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Overview

All lectures

1 Introduction to graphical models and Bayesian networks
2 Estimating the size of the transcriptome
3 Using biological prior information in motif discovery
4 Learning linear Bayes networks with sparse Bayesian

models

Common theme:
• Complex Bayesian model building possible and

advantageous
• Model checking – prediction, marginal- and test-likelihood

Ole Winther DTU & KU
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Overview

Lecture 4

• Motivation - regulatory networks from multivariate data
• Learning identifiable and sparse factor models
• From factor models to DAGs - learn variable order.
• Model selection and comparison with test likelihood
• Extension to temporal processes

Ole Winther DTU & KU
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Motivation

Protein signalling network textbook

Sachs et. al. Science 308, 523, (2005).Ole Winther DTU & KU
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Motivation

• Single cell flow cytometry measurements of 11
phosphorylated proteins and phospholipids.

• Data was generated from a series of stimulatory cues and
inhibitory interventions.

• Observational data: 1755 general stimulatory conditions,
• Experimental data ∼ 80% not used in our approach.
• Not “small n large d”!

Ole Winther DTU & KU
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Motivation

E.Coli Transcription Factor network

• gene expression levels
from 100 genes taken at 5,
15, 30 and 60 min, and
every hour until 6 hours
after transition from
glucose to acetate
(100× 10).

• Objective is to find
underlying transcription
factor driving signal with or
without ground truth
regulatory networks
(RegulonDB).
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DAGs & factor models

• A probabilistic model of x can be represented by a DAG

p(x) =
∏

i

p(xi |Pa(xi))

• Linear DAG - P is an unknown permutation (order)

Px = BPx + Pz , (DAG model)

• B strictly lower triangular square matrix.
• Non-zero element of B corresponds to a link in the DAG.
• Noise-free factor model

x = P−1APz = P−1(I− B)−1Pz, (Factor model)

Ole Winther DTU & KU
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DAGs & factor models

• Idea: Learn sparse factor model

x = PrAPcz + ε,

• with row and column permutations Pr = P and Pc = PfPr of
A

• such that the mixing matrix A is close to be triangular.
• M triangular mask: A ≈ M� A
• Learn sparse DAG model for fixed P.
• Px is a DAG with ordering inferred by factor model.

Ole Winther DTU & KU
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DAGs & factor models

Factor Model Instead of using the noise-free factor model of equation (2)we allow for additive
noisex = P−1

r APcz + ǫ, whereǫ is an additional Gaussian noise term with diagonal covariance
matrix Ψ, i.e. uncorrelated noise, to account for independent measurement noise,Pr = P is the
permutation matrix for the rows ofA andPc = PfPr another permutation for the columns with
Pf accounting for the permutation ambiguity of the factors. Wewill not restrict the mixing matrix
A to be triangular. Instead we inferPr andPc using a stochastic search based upon closeness to
triangular as measured by a masked likelihood. Now we can specify a hierarchy for the Bayesian
model as follows

X|Pr,A,Pc,Z,Ψ ∼ N (X|P−1
r APcZ,Ψ), Z ∼ π(Z|·),

ψ−1
i |ss, sr ∼ Gamma(ψ−1

i |ss, sr), A ∼ ρ(A|·),
(3) eq:Hos

whereψi are elements ofΨ andX = [x1, . . . ,xn]. Besides, we assume thatπ(Z|·) is chosen to
exclude zero values with probability one. For convenience,i.e. to exploit conjugate exponential
families we are placing a gamma prior on the precision ofǫ such thatss andsr are the shape and
rate parameters respectively. Given that the data is standardized, the selection of hyperparameters
for ǫ is not very critical as long as the support of the prior favorssmall values ofψi and provide
support forψi = 1 such that certain variables can be explained sorely by noise(we setss = 2 and
sr = 0.05 in the experiments).

For the factorsZ = [z1, . . . zn] we use a heavy-tailed priorπ(Z|·) in the form of a Laplace distri-
bution parameterized for convenience as a scale mixture of Gaussians [14]:

z|µ, λ ∼ Laplace(z|µ, λ) =
∫ ∞

0

N (z|µ, υ)Exponential(υ|λ2)dυ, (4) eq:pi1

λ2|ℓs, ℓr ∼ Gamma(λ2|ℓs, ℓr), (5) eq:plambda

wherez is an element ofZ, λ is the rate andυ has ex-
ponential and mixing density. Furthermore, we place a
gamma distribution onλ2 and still being able to readily
obtain conditional distributions forυ andλ2 making the
inference process rather easy. We let the components of
Z have unit variance. This is achieved byℓs/ℓr = 2 (we
set ℓs = 4 and ℓr = 2). Alternatively one may use at
distribution—again as scale mixture of Gaussians—which
will allows to interpolate between very heavy-tailed (power
law) and very light tails, i.e. becoming Gaussian when de-
grees of freedom approaches infinity. However such flexi-
bility comes at the price of being more difficult to select its
hyperparameters.
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Figure 1: Graphical model for
Bayesian hierarchy in eq. (3).

