Introduction	Graphical models ooo ooo	Structure learning ooo ooooo oooo	Machine learning oo oo	Collaborative filtering 0000 00 00000	Summary o
				00000	

Introduction to Bayesian networks and graphical models Statistical Modeling and Machine Learning in Computational Systems Biology June 22-26, 2009, Tampere, Finland

Ole Winther

Technical University of Denmark (DTU) & University of Copenhagen (KU)

June 24, 2009

< ロ > < 同 > < 回 > < 回 >

Introduction ●○	Graphical models 000 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary o
Overview					
All lect	tures				

- 1 Introduction to graphical models and Bayesian networks
- 2 Estimating the size of the transcriptome
- 3 Using biological prior information in motif discovery
- Learning linear Bayes networks with sparse Bayesian models

Common theme:

- Complex Bayesian model building possible and advantageous
- Model checking prediction, marginal- and test-likelihood

イロト イヨト イヨト イヨト

Intro 00	oduction	Graphical models ooo ooo ooo	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering oooo ooooo ooooo	Summary O
Ove	erview					
L	ectur	e 1				

- Introduction to graphical models and Bayesian networks
- Machine learning
- Example application collaborative filtering 1M\$-prize

★ E > < E >

DTU & KU

Summary and reading

Introduction 00	Graphical models ●○○ ○○○	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering 0000 000000 00	Summary o

Generative models

- Graphical representation of conditional probabilities and independence
- All standard probabilistic statistical models can be given a graphical representation – e.g. Markov

- Variables may be latent and unobserved
- Bayesian networks directed acyclic graphs (DAGs)
- Also undirected graphs Markov random fields.

Ole Winther

Introduction	Graphical models ○ ○ ○ ○	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary o

Generative models

Understanding conditional probabilities

Smokers are more likely to have lung cancer than random person:

P(Lung cancer|Smoking) > P(Lung cancer)

Bayes theorem relate joint to conditionals

$$P(X, Y) = P(X|Y)P(Y) = P(Y|X)P(X)$$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(X) = \sum_{Y} P(X, Y) = \sum_{Y} P(Y|X)P(Y)$$

• We can use Bayes theorem to calculate *P*(Lung cancer|Smoking).

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000	000	00	0000	
				00000	

Bayesian networks

Structured probabilistic models – directed acyclic graphs (DAGs)

Graph reveals conditional independence (in example non).

$$P(a,b,c) = P(c|a,b)P(b|a)P(a)$$

→ E → < E →</p>

Inference in Bayesian networks	Introduction 00	Graphical models ○○○ ●○○	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary O
	Inference in Bay	yesian networks				

The structure can be exploited to make effective inference

• predictions

P("financial crisis 2010"|"economy 2009")

토 🕨 🛪 토 🕨

- learning model parameters
- learning network structure

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000 0 000	000 00000 0000	00 00	0000 00 00000 00	

Inference in Bayesian networks

Example Sprinkler

P(GW, S, R) = P(GW|S, R)P(S|R)P(R)

э

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	
Inference in Ba	vesian networks				

Burglar alarm - explaining away

DTU & KU

★ 문 ⊁ ★ 문

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000 0 000	000 00000 0000	00 00	0000 00 00000 00	

Aims - test for

- 1 Independence versus dependence
- 2 Directionality, who are the parents of a node.

Ole Winther

Introduction 00	Graphical models 000 000 000	Structure learning ●oo ○○○○○ ○○○○	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary o
Independence	versus dependence				

- \mathcal{H}_0 null hypothesis independence
- \mathcal{H}_1 dependence: no factorization
- This is a classical frequentist statistical test situation

$$\Lambda = \frac{L(\widehat{\theta}_1; \mathbf{X}, \mathcal{H}_1)}{L(\widehat{\theta}_0; \mathbf{X}, \mathcal{H}_0)} \qquad \chi^2 \text{-distributed with} \quad |\theta_1| - |\theta_0| \quad \text{d.f.}$$

- Many dimensions: $\mathcal{O}(d!2^{d(d-1)/2})$ possible structures
- Bayesian approach: specify "probability of everything"

