environment of the subsystem is given by the
parts with which it communicates: bidirectional communication is directly established between
SOFTWARE and HARDWARE, while SOFTWARE depends on the behavior of MVM. Thus, the
environment E of Fig. 1 is represented here by the composition of MVM and SOFTWARE.

Next, we provide a contract C = (A,G) such that it conforms to ϕ. In order to comply to
the contract methodology, C is implemented by HARDWARE’s type and it is used by this part
within the proof tree. We use as assumption A the concrete environment of HARDWARE, the
composition between MVM and SOFTWARE itself, which thus satisfies by construction the mirror
contract. Keeping this composition as assumption is not problematic since its state space has a
manageable size. As guarantee G we use the following abstraction derived (manually) from the
individual behavior of wings: for each wing status interrogation, the target wing answers either as
not deployed for at most 400 seconds or as deployed after at least 130 seconds. In order to ensure
Rule 2, since MVM‖SOFTWARE sends all possible requests to HARWARE, we equip G with all
ports defined by HARDWARE and we enrich the behavior of G to ignore all other requests. Rule 1
is also satisfied because no refinement of requests is performed. Rule 2 is satisfied by all Ci.

The third step consists in modeling a set of contracts {C1, C2, C3, C4} that refine C and prov-
ing that each contract Ci = (Ai, Gi) is implemented by WINGi’s type, i = 1, 4. The environment
for WINGi is given by the environment of the subsystem HARDWARE and all WINGj, j 6= i. We
use the following abstraction WAj for WINGj: the wing is either not deployed for at most 400 sec-
onds or deployed from at least 130 seconds while all other received requests are consumed. The

16

assumption Ai is the parallel composition of MVM, SOFTWARE and WAj, j 6= i. The guarantee
Gi is the projection of G on WINGi. Rule 3 is satisfied since the ports of HARDWARE with respect
to WINGi are identical to the ports of WINGi. Moreover, this condition also satisfies Rule 1 for
each Ci, since refinement of requests is not considered for this case study.

After this step the proof obligation tree is complete. The verification involves 10 intermediate
steps: 4 for verifying that each wing satisfies its contract, 5 sufficient conditions for dominance
between {C1, C2, C3, C4} and C and one for proving that A ‖ G � ϕ. Each verification step
is performed by the OMEGA-IFx model checker in a few hours (precise data is available in [9]).
The overall effort of the building the contracts and performing the verification steps was of about 5
person*days. This complexity is also due to the fact that some steps have been manually performed
like guarantees transformed into observers (timed trace inclusion is verified using observers) or
connecting assumptions to components via links. The automation of these steps is currently under
development. For further details on contract-based verification of the SGS case study, the reader
is referred to [9].

5 Related work

Modeling and verifying contracts for components is a long line of research, whose origins date
back to Hoare logic [10]. Syntactical and behavioral contracts, as classified in [2], have been ex-
plored for specifying composition constraints and pre/post conditions for operations and also for
modeling transformation of models and execution semantics. Contracts as a language construct
have emerged with the Eiffel programming language [14] and have since been explored for various
programming and specification models. In this section we concentrate on work aiming to intro-
duce contracts in high-level modeling languages. For a discussion of more theoretical works on
contracts and contract-based verification the reader is referred to [9].

Weis et al. [19] propose to model a contract for a component in UML by an interface and to
specify its role: it can be either a required contract on which the component depends or a provided
contract that is realized by the component. Syntactically, this representation of contracts is similar
to ours: we also make the distinction between the required behavior of the environment and the
provided behavior of the component by taking into account the assumption over the environment.
However, our contracts are richer since they model a behavior that can be used for component
validation, while the contracts of [19] can be used only for composability checking during the
development phases.

The Kmelia component model [13, 1], based on the previous described work, provides means
to verify the functional correctness of behavioral contracts for services: the behavior of an op-
eration is modeled as a Labeled Transition System and formal verification can be realized within
different tools via model transformation. Their meta-model defines for a contract the source imple-
menting it as an aggregated element (operation or interface) and models explicitly the contract sat-
isfaction results. But, this formalism does not describe how the order in which services are called
by and from a component can be verified, order that can be seen similar to our state machines.
Furthermore, it does not provide a connection to high-level modeling language as UML/SysML.

Contracts modeled as pre/post conditions are used in [6] for the verification of model transfor-
mation: the assumption is represented by an OCL constraint on the source model and the guarantee
is an OCL constraint on the target model. Besides the different purpose, the main difference with
respect to the syntax of contracts is that, while our approach considers contracts only for compo-
nents, [6] models contracts for all model elements. The same contracts are used in [5] to model
the execution semantics of UML elements which is seen as a case of model transformation.

To the best of our knowledge, this study is the first to consider behavioral contracts at the
component level in UML/SysML and to provide verification relations for property satisfaction by

17

contract-based reasoning. The meta-model we propose is generic enough to represent all the other
meta-models previously described, with except of the verification results extension that is based
on the dynamical execution of the model.