〈fg:osgm〉
The priorρ(A|·) for the mixing matrix should be biased towards sparsity because we want to infer
something close to a triangular matrix. Here we adopt a quiteelaborate discrete spike and slab prior
for A similar to the one in [2], as

aij |rij , ψi, τij ∼ (1 − rij)δ0(·) + rijN (aij |0, ψiτij),

τ−1
ij |ts, tr ∼ Gamma(τ−1

ij |ts, tr),
rij |ηij ∼ Bernoulli(rij |ηij),

ηij |qj , αp, αm ∼ (1 − qj)δ0(·) + qjBeta(ηij |αpαm, αp(1− αm)),
qj |νj ∼ Bernoulli(qj |νj),

νj |βm, βp ∼ Beta(νj |βpβm, βp(1− βm)).

(6) eq:hdss1

The prior above specify a point mass mixture overaij with maskrij . The expected probability of
aij to be non-zero isηij and is controlled through a beta hyperprior with meanαm and variance
αp. Besides, each factor has a common sparsity rateνj that let elements inaj to be zero with
probability1 − νj through a beta distribution with meanbm and variancebp. The magnitude of
non-zero elements inA is specified through the slab distribution depending onτij . The parameters
for τij should be specified in the same fashion asψi but putting more probability mass around
aij = 1, for instancets = 4 andtr = 10. The masking matrixrij with parametersηij should be
somewhat diffuse while favoring relatively large masking probabilities, e.g.αp = 10 andαm =
0.9. Additionally, qj and should favor very small values with high uncertainty, this is for example
βp = 1000 andβp = 0.005. The graphical model for the entire hierarchy in 3 is shown inFigure 1.

3
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Model prior specification

• Sparsity: spike and slab:

aij |rij , ψi , τij ∼ (1− rij)δ0(·) + rijN (aij |0, ψiτij)

Plus more complications for the hierarchy for rij .
• Identifiability non-Gaussian

zjn|µ, λ ∼ Laplace(zjn|µ, λ), zjn|µ, σ2, θ ∼ t(zjn|µ, θ, σ2)

• Infinite mixture representation:

Laplace(z|µ, λ) =

∫ ∞

0
N (z|µ, υ)Exponential(υ|λ2)dυ

• Order search - no preference for any order

Ole Winther DTU & KU
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Model prior specification

• Sparse prior ρ(A|·) measure able to produce exact zeros in
A.

• Discrete spike and slab prior (West 2003, Lucas et. al.
2006),

aij |rij , ψi , τij ∼ (1− rij)δ0(·) + rijN (aij |0, ψiτij),

rij |ηij ∼ Bernoulli(rij |ηij),

ηij |qj , αp, αm ∼ (1− qj)δ0(·) + qjBeta(ηij |αpαm, αp(1− αm)),

qj |νj ∼ Bernoulli(qj |νj),

τ−1
ij |ts, tr ∼ Gamma(τ−1

ij |ts, tr ),
νj |βm, βp ∼ Beta(νj |βpβm, βp(1− βm)).

(1)

Ole Winther DTU & KU
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Model prior specification

• No go for identifiability for Gaussian model zzT = I:

X = AZ = AU−1UZ = ÂẐ

• Second order statistics unchanged ẑ = Uz:

ẑẑT = UzzT UT = UUT = I .

• Non-Gaussianity is enough (Comon 1994). We use

zjn|µ, λ ∼ Laplace(zjn|µ, λ)

zjn|µ, σ2, θ ∼ t(zjn|µ, θ, σ2)

• Process priors (temporal or spatial smoothness)
• Gaussian process is enough (more about that later)

Ole Winther DTU & KU
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Markov chain Monte Carlo

• All parameters apart from P standard Gibbs sampling!
• Order search - stochastic search over Pr and Pc:

• Proposal: q(P?
r |Pr) swaps two random rows and q(P?

c |Pc)
swaps two random columns.

• Metropolis-Hastings acceptance probability

min(1, ξ→?) ξ→? =
N (X|P?

r (M� A)P?
c Z,Ψ)

N (X|Pr(M� A)PcZ,Ψ)
.

• A lower triangular mask M breaks permutation symmetry.