Introduction 00	Graphical models 000 000	Structure learning ○●○ ○○○○ ○○○○	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary O		

- Marginal likelihood independent model
- \mathcal{H}_0 independence: Likelihood: $\theta_0 = \{\theta_0(1), \theta_0(2)\}$

 $\rho(\boldsymbol{x}_1,\boldsymbol{x}_2|\boldsymbol{\theta}_0,\mathcal{H}_0) = \rho(\boldsymbol{x}_1|\boldsymbol{\theta}_0(1),\mathcal{H}_0)\,\rho(\boldsymbol{x}_2|\boldsymbol{\theta}_0(2),\mathcal{H}_0)$

• Specify priors - for example independent

 $p(\theta_0|\mathcal{H}_0) = p(\theta_0(1)|\mathcal{H}_0) p(\theta_0(2)|\mathcal{H}_0)$

Model likelihood (marginal likelihood)

$$p(\mathcal{D}|\mathcal{H}_0) = \int p(\mathcal{D}|\boldsymbol{\theta}_0, \mathcal{H}_0) \, p(\boldsymbol{\theta}_0|\mathcal{H}_0) \, d\boldsymbol{\theta}_0 = p(\mathbf{X}_1|\mathcal{H}_0) \, p(\mathbf{X}_2|\mathcal{H}_0)$$

with data
$$\mathcal{D} = \{\mathbf{X}_1, \mathbf{X}_2\}$$
 and $\mathbf{X}_d = \{\mathbf{x}_{id}\}_{i=1,\dots,n}$.

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	

Dependent model

Independence versus dependence

*H*₁ dependence: No factorization in likelihood nor prior

$$p(\mathcal{D}|\mathcal{H}_1) = \int p(\mathcal{D}|\boldsymbol{ heta}_1,\mathcal{H}_1) \, p(\boldsymbol{ heta}_1|\mathcal{H}_1) \; d\boldsymbol{ heta}_1 \; .$$

Bayes factor

$$\frac{p(\mathcal{D}|\mathcal{H}_1)}{p(\mathcal{D}|\mathcal{H}_0)}$$

< E > < E >

DTU & KU

replace log likelihood ratio test.

• Sampling distribution considerations possible, but not widely used (Gelman, Carlin, Stern & Rubin).

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	

Example - discrete data (MacKay 2003)

$$\begin{array}{c|cccc} & x_2 = 0 & x_2 = 1 \\ x_1 = 0 & 760 & 5 \\ x_1 = 1 & 190 & 45 \\ \hline 950 & 50 \end{array} \begin{array}{c} 765 \\ 235 \\ \end{array}$$

Likelihood

$$p(\mathcal{D}|\theta) = \theta_{00}^{n_{00}} \theta_{01}^{n_{01}} \theta_{10}^{n_{10}} \theta_{11}^{n_{11}}$$

• Independence \mathcal{H}_0 :

$$\theta_{kl} = \theta_k(1) \ \theta_l(2)$$

・ロト ・聞 と ・ 臣 と ・ 臣 と

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000	000	00	0000	
		0000		00000	

Counts are the sufficient statistics $n_k = \sum_{i=1}^n x_{ik}$:

$$p(\mathcal{D}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{n_k}$$

Enter a very convenient prior - the Dirichlet

$$p(\boldsymbol{\theta};\boldsymbol{\alpha}) = \frac{1}{Z(\boldsymbol{\alpha})} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \delta(\sum_{k'} \theta_{k'} - 1)$$

Normalizer:

$$Z(\boldsymbol{\alpha}) = \frac{\prod_k \Gamma(\alpha_k)}{\Gamma(\sum_k \alpha_k)} \; .$$

DTU & KU

イロト イヨト イヨト イヨト

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	

Ole Winther

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	

Multinomial likelihood

$$p(\mathcal{D}|\boldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{n_k}$$

Dirichlet prior

$$p(\boldsymbol{\theta};\boldsymbol{\alpha}) = \frac{1}{Z(\boldsymbol{\alpha})} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \delta(\sum_{k'} \theta_{k'} - 1)$$

