

Advances in Extreme Learning Machines

Lectio Praecursoria

Mark van Heeswijk

April 17, 2015

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

Advances in Extreme Learning Machines Mark van Heeswijk

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

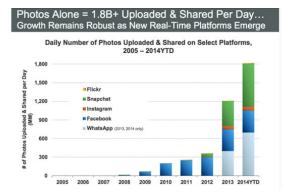
Summary

Advances in Extreme Learning Machines Mark van Heeswijk

Trends in Machine Learning

- increasing dimensionality of data sets
- increasing size of data sets
 - ~300 hours of video are uploaded to YouTube every minute
 - ~1.8 billion pictures uploaded every day to various sites (mid-2014)

Trends in Machine Learning



[http://tech.firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-

everyday-meeker-report-224688.html]

Trends in Machine Learning

- increasing dimensionality of data sets
- increasing size of data sets
 - ~300 hours of video are uploaded to YouTube every minute
 ~1.8 billion pictures uploaded every day to various sites (mid-2014)

machine learning methods needed, that can be used to analyze this data and extract useful knowledge and insights from this wealth of information

Contributions

Combinations of Multiple Extreme Learning Machines (ELM)

- I: Adaptive Ensemble Models of ELMs for Time Series Prediction
- II: GPU-accelerated and parallelized ELM ensembles for large-scale regression

Variable Selection and ELM

- III: Feature selection for nonlinear models with extreme learning machines
- **IV:** Fast Feature Selection in a GPU Cluster Using the Delta Test
- **V:** Binary/Ternary Extreme Learning Machines

Trade-offs in Extreme Learning Machines

 VI: Compressive ELM: Improved Models Through Exploiting Time-Accuracy Trade-offs

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

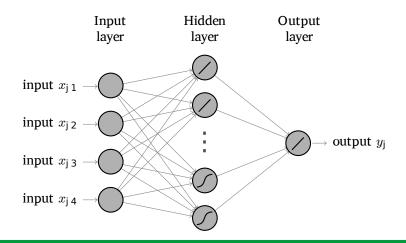
Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

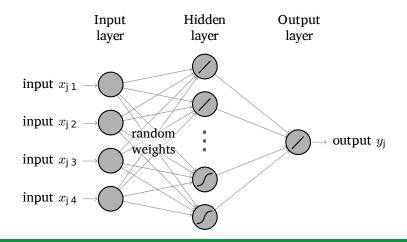
Advances in Extreme Learning Machines Mark van Heeswijk

Extreme Learning Machines



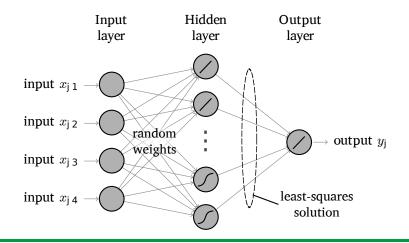
Advances in Extreme Learning Machines Mark van Heeswijk

Extreme Learning Machines



Advances in Extreme Learning Machines Mark van Heeswijk

Extreme Learning Machines



Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

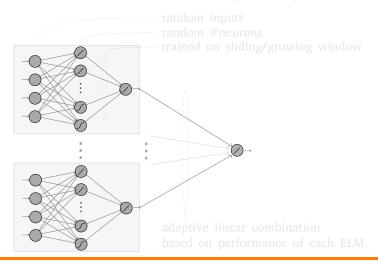
Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

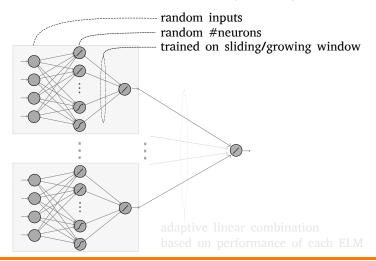
Advances in Extreme Learning Machines Mark van Heeswijk

Adaptive Ensemble of ELMs (Publ I)



Advances in Extreme Learning Machines Mark van Heeswijk

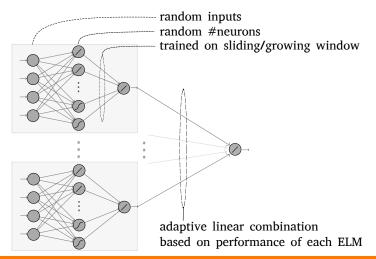
Adaptive Ensemble of ELMs (Publ I)