• DAG - Gibbs sampling with Pr top candidates:

X|Pr,B,X, · ∼ π(X− P−1
r B|·), B ∼ ρ(B|·),

Ole Winther DTU & KU
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Artificial data
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d N Method TP (%) TN (%) AUC (Q5%) OE

5 200 LINGAM 7294 (80.7%) 714 (73.7%) 500 (0.6) 42
sFA 7428 (82.2%) 719 (74.2%) 608 (0.66) 42

5 500 LINGAM 7807 (86.4%) 607 (62.7%) 770 (0.0) 288
sFA 7914 (87.6%) 775 (80.1%) 716 (0.7) 17

5 1000 LINGAM 8281 (90.9%) 765 (79.0%) 845 (0.2) 183
sFA 8361 (92.5%) 654 (67.5%) 756 (0.7) 16

10 500 LINGAM 25836 (75,4%) 6566 (60.9%) 845 (0.06) 183
sFA 28763 (84.0%) 7454 (69.2%) 179 (0.6) 462

10 1000 LINGAM 28281 (82.6%) 8012 (74.4%) 222 (0.00) 667
sFA 31335 (87.4%) 8573 (79.6%) 261 (0.7) 265
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Protein signalling network learned

Sachs et. al. Science 308, 523, (2005).

Ole Winther DTU & KU
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Protein signalling network learned
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• Using textbook as ref: we found 10 true links (TP), one
falsely added link (FP) and only two reversed links (RL)

• RL: PIP2 → PIP3 is bidirectional (textbook) and
PLCγ → PIP3 also found reversed by Sachs et. al.
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Model comparison with test likelihoods

• The likelihood of intensive variables A and Ψ on new data
X?.

• Factor model: Use scale mixture representation and
integrate out

p(X?|A,Ψ,X) =

∫
p(X?|A,Z,Ψ)p(Z|·)dZ

≈ 1
rep

∏

n

rep∑

r

N (x?n|0,AT UnA + Ψ),

where Un = diag(υ1n, . . . , υdn) with υjn from the prior.
• DAG model Analytical integrate out Z:

p(X?|B,X) =

∫
p(X?|B,X,Z)p(Z|·)dZ =

∏

i,n

Laplace(x?n|BX, ·)

Ole Winther DTU & KU
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Model comparison with test likelihoods

• Artificial data – generate 500 random DAGs and 500 factor
models with d = 5 and N = 500,1000.

• Use 20% of data as test set.
• For N = 500 selects true DAGs 91.5% of the times and

true factor models 89.2%.
• For N = 1000 the numbers are 98.5% and 94.6%

• Protein signalling network – factor model preferred - could
be explained by the presence of non-measured
components.

Ole Winther DTU & KU
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Temporal smoothness prior

• Gaussian process (GP) zT
j ∼ GP(zT

j |0,Kj).
• Kj covariance function of factor j :

kj(tn, tn′) = exp(−υj(tn − tn′)2) K = block(K1, . . . ,Km)

• Inverse squared length-scale υ:
υj |us, κ ∼ Gamma(υj |us, κ).

• t-process (Yu et. al. 2007) zT
j ∼ TP(zT

j |0,Kj , θj).
• Scale mixture representation - Just one parameter needed!

zT
j ∼ N (zT

j |0,
1
τj

Kj) τj ∼ Gamma(τ |θ
2
,
θ

2
)

• Equivalent to a GP with a Gamma-prior over the inverse
scale of the kernel kj(tn, tn′) = exp(−υj(tn − tn′)2)/τj

Ole Winther DTU & KU
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Temporal smoothness prior

No go for identifiability for Gaussian model zzT = I:

X = AZ = AU−1UZ = ÂẐ

Second order statistics unchanged ẑ = Uz:

ẑẑT = UzzT UT = UUT = I .

Enter Gaussian process: zjnzj ′n′ = δjj ′Kj,nn′

zjnzj ′n′ =
∑

kk ′

ujkuj ′k ′zknzk ′n′ =
∑

k

ujkuj ′kKk ,nn′ 6= δjj ′Kj,nn′

if all kernels are different

Kj,nn′ 6= Kj,nn′ ∀j , j ′

Ole Winther DTU & KU
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Temporal smoothness prior

Temporal processes artificial data

Learning Graphical Model Structure with
Sparse Bayesian Factor Models and Process Priors

Ricardo Henao and Ole Winther
DTU Informatics · Technical University of Denmark Bioinformatics Centre · Copenhagen University

Kgs. Lyngby, Denmark Copenhagen N, Denmark

Introduction

In this work we present an algorithm to learn factor models and linear directed acyclic graphs (DAG)
within the same framework. It is based upon starting with inference of an identifiable Bayesian sparse
factor model. A stochastic search over variable and latent factor orderings gives a candidate set of
variable permutation compatible with a lower triangular loading matrix representation. These candi-
date orderings are then used as starting point for inference in a sparse DAG model. In previous work,
we considered a heavy-tailed independent identically distribution for the factors. Here we consider
time series gene expression data and model temporal smoothness using a Gaussian process prior for
the factors.

