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Introduction
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Overview

All lectures

@ Introduction to graphical models and Bayesian networks
® Estimating the size of the transcriptome
©® Using biological prior information in motif discovery
@ Learning linear Bayes networks with sparse Bayesian
models
Common theme:

e Complex Bayesian model building possible and
advantageous

e Model checking — prediction, marginal- and test-likelihood
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Overview

Lecture 1

Introduction to graphical models and Bayesian networks
Machine learning

Example application — collaborative filtering 1M$-prize
Summary and reading
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Graphical models
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Generative models

e Graphical representation of conditional probabilities and
independence
¢ All standard probabilistic statistical models can be given a

graphical representation — e.g. Markov
X1 X9 XM

Tn «

o2 ——

e Or regression A

Ole Winther DTU & KU




Graphical models
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Generative models

Object Position  Orientation

303% 3 3

¢ Variables may be latent and unobserved
e Bayesian networks — directed acyclic graphs (DAGs)
¢ Also undirected graphs — Markov random fields.
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Graphical models
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Generative models

Understanding conditional probabilities

e Smokers are more likely to have lung cancer than random
person:

P(Lung cancer|Smoking) > P(Lung cancer)
¢ Bayes theorem relate joint to conditionals
P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X)

P(Y|X) ’W

P(X) = Y _P(X,Y)=Y_ P(Y|X)P(Y)
Y Y

e We can use Bayes theorem to calculate
P(Lung cancer|Smoking).
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Graphical models

Bayesian networks

Structured probabilistic models — directed acyclic graphs
(DAGSs)

a

&
Graph reveals conditional independence (in example non).

P(a,b,c) = P(c|a,b)P(bla)P(a)
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Graphical models
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Inference in Bayesian networks

The structure can be exploited to make effective inference
e predictions

P(*“financial crisis 2010”

“economy 2009”)

¢ learning model parameters
¢ learning network structure
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Graphical models
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Inference in Bayesian networks

Example Sprinkler

Ole Winther
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Graphical models
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Inference in Bayesian networks

Burglar alarm — explaining away

Earthquake Burglar

/\/

() Alarm

Radlo \
O

Phonecall
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Structure learning

X1 X2
versus
X X9

o

Aims — test for

@ Independence versus dependence

@ Directionality, who are the parents of a node.
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Structure learning
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Independence versus dependence

Ho null hypothesis independence
‘H1 dependence: no factorization
This is a classical frequentist statistical test situation

A= HOUX ) X?-distributed with [0] — [6o| d.f.
L(60; X, Ho)

Many dimensions: O(d!29(9-1)/2) possible structures
Bayesian approach: specify “probability of everything”
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Structure learning
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Independence versus dependence

e Marginal likelihood - independent model
e Hy independence: Likelihood: 8y = {6¢(1),00(2)}

p(X1,X2[00, Ho) = p(X1|00(1), Ho) p(X2|60(2), Ho)

e Specify priors - for example independent
p(6o|Ho) = p(6o(1)|Ho) P(B0(2)[Ho)
¢ Model likelihood (marginal likelihood)
p(DIHo) = [ P(DI6o.Ho) p(Bo[ o) dBo = p(Xi[Ho) PXel o)

with data D = {X1 , X2} and Xd = {X,’d},':1 n-

77777
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Structure learning
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Independence versus dependence

Dependent model
'H4 dependence: No factorization in likelihood nor prior

p(D[H;) = / p(D|8y. 1) p(6:[H1) d6; .

Bayes factor
p(D[H1)
P(D[Ho)
replace log likelihood ratio test.

Sampling distribution considerations possible, but not
widely used (Gelman, Carlin, Stern & Rubin).
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Structure learning
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Discrete data

Example - discrete data (MacKay 2003)

X2:O X2:1
x1=0 760 5 |765
x1=1 190 45 |235

950 50

¢ Likelihood
P(DIO) = o6y 07561y

e Independence Hy:

O = 0k(1) 6,(2)
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Structure learning
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Discrete data

Counts are the sufficient statistics ng = >°7_; Xi:

p(D|#) = H 0,

Enter a very convenient prior - the Dirichlet

p(0;a) Z(1 ) H gak 15(2 9;(/ — 1

k=1

Normalizer: T M)
QK
200 M)
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Structure learning
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Discrete data

K
p(o;a) = Z(1a) l}_[1 9?1(‘15(; Hk’ — 1)

