
Université Paul Sabatier Toulouse III

Master Informatique et Télécommunication
Parcours Système Informatique et Génie Logiciel

Année : 2010

Institut de Recherche en Informatique de Toulouse
Directeur : Luis Fariñas del Cerro

Formalisation sémantique et vérification de structures composites

Auteur : Iulia - Elena Dragomir

Directeur de Recherche : Iulian Ober
Responsable du stage : Iulian Ober

Résumé

Ce rapport introduit les structures composites dans le contexte du profile OMEGA UML
pour représenter la structure hiérarchique des systèmes complexes, comme les systèmes
temps-réel embarqués. Comme la norme UML est sous-spécifiée pour préserver la généralité
du langage, on se propose de définir un ensemble expressif de notions et de règles pour la
bonne modélisation et cohérence de structures composites. Une formalisation en OCL
est mise en œuvre afin de pouvoir identifier les fautes de modélisation le plus souvent
rencontrées dans des systèmes hiérarchiques. La formalisation en Isabelle/HOL est prévue
pour prouver le typage sûr des structures composites qui respectent l’ensemble de principes
proposés.

OMEGA UML est un profil dédié à la spécification et validation de systèmes temps-réel
et embarqués, basé sur un sous-ensemble des éléments d’UML et intégré dans une plate-
forme, IFx Toolset, qui propose des techniques comme la simulation, le model-checking
et l’analyse statique pour la validation de systèmes. Du point de vue structurel le profil
utilise les diagrammes de classes qui, à leur tour, contiennent des classes actives ou passives
avec des attributs, relations (associations, compositions, héritage), opérations et machines à
états. Du point de vue comportemental, le profil permet d’utiliser les opérations (primitives
ou déclencheurs), les signaux, les machines à états et les actions (qui décrivent le corps d’une
opération ou l’effet d’une transition). Des extensions pour modéliser le comportement
temporel sont disponibles dans ce profil, par exemple les notions temporisateur et horloge.
Les observateurs sont des objets spéciaux (classes stéréotypées « observer ») qui décrivent
des propriétés dynamiques de sûreté du système et dans leur machine à états, un état peut
être qualifié comme un état d’erreur pour exprimer la non-satisfaction de la propriété.

La mise au niveau de la norme UML à la version 2.x (de la version 1.4) introduits les
structures composites. La nécessité des structures composites est donnée par le fait qu’elles
sont un mécanisme puissant pour augmenter l’expressivité et la lisibilité des diagrammes
de classes UML. Elles sont utilisées pour spécifier l’initialisation des structures complexes
d’objets. En particulier, les systèmes temps-réel présentent des topologies hiérarchiques
complexes et, surtout statiques, qui se prêtent bien à un modélisation avec des structures
composites.

Une structure composite est une structure “d’éléments interconnectés qui sont créés en
même temps qu’une instance du classifier contenant”. Plus précisément, la structure com-
posite est formée de sous-composants ou parts (instances de classes) et de connecteurs (liens
de communication entre deux sous-composants, un sous-composant et un port ou deux
ports). La norme UML fait la distinction entre: “assembly connector” qui fait la liaison en-
tre deux sous-composants et“delegation connector”qui fait la liaison entre l’environnement
de la structure composite et un sous-composant. Un connecteur peut être typé avec une
association. Un port est un point d’interaction entre son propriétaire et l’environnement.
Un port est défini par son contrat (une interface) qui lui permet de transférer les requêtes
(opérations ou signaux) vers l’environnement, si son contrat requis (required), ou vers son
propriétaire, si son contrat est fourni (provided).

Il est évident que tous les connecteurs syntaxiquement corrects ne sont pas valides.

i

Nous avons trouvé de problèmes de direction des ports et des connecteurs, de problèmes de
typage des connecteurs et de problèmes sur le comportement d’un port. Un point essentiel
est la définition d’un système de types permettant de caractériser chaque connecteur et
chaque port.

Mais comme la norme laisse libres différents points de variation sémantique, on a iden-
tifié quelques inconsistances au niveau de la modélisation des structures composites et qui
sont présentées ci-dessous avec la solution que nous avons adopté dans le nouveau profil
OMEGA2.

1. Directionalité des ports. En UML, les ports sont bidirectionnels, c’est-à-dire qu’ils
peuvent spécifier un ensemble de requêtes entrantes autorisées (l’interface fournie) et
un ensemble de requêtes sortantes autorisées (l’interface requise). Pour modéliser un
port bidirectionnel une relation de dépendance stéréotypé «Usage» doit être défini
entre l’interface fournie et l’interface requise. Le type d’un tel port est sa interface
fournie. Toutefois, le fait qu’un port puisse être bidirectionnel pose des problèmes
de typage, par exemple lorsqu’un port est utilisé par le composant propriétaire pour
envoyer des requêtes conformes à l’interface requise, le port doit être traité par le
système de types comme une entité du type requis, même s’il est déclaré comme une
entité du type fourni. D’un autre côté, quand on veut spécifier le comportement
du port la machine à états doit gérer de requêtes provenant des deux sens, donc
conformes aux deux interfaces: celle requise est celle fournie. Notre solution est
d’interdire les ports bidirectionnels et les remplacer par deux port unidirectionnel
(un spécifiant l’interface requise et l’autre l’interface fournie).

2. Directionalité des connecteurs. Dans le cas où on a un connecteur entre deux
ports, sa direction est déterminée par la direction de ses ports. Mais la direction peut
être inconsistante, par exemple si on lie un port requis d’un sous-composant avec un
port fourni de la structure composite. Dans le cas d’un “delegation connector” qui
lie deux ports, on demande que les deux aient la même direction (requis ou fourni).
Dans le cas d’un “assembly connector” qui lie deux ports, on demande que l’un soit
requis et l’autre fourni.

3. Typage statique des connecteurs. Dans le cas qu’un connecteur parts d’un
composant c’est nécessaire de typer le connecteur avec une association, car sinon il
n’y a aucun moyen pour le composant d’envoyer une requête à travers ce connecteur.

4. Typage dynamique d’un connecteur. Par défaut le comportement d’un con-
necteur est de transporter des requêtes (signaux ou appels d’opérations) d’une ex-
trémité à l’autre. Pour déterminer les requêtes valides nous introduisons une règle
basé sut le fait qu’un port peut requérir ou fournir un ensemble d’interfaces. Cette
règle calcule l’ensemble des interfaces possibles à être transportées par un connecteur:
l’ensemble des interfaces transportées en OMEGA2 est l’intersection des ensembles
trouvés aux deux extrémités d’un connecteur.

ii

5. Plusieurs connecteurs partant du même port. Il y a les cas quand plusieurs
connecteurs on le même port comme point de départ et ils transportent la même
interface. Pour lever l’ambigüité, OMEGA2 demande qu’au moins un connecteur
soit typé par une association et le comportement du port soit explicitement spécifié
par une machine à état.

6. Comportement du port. Le comportement d’un port est de transférer les requêtes
vers son propriétaire ou l’environnement solen sont type et il peut être spécifié par
une machine à états. Cela implique que le comportement soit en mesure de faire
référence aux connecteurs qui ont une extrémité dans ce port. La sémantique définit
des associations implicites qui permettent d’accéder au connecteurs qui ne sont pas
typés avec une association. En plus, on demande que les ensembles des interfaces
transportées sur n’importe quels deux connecteurs différents partant du même port
et non-typés avec une association soient disjoints. Pour la complétude, on demande
que la réunion de tous les ensembles des interfaces transportées soit égale à l’ensemble
des interfaces du port.

Au final, l’ensemble de règles définissent un langage bien typé pour lequel nous sommes
intéressé de prouver le typage sûr. Ça veut dire que chaque requête atteint sa destination
finale et que chaque composant reçoit que de requêtes compatible avec ses interfaces.

Toutes les règles présentées ci-dessus sont formalisées en OCL pour capturer les fautes de
modélisation les plus sensibles par rapport à nos contraintes dans les modèles OMEGA2.
Cet ensemble de règles est utilisé pour la validation statique en phase compilation du
modèle, avant la transformation vers un modèle IF pour être validé du point de vue com-
portemental. En appliquant l’ensemble des principes dans des modèles réels, nous avons
trouvé des fautes concernant le typage dynamique des connecteurs (connecteurs qui ne
transportent pas des requêtes) et le comportement de ports (la même interface appartient
à deux ensembles des interfaces transportées qui doivent être disjoints; une interface requise
n’a pas un correspondant à l’autre extrémité du connecteur et une interface fournie n’est
pas réalisée par le propriétaire du port).

La formalisation Isabelle/HOL a comme but de prouver que les structures composites
qui respectent l’ensemble de règles ont un typage sûr. Nous avons défini une syntaxe
abstraite pour représenter le profil dans cet assistant de preuves et nous avons ajouté
de règles pour que la syntaxe abstraite corresponde au profile. Les règles présentés sont
formalisés à l’aide de fonctions récursives. Le typage sûr n’a pas encore été prouvé, à cause
de la preuve de terminaison des ces fonctions récursives qui ne sont pas totales.

Pareil à la version précédente du profil OMEGA, celle présentée ici est soutenue d’une
bôıte à outils (IFx2) qui offre de possibilités pour la simulation et vérification d’un modèle.

iii

Contents

Introduction 1

1 An overview of OMEGA Profile and tools 2
1.1 The OMEGA UML Profile . 2
1.2 The IF Language . 5
1.3 Translating OMEGA UML to IF . 8
1.4 IFx Toolset . 9

2 Composite structures 11
2.1 Background . 11
2.2 Extended OMEGA Profile . 13

2.2.1 Bidirectional ports . 13
2.2.2 Directionality rules . 14
2.2.3 Type coherence rules . 17
2.2.4 Port behaviour rules . 19
2.2.5 Concurrency model and observers 21

2.3 Translating composite structures to IF . 22

3 OCL Formalization 24

4 Isabelle/HOL Formalization 34

Conclusions 39

iv

List of Figures

1 Structural OMEGA UML model for Client-Server application 3
2 Behavioural OMEGA UML model for Client-Server application 5
3 UML Observer for Client-Server application 6
4 An IF process . 7
5 IFx toolbox . 9
6 IFx workflow . 10

7 Composite structure example . 12
8 (a) - Example of a biriderctional port, (b) - Equivalent in OMEGA2 13
9 Connection rules in composite structures 17
10 (a) - Default state machine for port pIJL, (b) - User-defined machine for

port rK . 20
11 Forbidden composite structure. 21

v

Introduction

This report introduces a new version of the OMEGA UML Profile, an extension based
on composite structures. Composite structures were introduced starting with the version
2.0 in the UML standard and represent a big evolution in the representation of complex
hierarchical systems. Because the UML standard is under-specified in order to preserve
the generality of the language, various ambiguities are introduced in the model when using
composite structures. Our purpose is to define an expressive set of notions and principles to
clarify the composite structures at the modelling level and also at the execution model level.
Our rule set can be applied to other component based systems, like SysML or MARTE. All
the principles were formalized in OCL in order to catch the most frequent modelling issues
regarding composite structures. Isabelle/HOL formalization was developed for proving the
type-safety of composite structures observing this rule set.

As already mentioned, our interest in composite structures is given by the powerful
expressiveness of these constructs when modelling the architecture of hierarchical systems.
Common applications are real-time embedded systems. This kind of systems are scattered
through a large number of domains like avionics, aeronautics, consumer electronics and
many others. An important research topic is to prove their safety.

The context of our work is the previous OMEGA UML Profile, dedicated to the spec-
ification and validation of real-time embedded systems. This profile is based on a subset
of UML 1.4 elements for modelling the structure and the behaviour of a system and has
as extensions time modelling and observers (elements that express safety properties of a
model). The profile is integrated in a platform, the IFx Toolset, which proposes valida-
tion techniques like model-checking, simulation and static analysis via a translation to the
intermediate IF representation.

1

Chapter 1

An overview of OMEGA Profile and
tools

The OMEGA Profile ([20]) identifies a subset of the UML language which is sufficiently
expressive for modeling the structure and behavior of real-time systems, and for which
an operational semantics is defined by closing the relevant semantic variation points left
open in the UML standard ([8]). This profile it is integrated within a framework (the IFx
toolset [4]) that supports techniques like static analysis, model checking and simulation for
validating real-time embedded system.

1.1 The OMEGA UML Profile

The starting point of this work is the OMEGA UML Profile. The previous version is based
on a subset of UML 1.4. From structural point of view the profile consists in :

• Classes. They can be active or passive, partitioning the object space in activity
groups. Each instance of an active class1 defines an activity group. Each instance of
a passive class belongs to one single activity group, the one that has created it. They
can own attributes, relationships, operations and state machines. Activity groups are
considered concurrent and they react to external stimuli (like signals and operation
calls) in a run-to-completion manner. When a request is received from the outside
environment, it is stored in group’s queue and is treated later when the group is
stable. By stable we mean that every object owned by the group has no spontaneous
transitions (transitions that are guarded by a boolean condition and have no trigger)
or pending operations from inside the group (i.e., the object is stable).

• Structural features. Classes have attributes which can have predefined types: Inte-
ger, Real, Boolean, or reference types. Since the OMEGA UML Profile was developed
for modelling real-time embedded systems, two extensions representing time (timer

1Active classes are represented with a thick border to distinguish them for passive classes.

2

and clocks) have been included in the profile. Timer objects measure durations.
They may be set to a relative deadline and can be reset. Upon deadline different
operations may be executed by objects: sending a signal, calling an operation, etc.
Clock objects measure also durations, but their values can be consulted by other
objects.

• Relationships. The relationships that can be defined between classes are associa-
tions and generalisations. The associations supported are simple or compositional.