6 Conclusions

Based on a theory of contracts and on a methodological approach for reasoning with contracts
introduced in previous work [9], we have proposed an extension of UML/SysML allowing to
model contracts and use them for compositional verification of requirements. The extension is
defined as a meta-model, enriched with constraints and well-formedness rules to make contracts
verifiable. We have instantiated the extension within the OMEGA UML/SysML Profile to make
it usable with standard model editors. The verification method is supported by the OMEGA-IFx
toolset and the approach was validated on an industrial-grade system model.

Although an automatic model transformation from OMEGA system models to the input lan-
guage of the IFx Toolset is already available, some of the steps for generating the intermediate
contract-based verification models remain manual. Future work consists in automating all the in-
termediate model generation steps and in adding functionality for managing the proof obligations
and results and for enforcing the rigorous verification methodology described in §2.3.

References

[1] Pascal André, Ardourel; Gilles, and Mohamed Messabihi. Vérification de contrats logiciels
a l’aide de transformations de modeles. In 7èmes journées sur l’Ingénierie Dirigée par les
Modèles (IDM 2011), 2011.

[2] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making com-
ponents contract aware. Computer, 32(7):38–45, July 1999.

[3] Sebastien Bornot and Joseph Sifakis. An algebraic framework for urgency. Information and
Computation, 163, 2000.

[4] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF Toolset.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-
Time Systems, volume 3185 of Lecture Notes in Computer Science, pages 131–132. Springer
Berlin / Heidelberg, 2004.

[5] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier. Contracts for model exe-
cution verification. In Proceedings of the 7th European conference on Modelling foundations
and applications, ECMFA’11, pages 3–18, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. Ocl contracts for the veri-
fication of model transformations. ECEASST, 24, 2009.

[7] Eric Conquet, Francois-Xavier Dormoy, Iulia Dragomir, Susanne Graf, David Lesens, Pi-
otr Nienaltowski, and Iulian Ober. Formal Model Driven Engineering for Space Onboard
Software. In Proceedings of Embedded Real Time Software and Systems (ERTS2), Toulouse.
SAE, 2012.

[8] Iulia Dragomir, Iulian Ober, and David Lesens. A case study in formal system engineering
with SysML. In Engineering of Complex Computer Systems (ICECCS), 2012 17th IEEE
International Conference on, july 2012.

18

[9] Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety Contracts for Timed Reactive
Components in SysML. Technical report, IRIT, june 2013. Submitted for publication. Avail-
able at http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf.

[10] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576–580, 1969.

[11] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed
I/O Automata - Second Edition. Morgan & Claypool Publishers, 2010.

[12] RTCA Inc. Software Considerations in Airborne Systems and Equipment Certification. Doc-
ument RTCA/DO-178C, 2011.

[13] Mohamed Messabihi, Pascal André, and Christian Attiogbé. Multilevel Contracts for Trusted
Components. In Javier Cámara, Carlos Canal, and Gwen Salaün, editors, Proceedings Inter-
national Workshop on Component and Service Interoperability, volume 37 of EPTCS, pages
71–85, 2010.

[14] Bertrand Meyer. Applying Design by Contract. Computer, 25(10):40–51, October 1992.

[15] Iulian Ober and Iulia Dragomir. Omega2: A new version of the profile and the tools. In Engi-
neering of Complex Computer Systems (ICECCS), 2010 15th IEEE International Conference
on, pages 373–378. IEEE Computer Society, 2010.

[16] Object Management Group. Systems Modelling Language (SysML) v1.1, 2008.

[17] Object Management Group. Unified Modelling Language (UML) v2.2, 2009.

[18] Sophie Quinton. Design, vérification et implémentation de systèmes à composants. PhD
thesis, Université de Grenoble, 2011.

[19] Torben Weis, Christian Becker, Kurt Geihs, and Noël Plouzeau. A uml meta-model for
contract aware components. In Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools, UML’01, pages
442–456, London, UK, UK, 2001. Springer-Verlag.

19

A Contract meta-model: Formalization of constraints (in UML 2.3)

-- HELPER FUNCTIONS

context Namespace

-- Computes recursively the set of dependencies contained in a namespace
def: getDependenciesRec : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

context Model

-- Computes recursively the set of dependencies of a model
def: getDependencies : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

context Class

-- Verifies if the class is a contract
def: isContract : Boolean = self.getAppliedStereotypes()->select(name=’

contract’)->size()<>0

-- Verifies if the class is an assumption
def: isAssumption : Boolean = self.getAppliedStereotypes()->select(name=’

assumption’)->size()<>0

-- Verifies if the class is a guarantee
def: isGuarantee : Boolean = self.getAppliedStereotypes()->select(name=’

guarantee’)->size()<>0

context Dependency

-- Verifies if the dependency is an implementation
def: isImplementation : Boolean = self.getAppliedStereotypes()->select(name=

’implementation’)->size()<>0

-- Verifies if the dependency is a usage
def: isUsage : Boolean = self.getAppliedStereotypes()->select(name=’usage’)