Dirichlet posterior

$$p(oldsymbol{ heta}|\mathcal{D}) = rac{p(\mathcal{D}|oldsymbol{ heta})p(oldsymbol{ heta};oldsymbol{lpha})}{p(\mathcal{D};oldsymbol{lpha})}$$

Polya marginal likelihood

$$\mathsf{D}(\mathcal{D}; oldsymbol{lpha}) = rac{Z(oldsymbol{lpha} + oldsymbol{\mathsf{n}})}{Z(oldsymbol{lpha})}$$

Ole Winther

Introduction 00	Graphical models 000 000 000	Structure learning	Machine learning oo oo	Collaborative filtering 0000 00000 00	Summary o
Learning of parenthood					

- We are now ready for the harder task of making inference about parenthood.
- What does this actually mean?
- Likelihood equivalence

$$p(\mathbf{x}_1, \mathbf{x}_2) = p(\mathbf{x}_1 | \mathbf{x}_2) p(\mathbf{x}_2) = p(\mathbf{x}_2 | \mathbf{x}_1) p(\mathbf{x}_1)$$

- So from the observational data alone we cannot say anything about parenthood.
- Heckerman, Geiger and Chickering, 1995: choose prior such that marginal likelihood equivalent.

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	
Learning of par	enthood				

- We can still test different hypotheses about parenthood, but strong assumptions needed!
- Consider example and $p(x_1|x_2)p(x_2)$ we have 3 binomials

$$p(x_1|x_2=0), p(x_1|x_2=1)$$
 and $p(x_2)$

· We assume independence between prior distributions

$$p(\theta|\mathcal{H}_{2\to 1}) = p(\theta_{\cdot|0}|\mathcal{H}_{2\to 1})p(\theta_{\cdot|1}|\mathcal{H}_{2\to 1})p(\theta(2)|\mathcal{H}_{2\to 1})$$

 We call this model H_{2→1} but all that we are really testing is how well the data agrees with this specific parameter independence assumption.

イロト イヨト イヨト イヨト

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00	
Learning of parenthood					

- Can we make causal inference from data?
- Distinguish between observational and experimental data
- Judea Pearl and others:

no go for learning from (observational) data.

• Some Bayesians:

We can still test different hypotheses about parenthood, but we have to make assumptions explicit.

★ 문 → < 문 →</p>

DTU & KU

 If you want to avoid trouble - use directionality instead of causality. Introduction

Graphical models 000 0 Structure learning

Machine learning

Collaborative filtering

Summary

Machine learning

- Predictive and often statistical grand goal is to achieve human like generalization.
- From wikipedia: "Applications for machine learning include natural language processing, syntactic pattern recognition, search engines, medical diagnosis, bioinformatics, brain-machine interfaces and cheminformatics,...."
- The "Google paradigm"...

Introduction	Graphic
00	000
	000

aphical models

Structure learning

Machine learning

Collaborative filtering

Machine learning

...more data is different

EXPERT OPINION
Contact Editor: Brian Brannon, bbrannon@computer.org
The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

IEEE Intelligent Systems, 2009.

- Use representation that scales well (avoid curse of dimensionality)
- Unsupervised learning in non-parametric models (e.g. huge word frequency tables)

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 ● 0	0000 00 00000 00	
What you can d	lo with 1M images				

J. Hays and A.A. Efros, *Scene Completion Using Millions of Photographs*, Comm. ACM, 2008

Original Image

Input

Scene Matches

イロト イヨト イヨト イヨト

Output

Introd	luction

Graphical mod

Structure learning

Machine learning

Collaborative filtering

What you can do with 1M images

Ole Winther

Summar

Introd	luction

Graphical mode

Structure learning

Machine learning

Collaborative filtering

Netflix prize

Summary

Ole Winther

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	000 00 00000 00	
Netflix prize					

- Netflix online movie rental (DVDs).
- Collaborative filtering predict user rating from past behavior of user.
- Improve Netflix own system by 10% to win.
- training.txt $R = 10^8$ ratings, scale 1 to 5 for M = 17.770 movies and N = 480.189 users.
- qualifying.txt 2.817.131 movie-user pairs, (continuous) predictions submitted to Netflix returns a RMSE.
- Rating matrix *r_{mn}* mostly missing values, 98.5%.