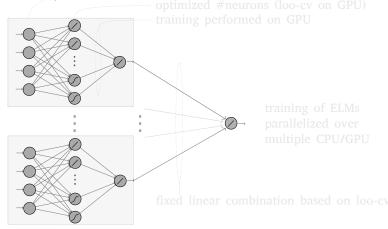
Aalto University

Advances in Extreme Learning Machines Mark van Heeswijk

Adaptive Ensemble of ELMs (Publ I)



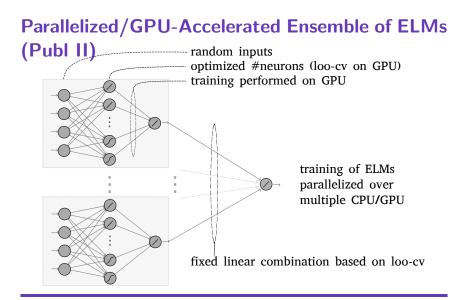
Parallelized/GPU-Accelerated Ensemble of ELMs (Publ II) random inputs



Advances in Extreme Learning Machines Mark van Heeswijk

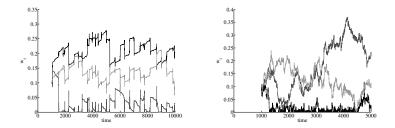
Parallelized/GPU-Accelerated Ensemble of ELMs (Publ II) random inputs optimized #neurons (loo-cv on GPU) training performed on GPU

Advances in Extreme Learning Machines Mark van Heeswijk



Advances in Extreme Learning Machines Mark van Heeswijk

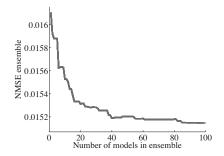
Highlighted ELM Ensemble Results



Adaptation of ensemble weight during task

Advances in Extreme Learning Machines Mark van Heeswijk

Highlighted ELM Ensemble Results

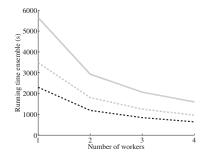


The more models in the ensemble, the more accurate the results

Aalto University

Advances in Extreme Learning Machines Mark van Heeswijk

Highlighted ELM Ensemble Results



Scalability through parallelization, limited precision, use of GPUs

Advances in Extreme Learning Machines Mark van Heeswijk

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

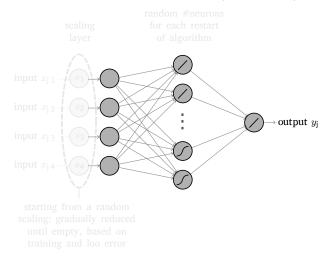
Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

Advances in Extreme Learning Machines Mark van Heeswijk

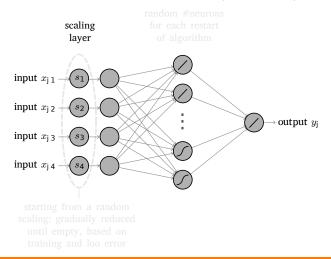
ELM-based Feature Selection (Publ III)



Aalto University

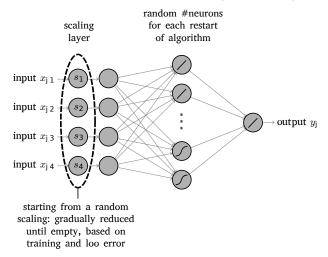
Advances in Extreme Learning Machines Mark van Heeswijk

ELM-based Feature Selection (Publ III)



Advances in Extreme Learning Machines Mark van Heeswijk

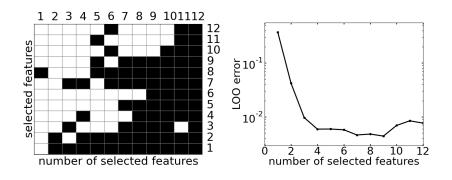
ELM-based Feature Selection (Publ III)



Aalto University

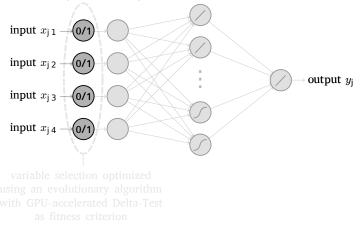
Advances in Extreme Learning Machines Mark van Heeswijk

Highlighted ELM-FS Results



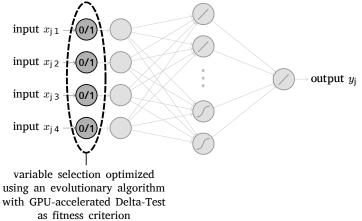
Advances in Extreme Learning Machines Mark van Heeswijk