->size()<>0

-- Verifies if the dependency is a refinement
def: isRefinement : Boolean = self.getAppliedStereotypes()->select(name=’

refinement’)->size()<>0

-- Verifies if the dependency is a conformance
def: isConformance : Boolean = self.getAppliedStereotypes()->select(name=’

conformance’)->size()<>0

-- CONSTRAINT 1

20

context Class

-- Verifies if the assumption does not model any class type properties not
composite

def: assumptionHasNoPropertiesClassType : Boolean =
self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.

name<>’Timer’ and not a.isComposite)->size() = 0

-- Verifies if the assumption has properties well formed
def: assumptionPropertiesWellFormed : Boolean =

if self.isAssumption
then self.assumptionHasNoPropertiesClassType

else
true

endif

-- Verifies if the assumption has no generalizations
def: assumptionHasNoGenerals : Boolean =

if self.isAssumption
then self.general->size() = 0

else
true

endif

-- Verifies if the assumption has no dependencies (except interface
realization)

def: assumptionHasNoDependencies : Boolean =
if self.isAssumption
then self.clientDependency->reject(oclIsTypeOf(uml::InterfaceRealization

))->size() = 0
else
true

endif

-- Constraint 1
inv assumptionWellFormed : self.assumptionPropertiesWellFormed and self.

assumptionHasNoGenerals and self.assumptionHasNoDependencies

-- CONSTRAINT 2

context Class

-- Verifies if the guarantee does not model any class type properties not
composite

def: guaranteeHasNoPropertiesClassType : Boolean =
self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.

name<>’Timer’ and not a.isComposite)->size() = 0

-- Verifies if the guarantees’ properties are well-formed
def: guaranteePropertiesWellFormed : Boolean =

if self.isGuarantee
then self.guaranteeHasNoPropertiesClassType

else
true

endif

-- Verifies if the guarantee has no generalizations
def: guaranteeHasNoGenerals : Boolean =

21

if self.isGuarantee
then self.general->size() = 0

else
true

endif

-- Verifies if the guarantee has no dependencies (except interface
realization)

def: guaranteeHasNoDependencies : Boolean =
if self.isGuarantee
then self.clientDependency->reject(oclIsTypeOf(uml::InterfaceRealization

))->size() = 0
else
true

endif

-- Constraint 2
inv guaranteeDependenciesWellFormed : self.guaranteePropertiesWellFormed and

self.guaranteeHasNoGenerals and self.guaranteeHasNoDependencies

-- CONSTRAINT 3

context Class

-- Verifies if the contract does not model any predefined type properties
def: contractHasNoPropertiesPredefinedType : Boolean =

self.ownedAttribute->select(a | not a.type.oclIsTypeOf(uml::Class))->size
() = 0

-- Verifies if the contract does not model any class type properties beside
assumption and guarantee

def: contractHasNoPropertiesClassType : Boolean =
self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and
((not a.type.oclAsType(uml::Class).isAssumption) or (a.type.oclAsType(

uml::Class).isAssumption and not a.isComposite)) and
((not a.type.oclAsType(uml::Class).isGuarantee) or (a.type.oclAsType(uml

::Class).isGuarantee and not a.isComposite)))->size() = 0

-- Verifies if the contract has properties well formed
def: contractPropertiesWellFormed : Boolean =

if self.isContract
then self.contractHasNoPropertiesPredefinedType and self.

contractHasNoPropertiesClassType
else
true

endif

-- Verifies if the contract does not own any operations
def: contractHasNoOperations : Boolean =

if self.isContract
then self.ownedOperation->size() = 0

else
true

endif

-- Verifies if the contract does not own any state machine
def : contractHasNoStateMachine : Boolean =

if self.isContract
then self.ownedBehavior->size() = 0

22

else
true

endif

-- Verifies if the contract has no generalizations
def : contractHasNoGenerals : Boolean =

if self.isContract
then self.general->size() = 0

else
true

endif

-- Constraint 3
inv contractWellFormed : self. contractPropertiesWellFormed and self.

contractHasNoOperations and self.contractHasNoStateMachine and self.
contractHasNoGenerals

-- CONSTRAINT 4

context Dependency

-- Verifies if the target of a refinement is not a member of the source set
def: refinementTargetIsNotSource : Boolean =

if self.isRefinement
then not self.client->includes(self.supplier)

else
true

endif

-- Constraint 4
inv refinementTargetWellFormed : self.refinementTargetIsNotSource

-- CONSTRAINT 5

context Dependency

-- Computes the set of classes that implement the target contract of a usage
def: getImplementationsForTarget : Set(Class) =

let ut:Class = self.supplier->asOrderedSet()->at(1).oclAsType(uml::Class)
in

ut.oclAsType(uml::Classifier).getModel().getDependencies->select(d | d.
isImplementation and d.supplier->asOrderedSet()->at(1).oclAsType(uml::
Class) = ut).client.oclAsType(uml::Class)->asSet()

-- Verifies if the type of the source of a usage is a class implementing the
contract

def: canContractBeUsed : Boolean = self.getImplementationsForTarget->
includes(self.client->asOrderedSet()->at(1).oclAsType(uml::Property).
type.oclAsType(uml::Class))

