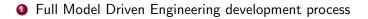
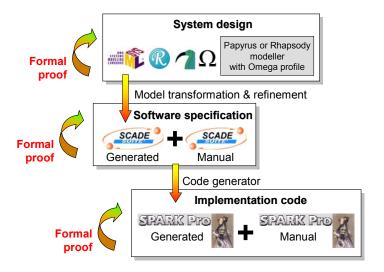


A case study in formal system engineering with SysML


Iulia Dragomir¹, Iulian Ober¹ and David Lesens²

¹IRIT - University of Toulouse


²Astrium Space Transportation

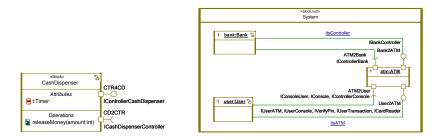
July 19, 2012

- In Full Model Driven Engineering development process
- OMEGA SysML Profile & Toolset
- The Automated Transfer Vehicle (ATV) case study
- Validation results
- Onclusions

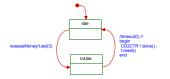
Full Model Driven Engineering Process

This project has been partially funded by the European Space Agency.

 Iulia Dragomir
 (IRIT)
 A case study in formal system engineering with SysML
 July 19, 2012
 4 / 25


OMEGA SysML Profile & Toolset

5 / 25


- SysML Profile for the specification and verification of real-time embedded systems
- Consists of:

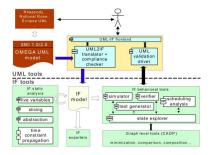
A large subset of SysML + Model coherence constraints + A formal operational semantics + Real-time & verification extensions

- Structure
 - SysML Block Definition Diagrams & Internal Block Diagrams
 - Blocks with properties, operations and state machines, interconnection elements and relationships
 - Structured data types and signals

- Structure
 - SysML Block Definition Diagrams & Internal Block Diagrams
 - Blocks with properties, operations and state machines, interconnection elements and relationships
 - Structured data types and signals
- Discrete behaviour
 - State machines
 - Asynchronous communication through operations and signals

Structure

- SysML Block Definition Diagrams & Internal Block Diagrams
- Blocks with properties, operations and state machines, interconnection elements and relationships
- Structured data types and signals


Discrete behaviour

- State machines
- Asynchronous communication through operations and signals
- Real time
 - Clocks, time guards and transition urgency
 - Discrete or continuous specified by the user

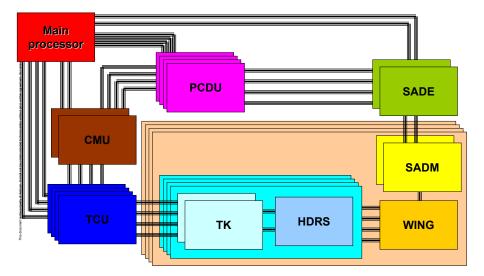
- Structure
 - SysML Block Definition Diagrams & Internal Block Diagrams
 - Blocks with properties, operations and state machines, interconnection elements and relationships
 - Structured data types and signals
- Discrete behaviour
 - State machines
 - Asynchronous communication through operations and signals
- Real time
 - Clocks, time guards and transition urgency
 - Discrete or continuous specified by the user
- Observers
 - Objects monitoring the system (state and events) and giving verdicts about a safety property

The IFx Toolset

- Goal: Early model validation and debugging
- Principle: Transforming to communicating extended timed automata (IF Language)
- Functionalities
 - Simulation
 - Static analysis: dead code/variable elimination, slicing, ...
 - Model-checking: observers, state graph minimization, μ-calculus, ...

In Automated Transfer Vehicle (ATV) case study

The ATV Solar Generation System


The ATV has been developed by Astrium Space Transportation for ESA.