Fast Feature Selection with GPU-accelerated Delta Test (Publ IV)



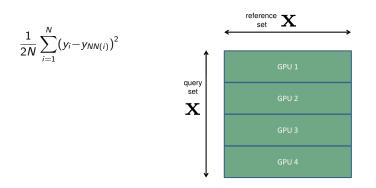
Advances in Extreme Learning Machines Mark van Heeswijk

Fast Feature Selection with GPU-accelerated Delta Test (Publ IV)



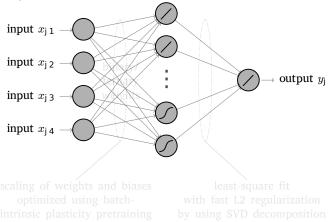
Advances in Extreme Learning Machines Mark van Heeswijk

Fast Feature Selection with GPU-accelerated Delta Test (Publ IV)



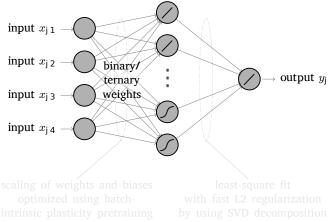
Advances in Extreme Learning Machines Mark van Heeswijk

Binary/Ternary Extreme Learning Machines (Publ V)



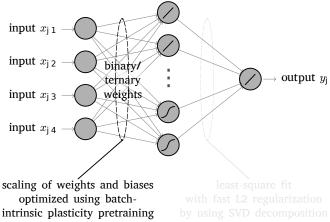
Advances in Extreme Learning Machines Mark van Heeswijk

Binary/Ternary Extreme Learning Machines (Publ V)



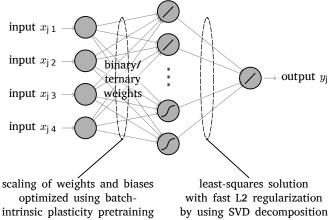
Advances in Extreme Learning Machines Mark van Heeswijk

Binary/Ternary Extreme Learning Machines (Publ V)

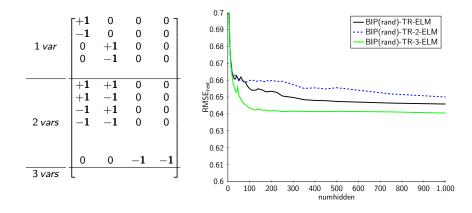


Advances in Extreme Learning Machines Mark van Heeswijk

Binary/Ternary Extreme Learning Machines (Publ V)



Ternary ELM Results



Advances in Extreme Learning Machines Mark van Heeswijk

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

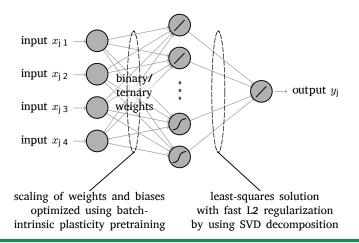
Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

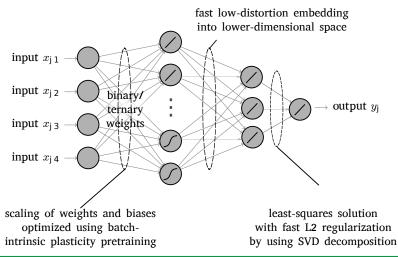
Advances in Extreme Learning Machines Mark van Heeswijk

Compressive ELM (Publ VI)



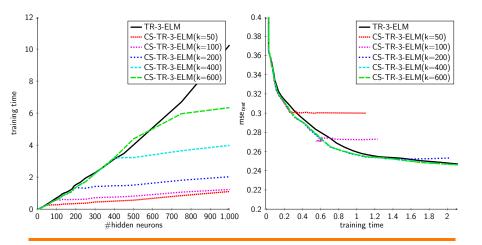
Aalto University

Compressive ELM (Publ VI)



Aalto University

Highlighted Results Compressive ELM



Advances in Extreme Learning Machines Mark van Heeswiik

Outline

Context

Extreme Learning Machines

Part I: Ensemble Models of ELM

Part II: Variable Selection and ELM

Part III: Trade-offs in ELM

Summary

Advances in Extreme Learning Machines Mark van Heeswijk

Summary

Overall:

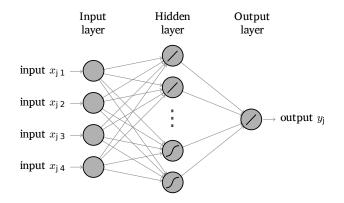
- resulting collection of proposed methods provides an efficient, accurate and flexible framework for solving large-scale supervised learning problems.
- proposed methods:
 - are not limited to the particular types of random-weight neural networks and contexts in which they have been tested
 - can easily be incorporated in new contexts and models

Defence Slides:

Related Models

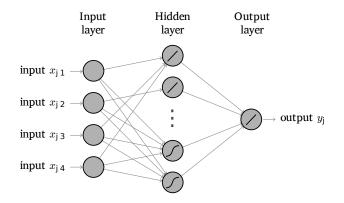
Advances in Extreme Learning Machines Mark van Heeswijk

ELM vs RVFL



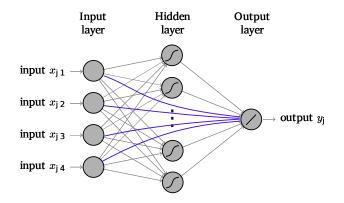
Advances in Extreme Learning Machines Mark van Heeswijk

ELM vs RVFL



Advances in Extreme Learning Machines Mark van Heeswijk

ELM vs RVFL



Advances in Extreme Learning Machines Mark van Heeswijk

Defence Slides:

General

Advances in Extreme Learning Machines Mark van Heeswijk

Standard ELM

Given a training set $(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$, an activation function $f : \mathbb{R} \mapsto \mathbb{R}$ and M the number of hidden nodes:

- 1: Randomly assign input weights \mathbf{w}_i and biases b_i , $i \in [1, M]$;
- 2: Calculate the hidden layer output matrix H;
- 3: Calculate output weights matrix $\beta = \mathbf{H}^{\dagger} \mathbf{Y}$.

where

$$\mathbf{H} = \begin{pmatrix} f(\mathbf{w}_1 \cdot \mathbf{x}_1 + b_1) & \cdots & f(\mathbf{w}_M \cdot \mathbf{x}_1 + b_M) \\ \vdots & \ddots & \vdots \\ f(\mathbf{w}_1 \cdot \mathbf{x}_N + b_1) & \cdots & f(\mathbf{w}_M \cdot \mathbf{x}_N + b_M) \end{pmatrix}$$

Advances in Extreme Learning Machines Mark van Heeswijk

ELM Theory vs Practice

- In theory, ELM is universal approximator
- In practice, limited number of samples; risk of overfitting
- Therefore:
 - the functional approximation should use as limited number of neurons as possible
 - the hidden layer should extract and retain as much useful information as possible from the input samples

ELM Theory vs Practice

Weight considerations:

- weight range determines typical activation of the transfer function (remember $\langle \mathbf{w}_i, \mathbf{x} \rangle = |\mathbf{w}_i| |\mathbf{x}| \cos \theta$,)
- therefore, normalize or tune the length of the weights vectors somehow

Linear vs non-linear:

 since sigmoid neurons operate in nonlinear regime, add d linear neurons for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

Batch Intrinsic Plasticity

 suppose (x₁,..., x_N) ∈ ℝ^{N×d}, and output of neuron *i* is h_i = f(a_iw_i ⋅ x_k + b_i), where f is an invertible transfer function
 for each neuron *i*

from exponential distribution with mean µ_{exp}, draw targets t = (t₁, t₂,..., t_N) and sort such that t₁ < t₂ < ... < t_N
compute all presynaptic inputs s_k = w_i · x_k, and sort such that s₁ < s₂ < ... < s_N
now, find a_i and b_i such that

$$\begin{pmatrix} s_1 & 1 \\ \vdots & 1 \\ s_N & 1 \end{pmatrix} \begin{pmatrix} a_i \\ b_i \end{pmatrix} = \begin{pmatrix} f^{-1}(t_1) \\ \vdots \\ f^{-1}(t_N) \end{pmatrix}$$

Fast leave-one-out cross-validation

The leave-one-out (LOO) error can be computed using the PRESS statistics:

$$E_{loo} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{1 - hat_{ii}} \right)^2$$

where hat_{ii} is the i^{th} value on the diagonal of the HAT-matrix, which can be quickly computed, given \mathbf{H}^{\dagger} :

$$\hat{\mathbf{Y}} = \mathbf{H}\boldsymbol{\beta} = \mathbf{H}\mathbf{H}^{\dagger}\mathbf{Y}$$
$$= \mathrm{HAT} \cdot \mathbf{Y}$$