-- Verifies if the source of a usage can use the contract
def: contractUseWellFormed : Boolean =

if self.isUsage
then self.canContractBeUsed

else
true

endif

23

-- Constraint 5
inv contractUseWellFormed : self.contractUseWellFormed

24

B Making contracts verifiable: Formalization of well-formedness rules
(in UML 2.3)

-- HELPER FUNCTIONS

context Namespace

-- Computes recursively the set of dependencies contained in a namespace
def: getDependenciesRec : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

-- Computes recursively the class owning the namespace
def: getOwningClass : Class =

if self.oclIsTypeOf(uml::Class)
then self.oclAsType(uml::Class)

else
self.namespace.getOwningClass

endif

context Model

-- Computes recursively the set of dependencies of a model
def: getDependencies : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

context Classifier

-- Verifies if the classifier is an interface
def: isInterface : Boolean = self.oclIsTypeOf(uml::Interface)

-- Verifies if the classifier is an interfaceGroup
def: isInterfaceGroup : Boolean = self.getAppliedStereotypes()->select(name=

’portType’)->size()<>0

context Class

-- Verifies if the class is a contract
def: isContract : Boolean = self.getAppliedStereotypes()->select(name=’

contract’)->size()<>0

-- Verifies if the class is an assumption
def: isAssumption : Boolean = self.getAppliedStereotypes()->select(name=’

assumption’)->size()<>0

-- Computes the assumption of a contract
def: itsAssumption : Class = self.ownedAttribute->select(a | a.type.

oclIsTypeOf(uml::Class) and a.type.oclAsType(uml::Class).isAssumption)->
at(1).type.oclAsType(uml::Class)

-- Verifies if the class is a guarantee
def: isGuarantee : Boolean = self.getAppliedStereotypes()->select(name=’

25

guarantee’)->size()<>0

-- Computes the guarantee of a contract
def: itsGuarantee : Class = self.ownedAttribute->select(a | a.type.

oclIsKindOf(uml::Class) and a.type.oclAsType(uml::Class).isGuarantee)->
at(1).type.oclAsType(uml::Class)

-- Verifies if a contract is implemented by a class
def: isImplemented : Boolean = self.oclAsType(uml::Classifier).getModel().

getDependencies->select(d | d.isImplementation and d.implTarget = self)
->size() > 0

-- Verifies if a contract is used within a context
def: isUsed : Boolean = self.oclAsType(uml::Classifier).getModel().

getDependencies->select(d | d.isUsage and d.useTarget = self)->size() >
0

-- Verifies if the class is an observer
def: isObserver : Boolean = self.getAppliedStereotypes()->select(name=’

observer’)->size()<>0

-- Verifies if the class is a composite structure
def: isComposite : Boolean = self.ownedAttribute->select(a | a.type.

oclIsTypeOf(uml::Class) and a.type.oclAsType(uml::Class).name <> ’Timer’
)->size() <> 0

-- Computes the set of parts of a composite class
def: getPart : Set(Property) = self.ownedAttribute->select(a | a.type.

oclIsTypeOf(uml::Class) and a.isComposite)

context Port

-- Computes the set of interfaces that type a port
def: interfaces : Set(Interface) = self.provided->reject(isInterfaceGroup)

-- Computes the direction of a port
def: direction: String =

if self.getValue(self.getAppliedStereotypes()->select(name=’RhpPort’)->
asOrderedSet()->at(1),’isReversed’).oclAsType(Boolean)

then ’required’
else
’provided’

endif

-- Verifies if two ports have the same name, direction and type
def: isIdenticalTo(p:Port) : Boolean = self.name = p.name and self.direction

= p.direction and self.interfaces = p.interfaces

-- Verifies if two ports have different direction and the same type
def: isConjugated(p:Port) : Boolean = self.direction <> p.direction and self

.interfaces = p.interfaces

-- Verifies if two ports have different directions and that the current is a
subtype of the parameter port

def: isSubtypeConjugated(p:Port) : Boolean = self.direction <> p.direction
and p.interfaces->includesAll(self.interfaces)

context Dependency

-- Verifies if the dependency is an implementation
def: isImplementation : Boolean = self.getAppliedStereotypes()->select(name=

26

’implementation’)->size()<>0

-- Computes the source of an implementation
def: implSource : Class = self.client->asOrderedSet()->at(1).oclAsType(uml::

Class)

-- Computes the target of an implementation
def: implTarget : Class = self.supplier->asOrderedSet()->at(1).oclAsType(uml

::Class)

-- Verifies if the dependency is a usage
def: isUsage : Boolean = self.getAppliedStereotypes()->select(name=’usage’)

->size()<>0

-- Computes the source of a usage
def: useSource : Property = self.client->asOrderedSet()->at(1).oclAsType(uml

::Property)

-- Computes the target of a usage
def: useTarget : Class = self.supplier->asOrderedSet()->at(1).oclAsType(uml

::Class)

-- Verifies if the dependency is a refinement
def: isRefinement : Boolean = self.getAppliedStereotypes()->select(name=’

refinement’)->size()<>0

-- Computes the source of a refinement
def: refSource : Bag(Class) = self.client.oclAsType(uml::Class)

