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Introduction
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Overview

All lectures

© Introduction to graphical models and Bayesian networks
@® Estimating the size of the transcriptome
@ Using biological prior information in motif discovery
@ Learning linear Bayes networks with sparse Bayesian
models
Common theme:

e Complex Bayesian model building possible and
advantageous

e Model checking — prediction, marginal- and test-likelihood
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Lecture 3

Transcriptional regulation
Motif discovery

Biological prior knowledge
BayesMD
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Background

Gene — from DNA to protein
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Nature Reviews | Genetics

Sandelin and Wasserman, 2004
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Motifs

o Motif discovery typical set-up:

@ Collect set of co-regulated genes

® Exiract promoter sequences from these genes

@® Search for over-represented motifs in a see of background
signal

e A motif is a short, 6-20, word.

e This word may represent a transcription factor binding site
(TFBS) for a specific TF.

¢ Motif finding - scanning promoter sequences with position
weight matrices (PWMs) for known motifs.

e Many false positives - need more in vivo constraints!
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HEM13 CCCATTGTTCTC
HEM13 TTTCTGGTTCTC

e Motif logos - visualize information HEM13  TCAATTCTTTA
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Motifs

e Sources of biological a priori knowledge:

e Motif —what are the typical statistics of motif? We have this
kind of information in databases like Jaspar and Transfac.

e Background — organism-specific higher order Markov
dependencies - train on all promoter sequences of
organism in question.

¢ Positional — conservation, low complexity, nucleosome
occupancy, DNA structure. We have predictions for this!

e Our approach probabilistic with Gibbs sampling search
e Weeder enumeration quite successful!
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Figure 1
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BayesMD

Probability of everything

P(A,S|B) = [ [ Pn(S(Am)|Am, B)Pog(Stel|A, Bog) P(A[Buiign)

m

e Sequences S = {s1,...,Sn}
e Alignment tensor A (element anmn,

e Starting position of the rth occurrence of the mth motif in
the nth sequence

e Pp, is the distribution for motif m

e S(Ap) is shorthand for the sequences contained in motif m
e P, is the background distribution for

 sequences not in motifs Sy, = S\{S(Am)}.
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Learning the priors
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Learning the priors

Results
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Conservation

Other possible priors:
+ Nucleosome occupancy
\ DNA structure
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Results

Tompa test and decoys

¢ Did a decent job in (non-blind) Tompa assessment. Better
than other probabilistic approaches but worse than
Weeder.

e Did much better than NestedMICA in decoy test proposed
in NestedMICA paper.

o Next slide illustrates the use of positional prior.

¢ No real de-novo successes on data sets provided by
collaborators. :~(
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Summary

o Motif discovery and finding well-established methodology,
15 year+ old.

e Low success rate in real tasks.

e More a priori filtering, higher precision data and better
understanding on thermodynamics of binding needed.

e Reference: Man-Hung Eric Tang, Anders Krogh and OW,
BayesMD: Flexible Biological Modeling for Motif Discovery,
Journal of Computational Biology, 15, 1347-1363, 2008.

e Many references to related work see paper.
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