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Trends in Machine Learning

increasing dimensionality of data sets

increasing size of data sets

˜300 hours of video are uploaded to YouTube every minute
˜1.8 billion pictures uploaded every day to various sites
(mid-2014)
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Trends in Machine Learning

[http://tech.firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-

everyday-meeker-report-224688.html]
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Trends in Machine Learning

increasing dimensionality of data sets

increasing size of data sets

˜300 hours of video are uploaded to YouTube every minute
˜1.8 billion pictures uploaded every day to various sites
(mid-2014)

machine learning methods needed, that can be used to analyze this
data and extract useful knowledge and insights from this wealth of

information
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Contributions

Combinations of Multiple Extreme Learning Machines (ELM)

I: Adaptive Ensemble Models of ELMs for Time Series Prediction

II: GPU-accelerated and parallelized ELM ensembles for large-scale regression

Variable Selection and ELM

III: Feature selection for nonlinear models with extreme learning machines

IV: Fast Feature Selection in a GPU Cluster Using the Delta Test

V: Binary/Ternary Extreme Learning Machines

Trade-offs in Extreme Learning Machines

VI: Compressive ELM: Improved Models Through Exploiting Time-Accuracy
Trade-offs
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Extreme Learning Machines
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Extreme Learning Machines
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Adaptive Ensemble of ELMs (Publ I)

⋮

⋮

⋮ ⋮

adaptive linear combination

based on performance of each ELM

trained on sliding/growing window
random #neurons
random inputs
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Parallelized/GPU-Accelerated Ensemble of ELMs
(Publ II)

⋮

⋮

⋮ ⋮

fixed linear combination based on loo-cv

training of ELMs

parallelized over 

multiple CPU/GPU

training performed on GPU
optimized #neurons (loo-cv on GPU)
random inputs
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Highlighted ELM Ensemble Results
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Adaptation of ensemble weight during task
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Highlighted ELM Ensemble Results
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Highlighted ELM Ensemble Results
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ELM-based Feature Selection (Publ III)
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Highlighted ELM-FS Results
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Fast Feature Selection with GPU-accelerated
Delta Test (Publ IV)
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Fast Feature Selection with GPU-accelerated
Delta Test (Publ IV)
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Binary/Ternary Extreme Learning Machines
(Publ V)
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Ternary ELM Results
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Compressive ELM (Publ VI)

input xj 1

input xj 2

input xj 3

input xj 4

output yj⋮
binary/

ternary

weights

scaling of weights and biases

optimized using batch-

intrinsic plasticity pretraining

least-squares solution

with fast L2 regularization

by using SVD decomposition

Advances in Extreme Learning Machines 20/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Compressive ELM (Publ VI)

input xj 1

input xj 2

input xj 3

input xj 4

⋮ output yj
binary/

ternary

weights

scaling of weights and biases

optimized using batch-

intrinsic plasticity pretraining

fast low-distortion embedding

into lower-dimensional space

least-squares solution

with fast L2 regularization

by using SVD decomposition

Advances in Extreme Learning Machines 20/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Highlighted Results Compressive ELM
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Summary

Overall:

resulting collection of proposed methods provides an efficient,
accurate and flexible framework for solving large-scale
supervised learning problems.

proposed methods:

are not limited to the particular types of random-weight neural
networks and contexts in which they have been tested
can easily be incorporated in new contexts and models
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ELM vs RVFL
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Standard ELM

Given a training set (xi , yi ), xi ∈ Rd , yi ∈ R, an activation function f : R 7→ R
and M the number of hidden nodes:

1: - Randomly assign input weights wi and biases bi , i ∈ [1,M];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = H†Y.

where

H =

 f (w1 · x1 + b1) · · · f (wM · x1 + bM)
...

. . .
...

f (w1 · xN + b1) · · · f (wM · xN + bM)
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ELM Theory vs Practice

In theory, ELM is universal approximator

In practice, limited number of samples; risk of overfitting

Therefore:

the functional approximation should use as limited number of
neurons as possible
the hidden layer should extract and retain as much useful
information as possible from the input samples
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ELM Theory vs Practice

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune the length of the weights vectors somehow

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization
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Batch Intrinsic Plasticity

suppose (x1, ..., xN) ∈ RN×d , and output of neuron i is
hi = f (aiwi · xk +bi ), where f is an invertible transfer function

for each neuron i

from exponential distribution with mean µexp, draw targets
t = (t1, t2, . . . , tN) and sort such that t1 < t2 < . . . < tN
compute all presynaptic inputs sk = wi · xk , and sort such that
s1 < s2 < . . . < sN
now, find ai and bi such that s1 1

... 1
sN 1

( ai
bi

)
=

 f −1(t1)
...

f −1(tN)
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Fast leave-one-out cross-validation

The leave-one-out (LOO) error can be computed using the PRESS
statistics:

Eloo =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

where hatii is the i th value on the diagonal of the HAT-matrix,
which can be quickly computed, given H† :

Ŷ = Hβ = HH†Y

= HAT · Y
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Fast leave-one-out cross-validation