Introduction	Graphical models 000 0 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering oo●o oo oo oo	Summary O
Netflix prize					

Some key numbers

Method	RMSE	% Improv.
Cinematch	0.9514	0%
Our Method	?	?
Best 13-5-2009	?	?
Grand prize	0.8563	10%

RMSE = root mean squared error

(日)

Introduction 00	Graphical models 000 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering ○○● ○○○○○○ ○○	Summary o
Netflix prize					

Collaborative filtering task

- Relatively large data set 10⁸ data points
- Very heterogeneous viewers and movies with few ratings
- Ratings $\in \{1,2,3,4,5\}$ noisy (subjective use of scale, non-stationary,...)
- Complex model needed to capture latent structure
- Regularization! We use Bayesian averaging easy to tune parameters.

★ E > ★ E >

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000 0 000	000 00000 0000	00 00	0000 00 00000 00	

• Model taste of viewer *n* with a *K*-dimensional vector **v**_n:

$$h_{mn} = \mathbf{u}_m \cdot \mathbf{v}_n + \epsilon_{mn}$$
 $\mathcal{N}(\epsilon_{mn}|\mathbf{0},\gamma^{-1})$

• Linear factor model $r_{mn} = h_{mn}$ or ordinal regression:

$$p(r_{mn}|h_{mn}) = \Phi(h_{mn} - b_{r_{mn}}) - \Phi(h_{mn} - b_{r_{mn}+1})$$

Quadratic regularization of factors

$$\rho(\mathbf{u}_m|\boldsymbol{\mu}_u, \boldsymbol{\Psi}_u) = \mathcal{N}(\mathbf{u}_m|\boldsymbol{\mu}_u, \boldsymbol{\Psi}_u^{-1})$$

• Hierarchical Bayesian prior

$$\boldsymbol{\rho}(\boldsymbol{\mu}_{u}, \boldsymbol{\Psi}_{u}) = \mathcal{N}(\boldsymbol{\mu}_{u} | \boldsymbol{\mu}_{0}, (\beta_{0} \boldsymbol{\Psi}_{u})^{-1}) \mathcal{W}(\boldsymbol{\Psi}_{u} | \boldsymbol{W}_{0}, \nu_{0})$$

프 🖌 🛪 프 🕨

DTU & KU

Image: A matrix

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000 0 000	000 00000 0000	00 00	0000 0● 00000 00	

matrix factorization

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 •0000 00	
Markov chain M	Ionte Carlo				

• Draw samples from distribution $p(\theta)$

 $\theta^{(1)},\ldots,\theta^{(R)}$

• Approximate average of $f(\theta)$ as

$$\langle f(\theta) \rangle = \int d\theta f(\theta) p(\theta) \approx \frac{1}{R} \sum_{r=1}^{R} f(\theta^{(r)})$$

• Sample $\{\theta^{(r)}\}_{r=1,...,R}$ is called Markov chain because it is generated from a Markov process with transition kernel $T(\theta^{(r)}|\theta^{(r-1)})$.

イロト イヨト イヨト イヨト

Introduction 00	Graphical models 000 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering ○○○○ ○●○○○ ○○	Summary o	
Markov chain Monte Carlo						

- Markov chain sufficient and necessary condition: $p(\theta)$ must be stationary distribution, ergodicity and non-cyclic.
- Sufficient condition: Detailed balance

$$T(\theta'|\theta) p(\theta) = T(\theta|\theta') p(\theta')$$

 Important practical issue: convergence of Markov chain (burn-in).

