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Overview

All lectures

1 Introduction to graphical models and Bayesian networks
2 Estimating the size of the transcriptome
3 Using biological prior information in motif discovery
4 Learning linear Bayes networks with sparse Bayesian

models

Common theme:
• Complex Bayesian model building possible and

advantageous
• Model checking – prediction, marginal- and test-likelihood

Ole Winther DTU & KU
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Overview

Lecture 1

• Introduction to graphical models and Bayesian networks
• Machine learning
• Example application – collaborative filtering 1M$-prize
• Summary and reading

Ole Winther DTU & KU
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Generative models

• Graphical representation of conditional probabilities and
independence

• All standard probabilistic statistical models can be given a
graphical representation – e.g. Markov
x1 x2 xM

• or regression
tn
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Generative models

Image

Object OrientationPosition

• Variables may be latent and unobserved
• Bayesian networks – directed acyclic graphs (DAGs)
• Also undirected graphs – Markov random fields.

Ole Winther DTU & KU



Introduction Graphical models Structure learning Machine learning Collaborative filtering Summary

Generative models

Understanding conditional probabilities
• Smokers are more likely to have lung cancer than random

person:

P(Lung cancer|Smoking) > P(Lung cancer)

• Bayes theorem relate joint to conditionals

P(X ,Y ) = P(X |Y )P(Y ) = P(Y |X )P(X )

P(Y |X ) =
P(X |Y )P(Y )

P(X )

P(X ) =
∑

Y

P(X ,Y ) =
∑

Y

P(Y |X )P(Y )

• We can use Bayes theorem to calculate
P(Lung cancer|Smoking).

Ole Winther DTU & KU
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Bayesian networks

Structured probabilistic models – directed acyclic graphs
(DAGs)

a

b

c

Graph reveals conditional independence (in example non).

P(a,b, c) = P(c|a,b)P(b|a)P(a)

Ole Winther DTU & KU
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Inference in Bayesian networks

The structure can be exploited to make effective inference
• predictions

P(“financial crisis 2010”|“economy 2009”)

• learning model parameters
• learning network structure

Ole Winther DTU & KU
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Inference in Bayesian networks

Example Sprinkler

P(GW ,S,R) = P(GW |S,R)P(S|R)P(R)

Ole Winther DTU & KU
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Inference in Bayesian networks

Burglar alarm – explaining away

Ole Winther DTU & KU
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x1 x2

versus

x1 x2

Aims – test for
1 Independence versus dependence
2 Directionality, who are the parents of a node.

Ole Winther DTU & KU
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Independence versus dependence

• H0 null hypothesis independence
• H1 dependence: no factorization
• This is a classical frequentist statistical test situation

Λ =
L(θ̂1; X,H1)

L(θ̂0; X,H0)
χ2-distributed with |θ1| − |θ0| d.f.

• Many dimensions: O(d !2d(d−1)/2) possible structures
• Bayesian approach: specify “probability of everything”

Ole Winther DTU & KU
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Independence versus dependence

• Marginal likelihood - independent model
• H0 independence: Likelihood: θ0 = {θ0(1),θ0(2)}

p(x1,x2|θ0,H0) = p(x1|θ0(1),H0) p(x2|θ0(2),H0)

• Specify priors - for example independent

p(θ0|H0) = p(θ0(1)|H0) p(θ0(2)|H0)

• Model likelihood (marginal likelihood)

p(D|H0) =

∫
p(D|θ0,H0) p(θ0|H0) dθ0 = p(X1|H0) p(X2|H0)

with data D = {X1,X2} and Xd = {xid}i=1,...,n.

Ole Winther DTU & KU
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Independence versus dependence

• Dependent model
• H1 dependence: No factorization in likelihood nor prior

p(D|H1) =

∫
p(D|θ1,H1) p(θ1|H1) dθ1 .

• Bayes factor
p(D|H1)

p(D|H0)

replace log likelihood ratio test.
• Sampling distribution considerations possible, but not

widely used (Gelman, Carlin, Stern & Rubin).