Using the SVD decomposition of H = UDVT , it is possible to
obtain all needed information for computing the PRESS
statistic without recomputing the pseudo-inverse for every λ:

Ŷ = Hβ

= H(HTH + λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT · Y
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Fast leave-one-out cross-validation

where D(D2 + λI)−1D is a diagonal matrix with
d2
ii

d2
ii +λ

as the i th

diagonal entry. Now:

MSETR-PRESS =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

=
1

N

N∑
i=1

(
yi − ŷi

1− hi ·(HTH + λI)−1hT
i ·

)2

=
1

N

N∑
i=1

 yi − ŷi

1− ui ·

(
d2
ii

d2
ii +λ

)
uT
i ·

2

Advances in Extreme Learning Machines 33/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Leave-one-out computation overhead
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Figure : Comparison of running times of ELM training (solid lines) and
ELM training + leave-one-out-computation (dotted lines), with (black
lines) and without (gray lines) explicitly computing and reusing H†
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Error reduction by ensembling

ŷi = y + εi , (1)

E[
{
ŷi − y

}2
] = E[ε2

i ]. (2)

Eavg =
1

m

m∑
i=1

E[ε2
i ]. (3)

Eens = E
[{ 1

m

m∑
i=1

(ŷ − y)
}2]

= E
[{ 1

m

m∑
i=1

εi

}2]
. (4)

Eens =
1

m
Eavg =

1

m2

m∑
i=1

E[ε2
i ], (5)
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Running times parallelized and GPU-Accelerated
ELM Ensemble (SantaFe, ESTSP)

N t(mldivdp) t(gesvdp) t(mldivsp) t(gesvsp) t(culaGesvsp)

SantaFe 0 674.0 s 672.3 s 515.8 s 418.4 s 401.0 s

1 1781.6 s 1782.4 s 1089.3 s 1088.8 s 702.9 s

2 917.5 s 911.5 s 567.5 s 554.7 s 365.3 s

3 636.1 s 639.0 s 392.2 s 389.3 s 258.7 s

4 495.7 s 495.7 s 337.3 s 304.0 s 207.8 s

ESTSP 0 2145.8 s 2127.6 s 1425.8 s 1414.3 s 1304.6 s

1 5636.9 s 5648.9 s 3488.6 s 3479.8 s 2299.8 s

2 2917.3 s 2929.6 s 1801.9 s 1806.4 s 1189.2 s

3 2069.4 s 2065.4 s 1255.9 s 1248.6 s 841.9 s

4 1590.7 s 1596.8 s 961.7 s 961.5 s 639.8 s
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Running times parallelized and GPU-Accelerated
ELM Ensemble (SantaFe, ESTSP)
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ELM Ensemble Accuracy (SantaFe, ESTSP)
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Binary / Ternary ELM
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Better Weights

random layer weights and biases drawn from e.g. uniform /
normal distribution with certain range / variance

typical transfer function f (〈wi, x〉+ bi )

from 〈wi, x〉 = |wi||x| cos θ, it can be seen that the typical
activation of f depends on:

expected length of wi

expected length of x
angles θ between the weights and the samples
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Better Weights: Orthogonality?

Idea 1:

improve the diversity of the weights by taking weights that are
mutually orthogonal (e.g. M d-dimensional basis vectors,
randomly rotated in the d-dimensional space)

however, does not give significantly better accuracy

apparently, for the tested cases, random weight scheme of
ELM already covers the possible weight space pretty well
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Better Weights: Sparsity!

Idea 2:

improve the diversity of the weights by having each of them
work in a different subspace (e.g. each weight vector has
different subset of variables as input)

spoiler: significantly improves accuracy, at no extra
computational cost

experiments suggest this is due to the weight scheme enabling
implicit variable selection
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Binary Weight Scheme

1 var

2 vars

3 vars



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

· · ·
· · ·

0 0 0 1 1
etc.



until enough neurons:

add w ∈ {0, 1}d with 1 var (# = 21 ×
(d

1

)
)

add w ∈ {0, 1}d with 2 vars (# = 22 ×
(d

2

)
)

add w ∈ {0, 1}d with 3 vars (# = 23 ×
(d

3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables
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Ternary Weight Scheme

1 var

2 vars

3 vars



+1 0 0 0
−1 0 0 0
0 +1 0 0
0 −1 0 0

+1 +1 0 0
+1 −1 0 0
−1 +1 0 0
−1 −1 0 0

0 0 −1 −1



until enough neurons:

add w ∈ {−1, 0, 1}d with 1 var (31 ×
(d

1

)
)

add w ∈ {−1, 0, 1}d with 2 vars (32 ×
(d

2

)
)

add w ∈ {−1, 0, 1}d with 3 vars (33 ×
(d

3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

Advances in Extreme Learning Machines 45/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)
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Exp 1: numhidden vs. RMSE (Abalone)
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Exp 1: numhidden vs. RMSE (CpuActivity)
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Exp 2: Robustness against irrelevant variables
(Abalone)
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makes ELM more robust
against irrelevant vars
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Exp 2: Robustness against irrelevant variables
(CpuActivity)
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Exp 2: Robustness against irrelevant variables