Advances in Extreme Learning Machines Mark van Heeswijk

Fast leave-one-out cross-validation

Using the SVD decomposition of $\mathbf{H} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, it is possible to obtain all needed information for computing the PRESS statistic without recomputing the pseudo-inverse for every λ :

$$\begin{aligned} \hat{\mathbf{Y}} &= \mathbf{H}\beta \\ &= \mathbf{H}(\mathbf{H}^{T}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{T}\mathbf{Y} \\ &= \mathbf{H}\mathbf{V}(\mathbf{D}^{2} + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^{T}\mathbf{Y} \\ &= \mathbf{U}\mathbf{D}\mathbf{V}^{T}\mathbf{V}(\mathbf{D}^{2} + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^{T}\mathbf{Y} \\ &= \mathbf{U}\mathbf{D}(\mathbf{D}^{2} + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^{T}\mathbf{Y} \\ &= \mathrm{HAT} \cdot \mathbf{Y} \end{aligned}$$

Advances in Extreme Learning Machines Mark van Heeswijk

Fast leave-one-out cross-validation

where $\mathbf{D}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1}\mathbf{D}$ is a diagonal matrix with $\frac{d_{ii}^2}{d_{ii}^2 + \lambda}$ as the *i*th diagonal entry. Now:

. .

$$MSE^{\text{TR-PRESS}} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{1 - hat_{ii}} \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{1 - \mathbf{h}_i \cdot (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{h}_{i\cdot}^T} \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{1 - \mathbf{u}_i \cdot \left(\frac{d_{ii}^2}{d_i^2 + \lambda} \right) \mathbf{u}_{i\cdot}^T} \right)^2$$

Advances in Extreme Learning Machines Mark van Heeswijk

Leave-one-out computation overhead

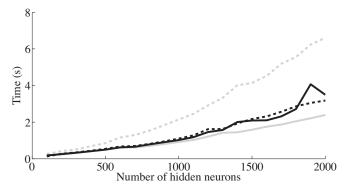


Figure : Comparison of running times of ELM training (*solid lines*) and ELM training + leave-one-out-computation (*dotted lines*), with (*black lines*) and without (*gray lines*) explicitly computing and reusing \mathbf{H}^{\dagger}

Defence Slides:

Ensembles

Advances in Extreme Learning Machines Mark van Heeswijk

Error reduction by ensembling

$$\hat{y}_i = y + \epsilon_i, \tag{1}$$

$$\mathbb{E}[\left\{\hat{y}_i - y\right\}^2] = \mathbb{E}[\epsilon_i^2].$$
(2)

$$E_{avg} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}[\epsilon_i^2].$$
(3)

$$E_{ens} = \mathbb{E}\left[\left\{\frac{1}{m}\sum_{i=1}^{m} \left(\hat{y} - y\right)\right\}^{2}\right] = \mathbb{E}\left[\left\{\frac{1}{m}\sum_{i=1}^{m} \epsilon_{i}\right\}^{2}\right].$$
 (4)

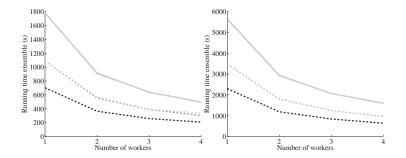
$$E_{ens} = \frac{1}{m} E_{avg} = \frac{1}{m^2} \sum_{i=1}^{m} \mathbb{E}[\epsilon_i^2], \qquad (5)$$

Advances in Extreme Learning Machines Mark van Heeswijk

Running times parallelized and GPU-Accelerated ELM Ensemble (SantaFe, ESTSP)

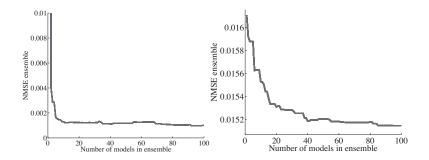
	Ν	t(mldiv _{dp})	$t(gesv_{dp})$	t(mldiv _{sp})	t(gesv _{sp})	t(culaGesv _{sp})
SantaFe	0	674.0 s	672.3 s	515.8 s	418.4 s	401.0 s
	1	1781.6 s	1782.4 s	1089.3 s	1088.8 s	702.9 s
	2	917.5 s	911.5 s	567.5 s	554.7 s	365.3 s
	3	636.1 s	639.0 s	392.2 s	389.3 s	258.7 s
	4	495.7 s	495.7 s	337.3 s	304.0 s	207.8 s
ESTSP	0	2145.8 s	2127.6 s	1425.8 s	1414.3 s	1304.6 s
	1	5636.9 s	5648.9 s	3488.6 s	3479.8 s	2299.8 s
	2	2917.3 s	2929.6 s	1801.9 s	1806.4 s	1189.2 s
	3	2069.4 s	2065.4 s	1255.9 s	1248.6 s	841.9 s
	4	1590.7 s	1596.8 s	961.7 s	961.5 s	639.8 s

