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Trade-offs in Training Neural Networks

Ideally:

training results in best possible test accuracy
training is fast
the model is efficient to evaluate at test time

However, in practice, in training of neural networks there exists a
trade-off between:

testing accuracy
training time
testing time

Furthermore, the optimal trade-off depends on the user’s requirements
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Contributions

The paper explores time-accuracy trade-offs in various Extreme Learning
Machines (ELMs)

Compressive Extreme Learning Machine is introduced:

allows for a flexible time-accuracy trade-off by training the
model in a reduced space
experiments indicate that this trade-off is efficient in the sense
that it may yield better models in less time
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Standard ELM

Given a training set (xi , yi ), xi ∈ Rd , yi ∈ R, an activation function f : R 7→ R
and M the number of hidden nodes:

1: - Randomly assign input weights wi and biases bi , i ∈ [1,M];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = H†Y.

where

H =

 f (w1 · x1 + b1) · · · f (wM · x1 + bM)
...

. . .
...

f (w1 · xN + b1) · · · f (wM · xN + bM)
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ELM Theory vs Practice

In theory, ELM is universal approximator

In practice, limited number of samples; risk of overfitting

Therefore:

the functional approximation should use as limited number of
neurons as possible
the hidden layer should extract and retain as much useful
information as possible from the input samples
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ELM Theory vs Practice

Weight considerations:

weight range determines typical activation of the transfer function
(remember 〈wi, x〉 = |wi||x| cos θ,)

therefore, normalize or tune the length of the weights vectors somehow

Linear vs non-linear:

since sigmoid neurons operate in nonlinear regime, add d linear neurons
for the ELM to work better on (almost) linear problems

Avoiding overfitting:

use efficient L2 regularization
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Ternary Weight Scheme

1 var

2 vars

3 vars



+1 0 0 0
−1 0 0 0
0 +1 0 0
0 −1 0 0

+1 +1 0 0
+1 −1 0 0
−1 +1 0 0
−1 −1 0 0

0 0 −1 −1



until enough neurons [vanHeeswijk2014]:

add w ∈ {−1, 0, 1}d with 1 var (31 ×
(d
1

)
)

add w ∈ {−1, 0, 1}d with 2 vars (32 ×
(d
2

)
)

add w ∈ {−1, 0, 1}d with 3 vars (33 ×
(d
3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables
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Time-accuracy Trade-offs for Several ELMs

ELM

OP-ELM: Optimally Pruned ELM with neurons ranked by relevance, and
then pruned to optimize the leave-one-out error

TR-ELM: Tikhonov-regularized ELM, with efficient optimization of
regularization parameter λ, using the SVD approach to computing H†

TROP-ELM: Tikhonov regularized OP-ELM

BIP(0.2), BIP(rand), BIP(CV):

ELMs pretrained using Batch Intrinsic Plasticity mechanism,
adapting the hidden layer weights and biases, such that they
retain as much information as possible
BIP parameter is either fixed, randomized, or cross-validated
over 20 possible values
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ELM Time-accuracy Trade-offs (Abalone UCI)
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ELM Time-accuracy Trade-offs (Abalone UCI)
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ELM Time-accuracy Trade-offs (Abalone UCI)

Depending on the user’s criteria, these results suggest:

training time most important: BIP(rand)-TR-3-ELM
(almost optimal performance, while keeping training time low)

if test error is most important: BIP(CV)-TR-3-ELM
(slightly better accuracy, but training time is 20 times as high)

if testing time is most important: BIP(rand)-TR-3-ELM (surprisingly)
(OP-ELM and TROP-ELM tend to be faster in test, but suffer from
slight overfitting)

Since TR-3-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper.
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Two approaches for improving models

Time-accuracy trade-offs suggest two possible strategies to obtain models
that are preferable over other models:

reducing test error, using a better algorithm
(“in terms of training time-accuracy plot: “pushing the curve down”)

reducing computational time, while retaining as much accuracy as
possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

Compressive ELM focuses on reducing computational time by performing
the training in a reduced space, and then projecting back the solution back
to the original space.
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Compressive ELM

Given m × n matrix A, compute k-term approximate SVD
A ≈ UDV T [Halko2009]:

Form the n × (k + p) random matrix Ω. (where p is small)

Form the m× (k + p) sampling matrix Y = AΩ. (sketch it by applying Ω)

Form the m × (k + p) orthonormal matrix Q
(such that range(Q) = range(Y ))

Compute B = Q∗A.