An example of an OMEGA UML model (structural model) is shown in Figure 1. The
modelled problem states that a system is composed from a Client and a Server between
which a communication path exists. The Client is interested in how many packets the
Server accepts so that no information is lost on the way. For that it sends an initial request
with the number of packets equal to 8. If the server has the capacity to accept 8 packets at
once it answers with ack ; otherwise the Server ignores the message received (this behaviour
simulates that some packets are lost on the communication path). If in 10 units of time,
the Client does not receive an answer from Server then this sends another request with
a halved number of packets. A test is considered finished if the Server answers with ack
or if the Client sends a request with the number of packets equal to 1 and no answer is
provided. In the last case, the Client restarts testing the connection. This model is the
running example of this chapter.

Figure 1: Structural OMEGA UML model for Client-Server application

From behavioural point of view, the OMEGA UML contains:

• Operations. We distinguish two types of operations: primitive and triggered. Trig-
gered operations are a special kind of transition trigger: the call of such an operation

3

enables the transition which this guards. Primitive operations are similar to the
methods in object oriented programming languages: they are subject to polymor-
phism and dynamic binding because of the inheritance relationship that may be
defined between classes. They can own a body which is described by an action.
When an operation is called by an object from the same activity group, the call is
handled immediately by the object called using a call stack. If the call is made from
another activity group, then it is queued by the receiving group and handled in a
later run-to-completion step.

• Signals. They are the second method for asynchronous communication between
objects and are usually used for triggering actions in the state machine of the target
object. They can have parameters and they differ from triggered operation in the
sense that they cannot have a return value. Signals always pass through object’s
activity group and are handled in a later run-to-completion step, no matter if the
target is in the same activity group as the sender or not.

• State machines. They describe the behaviour of a class in term of states, transi-
tions, triggers, actions, etc.

• Actions. They describe the effect of a transition in a state machine or the body
of an operation. The OMEGA UML Profile introduces a textual action language,
OMAL, compatible with the action metamodel of UML and which covers notions
like: object creation/destruction, operation calls, expression evaluation, variable as-
signments, signal output, return action and control flow structuring statements (if-
then-else and do-while).

The behaviour of classes for the problem stated above is shown in Figure 22.
The extension for time modelling covers prescriptive modelling and descriptive mod-

elling. Prescriptive modelling of time defines the two notions presented above: timers and
clocks. Descriptive modelling expresses hypothesis or requirements of the system. It al-
lows us to identify events in a system execution, to express duration constraints between
events which appear in the system and to express notions as resources, execution time and
priorities.

Besides the timing extension, OMEGA UML Profile introduces the notion of UML
Observers. They are special objects that monitor the system respectively its states and
its events. Observers are modelled by classes stereotyped with <<observer>>. They
have local memory and a state machine describes their behaviour. The states qualified
as <<error>> states can be used in the model in order to express the satisfaction or
the non satisfaction of a safety property. Observers may access any part of UML model’s
state (object attributes and states, signal queues) and they may use clocks to express
timing properties. So, special events have been defined for observers in order to meet their
purpose, events related to:

2The semantics used for actions is conform to OMEGA Action Language. itsClient!ack() corre-
sponds to sending the ack signal to the target itsClient.

4

Figure 2: Behavioural OMEGA UML model for Client-Server application

• signal exchange: send, acceptsignal, receivesignal;

• operation calls: invoke, receive (reception of call), accept (start of the actual pro-
cessing of call), invokereturn (sending of a return value), receivereturn (reception
of the return value), acceptreturn (consumption of the return value);

• execution of actions or transitions: start, end, startend;

• timers: occur, timeout, set, reset.

The trigger of an observer transition is a match clause specifying the type of the event
(previously presented), some related information (for example the operation name) and
observer variables that may receive related information (variables receiving the values of
the signal/operation call parameters). Figure 3 presents an UML Observer for the running
example: the connection between the Server and the Client is well established. This means
that the two entities can communicate and the Server has to provide a valid answer to the
Client (with the number of accepted packets) from the first executed test. Otherwise our
property is false and the Error state is reached.

1.2 The IF Language

The IF language is based on communicating extended timed automata. It involves pro-
cesses that may be created and destroyed dynamically, running in parallel and communi-
cating through messages. The IF language offers a description for the structure and the
behaviour of the system.

5

Figure 3: UML Observer for Client-Server application

The process is the most important component of a system. It has a unique process
identifier value (pid) and local memory containing variables (including clocks), control
states (defined by the state machine of the process) and a queue of pending messages
(received and not consumed).

Processes move from one control state to another one by executing transitions. A tran-
sition can be triggered by a message in the input queue or can be spontaneous. Transitions
are guarded by conditions on variables. During a transition actions expressed sequentially
can be performed by the process like message sending, variable assignments, clock settings,
etc. The body of a transition can be structured using control-flow statements (if-then-else,
while-do, etc.) and use external functions/procedures written in another programming
language (C/C++). An example of a process can be found in Figure 4.

The processes communicate between them via signals or shared variables. Signals can
have parameters and can be addressed directly to a process (using its identifier - pid) or to

6

Figure 4: An IF process

a signalroute which delivers the message to one or more processes. The messages received
by a process are stored in its queue and are consumed in a FIFO manner.

A process can define local variables which have one of the predefined types : bool,
integer, real, pid and clock. Structured data can be defined by using type constructors:
enumeration, range (domains), record, array and abstract. The abstract type makes
possible the definition of more complex data, the implementation being provided into an
external language. The clock type defines time progress. This kind of variables is usually
used to express timing constraints or timed guards for transitions. The basic operations on
clocks are: creation, value setting or resetting, and can be used in any transition. Variables
can also be defined globally for the system.

Observers are mechanisms used to describe safety properties of a system. They are spe-
cial processes which execute synchronously with the system and react to events occurring
in the system. Special primitives for retrieving the contents of queues, values of variables,
state of processes, etc. are defined in IF language. In order to express properties, the
observers have states marked with ordinary, error or success. The last two states express
the satisfaction or non satisfaction of the property described and they are both terminating
states.

The IF Language implements the priority system mechanism based on dynamic priority
relations. A priority system is a transition system with a dynamic priority relation on its
actions ([10]). A priority relation ≺ is a set of predicates of the form [condition]⇒ x ≺ y
meaning that under the specified condition the action x has a higher priority than the
action y. At a given state of the transition system, only enabled actions with maximal
priority can be executed so that, a priority relation restricts the behaviour of the system
eliminating possible deadlocks that might appear by selecting a transition among a set of
possible transitions.

For further details on the semantics of the IF Language, the reader is referred to [5].

7

1.3 Translating OMEGA UML to IF

Our interest is to have a mapping between the OMEGA Profile and the IF language such
that model-checking techniques, simulation and static analysis tools developed in the IFx
Toolset can be applied on real-time embedded UML models. For that, we have defined
some principles which are explained into this Section.

Every UML class X is mapped to a process PX with a local variable for each attribute
or association of X. Inheritance between classes is translated by the duplication of each
inherited attribute in the processes corresponding to subclasses. A special process, of type
group manager, is defined in order to handle the activity groups. This process is responsible
to treat requests coming from the environment: when the group is stable it forwards the
signals or operation calls stored in its queue to the target objects inside the group. The
link between processes and the activity group which owns them is made with a variable
called leader which, for each process, points to the group manager handling its activity
group.

The operations are defined by three basic signals: a call signal, a return signal and a
complete signal. The call signal has as predefined parameters the pid of the process waiting
for the completion of the call (the object caller or the target’s activity group manager), the
pid of the caller and the pid of the called object. It transports all user defined parameters
of the operation. The return signal indicates the return from an operation execution and
it is sent to the caller with some return values (if they are demanded). The complete signal
specifies the end of the computation for an operation and it is sent to the waiting process. It
differs from the return signal; the last case the operation can continue its computation after
returning a value. Moreover, for a primitive operation a new process is defined having as
behaviour the body of the operation. For a triggered operation, the behaviour is modelled
in the state machine of PX and there has to be an explicit return action.

When an operation is invoked, a call signal is sent directly to the target, if they both
are in the same activity group, or to target’s activity group manager, if they are in different
activity groups. The call is stored in group’s queue and the group’s manager forwards the
call to the target object when the group is stable so that it is handled in a subsequent
run-to-completion step. While the call has not been treated, the caller object waits for a
return or complete signal before resuming its activities. For primitive operation m, since
a specific process is defined PX::m, upon reception of a call signal, the process that owns
the operation, PX , creates a new instance of the handler process PX::m and waits for it to
terminate.

State machines and signals are mapped almost syntactically to IF. The actions enu-
merated in Section 1.1 are translated into IF as it follows: object creation is equivalent to
the instantiation of the object constructor’s handler process; method call is modelled by
sending a call signal and waiting for a return/complete signal; return action is modelled
by sending a return signal; variable assignment, signal output and control structures are
directly supported in IF.

The time extensions already presented are mapped straightforward in IF. Clocks exist
as a predefined type in IF. Timers are translated using a clock and a timer process sending

8

timeout signals. Events correspond to transitions in the IF model: the call of an operation
X :: m corresponds to the transition in which the signal callX::m is sent.

Observers are classes stereotyped with <<Observer>> , their translation being similar
to how classes are mapped.

1.4 IFx Toolset

The IFx Toolset is the validation environment built upon the language and the profile
presented before. It is structured in three layers:

• front-ends, which provide an interface with high-level languages (UML);

• static analysis tools for state space reduction and optimisation;

• behavioural tools for simulation, verification of properties, test case generator, etc.

Figure 5: IFx toolbox

The workflow of an OMEGA UML model through the environment is shown in Figure 6.
The dfa tool (automatic abstractions) is based on static analysis techniques. These

techniques simplify an IF description with the help of: live variables analysis (it removes
the globally dead variables and signal parameters and resets locally dead variables), dead-
code elimination (unreachable states and transitions are removed from the IF description
under some user given assumptions) and variable abstraction (by eliminating variables and
their dependencies which are not relevant for the user).

The automatic verification identifies errors in the model’s behaviour (if there are errors)
by exploring the state graph with the following options: exploration order (breadth-first or

9

Figure 6: IFx workflow

depth-first), error handling (generate error scenarios, stop the state space exploration if any
error has been found) and partial order reduction (abstraction method that during the state
space search yields smaller state spaces). The interactive simulator permits to visualise
model’s behaviour with the possible use of error scenarios. Other behavioural techniques
implemented in the toolbox are: on-the-fly model-checking based on µ− calculus, model-
checking with observers, model minimisation by computing an abstract model and test
case generation.

The workflow of the UML model provided in Section 1.1 stops at the automatic veri-
fication step, error scenarios being generated. The observer specifies that the connection
between the Client and the Server is well established but the behaviour of the Server allows
ignoring all messages received from the Client for one test of the connection, forcing the
last one to restart its behaviour. This makes our property to be false and the Error state
to be reached.

10

Chapter 2

Composite structures

Composite structures have been introduced in the UML standard starting with version
2.0. They refer to “a composition of interconnected elements, representing run-time in-
stances collaborating via communication links to some common objectives” ([14] pp. 161).
Composite structures are a big evolution in modelling a system and are often used for the
hierarchical representation of real-time embedded systems.

2.1 Background

A composite structure is formed by inner components, that are called parts, and commu-
nication paths, that are called connectors or links. Parts are instances of classes with
predefined role and they usually are in a fix number within the composite structure. In
Figure 7 parts are represented by the instances of Keypad, Display, CashUnit, CardUnit,
Controller and BankTransactionBroker. Links connect inner components (e.g. e in Fig-
ure 7), an inner component with a port (e.g. c, d) or two ports (e.g. f), so that these
elements can communicate between them via signals or operation calls. Such links can
transport signals between elements that know how to answer to them. A link can be the
realization of an association (especially in the case of a connector between two parts), but
this is not mandatory. The UML standard classifies links in two categories: delegation
links which connect the composite structure with one of its components (part or port of a
part) and assembly links which connect two components between them. Delegation links
can be separated in outbound delegation links and inbound delegation links, depending of
connector’s direction (if it is oriented to the outside environment or, correspondingly, to
the inner structure).

A port (e.g. the elements k, d, ca, cu from ATM and Controller, bank from Bank-
TransactionBroker and ATM Bank from ATM in Figure 7) is an interaction point between
its owner and the outside environment. Every port has a contract, given by classifiers
(interfaces or classes), which allows it to answer to known requests by forwarding them in
the needed direction. These requests can be incoming requests from the environment (the
port provides the interface; e.g. g from Figure 7) or outgoing requests to the environment

11

(the port requires the interface; e.g. h from the same Figure).1

Figure 7: Composite structure example

Anyhow composite structures, as presented in UML standard, are ambiguous. For
example, every connector links two entities which can be either ports or components (parts).
In both cases, the two entities are typed2. In addition, the modeller can specify that the
connector realizes an association. It is clear that, in general, connecting entities of arbitrary
types does not make sense, and there should be clear compatibility rules (based on types,
link direction, etc.) specifying what are the well formed structures. However, these type
compatibility rules for connectors are not detailed in UML. The standard merely states
that “the connectable elements attached to the ends of a connector must be compatible.”
and that “what makes connectable elements compatible is a semantic variation point” ([14]
pp. 175-176). Various causes of ambiguity, such as the existence of several connectors
starting from a same end-point, are not even mentioned.

Our purpose is to define a rule set in order to disambiguate the composite structures
so that we shall have a clear a coherent executable semantics. Therefore, we had ex-
tended the OMEGA UML Profile to cover unambiguous composite structures by setting
well formedness constraints and by clarifying the run-time behaviour of these structures.
A formalization of the rules provided is needed for proving the type-safety of our system.

1Provided and required are defined from the component owning the port point of view.
2For a part the type is given by the class whose instance it is and for a port the type is given by its

contract.

12

2.2 Extended OMEGA Profile

The extended OMEGA UML Profile (called OMEGA2) introduces an expressive and un-
ambiguous set of constructs for modelling hierarchical structures, with an operational se-
mantics that integrates in the existing execution model of OMEGA. The typing system
and the consistency rules we have formulated can be applied to other component-based
models like SysML ([12]) or MARTE ([13]).