Ole Winther DTU & KU
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Discrete data

Example - discrete data (MacKay 2003)

x2=0 x2=1
x1=0 760 5 765
x1=1 190 45 235

950 50

• Likelihood
p(D|θ) = θn00

00 θ
n01
01 θ

n10
10 θ

n11
11

• Independence H0:

θkl = θk (1) θl(2)

Ole Winther DTU & KU



Introduction Graphical models Structure learning Machine learning Collaborative filtering Summary

Discrete data

Counts are the sufficient statistics nk =
∑n

i=1 xik :

p(D|θθθ) =
K∏

k=1

θnk
k

Enter a very convenient prior - the Dirichlet

p(θθθ;ααα) =
1

Z (ααα)

K∏

k=1

θαk−1
k δ(

∑

k ′

θk ′ − 1)

Normalizer:
Z (ααα) =

∏
k Γ(αk )

Γ(
∑

k αk )
.

Ole Winther DTU & KU
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Discrete data

p(θθθ;ααα) =
1

Z (ααα)

K∏

k=1

θαk−1
k δ(

∑

k ′

θk ′ − 1)

K = 3,

αk = α,

left α < 1
and

right α > 1.

Ole Winther DTU & KU
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Discrete data

Multinomial likelihood

p(D|θθθ) =
K∏

k=1

θnk
k

Dirichlet prior

p(θθθ;ααα) =
1

Z (ααα)

K∏

k=1

θαk−1
k δ(

∑

k ′

θk ′ − 1)

Dirichlet posterior

p(θθθ|D) =
p(D|θθθ)p(θθθ;ααα)

p(D;ααα)

Polya marginal likelihood

p(D;ααα) =
Z (ααα + n)

Z (ααα)
Ole Winther DTU & KU
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Discrete data

H1 (K = 4) versus H0 (2× [K = 2])
x2=0 x2=1

x1=0 760 5 765
x1=1 190 45 235

950 50
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Learning of parenthood

• We are now ready for the harder task of making inference
about parenthood.

• What does this actually mean?
• Likelihood equivalence

p(x1,x2) = p(x1|x2)p(x2) = p(x2|x1)p(x1)

• So from the observational data alone we cannot say
anything about parenthood.

• Heckerman, Geiger and Chickering, 1995: choose prior
such that marginal likelihood equivalent.

Ole Winther DTU & KU
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Learning of parenthood

• We can still test different hypotheses about parenthood,
but strong assumptions needed!

• Consider example and p(x1|x2)p(x2) – we have 3 binomials

p(x1|x2 = 0),p(x1|x2 = 1) and p(x2)

• We assume independence between prior distributions

p(θ|H2→1) = p(θ·|0|H2→1)p(θ·|1|H2→1)p(θ(2)|H2→1)

• We call this model H2→1 but all that we are really testing is
how well the data agrees with this specific parameter
independence assumption.

Ole Winther DTU & KU
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Learning of parenthood

Comparing H0,H1,H1→2 and H2→1

x2=0 x2=1
x1=0 760 5 765
x1=1 190 45 235

950 50

10
−2

10
0

−760

−750

−740

−730

−720

−710

−700

α

lo
g 

p(
D

|H
)

10
−2

10
0

−10

−8

−6

−4

−2

α

lo
g 

P
(D

|1
−

>
2)

 −
 lo

g 
P

(D
|2

−
>

1)

Ole Winther DTU & KU



Introduction Graphical models Structure learning Machine learning Collaborative filtering Summary

Learning of parenthood

• Can we make causal inference from data?
• Distinguish between observational and experimental data
• Judea Pearl and others:

no go for learning from (observational) data.
• Some Bayesians:

We can still test different hypotheses about parenthood,
but we have to make assumptions explicit.

• If you want to avoid trouble - use directionality instead of
causality.

Ole Winther DTU & KU
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Machine learning

• Predictive and often statistical –
grand goal is to achieve human
like generalization.

• From wikipedia: “Applications for
machine learning include natural
language processing, syntactic
pattern recognition, search
engines, medical diagnosis,
bioinformatics, brain-machine
interfaces and
cheminformatics,. . . .”