K =3,
ak = a,

left o < 1
and

right o > 1.
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Structure learning
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Discrete data

Multinomial likelihood

p(D|#) = IIW*

Dirichlet prior

K
p(0:0) = 513 TL 5000 =)
=1

/

Dirichlet posterior
p(D16)p(8; )
0D)=——77"""
p(0|D) = p(D: a)
Polya marginal likelihood
oy Zletn)
PDie) = =70y
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Structure learning
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Discrete data

Xo=0 Xxo=1

Hq (K = 4) versus Ho (2 x [K = 2)) x;=0 760 5 |765
x;=1 190 45 |235

950 50

50|
-710 48
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Structure learning

@000

Learning of parenthood

e We are now ready for the harder task of making inference
about parenthood.

e What does this actually mean?
¢ Likelihood equivalence

p(X1,X2) = p(X1[X2)p(X2) = p(X2|X1)p(X1)

e So from the observational data alone we cannot say
anything about parenthood.

e Heckerman, Geiger and Chickering, 1995: choose prior
such that marginal likelihood equivalent.
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Structure learning
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Learning of parenthood

We can still test different hypotheses about parenthood,
but strong assumptions needed!

Consider example and p(x1|x2)p(x2) — we have 3 binomials

p(xi|x2 = 0), p(x1|x2 = 1) and p(x2)

We assume independence between prior distributions

P(0H2—1) = p(6.j0|Ha—1)p(0.11|H2—1)p(0(2) | H2—1)

We call this model Ho_,1 but all that we are really testing is
how well the data agrees with this specific parameter
independence assumption.
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Structure learning
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Learning of parenthood

Xo=0 Xxo=1
Comparing Ho, H1, H1_2 and Ho_.1 x;=0 760 5 |765
xi=1 190 45 |235

950 50
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Structure learning
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Learning of parenthood

Can we make causal inference from data?

Distinguish between observational and experimental data
Judea Pearl and others:

no go for learning from (observational) data.
Some Bayesians:

We can still test different hypotheses about parenthood,
but we have to make assumptions explicit.

If you want to avoid trouble - use directionality instead of
causality.
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Machine learning
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Machine learning

e Predictive and often statistical —
grand goal is to achieve human
like generalization.

e From wikipedia: “Applications for
machine learning include natural
language processing, syntactic
pattern recognition, search W
engines, medical diagnosis, il
bioinformatics, brain-machine
interfaces and
cheminformatics,. .. - ligs

e The “Google paradigm”. ..
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Machine learning
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Machine learning

.more data is different

EXPERT OPINION

ﬁ g The Unreasonable
£ " Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

IEEE Intelligent Systems, 2009.

e Use representation that scales well (avoid curse of
dimensionality)

e Unsupervised learning in non-parametric models (e.g.
huge word frequency tables)
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Machine learning
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What you can do with 1M images

J. Hays and A.A. Efros, Scene Completion Using Millions of
Photographs, Comm. ACM, 2008

Original Image Input Scene Matches Output
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What you can do with 1M images

Original Tmage Input
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Structure learning Machine learning Collaborative filtering Summary
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Collaborative filtering
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Netflix prize

¢ Netflix - online movie rental (DVDs).

e Collaborative filtering — predict user rating from past
behavior of user.

e Improve Netflix own system by 10% to win.

o training.txt — R = 108 ratings, scale 1 to 5 for M = 17.770
movies and N = 480.189 users.

e qualifying.txt — 2.817.131 movie-user pairs, (continuous)
predictions submitted to Netflix returns a RMSE.

e Rating matrix rpy, mostly missing values, 98.5%.
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Collaborative filtering
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Netflix prize

Some key numbers

Method RMSE | % Improv.
Cinematch 0.9514 0%
Our Method ? ?
Best 13-5-2009 ? ?
Grand prize 0.8563 10%

RMSE = root mean squared error

Ole Winther DTU & KU



Collaborative filtering
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Netflix prize

Collaborative filtering task
« Relatively large data set - 102 data points
e Very heterogeneous - viewers and movies with few ratings

e Ratings € {1,2,3,4,5} noisy (subjective use of scale,
non-stationary,. . .)

e Complex model needed to capture latent structure

¢ Regularization! We use Bayesian averaging — easy to tune
parameters.
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Collaborative filtering
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matrix factorization