Form the SVD of B so that B = ÛDV T

Compute the matrix U = QÛ
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Faster Sketching?

Bottleneck in Algorithm is the time it takes to sketch the matrix. Rather than
using Gaussian random matrices for sketching A, use random matrices that are
sparse or structured in some way and allow for faster multiplication:(

P
)
k×n

(
H
)
n×n

(
D
)
n×n

Fast Johnson Lindenstrauss Transform (FJLT) introduced in
[Ailon2006] for which P is a sparse matrix of random Gaussian variables,
and H encodes the Discrete Hadamard Transform

Subsampled Randomized Hadamard Transform (SRHT) for which P is
a matrix selecting k random columns from H, and H encodes the
Discrete Hadamard Transform

(Experiments did not show substantial difference in terms of computational
time. Dataset too small?)
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Compressive ELM (CalHousing, FJLT)
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Compressive ELM (CalHousing, FJLT)
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Conclusions

Contributions

Compressive ELM provides a flexible way to reduce training time by
doing the optimization in a reduced space of k dimensions

given k large enough, Compressive ELM achieves the best test error for
each computational time
(i.e. there are no models that achieve better test error and can be trained
in the same or less time).

Future work

let theory/bounds on low-distortion embeddings inform the choice of k
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Questions?
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Backup Slides
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Batch Intrinsic Plasticity

suppose (x1, ..., xN) ∈ RN×d , and output of neuron i is
hi = f (aiwi · xk + bi ), where f is an invertible transfer function

for each neuron i

from exponential distribution with mean µexp, draw targets
t = (t1, t2, . . . , tN) and sort such that t1 < t2 < . . . < tN
compute all presynaptic inputs sk = wi · xk , and sort such that
s1 < s2 < . . . < sN
now, find ai and bi such that s1 1

... 1
sN 1

( ai
bi

)
=

 f −1(t1)
...

f −1(tN)
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Fast leave-one-out cross-validation

The leave-one-out (LOO) error can be computed using the PRESS
statistics:

Eloo =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

where hatii is the i th value on the diagonal of the HAT-matrix,
which can be quickly computed, given H† :

Ŷ = Hβ = HH†Y

= HAT · Y
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Fast leave-one-out cross-validation

Using the SVD decomposition of H = UDVT , it is possible to
obtain all needed information for computing the PRESS
statistic without recomputing the pseudo-inverse for every λ:

Ŷ = Hβ

= H(HTH + λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT · Y
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Fast leave-one-out cross-validation

where D(D2 + λI)−1D is a diagonal matrix with
d2
ii

d2
ii+λ

as the i th

diagonal entry. Now:

MSETR-PRESS =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

=
1

N

N∑
i=1

(
yi − ŷi

1− hi ·(HTH + λI)−1hT
i ·

)2

=
1

N

N∑
i=1

 yi − ŷi

1− ui ·

(
d2
ii

d2
ii+λ

)
uT
i ·

2
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Better Weights

random layer weights and biases drawn from e.g. uniform /
normal distribution with certain range / variance

typical transfer function f (〈wi, x〉+ bi )

from 〈wi, x〉 = |wi||x| cos θ, it can be seen that the typical
activation of f depends on:

expected length of wi

expected length of x
angles θ between the weights and the samples
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Better Weights: Orthogonality?