2.2.1 Bidirectional ports

A first typing problem comes from the fact that in UML the ports are bidirectional, i.e.
they can specify a set of allowed incoming requests (the provided interfaces) and a set of
allowed outgoing requests (the required interfaces). This is represented in the model as
follows: all the interfaces that are directly or indirectly realized by the type of the port
(its contract) are considered to be provided interfaces. The required interfaces are those
interfaces for which there exists a Dependency stereotyped with <<Usage>> between the
port type (or one of its supertypes) and the respective interface(s). Figure 8-a shows a
simple example of bidirectional port.

I

«Interface»

op1(p1:int):int

sig1(p1:int)

J

«Interface»

op2():void

«Usage»

A

I

J

port_0

A

port_0_out

J

I

port_0_in

(a) (b)

Figure 8: (a) - Example of a biriderctional port, (b) - Equivalent in OMEGA2

The type of the port port_0 in Figure 8-a is I. However, the fact that the port is
bidirectional raises typing problems, which are apparent in the following situations:

• When port_0 is used by A to send out requests conforming to interface J , by an
action such as “port_0.op2()”. In this case, port_0 has to be treated by the
type system as an entity of type J , although it is declared of type I.

• When one wants to specify behaviour of port_0 by a state machine3. Then the state
machine has to handle requests coming from both directions, i.e. requests conforming
both to I and to J .

3This is deemed possible by the UML 2.x standard [14], but without further detail.

13

These typing inconsistencies are not addressed by the UML standard. When we trans-
late UML models into their IF description (or other implementation languages) they raise
homologous problems for the typing of the actual object that will represent the port. A
general solution, based on qualifying the types (I, J) with the corresponding directions
(in, out) and on allowing the port entity to comply to multiple types, is possible but it
greatly complicates the type checking of UML models.

For these reasons, the solution we adopt in OMEGA2 is to forbid bidirectional ports.
This is possible because any bidirectional port can be split in two unidirectional ports, like
in the example from Figure 8-b, although it can be argued that it leads to less convenient
models.

Syntactically, an unidirectional outgoing port specifying a required interface J (such as
port_0_out from Figure 8-b) will be represented as a port typed with J and stereotyped
with <<reversed>> (to distinguished it from a port providing J).4

2.2.2 Directionality rules

A second typing problem is raised by connectors. No compatibility rules for links are
given by the standard. Before presenting type compatibility issues for links, some simple
directionality rules must be observed by well-formed structures:

Rule 1 If a delegation link exists between two ports, the direction (provided or required)
of the ports must be the same.

Rule 2 If an assembly link exists between two ports, one of the ports (the source) must
be a «reversed» port (required) and the other (the destination) must be a normal port
(provided).

Rule 3 If a link is typed with an association, the direction of the association must be
conform to the direction of the link (derived from the direction of the ports at the ends).

Rule 1 restricts the links that can be used and we summarize here which connectors
are accepted in OMEGA2:

1. Part - Part link ⇒ assembly link, needs to be typed with an association5

2. Port - Port link

4Note that a mechanism identical to the «reversed» stereotype is supported by the IBM Rhapsody
tool [15], including support for graphical representation using the standard required interface symbol of
UML like in Figure 8-b. For editing convenience, the Rhapsody representation is also supported by the
IFx2 tools.

5The need of typing a link with an association is given by the fact that a component has to know to
address the connector (see Rule 5 later on).

14

2.1 One port owned by the composite structure, the other one owned by a part
port required - port required ⇒ outbound delegation link
port provided - port required ⇒ forbidden
port required - port provided ⇒ forbidden
port provided - port provided ⇒ inbound delegation link

2.2 Both ports are owned by parts
port required - port required ⇒ forbidden
port provided - port required ⇒ assembly link
port required - port provided ⇒ assembly link
port provided - port provided ⇒ forbidden

3. Part - Port link

3.1 Port owned by a part
part - port provided ⇒ assembly link, needs to be typed with an association
part - port required ⇒ assembly link

3.2 Port owned by the composite structure
part - port provided ⇒ inbound delegation link
part - port required ⇒ outbound delegation link, needs to be typed with an
association

The third rule introduces more constraints in the profile by establishing a correspon-
dence between the direction of a connector typed with an association and the related
association. These types of connectors need to be treated carefully so that by typing a
link with an association, the direction in which it transports the messages does not become
inconsistent and therefore the composite structure is not well-formed. This rule can be
expanded in three cases:

• The association is navigable at both ends. This type of association is accepted only
for a link that connects two parts and the types of each end of the link and association
must be compatible.

• The association is navigable only at one end. Then the types at each end of the link
and the association should be compatible. This restricts us the associations that we
may have:

– For a link between two parts, the accepted associations are associations between
two classes, a class and an interface or two interfaces.

– For a link from a part to a port, the accepted associations are between a class
and an interface pointing to the interface or between two interfaces.

– For a link from a port to a part in this direction, only the association between
two interfaces is accepted.

– For a link between two ports, only the association between two interfaces is
accepted.

15

• The association is not navigable at both ends then the connector is not well-formed.

The end of the link is compatible with the corresponding end of the association means:

• If the end of the link is a part and the association’s end is a class then the association’s
end has to be equal or a supertype for the link’s part type.

• If the end of the link is a part and the association’s end is an interface then link’s
end type has to realize directly or indirectly the association’s end type.

• If the end of the link is a port and the association’s end is an interface then the port
has to provide/require the association’s end.

We have mentioned as notion the direction of a link. We can establish the direction
based on a link’s type and we can define the following. A connector starts from a port
providing interfaces if:

• It is an inbound delegation link between provided ports and the port is owned by the
composite structure;

• It is an inbound delegation link between a provided port and a part.

A connector starts from a port requiring interfaces if:

• It is an outbound delegation link between required ports and the port is owned by
the inner component;

• It is an assembly link between provided-required ports;

• It is an assembly link between a part and a required port.

A connector starts from an inner component if:

• It is an assembly link between a part and a provided port;

• It is an outbound delegation link between a part and a required port;

• It is an assembly link between parts.

Taking as a running example the Figure 9 we can express the reason behind these rules.
The example is a composite A with two sub-components of types D and E, one using ports
for communication (E) and one not (D). For both sub-components there are incoming links
(links from port pIJL of A) and outgoing links (links to ports rK and bak rA K of A).

So, Rule 1 forbids putting a connector, for example between pIJL and rK, since the
direction of the connector would be ambiguous. Rule 3 forces the direction of a connector
to be coherent with the direction of the realized association, like in the case of the link
between d and rA K (realizing association itsK).

These three rules allow us to have an overview on the composite structure and its
behaviour. We can follow the flow of requests based on link’s direction and establish which
component reacts such that the main goal is achieved.

16

deleg_backup

11

A

d:D1

e:E1

K

rK
JL, J, L

pJL

K

bak_rA_K

deleg_backup

K

rA_KitsK

IJL, I, J, L

pIJL

L

«Interface»

sL()

D

I

«Interface»

sI()

J

«Interface»

sJ()

E

K

rK

JL, J, L

pJLK

«Interface»

sK()

1

itsK

1

IJL

«Interface,interfaceGroup»

JL

«Interface,interfaceGroup»

Figure 9: Connection rules in composite structures

2.2.3 Type coherence rules

Before presenting the type system for connectors and type-based rules, we need to intro-
duce some notions: interface groups, default delegation associations and set of transported
interfaces.

Interface groups. Let us note that it is sometimes necessary to declare several pro-
vided or required interfaces for one port (for example, pIJL of A which provides interfaces
I, J and L, see Figure 9). In UML, this is done by declaring a new interface that inherits
from these interfaces and by using this new interface as the port type (IJL in Figure 9).
However, such interfaces are artificial syntactic additions to the model, and they should
not be taken into consideration by the link compatibility rules stated in the following. In
our example, d and e only realize interfaces I and respectively J and L, so interface IJL
is irrelevant for the semantics of the model. In OMEGA2, such interfaces must be stereo-
typed with «interfaceGroup» to distinguish them from meaningful ones, as shown in
the upper part of Figure 9.

Default delegation associations. The default behaviour of a port is to forward
requests from one side to the other according to its direction: to the environment, if it is a

17

required port, and to its owner, if it is a provided port. The minimum information needed
by the port is, for each provided/required interface, which the destination should be. For
example in Figure 9, port pIJL needs to know (and be able to refer to) the destination of
requests belonging to interface I (here, d) and the destination of requests belonging to J or
L (here, pJL of e). Similarly, rK needs to know that the destination of outgoing requests
is by default rA K.

It follows that, for each provided/required interface, the port has to possess an associa-
tion designating to which the port should forward requests belonging to that interface. In
OMEGA2, every interface type I has by default an association called deleg I pointing to
itself, used for this purpose (for modelling convenience, the semantics considers they exist
by default if they are omitted in the model). These associations are used to define the
forwarding semantics of ports, described later on.

The dynamic type of a connector. The type of a connector determines what
type of invocations (signals or operation calls) can travel through the connector and how
port behaviour descriptions refer to the connector. In general, in the case of a connector
originating6 from a port (i.e., not directly from a part), its type can be derived from the type
of the entities situated at its two ends and does not necessarily need to be statically specified
using an association. The following notion defines the dynamic type of the connector:

Definition 1 [Set of transported interfaces]. For a connector starting from a port,
the set of transported interfaces is defined as the intersection between the two sets of
interfaces provided/required at the two ends of the link.

As the ends of a link can be either ports or components, the meaning of provided/re-
quired interfaces is defined for each case:

• For a Port, the set of required/provided interfaces is the set containing the Port ’s type
and all its supertypes, without all the interfaces stereotyped as «interfaceGroup».

• For a component, the set of provided interfaces is the set of all interfaces directly or
indirectly realized by the component’s class.

According to this definition, the set of transported interfaces for the links in Figure 9
are as follows7:

• For link pIJL to d the set is {I}.

• For link pIJL to pJL the set is {J, L}.

• For link rK to rA K the set is {K}.

Let us note that the link from pIJL to d given as example above could have been
statically typed with association deleg I, because the set of transported interfaces {I} only

6According to link directionality, as explained in Section 2.2.2.
7Link d to rA K starts from the part d and therefore the set of transported interfaces cannot be

computed; moreover the link has to be statically typed (see Rule 5 later on).

18

contains one element. However, in the general case when the derived set contains several
interfaces (like for example the link between pIJL and pJL which transports {J, L}),
statically typing a link with an association is not necessary and may be restrictive.

If a static type is specified, it must be compatible with the dynamic type, as stated in
the following rule:

Rule 4 If a link outgoing from a port is statically typed with an association, then the
association is necessarily directed (cf. Rule 3) and the type pointed at by the association
must belong to the set of transported interfaces for that link.

On the example in Figure 9, Rule 4 implies that, for example, if the link pIJL to pJL is
statically typed with an association then the association must point at either J or L. But
this restricts the set of requests forwarded through the link to only those requests which
belong to the pointed interface (J or L), therefore the behaviour is restricted compared to
a dynamically typed link.

While the type for a connector starting from a port does not need to be statically
specified as it can be derived as shown before, if the connector starts directly from a
component (and not from a port) then the static type must be specified:

Rule 5 If a link originates in a component, then the link must be statically typed with an
association, and the type of the entity at the other end of the link must be compatible with
(i.e. be equal or a subtype of) the type at the other end of the association.

In Figure 9, only the link from d to rA K is in this case; the link has indeed to be
typed (here, with itsK) or otherwise the component would have no means to refer to it for
communication.

Finally, a link is meaningful only if it can transport some requests:

Rule 6 The set of transported interfaces for each link should not be void.

The above rules allow us to specify exactly what requests (signals and operation calls)
can travel through connectors by defining compatible interfaces for each component.

2.2.4 Port behaviour rules

In OMEGA2, the default behaviour of a port is to forward requests from one side to the
other, depending on the port’s direction. Each request (signal or operation call) will be
forwarded to a destination which depends on the interface to which the signal or operation
belongs, using the default deleg associations above described. For example, the default
forwarding behaviour of port pIJL from Figure 9 can be described by the state machine
in Figure 10-a8.

8deleg_I!sI is the OMEGA2 syntax for the action of sending signal sI to the destination deleg_I
(if the signal has formal parameters and no actual parameters are specified in the sending action, the
actual values that will be sent are those ones received at the last reception – here the one that triggered
the transition).

19

user_defined

sK/

begin

 deleg_K ! sK;

 deleg_backup ! sK

end

(a) (b)

default

sJ/deleg_J ! sJ

sI/deleg_I ! sI
sL/deleg_L ! sL

Figure 10: (a) - Default state machine for port pIJL, (b) - User-defined machine for port
rK

The default behaviour is unambiguous only if for any interface, the entity to which
the corresponding deleg association points at is clear. Therefore, the following rules are
necessary:

Rule 7 If several non-typed connectors start from one port, then the sets of interfaces
transported by each of the connectors have to be pairwise disjoint.

The last rule does not forbid the case where a port is connected to n entities that provide
or require the same interface I (n > 1): it states that in this case at least n− 1 connectors
have to be explicitly typed with associations. The one connector which is not explicitly
typed, if it exists, is implicitly typed with deleg I. In the example from Figure 9, port rK
of e is in this situation: it has two links to two ports (rA K and bak rA K), both typed
with the same interface (K). According to Rule 7, one of the links has to be explicitly
typed; here, the second one is statically typed with the association deleg backup.

The default port behaviour may be redefined by attaching a state machine to the port’s
type. In OMEGA2, this state machine may use the implicitly typed connectors (accessed
via the default deleg associations), as well as the explicitly typed connectors (via their
defining association). In Figure 10-b we show an example of port behaviour for port rK
(from Figure 9), which duplicates every sK signal on both the default connector (deleg K,
communicating with rA K) and the secondary connector (deleg backup, communicating
with bak rA K).

