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Introduction
e0

Overview

All lectures

© Introduction to graphical models and Bayesian networks
@® Estimating the size of the transcriptome
® Using biological prior information in motif discovery
@ Learning linear Bayes networks with sparse Bayesian
models
Common theme:

e Complex Bayesian model building possible and
advantageous

e Model checking — prediction, marginal- and test-likelihood

Ole Winther DTU & KU



Introduction
oe

Overview

Lecture 4

Motivation - regulatory networks from multivariate data
Learning identifiable and sparse factor models

From factor models to DAGs - learn variable order.
Model selection and comparison with test likelihood

Extension to temporal processes
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Motivation

e Single cell flow cytometry measurements of 11
phosphorylated proteins and phospholipids.

e Data was generated from a series of stimulatory cues and
inhibitory interventions.

e Observational data: 1755 general stimulatory conditions,
e Experimental data ~ 80% not used in our approach.
e Not “small n large d”!
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Motivation

E.Coli Transcription Factor network

e gene expression levels
from 100 genes taken at 5,

15, 30 and 60 min, and 1 N : -
every hour until 6 hours e~ \
after transition from N S
glucose to acetate /‘V o .
(100 x 10). T s
« Objective is to find | ~ IR
underlying transcription e e e
factor driving signal with or Wﬂ f‘ — ] TV
without ground truth (745N S U S S
regulatory networks
(RegulonDB).
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Linear Bayes networks
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DAGs & factor models

¢ A probabilistic model of x can be represented by a DAG

p(x) = H p(xi[Pa(x;))

Linear DAG - P is an unknown permutation (order)

Px = BPx + Pz, (DAG model)

B strictly lower triangular square matrix.
Non-zero element of B corresponds to a link in the DAG.
Noise-free factor model

XxX=P APz =P (- B)_1 Pz, (Factor model)
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DAGs & factor models

Idea: Learn sparse factor model

X = P.AP.z + ¢,

with row and column permutations P, = P and P, = P;P; of
A

such that the mixing matrix A is close to be triangular.
M triangular mask: A~ M© A

Learn sparse DAG model for fixed P.

Px is a DAG with ordering inferred by factor model.
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DAGs & factor models
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Linear Bayes networks
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Model prior specification

e Sparsity: spike and slab:
ajlrij, i, i ~ (1 —ry)do(-) + rN (a0, ¥ij)

Plus more complications for the hierarchy for r;.
e |dentifiability non-Gaussian

Zin|p, A~ Laplace(Zjp|p, A), z/-n|u,02,0 ~ t(zjn\,u,O,UQ)

e Infinite mixture representation:
oo
Laplace(z|u, \) :/ N (2|, v)Exponential (v|A%)dv
0

e Order search - no preference for any order
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Model prior specification

e Sparse prior p(A|-) measure able to produce exact zeros in
A.

e Discrete spike and slab prior (West 2003, Lucas et. al.
2006),

ajlri, vi, i ~ (1 —ry)oo(-) + ryN (a0, ¥ity),
rijlm;j ~ Bernoulli(rjj|n;),

1|9, ap, m ~ (1 = qj)do(+) + gBeta(nylapam, ap(1 — am)),
qjlvj ~ Bernoulli(q;|v;),

7—’./_*1 |ts, tr ~ Galmma(T,-j*1 |ts, ),

V| Bm, Bp ~ Beta(vj|BpBm, Bp(1 — Bm)).
(1)
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Model prior specification

 No go for identifiability for Gaussian model zz” = I:
X=AZ=AU"UZ=AZ
« Second order statistics unchanged z = Uz:
22T =Uzz’U" =UU’ =1.

¢ Non-Gaussianity is enough (Comon 1994). We use

Zjnlp, A~ Laplace(Zj|u, A)
Zjn|M70279 ~ t(zjﬂ’M7970-2)

e Process priors (temporal or spatial smoothness)
e Gaussian process is enough (more about that later)
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Linear Bayes networks

Markov chain Monte Carlo

o All parameters apart from P standard Gibbs sampling!
e Order search - stochastic search over P, and P.:

e Proposal: g(P}|P;) swaps two random rows and g(P}|P.)
swaps two random columns.
e Metropolis-Hastings acceptance probability

N(XIP; (Mo A)P;Z, ¥)

min(1,£.,) &ox = NX|P.(M® A)P.Z &)

¢ A lower triangular mask M breaks permutation symmetry.
e DAG - Gibbs sampling with P, top candidates:

X|P.,B.X,- ~ (X —-P.'BJ), B ~ p(B|),
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[ ]

Artificial data

\ N [
o U
; @ HO) -éT‘Tﬁﬁ“ﬁ*’T— filey ]

L g 1

d N Method P (%) N (%) AUC (Qgy)  OE
200 | CINGAM 7294 (80.7%) 714 (737%) 500 (0.6) )