Iulia Dragomir (IRIT)

A case study in formal system engineering with SysML

July 19, 2012 10 / 25

The Solar Generation System Architecture

A case study in formal system engineering with SysML

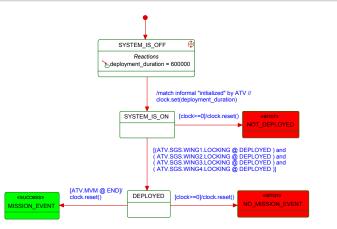
- Reverse engineered from the actual system for the purpose of FulIMDE
- 4-layer architecture
- 20 block types HW, SW, MM and 95 block instances
- 348 (661) ports (instances) and 372 (504) connectors (instances)

- Reverse engineered from the actual system for the purpose of FulIMDE
- 4-layer architecture
- 20 block types HW, SW, MM and 95 block instances
- 348 (661) ports (instances) and 372 (504) connectors (instances)
- 18 interfaces for port types

12 / 25

- Reverse engineered from the actual system for the purpose of FulIMDE
- 4-layer architecture
- 20 block types HW, SW, MM and 95 block instances
- 348 (661) ports (instances) and 372 (504) connectors (instances)
- 18 interfaces for port types
- 1-fault tolerant
- 62 possible hardware failures

Formal system requirement

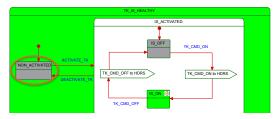

Property

After 10 minutes since SGS start-up, all 4 wings are deployed and the Mission and Vehicle Management is aware of it.

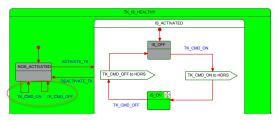
Formal system requirement

Property

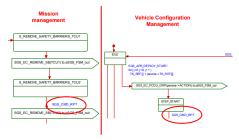
After 10 minutes since SGS start-up, all 4 wings are deployed and the Mission and Vehicle Management is aware of it.


A case study in formal system engineering with SysML

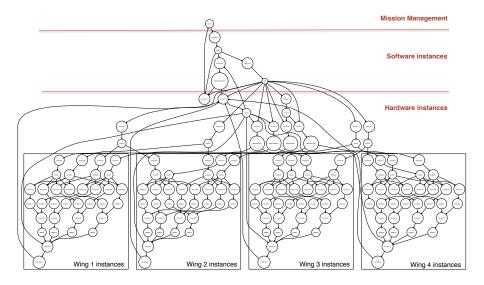
Outline


Validation results

- Scenario length: 2400 steps and one minute execution
- Discovered modelling errors due to reverse engineering and omitted at model review:

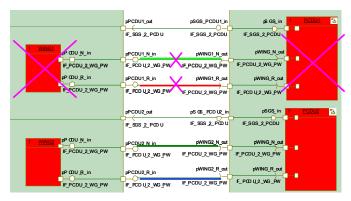

- Scenario length: 2400 steps and one minute execution
- Discovered modelling errors due to reverse engineering and omitted at model review:
 - Unexpected message receptions for wing parts

- Scenario length: 2400 steps and one minute execution
- Discovered modelling errors due to reverse engineering and omitted at model review:
 - Unexpected message receptions for wing parts

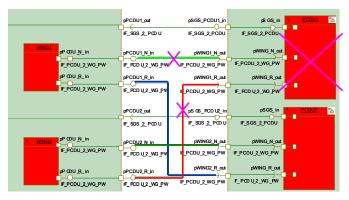


- Scenario length: 2400 steps and one minute execution
- Discovered modelling errors due to reverse engineering and omitted at model review:
 - Unexpected message receptions for wing parts
 - Ambiguous parallel receivers for Mission and Vehicle Management

- Scenario length: 2400 steps and one minute execution
- Discovered modelling errors due to reverse engineering and omitted at model review:
 - Unexpected message receptions for wing parts
 - Ambiguous parallel receivers for Mission and Vehicle Management
 - Incorrect (sequences of) requests that result in deadlocks; e.g. SADE receives deactivation before disable