In addition, for completeness of the port behaviour, we require the following:

Rule 8 The union of the sets of interfaces transported by each of the connectors originating
from a port P must be equal to the set of interfaces provided/required by P .

Applied for example to port pIJL from Figure 9, this rule says that the two links
originating from the port must transport, together, the entire set of interfaces provided
by the port, i.e. {I, J, L} (remember that IJL is an «interfaceGroup» and does not
count in type checks).

20

2.2.5 Concurrency model and observers

The concurrency model is left open in UML. The previous version of OMEGA defined a
particular concurrency model, based on the standard UML notion of active and passive
classes. Due to the choice of partitioning the object space in activity groups attached
to active objects, certain forms of simple resource sharing and synchronisation generated
quite complex models, as sharing could only be achieved via an explicitly modelled resource
manager – an active object. In order to overcome this problem, a new kind of passive class
can be defined in OMEGA2 (using the stereotype «protected»).

Protected objects are passive objects that do not belong to one activity group but rather
are shared between the groups. They work in the same way as Ada protected objects [3].
Like in Ada, protected objects are a synchronization mechanism. They provide functions
(which may only read but not modify object attributes) that can be executed concurrently,
and entries that are executed in mutual exclusion from each other and from functions (this
corresponds to the classical readers-writers pattern). In addition, an entry has a guard;
a call to an entry from a thread (activity group) will wait before beginning the execution
until the guard is true. Our model of protected objects is slightly simplified (more non-
deterministic) compared to the eggshell model of Ada [3] and therefore suppresses the need
for procedures existing in Ada: a procedure can be seen as an entry with guard true.

The OMEGA2 concurrency model therefore distinguishes three kinds of classes: active,
passive and protected. Since every passive object is considered to belong to an active
object, in the sense that its behaviour is executed on the execution thread of its owner,
some rules are necessary to avoid confusing configurations in composite structures.

A

b:B1

d:D1

c:C1

Figure 11: Forbidden composite structure.

For example, the composite structure in Figure 11 shows, on the same level, two active
objects (b and c), which have their own activity group, and a passive object (d) which
belongs to the group of its creator (instance of A). This kind of structure is forbidden.
If the desired semantics is to have a shared passive object d, then d may be declared as
«protected» and the structure becomes valid.

Rule 9 A passive class may define a composite structure formed only of passive classes.

Rule 10 An active class may define a composite structure formed of either only passive
classes, or of a combination of active and protected classes.

21

As an extension to the original profile, an observer can also define a simple composite
structure. Composite observers have proved to be a way for making more compact the
specification of some complex verification properties. The well-formedness rule is:

Rule 11 If an Observer defines a composite structure, the components must also be in-
stances of Observers.

2.3 Translating composite structures to IF

As with the previous version of the OMEGA profile, the one presented above is supported
by a toolset (IFx2) offering simulation and verification functionality. The tool handles
UML models in XMI 2.0, edited with any compatible UML editor such as IBM Rhapsody,
and translates them into IF description corresponding to the principles presented below.

The challenge in the definition of the translation is to fit the relatively complex, hierar-
chical UML modelling constructs into a simple and flat object space, IF automata, while
preserving traceability of the original constructs and without worsening the state space
explosion problem.

Our translation is based on the principle that the modelling elements involved in com-
posite structures, namely ports and connectors, should be handled as first class language
citizens. This means that we refrain from flattening the model during compilation and
hard-wiring all the communication paths (something that is done, for example, in certain
SDL compilers). Concretely, each port instance is implemented as an IF process instance
(whose behaviour corresponds to the routing behaviour described in Section 2.2.4) and
each connector is represented by attributes in the end-points (in ports or in components),
corresponding to the association defining the connector (the default deleg association or
the explicitly specified one).

In this setting, a UML composite structure diagram is used simply as an initializa-
tion scheme for instantiating components and ports and for creating links. A composite
structure is therefore translated to a constructor.

As a consequence of the translation sketched above, a signal or operation call sent
through a connector chain will pass through several objects (the intermediate ports) before
reaching the destination. In order to avoid the state space explosion problem due to
the interleaving of such “forwarding” actions, the translator defines a total priority order
between these actions. Thus, even if several signals are in transit on connector chains, only
one forwarding action (belonging to the enabled port with the highest priority) will be
enabled at any given time. This yields an increase of state space due to connector chains
which is linear in the length of the chain, instead of combinatorial explosion. Note that
starvation of lower priority actions is not possible since, in any state, eventually all signals
that are in transit through connectors will arrive at destination and the rest of the system
will be able to make progress. Moreover, this abstraction is made without any loss of
generality, since all the possible interleavings at the level of component transitions (which
is the observable level) remain feasible. The implementation of the abstraction is made
very easy by the dynamic priority mechanism of IF .

22

Another element that is added in the second version of the OMEGA profile is protected
classes. Compared to normal passive classes, protected classes add the classical readers-
writers synchronization protocol for functions and entries. The readers-writers protocol
implemented in our translation is a variant of the classical solution that may be found in
many textbooks (e.g., [6]). The implementation is however facilitated by the fact that the
IF language offers mutually exclusive and atomic transitions by default, and transitions
can specify conditional waiting simply using guard conditions.

For structured observers, the same mapping as for composite structures is applied.

23

Chapter 3

OCL Formalization

The rules disambiguating composite structures also implemented in the OMEGA2 compiler
are formalized in OCL to verify that UML models comply with our profile. The OCL code
was developed in Topcased OCL Environment [2].

For our formalisation we have defined helper functions for accessing:

• type of elements connected with a link: has2Ports, has2Parts, has1PartAnd1Port,
has1PartWithPort, has2PartsWithPort ;

• the connected elements: part1, part2, port1, port2 ;

• association’s properties: isTyped, isBidirectional, isNotNavigable, isEnd1Navigable,
associationEnds, isClassClassAssociation, isInterfaceInterfaceAssociation, association-
StartPoint, associationStartPointType, associationEndPoint, associationEndPointType,
isClassInterfaceAssociation;

• port’s type: isReversed ;

• types of classifiers: isInterfaceGroup, isInterface, isProtected, isObserver.

The definition of these functions, together with the invariants presented in this Section,
can be found in the Appendix.

For the formalization of Rule 1 and Rule 2 we define a function that will compute the
exact link type based on the classification presented in Section 2.2.2. The OCL invariant
corresponding to these two rules becomes the verification for each connector in the model
if its type is not forbidden:

context Connector

-- Definition of link’s type
def: linkType : String =

if has2Parts
then ’assembly link between parts’

else

24

if has2Ports
then if has1PartWithPort

then if not port1.isReversed and not port2.isReversed
then ’inbound delegation link between provided ports’

else if port1.isReversed and port2.isReversed
then ’outbound delegation between required ports

’
else ’forbidden’
endif

endif
else if (port1.isReversed and port2.isReversed) or

(not port1.isReversed and not port2.isReversed)
then ’forbidden’

else ’assembly between provided-required ports’
endif

endif
else

if has1PartWithPort
then if not port1.isReversed

then ’assembly link between part and provided port’
else ’assembly link between part and required port’
endif

else if not port1.isReversed
then ’inbound delegation link between part and provided port

’
else ’outbound delegation link between part and required port’
endif

endif
endif

endif

-- Rule 1 and Rule 2
inv LinkType: self.linkType <> ’forbidden’

For the formalization of the third rule we need to verify the compatibility between
the association end (of the association typing the link) and the corresponding link end
(i.e. the compatibility has to be verified between the start point for both link and as-
sociation and for the end point). As explained in Section 2.2.2, this resumes to verify
the inclusion of the association’s end type in link’s end type (realized interfaces or super-
classes). We define functions that verify if a link starts from a port or a part as already
presented (isStartingFromProvidedPort, isStartingFromRequiredPort, isStartingFromPort,
isStartingFromPart), and for each link which is its starting point and its ending point
(linkStartPort, linkEndPort, linkStartPart, linkEndPart). Since the formalization of the
following rules consists in computing the provided/required interfaces for a port and a
component and since the same calculus can be used for Rule 3, we shall continue by com-
puting the needed sets.

We continue with the calculus of the provided/required interfaces for a port and the in-
terfaces provided by a component. In the case of a port, the set of realized interfaces is given

25

by the set of provided interfaces without those stereotyped with <<interfaceGroup>>.1

Please note that interfaces stereotyped <<interfaceGroup>> are artificially added to
the model and they should not be taken into consideration in our formalization.

context Port

-- Definition of interfaces realized by a port
def: interfaces : Set(Classifier) = self.provided->reject(

isInterfaceGroup)

Before computing the set of realized interfaces by a class (the type of a part), we have
to compute recursively the list of parents. We suppose that our model is well-formed and
has no cycles.

context Classifier

-- Definition of classifier’s parents recursive computation
def: getParentsRec : Set(Classifier) = self.general->union(self.general

->iterate(p:Classifier; res:Set(Classifier)=Set{}| res->union(p.
getParentsRec)))

For a class, the set of provided interfaces is the set of realized interfaces summed with
the set of parents for each realized interface and summed with the set of provided interfaces
for each parent of our class, without those stereotyped with <<interfaceGroup>>.

context Class

-- Definition of all interfaces directly realized by a class
def: iRealizations : Set(Classifier) = self.interfaceRealization.contract

->asSet()

-- Definition of interfaces provided by a class directly or indirectly
realized (used in the case of a link not typed by an association)

def: interfaces : Set(Classifier) =
iRealizations->union(iRealizations->iterate(i:Interface; res:Set(

Classifier)=Set{}| res->union(i.getParentsRec)))
->union(self.getParentsRec->iterate(c:Class; res:Set(Classifier)=Set{}|

res->union(c.interfaces)))
->reject(isInterfaceGroup)

In the case of a link typed with an association which has as an end an interface, the set
of provided interfaces is the set of the interface to which it points summed with its parents
and without those interfaces stereotyped with <<interfaceGroup>>.

1Required interfaces are modelled with reversed ports and are therefore also accessed using provided.

26

context Interface

-- Definition of interfaces provided by an interface (used in the case of
a link typed by an association pointing to an interface)

def: interfaces : Set(Classifier) = self.oclAsType(uml::Classifier)->
asSet()->union(self.getParentsRec)->select(not isInterfaceGroup and
isInterface)

Because of the mishandling of polymorphic functions in OCL, we need to define ex-
plicitly the polymorphism of the function interfaces on the subtypes of Type (Class and
Interface).

context Type

-- Determines the set of provided interfaces by a class or an interface
def: interfaces : Set(Classifier) =

if self.oclIsKindOf(uml::Interface)
then self.oclAsType(uml::Interface).interfaces

else
self.oclAsType(uml::Class).interfaces

endif

We compute the set of transported interfaces as the intersection of provided interfaces
of both ends and we formalize Rule 6: the cardinal of the set of transported interfaces
should be at least equal to one. We need to remark that this set is computed for links
starting from a port (typed or not typed with an association) and it is not computed in
the case of a part-part connector.

context Connector

-- Definition of the set of transported interfaces
def: setTransportedInterfaces : Set(Classifier) =

if has2Parts
then Set{OclInvalid}

else if has2Ports
then if isTyped

then if isStartingFromPort(port1)
then (port1.interfaces) -> intersection(

associationEndPointType.interfaces)
else (port2.interfaces) -> intersection(

associationEndPointType.interfaces)
endif

else (port1.interfaces) -> intersection(port2.interfaces)
endif

else
if isTyped

27

then (port1.interfaces) -> intersection(
associationEndPointType.interfaces)

else (port1.interfaces) -> intersection(part1.type.interfaces)
endif

endif
endif

-- Rule 6
inv SetOfTransportedInterfacesNonEmpty: self.setTransportedInterfaces->

size()<>0

In order to formalize Rule 4 and Rule 5, we define the compatibility between two classes
and between a class and an interface as the inclusion of association’s end type in the set
of provided interfaces or in the set of parents. It is followed by the compatibility between
a port and an interface as the inclusion of all realized interfaces by the association’s end
type in the set of provided/required interfaces of the port.

context Classifier

-- Verifies if the current classifier is compatible with the one given as
parameter

def: isCompatible(c:Classifier) : Boolean =
if self.oclIsKindOf(uml::Interface) and c.oclIsKindOf(uml::Interface)

then self.oclAsType(uml::Interface).interfaces->includes(c)
else

if self.oclIsKindOf(uml::Class) and c.oclIsKindOf(uml::Interface)
then self.oclAsType(uml::Class).interfaces->includes(c)

else
(c->asSet()->union(c.getParentsRec))->includes(self)

endif
endif

context Type

-- Verifies if the link end’s type (the type of a part) is compatible
with the association end’s type given as parameter

def: isCompatible(t:Type) : Boolean = self.oclAsType(uml::Classifier).
isCompatible(t.oclAsType(uml::Classifier))

context Port

-- Verifies if the current port is compatible with the association end’s
type given as parameter

def: isCompatible(t:Type) : Boolean = self.interfaces->includesAll(t.
oclAsType(uml::Interface).interfaces)

Rule 4 states that for a link starting from a port and typed with an association, the
association must be directed (unidirectional) and the interface pointed by the association

28

has to be included in the set of transported interfaces. We include here Rule 3, which
adds that the direction of the link has to be conforming to the direction of the association,
as defined in Section 2.2.2. We define a function (linkStartingFromPortVerification) that
verifies if for a link typed with an interface-interface association (the only association
accepted for a connector starting from a port) the corresponding start points and end
points are compatible and that the interface to which it points is included in the set of
transported interfaces.

context Connector

-- Verifies if a link starting from a port and typed with an association
has the same direction with the association and the interface pointed
is included in the set of transported interfaces

def: linkStartingFromPortVerification : Boolean =
if isNotNavigable or isBidirectional

then false
else

if isInterfaceInterfaceAssociation
then if has1PartAnd1Port

then linkStartPort.isCompatible(associationStartPointType)
and linkEndPart.type.isCompatible(
associationEndPointType) and
setTransportedInterfaces->includes(

associationEndPointType.oclAsType(uml::Classifier))
else linkStartPort.isCompatible(associationStartPointType)

and linkEndPort.isCompatible(associationEndPointType) and
setTransportedInterfaces->includes(

associationEndPointType.oclAsType(uml::Classifier))
endif

else false
endif

endif

Then the OCL invariant corresponding to these two rules verifies that for each link
in the model starting from a port and typed with an association the compatibility stated
above is verified.