-- Computes the target of a refinement
def: refTarget : Class = self.supplier->asOrderedSet()->at(1).oclAsType(uml

::Class)

-- Verifies if the dependency is a conformance
def: isConformance : Boolean = self.getAppliedStereotypes()->select(name=’

conformance’)->size()<>0

-- Computes the source of a conformance
def: confSource : Class = self.client->asOrderedSet()->at(1).oclAsType(uml::

Class)

-- Computes the targets of a conformance
def: confTarget : Set(Class) = self.supplier.oclAsType(uml::Class)->asSet()

-- RULE 1

context Dependency

-- Verifies if the ports of a guarantee are defined in the component
implementing the contract

def: guaranteePortsSubsetPartPorts : Boolean =
self.implTarget.itsGuarantee.ownedPort->forAll(p1 | self.implSource.

ownedPort->select(p2 | p2.isIdenticalTo(p1))->size() = 1)

-- Verifies is an implementation relation is well formed with respect to
request refinement

def: guaranteePortsWellFormed : Boolean =
if self.isImplementation
then self.guaranteePortsSubsetPartPorts

27

else
true

endif

-- Rule 1
inv implementationGuaranteePortsWellFormed : self.guaranteePortsWellFormed

-- RULE 2

context Class

-- Verifies if the ports of the assumption have a correspondent within the
ports of the guarantee

def: assumptionPortsSubsetGuaranteePorts : Boolean =
self.itsAssumption.ownedPort->forAll(p1 | self.itsGuarantee.ownedPort->

select(p2| p1.isConjugated(p2))->size() = 1)

-- Verifies if the ports of the guarantee have a correspondent within the
ports of the assumption

def: guaranteePortsSubsetAssumptionPorts : Boolean =
self.itsGuarantee.ownedPort->forAll(p1 | self.itsAssumption.ownedPort->

select(p2 | p1.isConjugated(p2))->size() = 1)

-- Verifies if the contract defines a closed system
def: contractAGPortsWellFormed : Boolean =

if self.isContract
then self.assumptionPortsSubsetGuaranteePorts and self.

guaranteePortsSubsetAssumptionPorts
else
true

endif

-- Rule 2
inv contractClosedSystem : self.contractAGPortsWellFormed

-- HELPER FUNCTIONS

context Class

-- Computes the source set of contracts in a refinement relation within a
given context

def: getUsedContractsOfParts(target:Class) : Set(Class) =
self.getPart->iterate(p:Property; res:Set(Class)=Set{} | res->union(p.

clientDependency->select(d1:Dependency | d1.isUsage and
d1.useTarget.clientDependency->select(d2:Dependency | d2.isRefinement

and d2.refTarget = target)->size() > 0).useTarget.oclAsType(uml::
Class)))

-- Computes the set of ports of the guarantees of the source set of a
refinement relation within a given context

def: getPortsFromUsedContractsOfParts(target:Class) : Set(Port) =
self.getUsedContractsOfParts(target)->iterate(c:Class; res:Set(Port)=Set{}

| res->union(c.itsGuarantee.ownedPort))

-- Verifies that a contract is refined only once within a context
def: refinementUniqueWithinContext(target:Class) : Boolean =

self.getPart->forAll(p:Property | p.clientDependency->select(d1:Dependency

28

| d1.isUsage and d1.useTarget.clientDependency->select(d2:Dependency
| d2.isRefinement and d2.refTarget = target)->size() > 0)->size() = 1)

context Dependency

-- Computes the parts that implement the target of a refinement
def: getPartsUsingRefinementTarget : Set(Property) =

self.refTarget.oclAsType(uml::Classifier).getModel().getDependencies->
select(d:Dependency | d.isUsage and d.useTarget = self.refTarget).
useSource->asSet()

-- Computes the set of required ports from a larger set
def: getRequiredPorts(sp:Set(Port)) : Set(Port) =

sp->select(p:Port | p.direction = ’required’)

-- Computes the set of provided ports from a larger set
def: getProvidedPorts(sp:Set(Port)) : Set(Port) =

sp->select(p:Port | p.direction = ’provided’)

-- RULE 3

context Dependency

-- Computes the set of ports that do not have a match within the set
def: nonMatchedPorts(sp:Set(Port)) : Set(Port) =

let spr: Set(Port) = self.getRequiredPorts(sp),
spp: Set(Port) = self.getProvidedPorts(sp) in

spr->iterate(p1:Port; res:Set(Port)=Set{} | if not spp->exists(p2 | p1.
isSubtypeConjugated(p2)) then res->union(p1->asSet()) else res endif)
->union(

spp->iterate(p1:Port; res:Set(Port)=Set{} | if not spr->exists(p2 | p1.
isSubtypeConjugated(p2)) then res->union(p1->asSet()) else res endif))