SFA 7428 (82.2%) 719 (74.2%) 608 (0.66) 42

5 soo | UNGAM 7807 (86.4%) 607 (627%)  770(0.0) 288
SFA 7914 (87.6%)  775(80.1%)  716(0.7) 17

5 1000 | UNGAM  8281(909%)  765(79.0%)  845(0.2) 183
SFA 8361(92.5%) 654 (67.5%) 756 (0.7) 16

10 500 | UINGAM 25836 (75,4%) 6566 (60.9%)  845(0.06) 183
SFA 28763 (84.0%) 7454 (69.2%)  179(0.6) 462

10 1000 | LNGAM  28281(826%)  8012(74.4%)  222(0.00) 667
SFA 31335 (87.4%) 8573 (79.6%)  261(0.7) 265




Protein signalling network learned
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A Model inference result

© Phospho-Proteins

(O Prospho-Lipids

() perturbed in data

B Features of approach o Phospho-Protelns

a « Direct phosphorylation: O Phospho-Lipids
© not measured

b « Indirect signaling
& E T

Expected 1517
Reported 17147
Reversed 1
Missed 3

¢ + Dismissing Arcs
ED—ED—ED

d - Site-specific Arcs P

““fsné}
EO—ED—E D

Sachs et. al. Science 308, 523, (2005).
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Protein signalling network learned

-0

) Q-0 o ‘
OROX DQ O
F0-0  Ghg ©
e Using textbook as ref: we found 10 true links (TP), one
falsely added link (FP) and only two reversed links (RL)

e RL: PIP, — PIP; is bidirectional (textbook) and
PLC, — PIP3 also found reversed by Sachs et. al.
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Model comparison with test likelihoods

e The likelihood of intensive variables A and ¥ on new data
X*.

e Factor model: Use scale mixture representation and
integrate out

p'AW.X) = [ p(X|AZ ¥)p(Z)dZ
1 rep
~ —[[D N (X;10,ATUA + @),
ep n r
where U, = diag(vyp, . . ., vgn) With vj, from the prior.

e DAG model Analytical integrate out Z:

p(X*[B.X) = [ p(X'[B.X.2)p(Z}-)0Z = [ ] Laplace(x; BX,

in
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Model comparison with test likelihoods

e Artificial data — generate 500 random DAGs and 500 factor
models with d = 5 and N = 500, 1000.
e Use 20% of data as test set.

e For N = 500 selects true DAGs 91.5% of the times and
true factor models 89.2%.

e For N = 1000 the numbers are 98.5% and 94.6%

e Protein signalling network — factor model preferred - could
be explained by the presence of non-measured
components.
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Temporal smoothness prior

o Gaussian process (GP) ij ~ GP(ij|0,K,-).
 K; covariance function of factor j:
Ki(tn, tw) = exp(—vj(ty — t)?) K = block(Ky, ..., Kmn)
e Inverse squared length-scale v:
vjlUs, k ~ Gamma(vj|Us, ).
o t-process (Yu et. al. 2007) 2/ ~ TP(z/|0,K;,6)).
e Scale mixture representation - Just one parameter needed!

0 0

1
T T
z; ~ N(z; 0, ;jKj) T~ Gamma(7'|§, 5)

e Equivalent to a GP with a Gamma-prior over the inverse
scale of the kernel ki(tn, tw) = exp(—vj(th — tv)?)/7;
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Results

Temporal smoothness prior

No go for identifiability for Gaussian model zz” = I:

X=AZ=AU'UZ=AZ

Second order statistics unchanged z = Uz:

==

zz7 =Uzz’U" =UU’ =1.
Enter Gaussian process: ZjnZjy = 0y Kj n

ZinZjiy = Z Uik Ujrkr ZknZkr e = Z Uik Uy k Ko 7 0jj K v
Kk! K

if all kernels are different

Kj,nn’ 7é Kj,nn’ Vj,j/
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Results

Temporal smoothness prior

E.Coli Transcription Factor network

e Objective is to find
underlying transcription

factor driving signal with or i N —_
without ground truth I — ~

regulatory networks el N
(RegulonDB). v 1 .

« Our method with learned LT T T T
and fixed A give similar i | - Ny
activities. But learned and I b TR
“true” A somewhat S
different. Use model

selection to decide which
one is the best one.
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Extensions

e Hybrid model
X=Az+Bx+¢

e Interventions = experimental data: easy in DAG and
difficult in factor model!
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Summary

Summary

e Sparse Bayesian linear models for structure learning (w
Ricardo Henao, DTU and KU)

¢ Rich and flexible framework modeling linear latent and
DAG structure

e Model comparison and checking - very important in
biology. Not at all fully developed yet:

o Compare models with inferred structure to “ground truth”.
e Compare models with temporal smoothness (with different
kernels robust) to iid (with different priors).
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