context Connector

-- Verifies if a link starting from a port is well-formed
def: linkStartingFromPort : Boolean =

if (not isStartingFromPart) and isTyped
then linkStartingFromPortVerification

else true
endif

-- Rule 3 and Rule 4
inv LinkStartingFromPort: self.linkStartingFromPort

29

Rule 5 completes Rule 3, by adding that all connectors starting from a part have to
be typed with an association and if the association is bidirectional (the only bidirectional
association accepted is the association between two classes that may type only the link
that connects two parts) it has to be compatible with the link in a direction. For a uni-
directional association that types the link, we need to have the compatibility between the
corresponding ends (link’s start part with association’s start point and link’s end part/port
with association’s end point). This is expressed by the below functions (linkPartPartVeri-
fication, linkPartPortVerification), which make the difference between a link that connects
two parts (which accepts all kinds of associations) and the link that connects a part with
a port (which accepts only the association between two interfaces or between a class and
an interface).

context Connector

-- For a link between two parts verifies if the ends are compatible with
the corresponding ends of the accepted association

def: linkPartPartVerification : Boolean =
if isNotNavigable

then false
else

if isBidirectional
then (linkStartPart.type.isCompatible(associationStartPointType)

and linkEndPart.type.isCompatible(associationEndPointType)) or
(linkStartPart.type.isCompatible(associationEndPointType)

and linkEndPart.type.isCompatible(
associationStartPointType))

else (linkStartPart.type.isCompatible(associationStartPointType) and
linkEndPart.type.isCompatible(associationEndPointType))

endif
endif

-- For a link between a part and a port verifies if the ends are
compatible with the corresponding ends of accepted association

def: linkPartPortVerification : Boolean =
if isNotNavigable or isBidirectional

then false
else

if isClassClassAssociation
then false

else
if isInterfaceInterfaceAssociation

then (linkStartPart.type.isCompatible(associationStartPointType)
and linkEndPort.isCompatible(associationEndPointType))

else
if isClassInterfaceAssociation

then linkStartPart.type.isCompatible(associationStartPointType)
and linkEndPort.isCompatible(associationEndPointType)

else false
endif

30

endif
endif

endif

The invariant for Rule 3 and Rule 5 verifies that each connector in the model starting
from a part is typed with an association and the direction of the association is compatible
with the direction of the link:

context Connector

-- Verifies if a link starting from part is typed with an association and
if it is well-formed

def: linkStartingFromPart : Boolean =
if isStartingFromPart

then if has2Parts
then isTyped and linkPartPartVerification

else isTyped and linkPartPortVerification
endif

else true
endif

-- Rule 3 and Rule 5
inv LinkStartingFromPart: self.linkStartingFromPart

We formalize now the rules for port behaviour. The default behaviour is that the port
forwards the requests received according to its direction: to the environment if it is a
required port and to the component that owns it if it is a provided port. This means that
the port knows how to respond to any received request and also which is the destination
of the request.

The context in our formalization becomes the Port and we define functions that give all
the connectors (typed or not with an association) starting from the port (connectors, con-
nectorsNotTyped, connectorsStartingFromPort) and that verify if the port has connectors
(typed or not with an association) starting from it (hasConnectors, hasTypedConnectors,
isStartingPort).

The relation behind the first rule concerning port’s behaviour states that the sets
A1, A2, ..., An are pairwise disjoint if and only if card(A1 ∪ A2 ∪ ... ∪ An) = card(A1) +
card(A2) + ... + card(An). The function unionSetForTransportedInterfacesOnLinks com-
putes the left hand side of the equality, and the function noOfTransportedInterfacesOnLinks
computes the right hand side of the expression.

context Port

-- Determines the union of the sets of transported interfaces on each
link starting from the port

def: unionSetForTransportedInterfacesOnLinks(withType:Boolean) : Set(
Classifier) =

31

self.connectorsStartingFromPort(withType)->iterate(c:Connector; s:Set(
Classifier)=Set{} | s->union(c.setTransportedInterfaces))

-- Determines the sum of the number of transported interfaces on each
link starting from the port

def: noOfTransportedInterfacesOnLinks(withType:Boolean) : Integer =
self.connectorsStartingFromPort(withType)->iterate(c:Connector; i:

Integer=0 | i + (c.setTransportedInterfaces->size()))

Then Rule 7 becomes the verification of the equality stated above:

context Port

-- Definition of pairwise disjoint sets of transported interfaces
def: isPairwiseDisjoint : Boolean =

if isStartingPort and hasConnectorsNotTyped
then if unionSetForTransportedInterfacesOnLinks(false)->size() <>

noOfTransportedInterfacesOnLinks(false)
then false

else true
endif

else true
endif

-- Rule 7
inv PairwiseDisjoint: self.isPairwiseDisjoint

For Rule 8 we will use the union of the sets of transported interfaces computed above
and we will test its equality with the set of provided/required interfaces by the port.

context Port

-- Verifies if the union of sets of transported interfaces is equal to
the interfaces provided/required

def: isComplete : Boolean =
if isStartingPort

then unionSetForTransportedInterfacesOnLinks(true) = self.interfaces
else true
endif

-- Rule 8
inv Completeness: self.isComplete

For the two rules concerning the execution model for composite structures we will rea-
son on the number of active, passive and protected components given by the functions
noOfComponents, noOfActiveComponents, noOfPassiveComponents, noOfProtectedCom-
ponents and isComposite.

32

Rule 9 says that if a composite structure is passive then it is well-formed if and only if
the number of passive parts this owns is equal with the total number of parts. Rule 10 says
that if a composite structure is active then it is well-formed if and only if or the number
of passive parts is equal to the total number of parts or the sum between the number of
active parts and the number of protected parts is equal to the total number of parts.

context Class

-- Definition of a well-formed class
def: isWellFormed : Boolean =

if self.isActive and isComposite
then if noOfActiveComponents + noOfProtectedComponents =

noOfComponents or
noOfPassiveComponents = noOfComponents

then true
else false
endif

else
if (not self.isActive) and (not isProtected) and isComposite

then if noOfPassiveComponents = noOfComponents
then true

else false
endif

else OclInvalid
endif

endif

-- Rule 9 and Rule 10
inv CompositeStructure: self.isWellFormed <> false

The last rule regarding the simple composite observers is also formalized with the
means of the number of observer parts. This rule is equivalent to: the number of parts of a
composite observer is equal to the number of observer parts (noOfObservers) of the same
composite structure.

context Class

-- Definition of a well formed observer
def: isObserverWellFormed : Boolean =

if self.isObserver and isComposite
then noOfComponents = noOfObservers

else true
endif

-- Rule 11
inv CompositeObserver: self.isObserverWellFormed <> false

33

Chapter 4

Isabelle/HOL Formalization

Isabelle/HOL is a theorem proving system which can be used for the specification and
verification of systems. It is based on interactive generic proof assistant Isabelle, extended
with High-Order Logic theory. Describing a formalism in Isabelle/HOL means creating a
theory: types, functions and theorems (with their proof).

[22] presents the formalization and verification of a Java subset, called Javalight, formed
of classes (with attributes and methods), interfaces and relations between them. The same
principles as explained in this work were applied in the formalization of the OMEGA2
Profile which uses the same notions for modelling composite structures.

We begin the formalization by specifying an abstract syntax of our profile as Isabelle
datatypes. Since we are interested in the formalization of composite structures, we will
provide an abstract syntax for the structural part of our profile. The approach is to describe
the profile in a bottom-up manner (starting with stereotypes and ending with the definition
of the model).

The stereotypes defined in OMEGA2 which concern our formalisation are those for the
execution model of a class (active, passive and protected) and for the difference between
native interfaces and syntactically added ones (interfaceGroup).

clssConcurrency ::= active | passive | protected
intfType ::= interfaceGroup | none

Variables can have a predefined type or a reference type. The predefined types from
OMEGA2 are entirely covered here. The reference type can be a Class or an Interface,
since the only associations accepted are between classes and interfaces. The opaque type
tname refers to the name of the newly defined types in the UML model.

dt ::= PrimDT primDT | RefDT refDT
primDT ::= boolean | integer | real | Timer
refDT ::= NullT | IfaceT tname | ClassT tname

A field declaration is formed by its name (the opaque type ename) and its datatype
(predefined or reference).

34

fdecl ::= ename × dt

An interface (intfDecl) contains its name, its stereotype (if it is an <<interfaceGroup>>
or not), the list of superinterfaces names and the list of realized interfaces names.

intfDecl ::= tname × intfTb
intfTb ::= intfType × (tname)list × (tname)list

An association (assocDecl) contains its name, the type name of one end and its navi-
gability and the type name of the other end and its navigability.

assocDecl ::= ename × assocTb
assocTb ::= tname × boolean × tname × boolean

Since our language for describing the UML model is textual, we need to define a
datatype (portDirection) to express if the port is providing or requiring interfaces. A
port (portDecl) contains its name, direction, contract and owner.

portDecl ::= tname × portTb
portTb ::= portDirection × tname × tname
portDirection ::= provided | required

A connector (connDecl) contains its name, its two ends, the owner, a boolean deter-
mining if the link is typed with an association or not and if it is typed the association
which types the link.

connDecl ::= ename × connTb
connTb ::= tname × tname × tname × bool × (assocDecl option)

The class (clssDecl) is defined by its name, its concurrency, the list of superclasses
names, the list of realized interfaces names, the list of local variables, the list of ports and
the list of connectors that it owns.

clssDecl ::= tname × clssTb
clssTb ::= csig × cbodyP
cbodyP ::= (fdecl)list × (portDecl)list × (connDecl)list
csig ::= clssConcurrency × (tname)list × (tname)list

Finally, the model (model) is defined by classes, interfaces and ports.

model ::= (clssDecl)list × (intfDecl)list × (portDecl)list

The opaque datatype tname introduced for the representation of class and interface
names is too wide. In order that our abstract syntax comply to OMEGA2, we have to add
rules for well-formedness of elements:

35

• The ends of a connector can be classes and / or ports; the owner has to be a class
and all these elements have to be defined in the model:

wf_Link :: "model ⇒ connDecl ⇒ bool"

"wf_Link M Conn ≡ (let x=(fst(snd Conn)); y=(fst(snd(snd Conn)));

owner=(fst(snd(snd(snd Conn)))) in ((is_class M x ∧ (is_class M y ∨
is_port M y)) ∨ (is_port M x ∧ (is_class M y ∨ is_port M y))) ∧
(is_class M owner))"

• The ends of an association can be classes and / or interfaces that are already defined
in the model:

wf_Association :: "model ⇒ assocDecl ⇒ bool"

"wf_Association M Assc ≡ (let x=(fst(snd Assc)); y=(snd(snd Assc)) in

(is_class M x ∧ (is_class M y ∨ is_iface M y)) ∨
(is_iface M x ∧ (is_class M y ∨ is_iface M y)))"

• The type of a field must exist in the model; if it is a reference type it can be only a
class:

wf_Field :: "model ⇒ fdecl ⇒ bool"

"wf_Field M Fld ≡ is_primitiveDT (snd Fld) ∨ (is_defined M (snd Fld) ∧
is_class M (getReferenceDT_Name (snd Fld)))"

• The contract of a port can be an interface or a class defined in the model:

wf_Port :: "model ⇒ portDecl ⇒ bool"

"wf_Port M Prt ≡ (let Contr= fst(snd(snd Prt)); owner= snd(snd(snd Prt)) in

(is_iface M Contr ∨ is_class M Contr) ∧ (is_class M owner))"

The functions is class, is iface and is port are searching in the model for the definition
of a class, interface or port with the given name as parameter. The method used is the
lookup table, as described in [17]. As in the OCL formalisation, helper functions are de-
fined for qualifying certain types of elements: is provided, is required, is active, is passive,
is protected and is ifaceGroup. The entire definition of these functions can be found in the
Appendix.

For the formalization of first two rules regarding connector’s type, we need to define a
custom datatype with all the accepted types of connectors in OMEGA2.

datatype linkTP = assembly_parts
| assembly_provided_required_ports
| assembly_part_provided_port
| assembly_part_required_port
| inbound_delegation_provided_ports
| inbound_delegation_part_provided_port
| outbound_delegation_required_ports
| outbound_delegation_part_required_port
| forbidden

36

A function that computes the type for a link is defined (linkType - similar to the OCL
definition) and the formalization of first two rules resumes to the following relation1:

wf R1R2(M) = ∀x ∈ {cls | is class(M, cls)}, ∀y ∈
{conn | conn is connector of x }, linkType(M, y) 6= forbidden

Rule 10 states that an active class is formed only of active and protected parts or only
of passive parts. This is formalized by the following logical relation:

wf activeCls(M) = ∀x ∈ {cls | is class(M, cls) ∧ is active(cls)}, (∀y ∈ {fld | fld ∈
get parts(x) }, is active(y) ∨ is protected(y)) ∨ (∀y ∈ {fld | fld ∈

get parts(x) }, is passive(y))

The relation below is the formalization for Rule 9 (a passive class is formed only of
passive parts):

wf passiveCls(M) = ∀x ∈ {cls | is class(M, cls) ∧ is passive(cls) }, ∀y ∈
{fld | fld ∈ get parts(x) }, is passive(y)

We can summarize the rules concerning the execution model in:

wf R9R10(M) = wf activeCls(M) ∨ wf passiveCls(M)

In order to prove that a model is well-formed we have to add relations about the well-
formedness of:

• fields of any class

wf fields(M) = ∀x ∈ {cls | is class(M, cls)}, ∀y ∈
{fld | fld is an attribute of x }, wf F ield(M, y)

• ports in the model

wf ports(M) = ∀x ∈ {port | is port(M, port) }, wf Port(M,x)

• associations in the model

wf assocs(M) = ∀x ∈
{assoc | assoc is an association in M }, wf Association(M,x)

• connectors in the model

1By M we define an entity of type model. All the functions are defined on a model and take as value
a Boolean.