-- Verifies that the set of ports of the target are also defined in the
union of non matched ports of the source of a refinement

def: refTargetPortsSubsetSourcesPorts(p:Property) : Boolean =
let r:Class = self.refTarget,

sp:Set(Port) = self.nonMatchedPorts(p.type.oclAsType(uml::Class).
getPortsFromImplementedContractsOfParts(r)) in

r.itsGuarantee.ownedPort->forAll(p1 | sp->select(p2 | p1.isIdenticalTo(p2)
)->size() = 1)

-- Verifies the refinement of requests of a refinement
def: targetGuaranteePortsWellFormed : Boolean =

if self.isRefinement
then self.getPartsUsingRefinementTarget->forAll(p:Property | self.

refTargetPortsSubsetSourcesPorts(p))
else
true

endif

-- Rule 3
inv refinementTargetGuaranteePortsWellFormed : self.

targetGuaranteePortsWellFormed

-- RULE 4

29

-- Verifies that a contract is refined only once in a context
def: refinementUniqueWithinContext : Boolean =

if self.isRefinement
then self.getPartsUsingRefinementTarget->forAll(p:Property | p.type.

oclAsType(uml::Class).refinementUniqueWithinContext(refTarget))
else
true

endif

-- Rule 4
inv refinementUniqueWithinContext : self.refinementUniqueWithinContext

-- RULE 5

context Class

-- Verifies if an implemented contract is used
def: contractIsImplemented : Boolean =

if self.isContract
then if self.isImplemented then self.isUsed else true endif

else
true

endif

-- Rule 5
inv contractIsImplemented : self.contractIsImplemented

context Class

-- Verifies if a safety property is a target of a conformance relation
def: isVerified : Boolean =

self.oclAsType(uml::Classifier).getModel().getDependencies->select(d | d.
isConformance and d.confTarget->includes(self))->size() > 0

-- Verifies that a conformance has within the target the safety property
def: spIsVerified : Boolean =

if self.isObserver
then self.isVerified

else
true

endif

-- Rule 5
inv safetyPropertyIsVerified : self.spIsVerified

30

C OMEGA Contract Profile: Formalization of well-formedness rules

-- HELPER FUNCTIONS

context Namespace

-- Computes recursively the set of dependencies contained in a namespace
def: getDependenciesRec : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

-- Computes recursively the class owning the namespace
def: getOwningClass : Class =

if self.oclIsTypeOf(uml::Class)
then self.oclAsType(uml::Class)

else
self.namespace.getOwningClass

endif

context Model

-- Computes recursively the set of dependencies of a model
def: getDependencies : Set(Dependency) =

self.member->iterate(m:NamedElement; res:Set(Dependency)=Set{} | if m.
oclIsTypeOf(uml::Dependency) then res->union(m.oclAsType(uml::
Dependency)->asSet())

else if m.oclIsKindOf(uml::Namespace) then res->union(m.oclAsType(uml::
Namespace).getDependenciesRec) else res->union(Set{}) endif endif)

context Classifier

-- Verifies if the classifier is an interface
def: isInterface : Boolean = self.oclIsTypeOf(uml::Interface)

-- Verifies if the classifier is an interfaceGroup
def: isInterfaceGroup : Boolean = self.getAppliedStereotypes()->select(name=

’portType’)->size()<>0

context Class

-- Verifies if the class is a contract
def: isContract : Boolean = self.getAppliedStereotypes()->select(name=’

contract’)->size()<>0

-- Verifies if the class is an assumption
def: isAssumption : Boolean = self.getAppliedStereotypes()->select(name=’

assumption’)->size()<>0

-- Verifies if the class is a guarantee
def: isGuarantee : Boolean = self.getAppliedStereotypes()->select(name=’

guarantee’)->size()<>0

-- Verifies if the class is an observer
def: isObserver : Boolean = self.getAppliedStereotypes()->select(name=’

observer’)->size()<>0

31

-- Verifies is the class is an interfaceGroup
def: isPortType : Boolean = self.getAppliedStereotypes()->select(name=’

portType’)->size()<>0

-- Verifies if the class is the root of the system
def: isRoot : Boolean = self.getAppliedStereotypes()->select(name=’root’)->

size()<>0

-- Verifies if the class is a composite structure
def: isComposite : Boolean = self.ownedAttribute->select(a | a.type.

oclIsTypeOf(uml::Class) and a.type.oclAsType(uml::Class).name <> ’Timer’
)->size() <> 0

-- Computes the sequence of receptions defined in all ports of a class
def: portRequests : Sequence(Reception) = self.ownedAttribute->select(p | p.

oclIsTypeOf(uml::Port)).oclAsType(uml::Port).interfaces.ownedReception

context Port

-- Computes the set of interfaces that type a port
def: interfaces : Set(Interface) = self.provided->reject(isInterfaceGroup)

-- Computes the set of receptions defined in the port’s type
def: requests : Bag(Reception) = self.interfaces.ownedReception

context Trigger

-- Computes the class owning the trigger
def: getOwningClass : Class = self.namespace.getOwningClass

-- Computes the signal for which the trigger is defined
def: getSignalName : String = self.event.oclAsType(uml::SignalEvent).signal.