Running times parallelized and GPU-Accelerated ELM Ensemble (SantaFe, ESTSP)



Advances in Extreme Learning Machines Mark van Heeswijk

ELM Ensemble Accuracy (SantaFe, ESTSP)



Advances in Extreme Learning Machines Mark van Heeswijk

Defence Slides:

Binary / Ternary ELM

Advances in Extreme Learning Machines Mark van Heeswijk

Better Weights

- random layer weights and biases drawn from e.g. uniform / normal distribution with certain range / variance
- typical transfer function $f(\langle \mathbf{w_i}, \mathbf{x} \rangle + b_i)$
- from $\langle \mathbf{w}_i, \mathbf{x} \rangle = |\mathbf{w}_i| |\mathbf{x}| \cos \theta$, it can be seen that the typical activation of f depends on:
 - \blacksquare expected length of \boldsymbol{w}_i
 - expected length of x
 - \blacksquare angles θ between the weights and the samples

Better Weights: Orthogonality?

Idea 1:

- improve the diversity of the weights by taking weights that are mutually orthogonal (e.g. *M* d-dimensional basis vectors, randomly rotated in the d-dimensional space)
- however, does not give significantly better accuracy
- apparently, for the tested cases, random weight scheme of ELM already covers the possible weight space pretty well

Better Weights: Sparsity!

Idea 2:

- improve the diversity of the weights by having each of them work in a different subspace (e.g. each weight vector has different subset of variables as input)
- spoiler: significantly improves accuracy, at no extra computational cost
- experiments suggest this is due to the weight scheme enabling implicit variable selection

Binary Weight Scheme

until enough neurons:

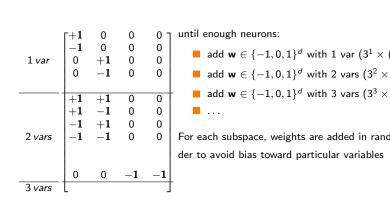
add w ∈ {0, 1}^d with 1 var (# = 2¹ × $\binom{d}{1}$) add w ∈ {0, 1}^d with 2 vars (# = 2² × $\binom{d}{2}$) add w ∈ {0, 1}^d with 3 vars (# = 2³ × $\binom{d}{3}$) ...

For each subspace, weights are added in random order to avoid bias toward particular variables

Aalto University

Advances in Extreme Learning Machines Mark van Heeswijk

Ternary Weight Scheme



add
$$\mathbf{w} \in \{-1, 0, 1\}^d$$
 with 1 var $(3^1 \times \binom{d}{1})$
add $\mathbf{w} \in \{-1, 0, 1\}^d$ with 2 vars $(3^2 \times \binom{d}{2})$
add $\mathbf{w} \in \{-1, 0, 1\}^d$ with 3 vars $(3^3 \times \binom{d}{3})$
...

For each subspace, weights are added in random or-

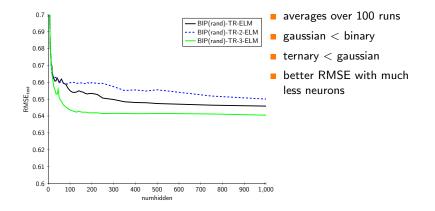
Advances in Extreme Learning Machines Mark van Heeswiik

Experimental Settings

Data	Abbreviation	number of variables	# training	# test
Abalone	Ab	8	2000	2177
CaliforniaHousing	Ca	8	8000	12640
CensusHouse8L	Ce	8	10000	12784
DeltaElevators	De	6	4000	5517
ComputerActivity	Co	12	4000	4192

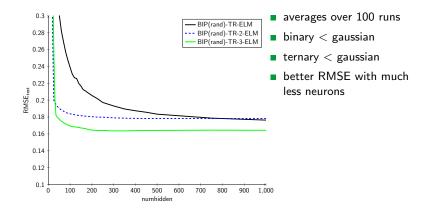
- BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
- Experiment 1: relative performance
- Experiment 2: robustness against irrelevant vars
- Experiment 3: implicit variable selection
- (all results are averaged over 100 repetitions, each with randomly drawn training/test set)