State space explosion and its cause

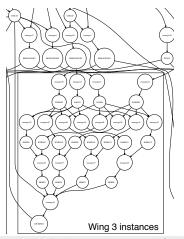
A case study in formal system engineering with SysML


- Executed on a single thread with a predefined scheduling for parallel actions
- Still useful for discovering logical errors:

- Executed on a single thread with a predefined scheduling for parallel actions
- Still useful for discovering logical errors:
 - Incorrect connections between the power units and the wings

17 / 25

- Executed on a single thread with a predefined scheduling for parallel actions
- Still useful for discovering logical errors:
 - Incorrect connections between the power units and the wings

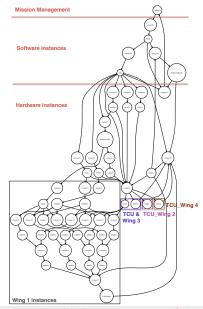


- Executed on a single thread with a predefined scheduling for parallel actions
- Still useful for discovering logical errors:
 - Incorrect connections between the power units and the wings
 - Unhandled received requests by the hold-down and release systems

- Executed on a single thread with a predefined scheduling for parallel actions
- Still useful for discovering logical errors:
 - Incorrect connections between the power units and the wings
 - Unhandled received requests by the hold-down and release systems
 - Control and monitoring unit is already 1-fault tolerant, which makes this type of failure incorrect and removed from the set of verifiable errors

Abstraction

One wing structure that does not experience any hardware fault is replaced by a block with a simpler behaviour: it ends up by being deployed.


A case study in formal system engineering with SysML

Abstraction

One wing structure that does not experience any hardware fault is replaced by a block with a simpler behaviour: it ends up by being deployed.

• System configuration: 1 extended wing and 3 abstract ones

Abstract communication graph

Iulia Dragomir (IRIT)

A case study in formal system engineering with SysML

Abstraction

- System configuration: 1 extended wing and 3 abstract ones
- 4 configurations, each being manually modelled

Abstraction

- System configuration: 1 extended wing and 3 abstract ones
- 4 configurations, each being manually modelled
- The total number of instances is reduced by 55%

Abstraction

- System configuration: 1 extended wing and 3 abstract ones
- 4 configurations, each being manually modelled
- The total number of instances is reduced by 55%
- Separate verification for each 60 possible failures for each configuration

Abstraction

- System configuration: 1 extended wing and 3 abstract ones
- 4 configurations, each being manually modelled
- The total number of instances is reduced by 55%
- Separate verification for each 60 possible failures for each configuration
- Error detected: failure of the redundant thermal knife while the nominal one is enabled leads to a not deployed wing

Towards Contract-Based Reasoning

• Is the used abstraction correct?

- Is the used abstraction correct?
- Assumption about the environment of a wing wrt the order and timing of the sent requests

- Is the used abstraction correct?
- Assumption about the environment of a wing wrt the order and timing of the sent requests
- The concrete environment has to *guarantee* this assumption given that the wings behave as described by the abstraction

- Is the used abstraction correct?
- Assumption about the environment of a wing wrt the order and timing of the sent requests
- The concrete environment has to *guarantee* this assumption given that the wings behave as described by the abstraction
- $\rightarrow\,$ Both steps have been formally verified within OMEGA-IFx

Outline

23 / 25

- Modelling of a complex system design with OMEGA SysML
- Verification & Validation by simulation and model-checking
- Use of abstractions & Contract-based Reasoning

- Modelling of a complex system design with OMEGA SysML
- Verification & Validation by simulation and model-checking
- Use of abstractions & Contract-based Reasoning
- User feedback
 - More formal approach than the classical SysML
 - Early detections of errors in the model
 - Complexity in usage of the tool chain OMEGA-IFx
 - Proof limitations

- Formal definition of contracts within OMEGA-IFx
- Proof automation based on circular reasoning
- Automated assumption generation