¢ Model taste of viewer n with a K-dimensional vector v:
Amn = Um - Vo + €mn N (emnl0,77")
e Linear factor model rmy, = hmp or ordinal regression:
p(rmnlhmn) = ®(hmn — br,,) — ®(hmn — bryypi1)
e Quadratic regularization of factors
P(Um|py; Wu) = N (Unlpy, W, ")
o Hierarchical Bayesian prior

Py Wu) = N (pylpo. (BoWu) ™) W(W,|Wo, 1)
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Collaborative filtering
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matrix factorization

) WO ﬂo Ko agp bo /80 Ho 1o WO

C LT T
L Q O
ool
e

\
-]
-

X

M ) N

J

Ole Winther DTU & KU




Collaborative filtering
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Markov chain Monte Carlo

e Draw samples from distribution p(6)

o, ..., 00

e Approximate average of f(0) as

R
(f(0)) / do f(6 Z (6()

o Sample {#(N},_y gis called Markov chain because it is
generated from a Markov process with transition kernel
T(60|e(r=1)),
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Collaborative filtering
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Markov chain Monte Carlo

e Markov chain sufficient and necessary condition: p(¢)
must be stationary distribution, ergodicity and non-cyclic.

o Sufficient condition: Detailed balance

T(6'10) p(0) = T(016") p(¢)

¢ Important practical issue: convergence of Markov chain
(burn-in).
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Collaborative filtering
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Markov chain Monte Carlo

Gibbs Sampling
e Just one example of a MCMC method.

¢ A special case of Metropolis-Hastings (the workhorse of
MCMC).

e Split variables in a number of subsets for example
0 = {01,02}

e Many cases impossible to sample from p(61, 62) but easy
to sample from conditionals:

p(61]62)  and  p(62|01)

Gibbs sampling: Alternate between drawing from each
conditional

Ole Winther DTU & KU



Collaborative filtering
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Markov chain Monte Carlo

Detailed balance Gibbs sampling
e Detailed balance definition:

T(0'19) p(0) = T(616") p(¢')
e Transition kernel Gibbs for first sub-step:
T1(0'10) = p(07102)5(05 — 02)
e Detailed balance proof Gibbs - use that 6, remains
unchanged in both directions:
T1(0'10)p(0) = p(01]62)d(02 — 02)p(01]62)p(62)
T1(010")p(6") = p(61102)(63 — 02)p(671162)P(02)

e Easy to show T = T, T, obeys detailed balance if T; and
T> do.
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Collaborative filtering
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Markov chain Monte Carlo
Gibbs sampling inference Netflix
e Draw samples from conditionals, e.g.

p(umlrest) o [[ P(hmnlum, Va,7) p(Um|y, Wy)
neQ(m)

= H N(hmnlUm - Vo, v YN (Um; g, W)

neQ(m)
¢ We have many parameters
K(M+ N)+ K(K +1)/2+1 = 108 for K = 200!

e Convergence (prediction-wise): 20 burn-in steps and
S = 180 samples!

e Predictive mean (rmn) ~ 1323521 25’21 ro(rmn|Pmn
e Highly parallelizable!
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Collaborative filtering

Results

std of predictive dist.
std of predictive dist.

Predictive uncertainty: Standard deviation \/(r2,,) — (rmn)? as a
function of coverage, movie (left) and viewer (right).
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Collaborative filtering
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Results

Some performance numbers

Method RMSE | Improv.
Cinematch 0.9514 0%
Our Method, k =50 | 0.8958 | 5.84%
Our Method, Kk =100 | 0.8930 | 6.14%
Our Method, k =200 | 0.8917 | 6.27%
Best 13-5-2009 0.8590 | 9.71%
Grand prize 0.8563 10%

Our approach is to our knowledge best ‘single model’
Further improvements - model temporal effects.
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Summary and reading

e Graphical models and Bayesian networks

e Machine learning — hypothesis generating and predictive
approaches

e Large scale Bayesian inference for collaborative filtering (w
Ulrich Paquet and Blaise Thomson, Cambridge)

e Books: C. Bishop, Pattern Recognition and Machine
Learning, Springer; D. MacKay, Information Theory,
Inference, and Learning Algorithms, Cambridge; J. Pearl,
Causality: Models, Reasoning, and Inference, Cambridge;
Gelman, Carlin, Stern & Rubin (Bayesian standard ref.)
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