• The “Google paradigm”. . .

Ole Winther DTU & KU
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Machine learning

• . . . more data is different

IEEE Intelligent Systems, 2009.
• Use representation that scales well (avoid curse of

dimensionality)
• Unsupervised learning in non-parametric models (e.g.

huge word frequency tables)

Ole Winther DTU & KU
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What you can do with 1M images

J. Hays and A.A. Efros, Scene Completion Using Millions of
Photographs, Comm. ACM, 2008

Ole Winther DTU & KU
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What you can do with 1M images

Ole Winther DTU & KU
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Netflix prize

Ole Winther DTU & KU



Introduction Graphical models Structure learning Machine learning Collaborative filtering Summary

Netflix prize

• Netflix - online movie rental (DVDs).
• Collaborative filtering – predict user rating from past

behavior of user.
• Improve Netflix own system by 10% to win.
• training.txt – R = 108 ratings, scale 1 to 5 for M = 17.770

movies and N = 480.189 users.
• qualifying.txt – 2.817.131 movie-user pairs, (continuous)

predictions submitted to Netflix returns a RMSE.
• Rating matrix rmn mostly missing values, 98.5%.

Ole Winther DTU & KU
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Netflix prize

Some key numbers

Method RMSE % Improv.
Cinematch 0.9514 0%
Our Method ? ?

Best 13-5-2009 ? ?
Grand prize 0.8563 10%

RMSE = root mean squared error

Ole Winther DTU & KU
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Netflix prize

Collaborative filtering task
• Relatively large data set - 108 data points
• Very heterogeneous - viewers and movies with few ratings
• Ratings ∈ {1,2,3,4,5} noisy (subjective use of scale,

non-stationary,. . . )
• Complex model needed to capture latent structure
• Regularization! We use Bayesian averaging – easy to tune

parameters.

Ole Winther DTU & KU
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matrix factorization

• Model taste of viewer n with a K -dimensional vector vn:

hmn = um · vn + εmn N (εmn|0, γ−1)

• Linear factor model rmn = hmn or ordinal regression:

p(rmn|hmn) = Φ(hmn − brmn )− Φ(hmn − brmn+1)

• Quadratic regularization of factors

p(um|µu,Ψu) = N (um|µu,Ψ
−1
u )

• Hierarchical Bayesian prior

p(µu,Ψu) = N (µu|µ0, (β0Ψu)−1)W(Ψu|W0, ν0)

Ole Winther DTU & KU
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matrix factorization

xxxx

rmn

hmnum

γ

vn

µv ΨvΨvµuΨuΨu

a0 b0β0 µ0ν0 W0 β0 µ0 ν0 W0

M N

Figure 1: Graphical model for factor model Bayesian hierarchy as it is described in the
main text.

Explicit expressions for the distributions used are given in Appendix B, and a completely
analogous model is used for the user factors. The inverse variance parameter γ is non-
negative and is modelled with its conjugate Gamma distribution

p(γ; a0, b0) = Γ(γ; a0, b0) .

The hyperparameters {β0,W0, ν0} and {a0, b0} have to be specified by the user.

Model summary. The joint distribution of data and model parameters

θ = {H,U,V, γ,µu,Ψu,µv,Ψv} ,

using the definitions in Equations (2) to (5), is

p(D|θ)p(θ) =
∏

(m,n)

p(rmn|hmn) p(hmn|um,vn, γ) · · ·

∏

m

p(um|µu,Ψu) ·
∏

n

p(vn|µv,Ψv) · p(µu,Ψu) p(µv,Ψv) p(γ) .

Predictive distribution. If r is any label, say A, B, or C, p(r|D) gives the probability
that it takes a certain value. Other statistics can be derived when r is numeric. The point
estimate r̂ that minimizes the expected squared error E(r̂) = (r̂ − rtrue)2, for instance, is
the expected prediction for r,

r̂ = 〈r〉 =
R∑

r=1

r p(r|D) =
R∑

r=1

r

∫
p(r|θ) p(θ|D) dθ . (6)

5
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Markov chain Monte Carlo

• Draw samples from distribution p(θ)

θ(1), . . . , θ(R)

• Approximate average of f (θ) as

〈f (θ)〉 =

∫
dθ f (θ) p(θ) ≈ 1

R

R∑

r=1

f (θ(r))

• Sample {θ(r)}r=1,...,R is called Markov chain because it is
generated from a Markov process with transition kernel
T (θ(r)|θ(r−1)).