Methods

From DAGs to Factor Models

We assume that an ordered d-dimensional data vector Px can be represented as a DAG with only
observed nodes, where P is an unknown permutation matrix, and that the model is linear in such
that the value of each variable is a linear weight combination of parent nodes plus a driving signal z:

x = P−1BPx + z , (DAG model) (1)

where B is a strictly lower triangular square matrix. In this setting, each non-zero element of B
corresponds to a link in the DAG. Solving for B we can rewrite the problem as

x = P−1APz = P−1(I−B)−1Pz, (Factor model) (2)

•A must be sparse so it can be permuted to lower triangular since (I−B)−1 is triangular.

•Z = [z1, . . . , zm]⊤ must be able to produce an identifiable model [1].

•P is unknown so we can estimate P−1AP and then stochastically find P

From Factor Models to DAGs

Assuming that we know the permutation matrix P, we can see the linear factor model in equation
(2) in a slightly different way as follows

x = PrAPcz + ǫ, (3)

• ǫ is an additional Gaussian noise term with diagonal covariance matrix Ψ.

•Pr = P and Pc = PfPr are the permutations for the rows and columns of A respectively.

•We need to find an additional permutation (Pf) to correct for the ambiguity in the columns of A.

•We will not restrict the mixing matrix A to be triangular. Instead we infer Pr and Pc using a
stochastic search based upon closeness to triangular as measured by a masked likelihood.

Now we can specify a hierarchy for the Bayesian model as follows

X|Pr,A,Pc,Z,Ψ ∼ N (X|P−1
r APcZ,Ψ), Z ∼ π(Z|·), (Process prior)

ψ−1
i |ss, sr ∼ Gamma(ψ−1

i |ss, sr), A ∼ ρ(A|·), (Sparse mixing prior)
(4)

Sparsity: We require a sparse prior ρ(A|·) measure able to produce exact zeros in A. Here we adopt
a discrete spike and slab prior similar to the one in [2, 3], as

aij|rij, ψi, τij ∼ (1− rij)δ0(·) + rijN (aij|0, ψiτij),

rij|ηij ∼ Bernoulli(rij|ηij),

ηij|qj, αp, αm ∼ (1− qj)δ0(·) + qjBeta(ηij|αpαm, αp(1− αm)),

qj|νj ∼ Bernoulli(qj|νj),

τ−1
ij |ts, tr ∼ Gamma(τ−1

ij |ts, tr),
νj|βm, βp ∼ Beta(νj|βpβm, βp(1− βm)).

(5)

Identifiability: Since we want to allow for time correla-
tions, the usual i.i.d non-Gaussian distributions are not an
option. Instead we place a gaussian process [4] over each
factor as

z⊤j ∼ GP(z⊤j |Kj), (6)

where Kj is a simple covariance function written as

k(tn, tn′) = exp(−υ(tn− tn′)
2), K = block(K1, . . . ,Km)

and υ is the inverse of the squared length scale. Further-
more

υ|us, κ ∼ Gamma(υ|us, κ),

κ|ks, kr ∼ Gamma(κ|ks, kr).

The conditional distribution of υ is not of any standard
form. Here we use Metropolis-Hastings updates.
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τij

n = 1 : N i = 1 : d
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Figure 1: Graphical model for the
sparse factor model in equation (3).
The DAG model in equation (2) has
a similar graphical model but where
the noise variances are removed (Ψ).

Identifiability of GPs: Contrary to the i.i.d. Gaussian model, the GP is identifiable.

• The source distribution of the i.i.d. model is only identifiable up to an arbitrary rotation U.

• Likewise we may rotate the GP variables ẑjn =
∑

k ujkzkn.

• Identifiability follows from the fact that the second order statistics are not invariant under the
rotation as long as kj+n,j+n′ 6= kj′+n,j′+n′ for j 6= j′.

• zjnzj′n′ =
∑

kk′ ujkuj′k′zknzk′n′ =
∑

kk′ ujkuj′k′δkk′kk+n,k+n′ 6= δjj′kj+n,j+n′

•We may get non-identifiability in a subspace if the kernel is shared, that is kj+n,j+n′ = kj′+n,j′+n′

for some j 6= j′.