name

context State

-- Verifies if the state is a SendAction
def: isSendAction : Boolean = not self.getAppliedStereotype(’

RhapsodyStandardModel::RhapsodyProfile::RhpSendAction’).oclIsUndefined()

-- Computes the signal sent via the SendAction
def: sendActionSignal : Signal = self.getValue(self.getAppliedStereotype(’

RhapsodyStandardModel::RhapsodyProfile::RhpSendAction’), ’event’).
oclAsType(uml::SignalEvent).signal

-- Computes the target port of the SendAction
def: sendActionTarget : Port = self.getValue(self.getAppliedStereotype(’

RhapsodyStandardModel::RhapsodyProfile::RhpSendAction’), ’target’).
oclAsType(uml::Port)

context Dependency

-- Verifies is the dependency is an implementation
def: isImplementation : Boolean = self.getAppliedStereotypes()->select(name=

’implementation’)->size()<>0

-- Verifies if the dependency is a usage
def: isUsage : Boolean = self.getAppliedStereotypes()->select(name=’usage’)

->size()<>0

-- Verifies if the dependency is a refinement

32

def: isRefinement : Boolean = self.getAppliedStereotypes()->select(name=’
refinement’)->size()<>0

-- Verifies if the dependency is a conformance
def: isConformance : Boolean = self.getAppliedStereotypes()->select(name=’

conformance’)->size()<>0

context Port

-- Verifies if the port is typed
def: portHasType : Boolean = self.interfaces->size() >= 1

-- Verifies that the port has requests to transfer
def: portTransfersRequests : Boolean = self.requests->size() <> 0

-- Rule: All ports transfer requests
inv portTransfersRequests : self.portTransfersRequests

context Trigger

-- Verifies that the trigger defined in a class has a corresponding
reception in a port type

def: signalDefinedInPortType : Boolean =
self.getOwningClass.portRequests.name->includes(self.getSignalName)

-- Rule: The signal of a trigger is defined within a port’s type
inv triggerCompleteness : self.signalDefinedInPortType

context State

-- Verifies if the target port of a SendAction can transfer the request (i.e
. a reception is defined in the port’s type)

def: signalDefinedInPortType : Boolean =
if self.isSendAction
then self.sendActionTarget.requests.name->includes(self.sendActionSignal

.name)
else
true

endif

-- Rule: The signal of a SendAction is defined within a port’s type
inv sendActionCompleteness: self.signalDefinedInPortType

context Class

-- Rule: Stereotypes are disjoint
inv correctDefinition : (isContract and not isAssumption and not isGuarantee

and not isObserver and not isPortType and not isRoot) or
(not isContract and isAssumption and not isGuarantee and not isObserver

and not isPortType and not isRoot) or
(not isContract and not isAssumption and isGuarantee and not isObserver

and not isPortType and not isRoot) or
(not isContract and not isAssumption and not isGuarantee)

33

context Dependency

-- Rule: Stereotypes are disjoint
inv correctDefinition : (isImplementation and not isUsage and not

isRefinement and not isConformance) or
(not isImplementation and isUsage and not isRefinement and not

isConformance) or
(not isImplementation and not isUsage and isRefinement and not

isConformance) or
(not isImplementation and not isUsage and not isRefinement and

isConformance) or
(not isImplementation and not isUsage and not isRefinement and not

isConformance)

context Class

-- Verifies if the contract has a composite assumption
def: contractHasAssumption : Boolean =

self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.
oclAsType(uml::Class).isAssumption and a.isComposite)->size() = 1

-- Verifies if the contract has a composite guarantee
def: contractHasGuarantee : Boolean =

self.ownedAttribute->select(a | a.type.oclIsTypeOf(uml::Class) and a.type.
oclAsType(uml::Class).isGuarantee and a.isComposite)->size() = 1

-- Verifies if the contract is well formed
def: contractPropertiesWellFormed : Boolean =

if self.isContract
then self.contractHasAssumption and self.contractHasGuarantee

else
true

endif

inv contractPropertiesWellFormed: self.contractPropertiesWellFormed

context Dependency

-- Verifies if the implementation has one source
def: implementationHas1Source : Boolean =

self.client->size() = 1

-- Verifies if the source of an implementation is a class
def: implementationHasClassSource : Boolean =

self.client->asOrderedSet()->at(1).oclIsTypeOf(Class)

-- Verifies if the source of an implementation is well-formed
def: implementationSourceWellFormed : Boolean =

if self.isImplementation
then self.implementationHas1Source and self.implementationHasClassSource

else
true

endif

inv implementationSourceWellFormed : self.implementationSourceWellFormed

34

-- Verifies if the implementation has one target
def: implementationHas1Target : Boolean =

self.supplier->size() = 1

-- Verifies if the implementation’s target is a contract
def: implementationHasContractTarget : Boolean =

self.supplier->asOrderedSet()->at(1).oclIsTypeOf(uml::Class) and self.
supplier->asOrderedSet()->at(1).oclAsType(uml::Class).isContract

-- Verifies if the target of an implementation is well-formed
def: implementationTargetWellFormed : Boolean =

if self.isImplementation
then self.implementationHas1Target and self.

