
Binary/Ternary Extreme Learning Machines

Mark van Heeswijk, Yoan Miche

October 3, 2013

Outline

Motivation

Binary / Ternary ELM

Experiments

Conclusion

2/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Outline

Motivation

Binary / Ternary ELM

Experiments

Conclusion

3/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Standard ELM

Given a training set (xi , yi), xi ∈ Rd , yi ∈ R, an activation function
f : R 7→ R and M the number of hidden nodes:

1: - Randomly assign input weights wi and biases bi , i ∈ [1,M];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = H†Y.

4/25
Mark van Heeswijk, Yoan Miche October 3, 2013

ELM Theory vs Practice

In theory, ELM is universal approximator

In practice, limited number of samples; risk of overfitting

Therefore:

the functional approximation should use as limited number of
neurons as possible
the hidden layer should extract and retain as much information
as possible from the input samples

which neurons work well together to extract as much useful
information as possible?

5/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Better Weights

random layer weights and biases drawn from e.g. uniform /
normal distribution with certain range / variance

typical transfer function f (〈wi, x〉+ bi)

from 〈wi, x〉 = |wi||x| cos θ, it can be seen that the typical
activation of f depends on:

expected length of wi

expected length of x
angles θ between the weights and the samples

6/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Better Weights: Orthogonality?

Idea 1:

improve the diversity of the weights by taking weights that are
mutually orthogonal (e.g. the M d-dimensional basis vectors,
randomly rotated in the d-dimensional space)

however, does not give significantly better accuracy :(

apparently, for the tested cases, random weight scheme of
ELM already covers the possible weight space pretty well

7/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Better Weights: Sparsity!

Idea 2:

improve the diversity of the weights by having each of them
work in a different subspace (e.g. each weight vector has
different subset of variables as input)

spoiler: significantly improves accuracy, at no extra
computational cost :)

experiments suggest this is due to the weight scheme enabling
implicit variable selection

8/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Outline

Motivation

Binary / Ternary ELM

Experiments

Conclusion

9/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Binary Weight Scheme

1 var

2 vars

3 vars

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

· · ·
· · ·

0 0 0 1 1
etc.

until enough neurons:

add w ∈ {0, 1}d with 1 var (# = 21 ×
(d
1

)
)

add w ∈ {0, 1}d with 2 vars (# = 22 ×
(d
2

)
)

add w ∈ {0, 1}d with 3 vars (# = 23 ×
(d
3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

10/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Ternary Weight Scheme

1 var

2 vars

3 vars

+1 0 0 0
−1 0 0 0
0 +1 0 0
0 −1 0 0

+1 +1 0 0
+1 −1 0 0
−1 +1 0 0
−1 −1 0 0

0 0 −1 −1

until enough neurons:

add w ∈ {−1, 0, 1}d with 1 var (31 ×
(d
1

)
)

add w ∈ {−1, 0, 1}d with 2 vars (32 ×
(d
2

)
)

add w ∈ {−1, 0, 1}d with 3 vars (33 ×
(d
3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

11/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Some Notes

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune somehow using e.g.
Batch Intrinsic Plasticity Pretraining

any performance difference between weight schemes will therefore come
from the different directions of the weights

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization

12/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Outline

Motivation

Binary / Ternary ELM

Experiments

Conclusion

13/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)

14/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 1: numhidden vs. RMSE (Abalone)

0 100 200 300 400 500 600 700 800 900 1,000
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

numhidden

R
M

S
E

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

averages over 100 runs

gaussian < binary

ternary < gaussian

better RMSE with much
less neurons

15/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 1: numhidden vs. RMSE (CpuActivity)

0 100 200 300 400 500 600 700 800 900 1,000
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

numhidden

R
M

S
E

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

averages over 100 runs

binary < gaussian

ternary < gaussian

better RMSE with much
less neurons

16/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 2: Robustness against irrelevant variables
(Abalone)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.64

0.66

0.68

0.7

0.72

number of added noise variables

R
M

S
E

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

1000 neurons

binary weight scheme
gives similar RMSE

ternary weight scheme
makes ELM more robust
against irrelevant vars

17/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 2: Robustness against irrelevant variables
(CpuActivity)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

0.25

0.3

number of added noise variables

R
M

S
E

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

1000 neurons

binary and ternary
weight scheme makes
ELM more robust
against irrelevant vars

18/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 2: Robustness against irrelevant variables

Ab Co

gaussian binary ternary gaussian binary ternary

RMSE with original variables 0.6497 0.6544 0.6438 0.1746 0.1785 0.1639

RMSE with 30 added irr. vars 0.6982 0.6932 0.6788 0.3221 0.2106 0.1904

RMSE loss 0.0486 0.0388 0.0339 0.1475 0.0321 0.0265

Table: Average RMSE loss of ELMs with 1000 hidden neurons, trained
on the original data, and the data with 30 added irrelevant variables

19/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables

va
ri

ab
le

re
le

va
n

ce

gaussian

20/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables

va
ri

ab
le

re
le

va
n

ce

binary view

21/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables

va
ri

ab
le

re
le

va
n

ce

ternary

22/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Outline

Motivation

Binary / Ternary ELM

Experiments

Conclusion

23/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Conclusions

We propose simple change to weight scheme and introduce robust ELM
variants:

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

Our experiments suggest that

1. ternary weight scheme generally better than gaussian weights

2. ternary weight scheme robust against irrelevant variables

3. binary/ternary weight scheme allows ELM to perform implicit variable
selection

The added robustness and increased accuracy comes for free!

24/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Questions?

25/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Batch Intrinsic Plasticity

suppose (x1, ..., xN) ∈ RN×d , and output of neuron i is
hi = f (aiwi · xk +bi), where f is an invertible transfer function

for each neuron i

from exponential distribution with mean µexp, draw targets
t = (t1, t2, . . . , tN) and sort such that t1 < t2 < . . . < tN
compute all presynaptic inputs sk = wi · xk , and sort such that
s1 < s2 < . . . < sN
now, find ai and bi such that s1 1

... 1
sN 1

(ai
bi

)
=

 f −1(t1)
...

f −1(tN)

25/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Fast leave-one-out cross-validation

The leave-one-out (LOO) error can be computed using the PRESS
statistics:

Eloo =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

where hatii is the i th value on the diagonal of the HAT-matrix,
which can be quickly computed, given H† :

Ŷ = Hβ = HH†Y

= HAT · Y

25/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Fast leave-one-out cross-validation

Using the SVD decomposition of H = UDVT , it is possible to
obtain all needed information for computing the PRESS
statistic without recomputing the pseudo-inverse for every λ:

Ŷ = Hβ

= H(HTH + λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT · Y

25/25
Mark van Heeswijk, Yoan Miche October 3, 2013

Fast leave-one-out cross-validation

where D(D2 + λI)−1D is a diagonal matrix with
d2
ii

d2
ii+λ

as the i th

diagonal entry. Now:

MSETR-PRESS =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

=
1

N

N∑
i=1

(
yi − ŷi

1− hi ·(HTH + λI)−1hT
i ·

)2

=
1

N

N∑
i=1

 yi − ŷi

1− ui ·

(
d2
ii

d2
ii+λ

)
uT
i ·

2

25/25
Mark van Heeswijk, Yoan Miche October 3, 2013

	Motivation
	Binary / Ternary ELM
	Experiments
	Conclusion