Exp 1: numhidden vs. RMSE (Abalone)

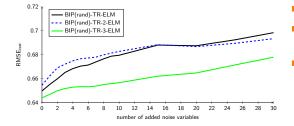


Aalto University

Exp 1: numhidden vs. RMSE (CpuActivity)



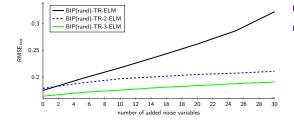
Exp 2: Robustness against irrelevant variables (Abalone)



- 1000 neurons
- binary weight scheme gives similar RMSE
- ternary weight scheme makes ELM more robust against irrelevant vars

Advances in Extreme Learning Machines Mark van Heeswijk

Exp 2: Robustness against irrelevant variables (CpuActivity)



 binary and ternary weight scheme makes
 ELM more robust against irrelevant vars

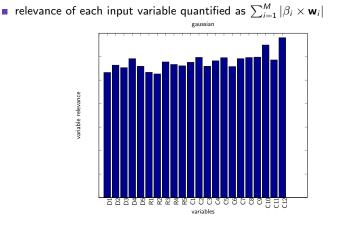
Advances in Extreme Learning Machines Mark van Heeswijk

Exp 2: Robustness against irrelevant variables

		Ab		Co		
	gaussian	binary	ternary	gaussian	binary	ternary
RMSE with original variables	0.6497	0.6544	0.6438	0.1746	0.1785	0.1639
RMSE with 30 added irr. vars	0.6982	0.6932	0.6788	0.3221	0.2106	0.1904
RMSE loss	0.0486	0.0388	0.0339	0.1475	0.0321	0.0265

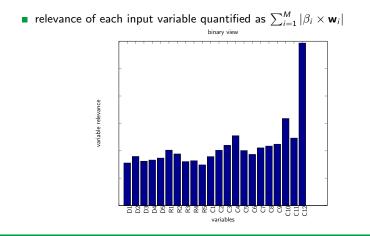
Table : Average RMSE loss of ELMs with 1000 hidden neurons, trained on the original data, and the data with 30 added irrelevant variables

Exp 3: Implicit Variable Selection (CpuAct)



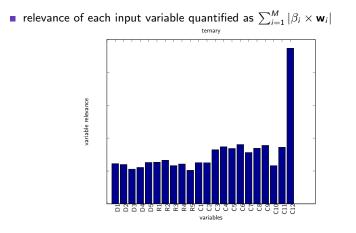
Advances in Extreme Learning Machines Mark van Heeswijk

Exp 3: Implicit Variable Selection (CpuAct)



Advances in Extreme Learning Machines Mark van Heeswijk

Exp 3: Implicit Variable Selection (CpuAct)



Advances in Extreme Learning Machines Mark van Heeswijk 54/23 April 17, 2015 Lectio Praecursoria

Binary/Ternary ELM Conclusions

We propose simple change to weight scheme and introduce robust ELM variants:

- BIP(rand)-TR-ELM
- BIP(rand)-TR-2-ELM
- BIP(rand)-TR-3-ELM

Our experiments suggest that

- 1. ternary weight scheme generally better than gaussian weights
- 2. ternary weight scheme robust against irrelevant variables
- **3.** binary/ternary weight scheme allows ELM to perform implicit variable selection

The added robustness and increased accuracy comes for free!

Defence Slides:

Trade-offs / Compressive ELM

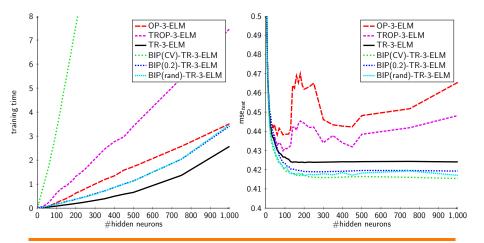
Advances in Extreme Learning Machines Mark van Heeswijk 56/23 April 17, 2015 Lectio Praecursoria