implementationHasContractTarget
else
true

endif

inv implementationTargetWellFormed : self.implementationTargetWellFormed

context Dependency

-- Verifies if the usage has 1 source
def: usageHas1Source : Boolean = self.client->size() = 1

-- Verifies if the source of a usage is a part
def: usageHasPropertySource : Boolean = self.client->asOrderedSet()->at(1).

oclIsTypeOf(uml::Property)

-- Verifies if the source of a usage is well-formed
def: usageSourceWellFormed : Boolean =

if self.isUsage
then self.usageHas1Source and self.usageHasPropertySource

else
true

endif

inv usageSourceWellFormed : self.usageSourceWellFormed

-- Verifies if the usage has 1 target
def: usageHas1Target : Boolean = self.supplier->size() = 1

-- Verifies if the target of a usage is a contract
def: usageHasContractTarget : Boolean = self.supplier->asOrderedSet()->at(1)

.oclIsTypeOf(uml::Class) and self.supplier->asOrderedSet()->at(1).
oclAsType(uml::Class).isContract

-- Verifies if the target of a usage is well-formed
def: usageTargetWellFormed : Boolean =

if self.isUsage
then self.usageHas1Target and self.usageHasContractTarget

else
true

endif

inv usageTargetWellFormed : self.usageTargetWellFormed

35

context Dependency

-- Verifies if the refinement has a source set
def: refinementHasSources : Boolean =

self.client->size() >= 1

-- Verifies if all of the refinement sources are contracts
def: refinementHasContractSources : Boolean =

self.client->forAll(c | c.oclIsTypeOf(uml::Class) and c.oclAsType(uml::
Class).isContract)

-- Verifies if the refinement source is well-formed
def: refinementSourceWellFormed : Boolean =

if self.isRefinement
then self.refinementHasSources and self.refinementHasContractSources

else
true

endif

inv refinementSourceWellFormed: self.refinementSourceWellFormed

-- Verifies if the refinement has one target
def: refinementHas1Target : Boolean =

self.supplier->size() = 1

-- Verifies if the refinement target is a contract
def: refinementHasContractTarget : Boolean =

self.supplier->asOrderedSet()->at(1).oclIsTypeOf(uml::Class) and self.
supplier->asOrderedSet()->at(1).oclAsType(uml::Class).isContract

-- Verifies if the refinement target is well-formed
def: refinementTargetWellFormed : Boolean =

if self.isRefinement
then self.refinementHas1Target and self.refinementHasContractTarget

else
true

endif

inv refinementTargetWellFormed: self.refinementTargetWellFormed

context Dependency

-- Verifies if the conformance has one source
def: conformanceHas1Source : Boolean =

self.client->size() = 1

-- Verifies if the conformance source is a contract
def: conformanceHasContractSource : Boolean =

let s:NamedElement = self.client->asOrderedSet()->at(1) in
s.oclIsTypeOf(uml::Class) and s.oclAsType(uml::Class).isContract

-- Verifies if the conformance source is well formed
def: conformanceSourceWellFormed : Boolean =

if self.isConformance
then self.conformanceHas1Source and self.conformanceHasContractSource

else

36

true
endif

inv conformanceSourceWellFormed : self.conformanceSourceWellFormed

-- Verifies if the conformance has a target set
def: conformanceHasTargets : Boolean =

self.supplier->size() > 0

-- Verifies if the conformance has only in the target set
def: conformanceHasObserverTargets : Boolean =

self.supplier->forAll(s | s.oclIsTypeOf(uml::Class) and s.oclAsType(uml::
Class).isObserver)

-- Verifies if the conformance target is well-formed
def: conformanceTargetWellFormed : Boolean =

if self.isConformance
then self.conformanceHasTargets and self.conformanceHasObserverTargets

else
true

endif

inv conformanceTargetWellFormed : self.conformanceTargetWellFormed

37

UPS-IRIT, 118 route de Narbonne, 31062 Toulouse CEDEX 9

+33 (0) 561 55 67 65 info@irit.fr www.irit.fr

KEYWORDS

component, contract, compositional reasoning, UML/SysML, meta-model,
design, well-formedness, V&V

ABSTRACT

A compositional approach based on components and driven by requirements
is a common method used in the development of critical real-time embedded
systems. Since the satisfaction of a requirement is subject to the composition
of several components, defining abstract and partial behaviors for components
with respect to the point of view of the requirement allows for a manageable
design of systems. In this paper we consider such specifications in the form of
contracts. A contract for a component is a pair (assumption, guarantee) where
the assumption is an abstraction of the component’s environment behavior
and the guarantee is an abstraction of the component’s behavior given that the
environment behaves like the assumption. In previous work we have defined
a formal contract-based theory for Timed Input/Output Automata with the
aim of using it to express the semantics UML/SysML models. In this paper
we propose an extension of the UML/SysML language with a syntax and
semantics for contracts and for the relations they must satisfy. Besides the
important role that contracts have in design, they can also be used for the
verification of requirement satisfaction and for their traceability.