37

wf links(M) = ∀x ∈ {cls | is class(M, cls)}, ∀y ∈
{conn | conn is a connector in x}, wf Link(M, y)

Also, a UML model should not contain cycles. We define two sets formed of tuples with
the structure (heir, parent). We give the relation that formalises this rule.

subint1(M) =
{(Intf, Intf ′) | is iface(M, Intf) ∧ is iface(M, Intf ′) ∧ Intf ′ is a parent of Intf}

ws intf(M, Intf) = ∀Intf ′ ∈
{si | si is a parent of Intf}, is iface(M, Intf ′) ∧ (Intf, Intf ′) /∈ (subint1(M))+

subcls1(M) =
{(Cls, Cls′) | is class(M,Cls) ∧ is class(M,Cls′) ∧ Cls′ is a parent of Cls}

ws clss(M,Cls) = ∀Cls′ ∈
{sc | sc is a parent of Cls}, is class(M,Cls′) ∧ (Cls, Cls′) /∈ (subcls1(M))+

ws model(M) = (∀x ∈ {Intf | is iface(M, Intf)}, ws iface(M,x)) ∧ (∀y ∈
{Cls | is class(M,Cls)}, ws clss(M,x))

Finally we can say that:

wf model(M) = wf R1R2(M) ∧ wf R9R10(M) ∧ wf fields(M) ∧ wf ports(M) ∧
wf assocs(M) ∧ wf links(M) ∧ ws model(M)

The purpose of the Isabelle/HOL formalisation is to prove the type-safety of the rule
set observing composite structure. In order to achieve our goal we has to define recursive
functions for which a termination proof was needed. Because such a proof could not be
established with the tools provided by Isabelle, a partial termination proof was intended
using relations. The definition of these relations is not so easy to determine. We sketch
below such a function and a relation that might prove the termination but which is not
sufficient (using this relation Isabelle/HOL does not know to induce the termination).

constdefs
ws_wfrel :: "(model ⇒ (tname × tname)set) ⇒ ((model × tname) ×

(model × tname))set"
"ws_wfrel R ≡ ((M, Intf), (M’, Intf’)). M’=M ∧ ws_model M ∧

(Intf’,Intf)∈ R M"

function recIntf :: "model ⇒ tname ⇒ (tname) list"
where
"recIntf M Intf = (case (iface_ M Intf) of None ⇒ [] |

Some (st,si,ri) ⇒
(if ws_model M then

if si=[] then []
else si @ (concat (map (λ x. recIntf M x) si))

else [])
)

"
by pat completeness auto
termination apply (relation "ws_wfrel subint1")

38

Conclusions

Composite structures play an important role in modelling real-time embedded systems.
They offer a clear structure of these systems and an initialization scheme for the objects
contained. They are a big evolution of the UML standard version 2.x, since in the version
1.4 the initialization order of complex systems was user-defined. Since the standard is
ambiguous and semantic variation point left open, we proposed to define a rule set observing
composite structure and to prove its type safety.

We presented a definition and formalization of an operational model of UML composite
structures, our approach being based on :

• dynamic typing of connectors based on a derived notion of transported interfaces ;

• a set of static well-formedness rules, including type checking rules;

• a full definition of the default behaviour of Ports, and the means for defining port
behaviour differing from the default (by using implicit port associations, etc.)

• rules for relating composite structures with the concurrency model.

The rule set defined in Chapter 3 is used by the type checker of the OMEGA UML
compiler. In addition, the compiler goes all the way down to an operational implementa-
tion of composite structures, by translating OMEGA UML models (edited with any XMI
2.0 compatible UML editor) into IF models, for which a simulation and model-checking
platform exists allowing us to prove the correctness of UML embedded models.

Experiments have been conducted to prove that models observing this rule set are
correct. While the OMEGA UML compiler is able to catch all modelling errors when
translating the model into its IF description, the OCL formalisation can also reveal these
issues in a step preceding the translation. Applying this formalisation on the model, it
yields the elements that do not comply with our profile catching many corner cases.

Even though the type-safety has not been proved yet (using the Isabelle/HOL formal-
isation), we were able to show on realistic models using the simulation and exhaustive
state-space search from IFx2 Toolset that no routing problems (deadlocks in ports due to
missing links, unexpected requests not conforming to object interfaces, etc.) exist in the
model. The next step in our formalisation is to prove that the recursive functions we used
terminate. In this case the type-safety means that: any request that travels through con-
nectors reaches its terminus and every destination object receives only request compatible
with its interfaces.

39

Bibliography

[1] IFx Toolset. Available at http://www-omega.imag.fr/tools/IFx/IFx.php.

[2] TOPCASED, The Open-Source Toolkit for Critical Systems. Available at
http://www.topcased.org/.

[3] ISO/IEC 8652/1995. Ada 2005 Reference Manual. Language and Standard Libraries,
volume 4348 of Lecture Notes in Computer Science. Springer, 2006.

[4] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF
toolset. In SFM, pages 237–267, 2004.

[5] Marius Bozga and Yassine Lakhnech. IF-2.0: Common Language Operational Seman-
tics. Technical report, Verimag, 2002.

[6] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages
(Third Edition). Addison Wesley, 2001.

[7] Arnaud Cuccuru, Sébastien Gérard, and Ansgar Radermacher. Meaningful Composite
Structures. In MoDELS, pages 828–842, 2008.

[8] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. A discrete-
time UML semantics for concurrency and communication in safety-critical applica-
tions. Sci. Comput. Program., 55(1-3):81–115, 2005.

[9] Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors. Formal Methods for Components and Objects, Second International Sympo-
sium, FMCO 2003, Leiden, The Netherlands, November 4-7, 2003, Revised Lectures,
volume 3188 of Lecture Notes in Computer Science. Springer, 2004.

[10] Gregor Gößler and Joseph Sifakis. Priority systems. In de Boer et al. [9], pages
314–329.

[11] Object Management Group. Object Constraint Language, v2.2. Available at
http://www.omg.org/spec/OCL/2.2/.

[12] Object Management Group. Systems Modeling Language, v1.1. Available at
http://www.omg.org/spec/SysML/1.1/.

40

[13] Object Management Group. UML Profile for Modeling and Analysis of Real-Time
Embedded Systems. Available at http://www.omgmarte.org.

[14] Object Management Group. Unified Modeling Language, v2.2. Available at
http://www.omg.org/spec/UML/2.2.

[15] IBM. Rational Rhapsody v7.5. reference manuals. Available at
http://www.ibm.com/developerworks/rational/.

[16] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Springer, 2009.

[17] Tobias Nipkow and David von Oheimb. Javalight is type-safe - definitely. In POPL,
pages 161–170, 1998.

[18] Iulian Ober and Iulia Dragomir. OMEGA2: A new version of the profile and the
tools (regular paper). In UML & AADL’2009 - 14th IEEE International Conference
on Engineering of Complex Computer Systems, Oxford, Royaume Uni, 24/03/2010-
25/03/2010, pages 373–378, http://www.ieee.org/, 2010. IEEE.

[19] Iulian Ober and Iulia Dragomir. Unambigous composite structures: the OMEGA2
experience. Submitted to ACM/IEEE MODELS, 2010.

[20] Iulian Ober, Susanne Graf, and Ileana Ober. A real-time profile for UML. Interna-
tional Journal on Software Tools for Technology, 8(2):113–127, 2006.

[21] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models by
simulation and verification. International Journal on Software Tools for Technology,
8(2):128–145, 2006.

[22] David von Oheimb. Analyzing Java in Isabelle/HOL - Formalization, Type Safety and
Hoare Logic. PhD thesis, Institut für Informatik, Lehrstuhl IV, 2000.

41

Appendices

42

OCL Formalization

-- HELPER FUNCTIONS

context Classifier

-- Verifies if the classifier is an interface
def: isInterface : Boolean = self.oclIsTypeOf(uml::Interface)

-- Verifies if the classifier is stereotyped with <<interfaceGroup>>
def: isInterfaceGroup : Boolean = self.getAppliedStereotypes()->select(

name=’portType’)->size()<>0

-- Verifies if the classifier is stereotyped with <<protected>>
def: isProtected : Boolean = self.getAppliedStereotypes()->select(name=’

protected’)->size()<>0

context Port

-- Verifies if the port is reversed (the port requires interfaces)
-- def: isReversed : Boolean = self.getAppliedStereotypes()->select(name

=’reversed’)->size()<>0

-- Since the tool used for the development of our models is IBM Rhapsody
tool we need to make some adjustments since Rhapsody supports the
reversed mechanism and saves it as an attribute of RhpPort stereotype

def: isReversed : Boolean = self.getValue(self.getAppliedStereotypes()->
select(name=’RhpPort’)->asOrderedSet()->at(1),’isReversed’).oclAsType(
Boolean)

context Connector

-- Verifies if the connector is of type port-port
def: has2Ports : Boolean = self.end.role->select(oclIsTypeOf(uml::Port))

->size() = 2

-- Verifies if the connector is of type part-part
def: has2Parts : Boolean = self.end.role->select(oclIsTypeOf(uml::

Property) and not oclIsTypeOf(uml::Port))->size() = 2

-- Verifies if the connector is of type port-part
def: has1PartAnd1Port : Boolean = self.end.role->select(oclIsTypeOf(uml::

Property) and not oclIsTypeOf(uml::Port))->size() = 1

-- For a port-port connector verifies if one of the ports is owned by an
inner component and the other one by the composite structure

-- For a port-part connector verifies if the port is owned by an inner
component

def: has1PartWithPort : Boolean = self.end.partWithPort -> reject(

43

oclIsTypeOf(OclVoid))->size() = 1

-- For a port-port connector verifies if both ports are owned by inner
components

def: has2PartsWithPort: Boolean = self.end.partWithPort -> reject(
oclIsTypeOf(OclVoid))->size() = 2

-- For a port-port connector returns the first port from the set of ends
-- For a port-part connector returns the port
def: port1 : Port = self.end.role->select(oclIsTypeOf(uml::Port))->

asOrderedSet()->at(1).oclAsType(uml::Port)

-- For a port-port connector returns the second port from the set of ends
def: port2 : Port = self.end.role->select(oclIsTypeOf(uml::Port))->

asOrderedSet()->at(2).oclAsType(uml::Port)

-- For a part-part connector returns the first part from the set of ends
-- For a port-part connector returns the part
def: part1 : Property = self.end.role->select(oclIsTypeOf(uml::Property)

and not oclIsTypeOf(uml::Port))->asOrderedSet()->at(1).oclAsType(uml::
Property)

-- For a part-part connector returns the second part from the set of ends
def: part2 : Property = self.end.role->select(oclIsTypeOf(uml::Property)

and not oclIsTypeOf(uml::Port))->asOrderedSet()->at(2).oclAsType(uml::
Property)

-- Verifies if the connector is typed with an association
def: isTyped : Boolean = (not self.type.oclIsTypeOf(OclVoid))

-- For a part-part connector, in the case of a unidirectional association
that may type the link we need to know which end is navigable such
that we can determine the direction of the link

def: isEnd1Navigable : Boolean = self.end.definingEnd->asOrderedSet()->at
(1).isNavigable()

-- Determines the ends of the association with which the link is typed
def: associationEnds : OrderedSet(Property) = self.type.memberEnd->

asOrderedSet()

-- Verifies if both ends of the association with which a link is typed
are navigable

def: isBidirectional : Boolean = associationEnds->select(isNavigable())->
size() = 2

-- Verifies if an association with which a link is typed is not navigable
def: isNotNavigable : Boolean = associationEnds->select(isNavigable())->

size() = 0

-- Verifies if the association is between two classes
def: isClassClassAssociation : Boolean = associationEnds->select(type.