Time-accuracy Trade-offs for Several ELMs

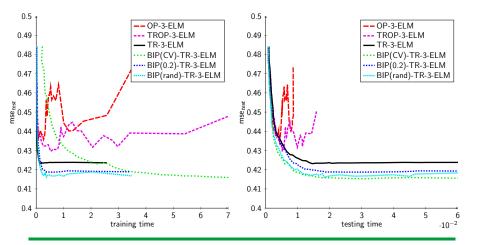
ELM

- **OP-ELM**: Optimally Pruned ELM with neurons ranked by relevance, and then pruned to optimize the leave-one-out error
- TR-ELM: Tikhonov-regularized ELM, with efficient optimization of regularization parameter λ, using the SVD approach to computing H[†]
- **TROP-ELM:** Tikhonov regularized OP-ELM
- BIP(0.2), BIP(rand), BIP(CV):
 - ELMs pretrained using Batch Intrinsic Plasticity mechanism, adapting the hidden layer weights and biases, such that they retain as much information as possible
 - BIP parameter is either fixed, randomized, or cross-validated over 20 possible values

ELM Time-accuracy Trade-offs (Abalone UCI)



ELM Time-accuracy Trade-offs (Abalone UCI)



ELM Time-accuracy Trade-offs (Abalone UCI)

Depending on the user's criteria, these results suggest:

- training time most important: BIP(rand)-TR-3-ELM (almost optimal performance, while keeping training time low)
- if test error is most important: BIP(CV)-TR-3-ELM (slightly better accuracy, but training time is 20 times as high)
- if testing time is most important: BIP(rand)-TR-3-ELM (surprisingly) (OP-ELM and TROP-ELM tend to be faster in test, but suffer from slight overfitting)

Since TR-3-ELM offers attractive trade-offs between speed and accuracy, this model will be central in the rest of the paper.

Two approaches for improving models

Time-accuracy trade-offs suggest **two possible strategies** to obtain models that are preferable over other models:

- reducing test error, using a better algorithm
 ("in terms of training time-accuracy plot: "pushing the curve down")
- reducing computational time, while retaining as much accuracy as possible

("in terms of training time-accuracy plot: "pushing the curve to the left")

Compressive ELM focuses on reducing computational time by performing the training in a reduced space, and then projecting back the solution back to the original space.

Compressive ELM

Given $m \times n$ matrix A, compute k-term approximate SVD $A \approx UDV^{T}$ [Halko2009]:

- Form the $n \times (k + p)$ random matrix Ω . (where p is small)
- Form the $m \times (k + p)$ sampling matrix $Y = A\Omega$. (sketch it by applying Ω)
- Form the m × (k + p) orthonormal matrix Q (such that range(Q) = range(Y))
- Compute B = Q*A.
- Form the SVD of B so that $B = \hat{U}DV^T$
- Compute the matrix $U = Q\hat{U}$

Faster Sketching?

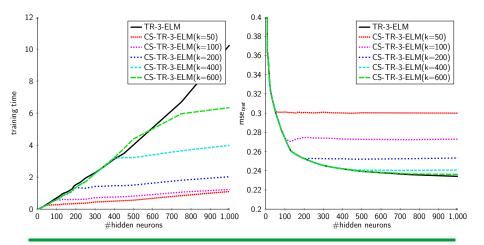
Bottleneck in Algorithm is the time it takes to sketch the matrix. Rather than using Gaussian random matrices for sketching A, use random matrices that are sparse or structured in some way and allow for faster multiplication:

$$(P)_{k \times n} (W)_{n \times n} (D)_{n \times n}$$

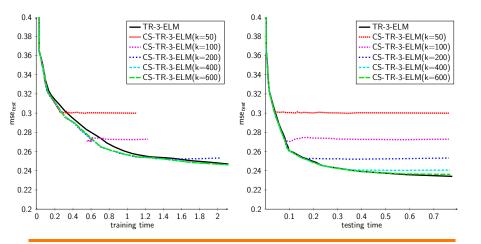
- Fast Johnson Lindenstrauss Transform (FJLT) introduced in [Ailon2006] for which *P* is a sparse matrix of random Gaussian variables, and *H* encodes the Discrete Hadamard Transform
- Subsampled Randomized Hadamard Transform (SRHT) for which P is a matrix selecting k random columns from H, and H encodes the Discrete Hadamard Transform

(Experiments did not show substantial difference in terms of computational time. Dataset too small?)

Compressive ELM (CalHousing, FJLT)



Compressive ELM (CalHousing, FJLT)



Compressive ELM Conclusions

Contributions

- Compressive ELM provides a flexible way to reduce training time by doing the optimization in a reduced space of k dimensions
- given k large enough, Compressive ELM achieves the best test error for each computational time

(i.e. there are no models that achieve better test error and can be trained in the same or less time).

Future work

• let theory/bounds on low-distortion embeddings inform the choice of k