Ole Winther DTU & KU
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Markov chain Monte Carlo

• Markov chain sufficient and necessary condition: p(θ)
must be stationary distribution, ergodicity and non-cyclic.

• Sufficient condition: Detailed balance

T (θ′|θ) p(θ) = T (θ|θ′) p(θ′)

• Important practical issue: convergence of Markov chain
(burn-in).

Ole Winther DTU & KU
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Markov chain Monte Carlo

Gibbs Sampling
• Just one example of a MCMC method.
• A special case of Metropolis-Hastings (the workhorse of

MCMC).
• Split variables in a number of subsets for example
θ = {θ1, θ2}

• Many cases impossible to sample from p(θ1, θ2) but easy
to sample from conditionals:

p(θ1|θ2) and p(θ2|θ1)

Gibbs sampling: Alternate between drawing from each
conditional

Ole Winther DTU & KU
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Markov chain Monte Carlo

Detailed balance Gibbs sampling
• Detailed balance definition:

T (θ′|θ) p(θ) = T (θ|θ′) p(θ′)

• Transition kernel Gibbs for first sub-step:

T1(θ′|θ) = p(θ′1|θ2)δ(θ′2 − θ2)

• Detailed balance proof Gibbs - use that θ2 remains
unchanged in both directions:

T1(θ′|θ)p(θ) = p(θ′1|θ2)δ(θ′2 − θ2)p(θ1|θ2)p(θ2)

T1(θ|θ′)p(θ′) = p(θ1|θ2)δ(θ′2 − θ2)p(θ′1|θ2)p(θ2)

• Easy to show T = T2T1 obeys detailed balance if T1 and
T2 do.

Ole Winther DTU & KU
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Markov chain Monte Carlo

Gibbs sampling inference Netflix
• Draw samples from conditionals, e.g.

p(um|rest) ∝
∏

n∈Ω(m)

p(hmn|um,vn, γ) p(um|µu,Ψu)

=
∏

n∈Ω(m)

N (hmn|um · vn, γ
−1)N (um; µu,Ψ

−1
u )

• We have many parameters
K (M + N) + K (K + 1)/2 + 1 = 108 for K = 200!

• Convergence (prediction-wise): 20 burn-in steps and
S = 180 samples!

• Predictive mean 〈rmn〉 ≈ 1
S
∑S

s=1
∑5

r=1 rp(rmn|hmn

• Highly parallelizable!

Ole Winther DTU & KU
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Results

Predictive uncertainty: Standard deviation
√
〈r2

mn〉 − 〈rmn〉2 as a
function of coverage, movie (left) and viewer (right).

Ole Winther DTU & KU
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Results

Some performance numbers

Method RMSE Improv.
Cinematch 0.9514 0%
Our Method, k = 50 0.8958 5.84%
Our Method, k = 100 0.8930 6.14%
Our Method, k = 200 0.8917 6.27%
Best 13-5-2009 0.8590 9.71%
Grand prize 0.8563 10%

Our approach is to our knowledge best ‘single model’
Further improvements - model temporal effects.

Ole Winther DTU & KU
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Summary and reading

• Graphical models and Bayesian networks
• Machine learning – hypothesis generating and predictive

approaches
• Large scale Bayesian inference for collaborative filtering (w

Ulrich Paquet and Blaise Thomson, Cambridge)
• Books: C. Bishop, Pattern Recognition and Machine

Learning, Springer; D. MacKay, Information Theory,
Inference, and Learning Algorithms, Cambridge; J. Pearl,
Causality: Models, Reasoning, and Inference, Cambridge;
Gelman, Carlin, Stern & Rubin (Bayesian standard ref.)

Ole Winther DTU & KU
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