Introduction	BayesMD	Results	Summary
00 00 000		000 0 0	

Using biological prior information in motif discovery

Statistical Modeling and Machine Learning in Computational Systems Biology June 22-26, 2009, Tampere, Finland

Ole Winther

Technical University of Denmark (DTU) & University of Copenhagen (KU)

June 25, 2009

イロト イヨト イヨト イヨト

Introduction	BayesMD	Results	Summary
• 0 00 000		000 0 0	
Overview			

- 1 Introduction to graphical models and Bayesian networks
- 2 Estimating the size of the transcriptome
- 3 Using biological prior information in motif discovery
- Learning linear Bayes networks with sparse Bayesian models

Common theme:

- Complex Bayesian model building possible and advantageous
- Model checking prediction, marginal- and test-likelihood

・ロト ・回ト ・ヨト ・ヨト

Introduction	BayesMD	Results	Summary
0● 00 000		000 0 0	
Overview			

★ 문 → < 문 →</p>

- Transcriptional regulation
- Motif discovery
- Biological prior knowledge
- BayesMD

Introduction	BayesMD	Results	Summary
00 ●0 000		000 0 0	
Background			

Gene – from DNA to protein

Introduction	BayesMD	Results	Summary
		000 0 0	
Background			

Nature Reviews | Genetics

▲ロン ▲御 と ▲ 国 と ▲ 国 と

Sandelin and Wasserman, 2004

Ole Winther

Introduction	BayesMD	Results	Summary
00 00 •00		000 0 0	
Motifs			

- Motif discovery typical set-up:
 - 1 Collect set of co-regulated genes
 - 2 Extract promoter sequences from these genes
 - Search for over-represented motifs in a see of background signal
- A motif is a short, 6-20, word.
- This word may represent a transcription factor binding site (TFBS) for a specific TF.
- Motif finding scanning promoter sequences with position weight matrices (PWMs) for known motifs.

→ 프 → < 프 →</p>

DTU & KU

• Many false positives - need more in vivo constraints!

Introduction	BayesMD	Results	Summary
00 00 0●0		000 0 0	
Motifs			

- Motif logos visualize information content:
- Information content:

$$I = -\sum_{i} f_i \log_2 \frac{f_i}{(q_i)}$$

- *f_i*: empirical frequency
- q_i: background frequency
- From D'haeseleer, Nat. Biotech. 2006

а	HEM13	CCCATTGTTCTC
	HEM13	TTTCTGGTTCTC
	HEM13	TCAATTGTTTAG
	ANB1	CTCATTGTTGTC
	ANB1	TCCATTGTTCTC
	ANB1	CCTATTGTTCTC
	ANB1	TCCATTGTTCGT
	ROX1	CCAATTGTTTTG
b		YCHATTGTTCTC
С	А	002700000010
	C	464100000505
	G	000001800112
	т	422087088261
d	8.0 4.0 0.0	<mark>ecsatigitsis</mark>
e	2.0 着 1.0 0.0	
f	2.0 # 1.0 0.0	<mark>⋧ç₌ATT€TT⊊-ç</mark>

< < >> < </p>

Introduction	BayesMD	Results	Summary
00		000	
000			
Motifs			

- Sources of biological a priori knowledge:
 - Motif what are the typical statistics of motif? We have this kind of information in databases like Jaspar and Transfac.
 - Background organism-specific higher order Markov dependencies - train on all promoter sequences of organism in question.
 - Positional conservation, low complexity, nucleosome occupancy, DNA structure. We have predictions for this!
- Our approach probabilistic with Gibbs sampling search
- Weeder enumeration quite successful!

Ole Winther

Introduction	BayesMD	Results	Summary
00 00 000		000 0 0	
Probability of everything			

$$P(\mathbf{A}, \mathbf{S}|\mathbf{B}) = \prod_{m} P_m(\mathbf{S}(\mathbf{A}_m)|\mathbf{A}_m, \mathbf{B}_m) P_{\text{bg}}(\mathbf{S}_{\text{bg}}|\mathbf{A}, \mathbf{B}_{\text{bg}}) P(\mathbf{A}|\mathbf{B}_{\text{align}})$$

- Sequences $\mathbf{S} = \{\mathbf{s}_1, \dots, \mathbf{s}_N\}$
- Alignment tensor A (element a_{mnr})
- Starting position of the *r*th occurrence of the *m*th motif in the *n*th sequence
- *P_m* is the distribution for motif *m*
- **S**(**A**_{*m*}) is shorthand for the sequences contained in motif *m*
- P_{bg} is the background distribution for
- sequences not in motifs $\mathbf{S}_{bg} = \mathbf{S} \setminus {\mathbf{S}(\mathbf{A}_m)}$.

イロト イヨト イヨト イヨト

Introduction oo oo ooo	BayesMD o o	Results ●○○ ○	Summary o
Learning the priors			

Ole Winther

Introduction	BayesMD	Results	Summary
00		000	
<u> </u>			
Learning the priors			

Ole Winther

- Did a decent job in (non-blind) Tompa assessment. Better than other probabilistic approaches but worse than Weeder.
- Did much better than NestedMICA in decoy test proposed in NestedMICA paper.

イロト イヨト イヨト イヨト

- Next slide illustrates the use of positional prior.
- No real de-novo successes on data sets provided by collaborators. :-(

Introduction	BayesMD	Results	Summary
00		000	
P53		_	

DTU & KU

Ole Winther

Introduction oo oo ooo	BayesMD o o	Results ooo o	Summary ●
Summary			

- Motif discovery and finding well-established methodology, 15 year+ old.
- Low success rate in real tasks.
- More a priori filtering, higher precision data and better understanding on thermodynamics of binding needed.
- Reference: Man-Hung Eric Tang, Anders Krogh and OW, BayesMD: Flexible Biological Modeling for Motif Discovery, Journal of Computational Biology, 15, 1347-1363, 2008.
- Many references to related work see paper.