Introduction 00	Graphical models 000 0 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering ○○○ ○○●○○ ○○	Summary O
Markov chain M	Ionte Carlo				

Gibbs Sampling

- Just one example of a MCMC method.
- A special case of Metropolis-Hastings (the workhorse of MCMC).
- Split variables in a number of subsets for example $\theta = \{\theta_1, \theta_2\}$
- Many cases impossible to sample from p(θ₁, θ₂) but easy to sample from conditionals:

$$p(\theta_1|\theta_2)$$
 and $p(\theta_2|\theta_1)$

Gibbs sampling: Alternate between drawing from each conditional

イロト イヨト イヨト イヨト

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
	000 0 000	000 00000 0000	00 00	0000 00 00000 00	

Markov chain Monte Carlo

Detailed balance Gibbs sampling

• Detailed balance definition:

 $T(\theta'|\theta) p(\theta) = T(\theta|\theta') p(\theta')$

• Transition kernel Gibbs for first sub-step:

 $T_1(\theta'|\theta) = p(\theta'_1|\theta_2)\delta(\theta'_2 - \theta_2)$

 Detailed balance proof Gibbs - use that θ₂ remains unchanged in both directions:

> $T_{1}(\theta'|\theta)p(\theta) = p(\theta'_{1}|\theta_{2})\delta(\theta'_{2} - \theta_{2})p(\theta_{1}|\theta_{2})p(\theta_{2})$ $T_{1}(\theta|\theta')p(\theta') = p(\theta_{1}|\theta_{2})\delta(\theta'_{2} - \theta_{2})p(\theta'_{1}|\theta_{2})p(\theta_{2})$

• Easy to show $T = T_2 T_1$ obeys detailed balance if T_1 and T_2 do.

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering	Summary
		000 00000 0000	00 00	0000 00 00000 00000	

Markov chain Monte Carlo

Gibbs sampling inference Netflix

• Draw samples from conditionals, e.g.

$$p(\mathbf{u}_m|\text{rest}) \propto \prod_{n \in \Omega(m)} p(h_{mn}|\mathbf{u}_m, \mathbf{v}_n, \gamma) p(\mathbf{u}_m|\boldsymbol{\mu}_u, \boldsymbol{\Psi}_u)$$
$$= \prod_{n \in \Omega(m)} \mathcal{N}(h_{mn}|\mathbf{u}_m \cdot \mathbf{v}_n, \gamma^{-1}) \mathcal{N}(\mathbf{u}_m; \boldsymbol{\mu}_u, \boldsymbol{\Psi}_u^{-1})$$

- We have many parameters $K(M + N) + K(K + 1)/2 + 1 = 10^8$ for K = 200!
- Convergence (prediction-wise): 20 burn-in steps and S = 180 samples!
- Predictive mean $\langle r_m n \rangle \approx \frac{1}{S} \sum_{s=1}^{S} \sum_{r=1}^{5} rp(r_{mn} | h_{mn})$
- Highly parallelizable!

・ロト ・回ト ・ヨト ・ヨト

Introduction	Graphical models	Structure learning	Machine learning	Collaborative filtering
	000	000	00	0000
				00000

Results

Predictive uncertainty: Standard deviation $\sqrt{\langle r_{mn}^2 \rangle - \langle r_{mn} \rangle^2}$ as a function of coverage, movie (left) and viewer (right).

Ole Winther

Introduction	Graphical models 000 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering ○○○○ ○○○○○○	Summary o
Poculto					

Some performance numbers

Method	RMSE	Improv.
Cinematch	0.9514	0%
Our Method, $k = 50$	0.8958	5.84%
Our Method, $k = 100$	0.8930	6.14%
Our Method, $k = 200$	0.8917	6.27%
Best 13-5-2009	0.8590	9.71%
Grand prize	0.8563	10%

DTU & KU

Our approach is to our knowledge best 'single model' Further improvements - model temporal effects.

Introduction 00	Graphical models 000 000 000	Structure learning 000 00000 0000	Machine learning oo oo	Collaborative filtering 0000 00000 00000	Summary ●	
Summary and reading						

- Graphical models and Bayesian networks
- Machine learning hypothesis generating and predictive approaches
- Large scale Bayesian inference for collaborative filtering (w Ulrich Paquet and Blaise Thomson, Cambridge)
- Books: C. Bishop, Pattern Recognition and Machine Learning, Springer; D. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge; J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge; Gelman, Carlin, Stern & Rubin (Bayesian standard ref.)