Ab Co

gaussian binary ternary gaussian binary ternary

RMSE with original variables 0.6497 0.6544 0.6438 0.1746 0.1785 0.1639

RMSE with 30 added irr. vars 0.6982 0.6932 0.6788 0.3221 0.2106 0.1904

RMSE loss 0.0486 0.0388 0.0339 0.1475 0.0321 0.0265

Table : Average RMSE loss of ELMs with 1000 hidden neurons, trained
on the original data, and the data with 30 added irrelevant variables
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Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |
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Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables

va
ri

ab
le

re
le

va
n

ce

binary view

Advances in Extreme Learning Machines 53/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |
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Binary/Ternary ELM Conclusions

We propose simple change to weight scheme and introduce robust ELM
variants:

BIP(rand)-TR-ELM

BIP(rand)-TR-2-ELM

BIP(rand)-TR-3-ELM

Our experiments suggest that

1. ternary weight scheme generally better than gaussian weights

2. ternary weight scheme robust against irrelevant variables

3. binary/ternary weight scheme allows ELM to perform implicit variable
selection

The added robustness and increased accuracy comes for free!
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Defence Slides:

Trade-offs / Compressive ELM
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Time-accuracy Trade-offs for Several ELMs

ELM

OP-ELM: Optimally Pruned ELM with neurons ranked by relevance, and
then pruned to optimize the leave-one-out error

TR-ELM: Tikhonov-regularized ELM, with efficient optimization of
regularization parameter λ, using the SVD approach to computing H†

TROP-ELM: Tikhonov regularized OP-ELM

BIP(0.2), BIP(rand), BIP(CV):

ELMs pretrained using Batch Intrinsic Plasticity mechanism,
adapting the hidden layer weights and biases, such that they
retain as much information as possible
BIP parameter is either fixed, randomized, or cross-validated
over 20 possible values
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ELM Time-accuracy Trade-offs (Abalone UCI)
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ELM Time-accuracy Trade-offs (Abalone UCI)

0 1 2 3 4 5 6 7
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

training time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 1 2 3 4 5 6
·10−2

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

testing time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

Advances in Extreme Learning Machines 59/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



ELM Time-accuracy Trade-offs (Abalone UCI)

Depending on the user’s criteria, these results suggest:

training time most important: BIP(rand)-TR-3-ELM
(almost optimal performance, while keeping training time low)

if test error is most important: BIP(CV)-TR-3-ELM
(slightly better accuracy, but training time is 20 times as high)

if testing time is most important: BIP(rand)-TR-3-ELM (surprisingly)
(OP-ELM and TROP-ELM tend to be faster in test, but suffer from
slight overfitting)

Since TR-3-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper.
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Two approaches for improving models

Time-accuracy trade-offs suggest two possible strategies to obtain models
that are preferable over other models:

reducing test error, using a better algorithm
(“in terms of training time-accuracy plot: “pushing the curve down”)

reducing computational time, while retaining as much accuracy as
possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

Compressive ELM focuses on reducing computational time by performing
the training in a reduced space, and then projecting back the solution back
to the original space.
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Compressive ELM

Given m × n matrix A, compute k-term approximate SVD
A ≈ UDV T [Halko2009]:

Form the n × (k + p) random matrix Ω. (where p is small)

Form the m× (k + p) sampling matrix Y = AΩ. (sketch it by applying Ω)

Form the m × (k + p) orthonormal matrix Q
(such that range(Q) = range(Y ))

Compute B = Q∗A.

Form the SVD of B so that B = ÛDV T

Compute the matrix U = QÛ
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Faster Sketching?

Bottleneck in Algorithm is the time it takes to sketch the matrix. Rather than
using Gaussian random matrices for sketching A, use random matrices that are
sparse or structured in some way and allow for faster multiplication:(

P
)
k×n

(
W

)
n×n

(
D
)
n×n

Fast Johnson Lindenstrauss Transform (FJLT) introduced in
[Ailon2006] for which P is a sparse matrix of random Gaussian variables,
and H encodes the Discrete Hadamard Transform

Subsampled Randomized Hadamard Transform (SRHT) for which P is
a matrix selecting k random columns from H, and H encodes the
Discrete Hadamard Transform

(Experiments did not show substantial difference in terms of computational
time. Dataset too small?)
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Compressive ELM (CalHousing, FJLT)

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

#hidden neurons

tr
ai
ni
ng

ti
m
e

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

#hidden neurons

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

Advances in Extreme Learning Machines 64/23
Mark van Heeswijk April 17, 2015

Lectio Praecursoria



Compressive ELM (CalHousing, FJLT)
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Compressive ELM Conclusions

Contributions

Compressive ELM provides a flexible way to reduce training time by
doing the optimization in a reduced space of k dimensions

given k large enough, Compressive ELM achieves the best test error for
each computational time
(i.e. there are no models that achieve better test error and can be trained
in the same or less time).

Future work

let theory/bounds on low-distortion embeddings inform the choice of k
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