Idea 1:

improve the diversity of the weights by taking weights that are
mutually orthogonal (e.g. M d-dimensional basis vectors,
randomly rotated in the d-dimensional space)

however, does not give significantly better accuracy

apparently, for the tested cases, random weight scheme of
ELM already covers the possible weight space pretty well
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Better Weights: Sparsity!

Idea 2:

improve the diversity of the weights by having each of them
work in a different subspace (e.g. each weight vector has
different subset of variables as input)

spoiler: significantly improves accuracy, at no extra
computational cost

experiments suggest this is due to the weight scheme enabling
implicit variable selection
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Binary Weight Scheme

1 var

2 vars

3 vars



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

· · ·
· · ·

0 0 0 1 1
etc.



until enough neurons:

add w ∈ {0, 1}d with 1 var (# = 21 ×
(d
1

)
)

add w ∈ {0, 1}d with 2 vars (# = 22 ×
(d
2

)
)

add w ∈ {0, 1}d with 3 vars (# = 23 ×
(d
3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables
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Ternary Weight Scheme

1 var

2 vars

3 vars



+1 0 0 0
−1 0 0 0
0 +1 0 0
0 −1 0 0

+1 +1 0 0
+1 −1 0 0
−1 +1 0 0
−1 −1 0 0

0 0 −1 −1



until enough neurons:

add w ∈ {−1, 0, 1}d with 1 var (31 ×
(d
1

)
)

add w ∈ {−1, 0, 1}d with 2 vars (32 ×
(d
2

)
)

add w ∈ {−1, 0, 1}d with 3 vars (33 ×
(d
3

)
)

. . .

For each subspace, weights are added in random or-

der to avoid bias toward particular variables

Compressive Extreme Learning Machines 34/24
Mark van Heeswijk, Amaury Lendasse, Yoan
Miche

September 5, 2014
Improved Models Through Exploiting Time-Accuracy Trade-offs



Experimental Settings

Data Abbreviation number of variables # training # test

Abalone Ab 8 2000 2177

CaliforniaHousing Ca 8 8000 12640

CensusHouse8L Ce 8 10000 12784

DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192

BIP(CV)-TR-ELM vs BIP(CV)-TR-2-ELM vs BIP(CV)-TR-3-ELM
Experiment 1: relative performance
Experiment 2: robustness against irrelevant vars
Experiment 3: implicit variable selection
(all results are averaged over 100 repetitions, each with randomly drawn
training/test set)
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Exp 1: numhidden vs. RMSE (Abalone)
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Exp 1: numhidden vs. RMSE (CpuActivity)
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Exp 2: Robustness against irrelevant variables
(Abalone)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.64

0.66

0.68

0.7

0.72

number of added noise variables

R
M

S
E
te
st

BIP(CV)-TR-ELM

BIP(CV)-TR-2-ELM

BIP(CV)-TR-3-ELM

1000 neurons

binary weight scheme
gives similar RMSE

ternary weight scheme
makes ELM more robust
against irrelevant vars

Compressive Extreme Learning Machines 38/24
Mark van Heeswijk, Amaury Lendasse, Yoan
Miche

September 5, 2014
Improved Models Through Exploiting Time-Accuracy Trade-offs



Exp 2: Robustness against irrelevant variables
(CpuActivity)
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Exp 2: Robustness against irrelevant variables

Ab Co

gaussian binary ternary gaussian binary ternary

RMSE with original variables 0.6497 0.6544 0.6438 0.1746 0.1785 0.1639

RMSE with 30 added irr. vars 0.6982 0.6932 0.6788 0.3221 0.2106 0.1904

RMSE loss 0.0486 0.0388 0.0339 0.1475 0.0321 0.0265

Table : Average RMSE loss of ELMs with 1000 hidden neurons, trained
on the original data, and the data with 30 added irrelevant variables
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Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |
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Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |
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Exp 3: Implicit Variable Selection (CpuAct)

relevance of each input variable quantified as
∑M

i=1 |βi × wi |
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