44

oclIsKindOf(uml::Class))->size()=2

-- Verifies if the association is between two interfaces
def: isInterfaceInterfaceAssociation : Boolean = associationEnds->select(

type.oclIsKindOf(uml::Interface))->size()=2

-- For an association that types a link determines the origine
def: associationStartPoint : Property =

if isBidirectional
then self.associationEnds->at(1)

else
self.associationEnds->select(not isNavigable())->at(1)

endif

-- For an unidirectional association that types a link determines origine
’s type

def: associationStartPointType : Type = associationStartPoint.type

-- For an unidirectional association that types a link determines the
target

def: associationEndPoint : Property =
if isBidirectional

then self.associationEnds->at(2)
else

self.associationEnds->select(isNavigable())->at(1)
endif

-- For an unidirectional association that types a link determines target’
s type

def: associationEndPointType : Type = associationEndPoint.type

-- Verifies if the association is between a class and an interface and it
has this direction

def: isClassInterfaceAssociation : Boolean = associationStartPointType.
oclIsKindOf(uml::Class) and associationEndPointType.oclIsKindOf(uml::
Interface)

-- RULE 1 AND RULE 2

context Connector

-- Definition of link’s type
def: linkType : String =

if has2Parts
then ’assembly link between parts’

else
if has2Ports

then if has1PartWithPort
then if not port1.isReversed and not port2.isReversed

then ’inbound delegation link between provided ports’

45

else if port1.isReversed and port2.isReversed
then ’outbound delegation between required ports

’
else ’forbidden’
endif

endif
else if (port1.isReversed and port2.isReversed) or

(not port1.isReversed and not port2.isReversed)
then ’forbidden’

else ’assembly between provided-required ports’
endif

endif
else

if has1PartWithPort
then if not port1.isReversed

then ’assembly link between part and provided port’
else ’assembly link between part and required port’
endif

else if not port1.isReversed
then ’inbound delegation link between part and provided port

’
else ’outbound delegation link between part and required port’
endif

endif
endif

endif

-- Rule 1 and Rule 2
inv LinkType: self.linkType <> ’forbidden’

-- HELPER FUNCTIONS

context Connector

-- Verifies if a connector starts from the provided port given as
parameter

def: isStartingFromProvidedPort (p:Port) : Boolean =
(self.linkType = ’inbound delegation link between provided ports’ and p

.owner=self.owner) or
self.linkType = ’inbound delegation link between part and provided

port’

-- Verifies if a connector starts from the required port given as
parameter

def: isStartingFromReversedPort (p:Port) : Boolean =
(self.linkType = ’outbound delegation between required ports’ and p.

owner<>self.owner) or
self.linkType = ’assembly between provided-required ports ’ or
self.linkType = ’assembly link between part and required port’

46

-- Verifies if a connector starts from the port given as parameter
def: isStartingFromPort (p:Port) : Boolean =

isStartingFromProvidedPort(p) or isStartingFromReversedPort(p)

-- Verifies if a connector starts from a part
def: isStartingFromPart : Boolean =

self.linkType = ’assembly link between part and provided port’ or
self.linkType = ’outbound delegation link between part and required

port’ or
self.linkType = ’assembly link between parts’

-- For a port-port connector determines the port from which the link
starts

-- For a port-part connector the starting port is the only port of the
link

def: linkStartPort : Port =
if has2Ports

then
if isStartingFromPort(port1)

then port1
else port2
endif

else port1
endif

-- For a port-port connector determines the port in which the link ends
-- For a port-part connector the ending port is the only port of the link
def: linkEndPort : Port =

if has2Ports
then if isStartingFromPort(port1)

then port2
else port1
endif

else port1
endif

-- For a port-part connector the starting part is the only part of the
link

-- For a part-part connector determines the part from which the link
starts (this part it is not navigable)

def: linkStartPart : Property =
if has1PartAnd1Port

then part1
else

if isEnd1Navigable
then part2

else part1
endif

endif

-- For a port-part connector the ending part is the only part of the link

47

-- For a part-part connector determines the part in which the link ends (
this part it is navigable)

def: linkEndPart : Property =
if has1PartAnd1Port

then part1
else

if isEnd1Navigable
then part1

else part2
endif

endif

-- PROVIDED / REALIZED INTERFACES

context Port

-- Definition of interfaces realized by a port
def: interfaces : Set(Classifier) = self.provided->reject(

isInterfaceGroup)

context Classifier

-- Definition of classifier’s parents recursive computation
def: getParentsRec : Set(Classifier) = self.general->union(self.general

->iterate(p:Classifier; res:Set(Classifier)=Set{}| res->union(p.
getParentsRec)))

context Class

-- Definition of all interfaces directly realized by a class
def: iRealizations : Set(Classifier) = self.interfaceRealization.contract

->asSet()

-- Definition of interfaces provided by a class directly or indirectly
realized (used in the case of a link not typed by an association)

def: interfaces : Set(Classifier) =
iRealizations->union(iRealizations->iterate(i:Interface; res:Set(

Classifier)=Set{}| res->union(i.getParentsRec)))
->union(self.getParentsRec->iterate(c:Class; res:Set(Classifier)=Set{}|

res->union(c.interfaces)))
->reject(isInterfaceGroup)

context Interface

-- Definition of interfaces provided by an interface (used in the case of
a link typed by an association pointing to an interface)

def: interfaces : Set(Classifier) = self.oclAsType(uml::Classifier)->
asSet()->union(self.getParentsRec)->select(not isInterfaceGroup and
isInterface)

48

context Type

-- Determines the set of provided interfaces by a class or an interface
def: interfaces : Set(Classifier) =

if self.oclIsKindOf(uml::Interface)
then self.oclAsType(uml::Interface).interfaces

else
self.oclAsType(uml::Class).interfaces

endif

-- RULE 6

context Connector

-- Definition of the set of transported interfaces
def: setTransportedInterfaces : Set(Classifier) =

if has2Parts
then Set{OclInvalid}

else if has2Ports
then if isTyped

then if isStartingFromPort(port1)
then (port1.interfaces) -> intersection(

associationEndPointType.interfaces)
else (port2.interfaces) -> intersection(

associationEndPointType.interfaces)
endif

else (port1.interfaces) -> intersection(port2.interfaces)
endif

else
if isTyped

then (port1.interfaces) -> intersection(
associationEndPointType.interfaces)

else (port1.interfaces) -> intersection(part1.type.interfaces)
endif

endif
endif

-- Rule 6
inv SetOfTransportedInterfacesNonEmpty: self.setTransportedInterfaces->

size()<>0

-- HELPER FUNCTIONS

context Classifier

-- Verifies if the current classifier is compatible with the one given as
def: isCompatible(c:Classifier) : Boolean =

if self.oclIsKindOf(uml::Interface) and c.oclIsKindOf(uml::Interface)
then self.oclAsType(uml::Interface).interfaces->includes(c)

49

else
if self.oclIsKindOf(uml::Class) and c.oclIsKindOf(uml::Interface)

then self.oclAsType(uml::Class).interfaces->includes(c)
else
(c->asSet()->union(c.getParentsRec))->includes(self)

endif
endif

context Type

-- Verifies if the link end’s type (the type of a part) is compatible
with the association end’s type given as parameter

def: isCompatible(t:Type) : Boolean = self.oclAsType(uml::Classifier).
isCompatible(t.oclAsType(uml::Classifier))

context Port

-- Verifies if the current port is compatible with the association end’s
type given as parameter

def: isCompatible(t:Type) : Boolean = self.interfaces->includesAll(t.
oclAsType(uml::Interface).interfaces)

-- RULE 3 AND RULE 4

context Connector

-- Verifies if a link starting from a port and typed with an association
has the same direction with the association and the interface pointed
is included in the set of transported interfaces

def: linkStartingFromPortVerification : Boolean =
if isNotNavigable or isBidirectional

then false
else

if isInterfaceInterfaceAssociation
then if has1PartAnd1Port

then linkStartPort.isCompatible(associationStartPointType)
and linkEndPart.type.isCompatible(
associationEndPointType) and
setTransportedInterfaces->includes(

associationEndPointType.oclAsType(uml::Classifier))
else linkStartPort.isCompatible(associationStartPointType)

and linkEndPort.isCompatible(associationEndPointType) and
setTransportedInterfaces->includes(

associationEndPointType.oclAsType(uml::Classifier))
endif

else false
endif

endif

-- Verifies if a link starting from a port is well-formed

50

def: linkStartingFromPort : Boolean =
if (not isStartingFromPart) and isTyped

then linkStartingFromPortVerification
else true
endif

-- Rule 3 and Rule 4
inv LinkStartingFromPort: self.linkStartingFromPort

-- RULE 3 AND RULE 5

context Connector

-- For a link between two parts verifies if the ends are compatible with
the corresponding ends of the accepted association

def: linkPartPartVerification : Boolean =
if isNotNavigable

then false
else

if isBidirectional
then (linkStartPart.type.isCompatible(associationStartPointType)

and linkEndPart.type.isCompatible(associationEndPointType)) or
(linkStartPart.type.isCompatible(associationEndPointType) and

linkEndPart.type.isCompatible(associationStartPointType))
else (linkStartPart.type.isCompatible(associationStartPointType) and

linkEndPart.type.isCompatible(associationEndPointType))
endif

endif

-- For a link between a part and a port verifies if the ends are
compatible with the corresponding ends of accepted association

def: linkPartPortVerification : Boolean =
if isNotNavigable or isBidirectional

then false
else

if isClassClassAssociation
then false

else
if isInterfaceInterfaceAssociation

then (linkStartPart.type.isCompatible(associationStartPointType)
and linkEndPort.isCompatible(associationEndPointType))

else
if isClassInterfaceAssociation

then linkStartPart.type.isCompatible(associationStartPointType)
and linkEndPort.isCompatible(associationEndPointType)

else false
endif

endif
endif

endif

51

-- Verifies if a link starting from part is typed with an association and
if it is well-formed

def: linkStartingFromPart : Boolean =
if isStartingFromPart

then if has2Parts
then isTyped and linkPartPartVerification

else isTyped and linkPartPortVerification
endif

else true
endif

-- Rule 3 and Rule 5
inv LinkStartingFromPart: self.linkStartingFromPart

-- HELPER FUNCTIONS

context Port

-- Determines all the connectors starting or ending in a port
def: connectors : Set(Connector) = self.end.owner.oclAsType(uml::

Connector)->asSet()

-- Verifies if a port has connectors starting or ending in it
def: hasConnectors : Boolean = self.connectors->size()<>0

-- Determines all the connectors starting or ending in a port that are
not typed with an association

def: connectorsNotTyped : Set(Connector) = self.connectors->select(type.
oclIsTypeOf(OclVoid))

-- Verifies if a port has connectors not typed with an association that
are starting or ending in it

def: hasConnectorsNotTyped : Boolean = self.connectorsNotTyped->size()<>0

-- Determines all the connectors starting from a port (if the boolean
parameter is true it collects all the connectors; if it is false it
collects only the connectors not typed with association)

def: connectorsStartingFromPort(withType:Boolean) : Set(Connector) =
if withType then

if self.isReversed
then self.connectors->select(c:Connector|c.

isStartingFromReversedPort(self))
else

self.connectors->select(c:Connector|c.isStartingFromProvidedPort(
self))

endif
else

if self.isReversed
then self.connectorsNotTyped->select(c:Connector|c.

52

isStartingFromReversedPort(self))
else

self.connectorsNotTyped->select(c:Connector|c.
isStartingFromProvidedPort(self))

endif
endif

-- Verifies if a port is the origine for at least one connector
def: isStartingPort : Boolean = self.connectorsStartingFromPort(true)->

size() <> 0

-- Determines the union of the sets of transported interfaces on each
link starting from the port

def: unionSetForTransportedInterfacesOnLinks(withType:Boolean) : Set(
Classifier) =

self.connectorsStartingFromPort(withType)->iterate(c:Connector; s:Set(
Classifier)=Set{} | s->union(c.setTransportedInterfaces))

-- Determines the sum of the number of transported interfaces on each
link starting from the port

def: noOfTransportedInterfacesOnLinks(withType:Boolean) : Integer =
self.connectorsStartingFromPort(withType)->iterate(c:Connector; i:

Integer=0 | i + (c.setTransportedInterfaces->size()))

-- RULE 7

context Port

-- Definition of pairwise disjoint sets of transported interfaces
def: isPairwiseDisjoint : Boolean =

if isStartingPort and hasConnectorsNotTyped
then if unionSetForTransportedInterfacesOnLinks(false)->size() <>

noOfTransportedInterfacesOnLinks(false)
then false

else true
endif

else true
endif

-- Rule 7
inv PairwiseDisjoint: self.isPairwiseDisjoint

-- RULE 8

context Port

-- Verifies if the union of sets of transported interfaces is equal to
the interfaces provided/required

def: isComplete : Boolean =

53

if isStartingPort
then unionSetForTransportedInterfacesOnLinks(true) = self.interfaces

else true
endif

-- Rule 8
inv Completeness: self.isComplete

-- HELPER FUNCTIONS

context Class

-- Determines the number of parts of a composite structure
def: noOfComponents : Integer = self.part->size()

-- Verifies if a class is a composite structure
def: isComposite : Boolean = noOfComponents <> 0

-- Determines the number of active parts owned by a composite structure
def: noOfActiveComponents : Integer = self.part.type.oclAsType(uml::Class

)->select(isActive=true)->size()

-- Determines the number of passive parts owned by a composite structure
def: noOfPassiveComponents : Integer = self.part.type.oclAsType(uml::

Class)->select(isActive=false)->select(not isProtected)->size()

-- Determines the number of protected parts owned by a composite
structure

def: noOfProtectedComponents : Integer = self.part.type.oclAsType(uml::
Class)->select(isProtected)->size()

-- RULE 9 AND RULE 10

context Class

-- Definition of a well-formed class
def: isWellFormed : Boolean =

if self.isActive and isComposite
then if noOfActiveComponents + noOfProtectedComponents =

noOfComponents or
noOfPassiveComponents = noOfComponents

then true
else false
endif

else
if (not self.isActive) and (not isProtected) and isComposite

then if noOfPassiveComponents = noOfComponents
then true

else false

54

endif
else OclInvalid
endif

endif

-- Rule 9 and Rule 10
inv CompositeStructure: self.isWellFormed <> false

-- RULE 11

context Class

-- Determines the number of observer parts owned by a composite structure
def: noOfObservers : Integer = self.part.type.oclAsType(uml::Class)->

select(isObserver)->size()

-- Definition of a well formed observer
def: isObserverWellFormed : Boolean =

if self.isObserver and isComposite
then noOfComponents = noOfObservers

else true
endif

-- Rule 11
inv CompositeObserver: self.isObserverWellFormed <> false

55

Isabelle/HOL Formalization

theory Table
imports Main
begin

types (’a,’b)table = "’a ⇒ ’b option"

syntax
table_of :: "(’a × ’b) list ⇒ (’a, ’b)table"

translations
"table_of" == "map_of"

end

56

theory Omega
imports Main
begin

* Stereotype definitions

* Class concurrency

datatype clssConcurrency = active
| passive
| protected

* Interface type from port’s contract point of view

datatype intfType = interfaceGroup
| none

* Port direction: the interface from the contract can be required or provided depending
if the port is reversed or not

datatype portDirection = provided
| required

* Datatype definition

* Primitive datatype

datatype primDT = boolean
| integer
| real
| Timer

* Reference datatype from the model

* Opaque datatype for name representation

typedecl tname arities tname::eq

* Reference datatype

datatype refDT = NullT
| IfaceT tname
| ClassT tname

* Datatype definition

datatype dt = PrimDT primDT

57

| RefDT refDT

* Elements simpler definition

syntax
NT :: "dt"
Iface :: "tname ⇒ dt"
Class :: "tname ⇒ dt"

translations
"NT" == "RefDT NullT"
"Iface I" == "RefDT (IfaceT I)"
"Class C" == "RefDT (ClassT C)"