Assuming that we know Pr, we can solve directly for the DAG model in equation (1) in the form of
the following Bayesian hierarchy to obtain a sparse DAG instead of a sparse factor model

X|Pr,B,X, · ∼ π(X−P−1
r B|·), B ∼ ρ(B|·), (7)

where π and ρ are given by eqs. (6) and (5).

Order Search: What we are really interested on is to find Pr and Pc. To do this, we perform
a stochastic search over the space of all possible d! orderings in the form of a Metropolis-Hastings
update.

•Acceptance probability min(1, ξ→⋆) where ξ→⋆ =
N (X|P⋆

r(M⊙A)P⋆
cZ,Ψ)

N (X|Pr(M⊙A)PcZ,Ψ)
.

• Symmetric proposal consisting on a single uniform random transposition of Pr and Pc.

•A lower triangular mask (M) breaks the invariability of the model to permutations.

Algorithm: We can use the factor model in (4) jointly with the order search to produce a set of
orderings (mtop = 10), then we perform inference on the DAG model in (7) and select the best one.

Input: Data X, sampler parameters and number of candidates (mtop)
Output: B and Pr

1: Standardize X
2: Order search Run sampler on X to get P

(i)
r for i = 1, . . . , mtop (eq. 4)

3: while i ≤ mtop do

4: Structure search Run sampler on X and P
(i)
r to get B(i) (eq. 7)

5: end while
6: Select the model, i⋆ = argmax π(X−(P

(i)
r )−1B(i)|·), then B ← B(i⋆) and Pr ← P

(i⋆)
r

Results

We consider two sets of experiments in the following. The first one uses artificial data and the other
uses real data previously published in [5].

Artificial Data

First we highlight the properties of our model using an artificial model.

•We generated a network with random parameters (sparsity level and kernel length scales).

• The variables are randomly permuted to hide the correct order (P).

•We attempt to recover both the latent sources and the DAG structure.

•Our original non-Gaussian i.i.d. model is not able to get the ordering.
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Figure 2: Results for artificial data. (top-left, top-center, left-center, center-center) True and
estimated sources Z (top-right) Ordering candidates usage during sampling (center-right) Esti-
mated inverse length-scales υ (bottom-left) Likelihoods and accuracies produced by the candi-
dates considered. (bottom-center and bottom-right) Ground truth and estimated DAG respec-
tively. The latter corresponds to the first candidate, the one having maximum likelihood.

E.Coli Transcription Factor network

The dataset introduced by [5] consists on gene expression levels from 100 genes taken at 5, 15, 30 and
60 min, and every hour until 6 hours after transition from glucose to acetate.

•Observations are vectors of gene expression levels across time (100× 10).

•Data analyzed in [5] used Generalized Network Component Analysis (GNCA).

• The true mixing matrix A is known (RegulonDB).

•GNCA requires A to estimate the transcription factor activities.

•Out method give similar results to those using GNCA if A is provided.

•Our method recover the activities and produce a TF gene network from observed data only.
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Figure 3: Results for E.Coli dataset. Estimated transcription factor activities (Z) from gene
expression data. Our method (in red) produce similar results to GNCA (in green) without fixing
the mixing matrix A.

Conclusions & Outlook

• Efficient approach to joint parameter, order search and structure learning for identifiable linear
models.

•Results on artificial and real data showed the versatility and usefulness of out method.

• In a previous work we performed model selection based upon predictive densities, between sparse
factor models and linear DAGs. We want to extend this comparison to our dynamic method.

•We want also to be able to handle outliers in the data using a robust process instead of the GP.

• It would be interesting to extend our method to handle experimental data (interventions) and
hybrid models, i.e. directed, undirected and latent nodes.
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Temporal smoothness prior

E.Coli Transcription Factor network

• Objective is to find
underlying transcription
factor driving signal with or
without ground truth
regulatory networks
(RegulonDB).

• Our method with learned
and fixed A give similar
activities. But learned and
“true” A somewhat
different. Use model
selection to decide which
one is the best one.
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Extensions

• Hybrid model
x = Az + Bx + ε

• Interventions = experimental data: easy in DAG and
difficult in factor model!
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Summary

• Sparse Bayesian linear models for structure learning (w
Ricardo Henao, DTU and KU)

• Rich and flexible framework modeling linear latent and
DAG structure

• Model comparison and checking - very important in
biology. Not at all fully developed yet:

• Compare models with inferred structure to “ground truth”.
• Compare models with temporal smoothness (with different

kernels robust) to iid (with different priors).
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