* Field declaration

* Opaque datatype for expression name

typedecl ename arities ename::eq

* field name × field type

types fdecl = "ename × dt"

* Interface declaration

* interface type × superinterfaces list × realized interfaces list

types intfTb = "intfType × (tname)list × (tname)list"

types intfDecl = "tname × intfTb"

* Port declaration

* port direction × port contract × port owner

types portTb = "portDirection × tname × tname"

types portDecl = "tname × portTb"

* Association declaration

* association end 1 × is end 1 navigable × association end 2 × is end 2 navigable

types assocTb = "tname × bool × tname × bool"

types assocDecl = "ename × assocTb"

58

* Connector declaration

* connector end 1 × connector end 2 × owner × is typed × association

types connTb = "tname × tname × tname × bool × (assocDecl option)"

types connDecl = "ename × connTb"

* Class declaration

* class type × superclasses list × realized interfaces list

types csig = "clssConcurrency × (tname)list × (tname)list"

* fields list × ports list × connectors list

types cbodyP = "(fdecl)list × (portDecl)list × (connDecl)list"

types clssTb = "csig × cbodyP"

types clssDecl = "tname × clssTb"

* Model declaration

types model = "(clssDecl)list × (intfDecl)list × (portDecl)list"

end

59

theory WFRules
imports Main Omega Table
begin

syntax
iface_ :: "model ⇒ (tname, intfTb) table"
class_ :: "model ⇒ (tname, clssTb) table"
port_ :: "model ⇒ (tname, portTb) table"

translations
"iface_ M Intf" == "table_of (fst (snd M)) Intf"
"class_ M Clss" == "table_of (fst M) Clss"
"port_ M Prt" == "table_of (snd (snd M)) Prt"

syntax
is_iface :: "model ⇒ tname ⇒ bool"
is_class :: "model ⇒ tname ⇒ bool"
is_port :: "model ⇒ tname ⇒ bool"

translations
"is_iface M Intf" == "iface_ M Intf 6= None"
"is_class M Clss" == "class_ M Clss 6= None"
"is_port M Prt " == "port_ M Prt 6= None"

syntax
is_provided :: "portTb ⇒ bool"
is_required :: "portTb ⇒ bool"
is_active :: "clssTb ⇒ bool"
is_passive :: "clssTb ⇒ bool"
is_protected :: "clssTb ⇒ bool"
is_intfGroup :: "intfTb ⇒ bool"

translations
"is_provided Prt" == "(fst Prt) = provided"
"is_required Prt" == "¬ (is_provided Prt)"
"is_active Clss" == "(fst(fst Clss)) = active"
"is_passive Clss" == "(fst(fst Clss)) = passive"
"is_protected Clss" == "(fst(fst Clss)) = protected"
"is_intfGroup Intf" == "(fst Intf) = interfaceGroup"

constdefs
is_primitiveDT :: "dt ⇒ bool"
"is_primitiveDT var ≡ case var of (PrimDT prim) ⇒ True |

(RefDT ref) ⇒ False"
is_referenceDT :: "dt ⇒ bool"

60

"is_referenceDT var ≡ case var of (PrimDT prim) ⇒ False |
(RefDT ref) ⇒ True"

constdefs
is_defined :: "model ⇒ dt ⇒ bool"
"is_defined M var ≡ (if is_primitiveDT var

then True
else
(case var of Class Clss ⇒ is_class M Clss |

Iface Intf ⇒ is_iface M Intf |
Null ⇒ False

)
)"

constdefs
getReferenceDT_Name :: "dt ⇒ tname"
"getReferenceDT_Name var ≡ case var of (Iface Intf) ⇒ Intf |

(Class Clss) ⇒ Clss "

primrec parts :: "(fdecl)list ⇒ (fdecl)list"
where
" parts [] = []" |
" parts (elem # rList) = (if is_referenceDT (snd elem)

then elem # (parts rList)
else (parts rList)
)"

constdefs
get_parts :: "clssDecl ⇒ (fdecl)list"
"get_parts Clss ≡ parts (fst(snd(snd Clss)))"

* The ends of a connector can be classes and / or ports

constdefs
wf_Link :: "model ⇒ connDecl ⇒ bool"
"wf_Link M Conn ≡ (let x=(fst(snd Conn)); y=(fst (snd(snd Conn)));

owner=(fst (snd(snd(snd Conn)))) in ((is_class M x ∧
(is_class M y ∨ is_port M y)) ∨ (is_port M x ∧ (is_class M y ∨
is_port M y))) ∧ (is_class M owner))"

constdefs
wf_links :: "model ⇒ bool"
"wf_links M ≡ ∀x∈(set(fst M)). ∀y∈(set(snd(snd(snd(snd x))))).

(wf_Link M y)"

61

* The ends of an association can be classes and / or interfaces

constdefs
wf_Association :: "model ⇒ assocDecl ⇒ bool"
"wf_Association M Assc ≡ (let x=(fst(snd Assc)); y=(fst(snd(snd

(snd Assc)))) in (is_class M x ∧ (is_class M y ∨ is_iface M y))
∨ (is_iface M x ∧ (is_class M y ∨ is_iface M y)))"

constdefs
wf_assocs :: "model ⇒ bool"
"wf_assocs M ≡ ∀x∈(set(fst M)). ∀y∈(set(snd(snd(snd(snd x))))).

if (fst(snd(snd(snd(snd y)))))=True then wf_Association M
(the(snd(snd(snd(snd(snd y)))))) else True"

* The type of a field must exist in the model; if is a reference it can be only a class
instance

constdefs
wf_Field :: "model ⇒ fdecl ⇒ bool"
"wf_Field M Fld ≡ is_primitiveDT (snd Fld) ∨ (is_defined M

(snd Fld) ∧ is_class M (getReferenceDT_Name (snd Fld)))"

constdefs
wf_fields :: "model ⇒ bool"
"wf_fields M ≡ ∀x∈(set(fst M)). ∀y∈(set(fst(snd(snd x)))).

(wf_Field M y)"

* The contract of a port can be an interface or a class; the limitation that the port has
only one item as contract is given by the Abstract Syntax Tree of the profile

constdefs
wf_Port :: "model ⇒ portDecl ⇒ bool"

"wf_Port M Prt ≡ (let Contr = fst(snd(snd Prt));
owner=snd(snd(snd Prt)) in (is_iface M Contr ∨ is_class M Contr)
∧ (is_class M owner))"

constdefs
wf_ports :: "model ⇒ bool"
"wf_ports M ≡ ∀x∈(set(fst M)). ∀y∈(set(fst(snd(snd(snd x))))).

(wf_Port M y)"

* Rule 1 and Rule 2 datatype

datatype linkTP = assembly_parts
| assembly_provided_required_ports
| assembly_part_provided_port

62

| assembly_part_required_port
| inbound_delegation_provided_ports
| inbound_delegation_part_provided_port
| outbound_delegation_required_ports
| outbound_delegation_part_required_port
| forbidden

* Rule 1 and Rule 2 computing function

constdefs
linkType :: "model ⇒ connDecl ⇒ linkTP"
"linkType M Conn ≡ (let end1=fst(snd Conn); end2=fst(snd(snd(Conn)));

owner=fst(snd(snd(snd Conn))) in
(if (is_class M end1) ∧ (is_class M end2) then

assembly_parts
else
if (is_port M end1) ∧ (is_port M end2) then
if owner=snd(snd(the(port_ M end1))) ∨

owner=snd(snd(the(port_ M end2))) then
if is_provided (the(port_ M end1)) ∧

is_provided (the(port_ M end2)) then
inbound_delegation_provided_ports

else if is_required (the(port_ M end1)) ∧
is_required (the(port_ M end2)) then
outbound_delegation_required_ports

else forbidden
else if (is_provided (the(port_ M end1)) ∧

is_provided (the(port_ M end2))) ∨
(is_required (the(port_ M end1)) ∧
is_required (the(port_ M end2))) then

forbidden
else assembly_provided_required_ports

else if (is_port M end1) ∧ (is_class M end2) then
if owner=snd(snd(the(port_ M end1))) then

if is_provided (the(port_ M end1)) then
inbound_delegation_part_provided_port

else outbound_delegation_part_required_port
else if is_provided (the(port_ M end1)) then

assembly_part_provided_port
else assembly_part_required_port

else if owner=snd(snd(the(port_ M end2))) then
if is_provided (the(port_ M end2)) then

inbound_delegation_part_provided_port
else outbound_delegation_part_required_port

else if is_provided (the(port_ M end2)) then

63

assembly_part_provided_port
else assembly_part_required_port

))"

* Rule 1 and Rule 2

* A class has only well-formed links

constdefs
wf_LinkType :: "model ⇒ clssDecl ⇒ bool"
"wf_LinkType M Clss ≡ ∀Conn∈set(snd (snd (snd (snd Clss)))).

linkType M Conn 6= forbidden"

* A model has only well-formed classes regarding Rule 1 and Rule 2

constdefs
wf_R1R2 :: "model ⇒ bool"
"wf_R1R2 M ≡ ∀x∈(set(fst M)). wf_LinkType M x"

* Rule 9 and Rule 10

* A passive class is formed only by passive components

constdefs
wf_PassiveClssConcurrency :: "model ⇒ clssDecl ⇒ bool"
"wf_PassiveClssConcurrency M Clss ≡ ∀Fld∈set(get_parts Clss).

is_passive(the(class_ M (getReferenceDT_Name (snd Fld))))"

constdefs
wf_passiveCls :: "model ⇒ bool"
"wf_passiveCls M ≡ ∀x∈(set(fst M)). if (is_passive (snd(x)))

then wf_PassiveClssConcurrency M x else True"

* An active class is formed only or by active and protected components or by passive
components

constdefs
wf_ActiveClssConcurrency :: "model ⇒ clssDecl ⇒ bool"
"wf_ActiveClssConcurrency M Clss ≡ (∀Fld∈set(get_parts Clss).

is_active(the(class_ M (getReferenceDT_Name (snd Fld)))) ∨
is_protected(the(class_ M (getReferenceDT_Name (snd Fld))))) ∨
(∀Fld∈set(get_parts Clss).
is_passive(the(class_ M (getReferenceDT_Name (snd Fld)))))"

constdefs
wf_activeCls :: "model ⇒ bool"
"wf_activeCls M ≡ ∀x∈(set(fst M)). if (is_active (snd(x)))

64

then wf_ActiveClssConcurrency M x else True"

* Rule 9 and Rule 10

constdefs
wf_R9R10 :: "model ⇒ bool"
"wf_R9R10 M ≡ wf_activeCls M ∨ wf_passiveCls M"

* Set with elements of the form (heir,parent) for interfaces

constdefs
subint1 :: "model ⇒ (tname × tname)set"
subint1_def : "subint1 M ≡ {(Intf,Intf’). is_iface M Intf ∧

is_iface M Intf’ ∧ Intf’∈set(fst(snd(the(iface_ M Intf))))}"

* No cycles in the model for interfaces

constdefs
ws_idecl :: "model ⇒ tname ⇒ (tname)list ⇒ bool"
"ws_idecl M Intf si ≡ ∀Intf’∈set(si). is_iface M Intf’ ∧

(Intf’,Intf)/∈(subint1 M)^+"

* Set with elements of the form (heir,parent) for classes

constdefs
subcls1 :: "model ⇒ (tname × tname)set"
subcls1_def : "subcls1 M ≡ {(Cls,Cls’). is_class M Cls ∧

is_class M Cls’ ∧ Cls’∈set(fst(snd(fst(the(class_ M Cls)))))}"

* No cycles in the model for classes

constdefs
ws_cdecl :: "model ⇒ tname ⇒ (tname)list ⇒ bool"
"ws_cdecl M Cls sc ≡ ∀Cls’∈set(sc). is_class M Cls’ ∧

(Cls’,Cls)/∈(subcls1 M)^+"

* No cycles in the model

constdefs
ws_model :: "model ⇒ bool"
"ws_model M ≡ (let clsSet=set(fst M); intfSet=set(fst(snd M)) in

((∀(Intf,(st,si,ri))∈intfSet. ws_idecl M Intf si) ∧
(∀(Cls,(st,sc,ri),(fl,pr,cn))∈clsSet. ws_cdecl M Cls sc))) "

* Well-formed model

65

constdefs
wf_model :: "model ⇒ bool"
"wf_model M ≡ (wf_R1R2 M) ∧ (wf_R9R10 M) ∧ (wf_fields M) ∧

(wf_links M) ∧ (wf_ports M) ∧ (wf_assocs M) ∧ (ws_model M)"

* Recursive computation of the tree of superinterfaces starting from an interface

constdefs
ws_wfrel :: "(model ⇒ (tname × tname)set) ⇒ ((model × tname) ×
(model × tname))set"

"ws_wfrel R ≡ {((M, Intf), (M’, Intf’)). M’=M ∧ ws_model M ∧
(Intf’,Intf)∈ R M}"

function recIntf :: "model ⇒ tname ⇒ (tname)list"
where
"recIntf M Intf = (case (iface_ M Intf) of

None ⇒ [] |
Some (st,si,ri) ⇒ (if ws_model M then

if si=[] then []
else si @ (concat (map (λx. recIntf M x)

si))
else []

)
)

"
end

66

	Introduction
	An overview of OMEGA Profile and tools
	The OMEGA UML Profile
	The IF Language
	Translating OMEGA UML to IF
	IFx Toolset

	Composite structures
	Background
	Extended OMEGA Profile
	Bidirectional ports
	Directionality rules
	Type coherence rules
	Port behaviour rules
	Concurrency model and observers

	Translating composite structures to IF

	OCL Formalization
	Isabelle/HOL Formalization
	Conclusions

