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1. Mining alpha-closed frequent subtrees
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+ Empirical results

2. Re-ranking frequent subtrees by hypothesis
testing
- Fisher's exact test

* Summary

Carbohydrate Chains or Glycans

“As indivisible units of life, the cells
of all organisms consist of four
fundamental macromolecular
components: nucleic acids (including
DNA and RNA), proteins, lipids, and
glycans.”

J.D.Marth, A unified vision of the building blocks of

life, Nature Cell Biology. 10(9). Sep. 2008.
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Nucleic acids Glycans
(DNA, RNA)

Science special issue:
Carbohydrates and Glycobiology Proteins Lipids
(Science, 291(5512), 2001)

Glycans: B_lologlcal Property
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Usually found on cell surfaces, connecting to glycoproteins

+ Crucial to the development and functioning of multicellular
organisms

What Does a Glycan Look Like?

+ Building blocks: monosaccharides (sugars)
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What Does a Glycan Look Like?

What Does a Glycan Look Like
(in Summary) ?
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Challenges in Glycobiology Glycoinformatics

+ Complex structure and biosynthesis process

- Large range of biological functions, from
unimportant to crucial for organism survival

+ The same glycan may have different roles

+ Experimentally different results based on
different environments (i.e., in vitro or in vivo,

etc.)

+ Informatics must help glycobiology

+ Issues:
- Data collection and database generation

- Data modeling and glycan structure

representation

- Structure comparison
= - Mining and prediction algorithms

etc.

Conserved Structures in Glycans
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Lanctot, P.M. et al. (2007) Curr. Opin. Chem. Biol., 11, 373-380

M) Various substructures known as functional motifs

The Objectivel

- Efficiently finding conserved

patterns from glycan structures!

* An idea:

- Frequent pattern mining-based approach




Frequent Pattern
Mining-based Approach:
Two Steps

1. Mining frequent subtrees
2. Finding significant subtrees from

frequent subtrees by hypothesis
testing

Frequent Subtrees (1/2)

Definition: Frequent subtree T
support (T) 2 minsup

support (T): #trees containing T
minsup : a threshold for support

Related work:
+ Mining frequent trees

Zaki, M. J. (2002) In kDD, 71-80, Edmonton, Canada
+ CMTreeMiner

Chi, Y. et al. (2005) IEEE TKDE, 17, 190-202

Frequent Subtrees (2/2)

* Frequent subtrees obtained from
KEGG Glycan database

Support Subtrees
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=) Too many redundant subtrees

Closed Frequent Subtrees (1/2)

Definition: Closed frequent subtree T
support (T) > minsup &
support (T') < support (T), T: asupertree of T
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Closed Frequent Subtrees (2/2)

* Closed frequent subtrees obtained
from KEGG Glycan database

Support Subtrees
1365 Wp—A
1346 @p——4+Hp1——H

1310 @pl——6@pI——4Mp——4H

m) Still too many redundant subtrees

Proposed Idea: a-closed
Frequent Subtrees  tecceos

Definition: a-closed frequent subtree T
support (T) > minsup &
support (T') < max(a x support (T), minsup)
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0=98% => A
0=90% =>




Nice properties of a-closed
Frequent Subtrees
If a=1
Definition: a-closed frequent subtree T
support (T) > minsup &
support (T') < max(a x support (T), minsup)
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support(A)=100 _95%, support(B)=95

Nice properties of a-closed
Frequent Subtrees
If a=1
Definition: a-closed frequent subtree T
support (T) > minsup &
support (T")\< max(l/xvsuppor“r (T), minsup)

Direct comparison between support of Tand T'
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support(A)=100 _95%, support(B)=95
0=100% => A : closed

Nice properties of a-closed
Frequent Subtrees
If a=0
Definition: a-closed frequent subtree T
support (T) > minsup &
support (T') < max(a x support (T), minsup)
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Nice properties of a-closed
Frequent Subtrees
If a=0
Definition: a-closed frequent subtree T
support (T) > minsup &
support (T')« max(0 x support (T), minsup)

| Direct comparison between support of T' and minsup |
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support(A)=100 _95%, support(B)=95

a=0% => A if B is infrequent: maximal

Summary: Nice properties of
a-closed Frequent Subtrees

Definition: a-closed frequent subtree T
support (T) > minsup &
support (T') < max(a x support (T), minsup)

* If a=1, a-closed frequent subtrees are
closed frequent subtrees.

» If a=0, a-closed frequent subtrees are
maximal frequent subtrees.

* a-closed frequent subtrees are a
monotone increasing family from O to 1.

Enumeration of

Frequent Subtrees
Example) T

T2 T3
(A) ©
:
; © €
minsup = 2 6 5

Subtree T is frquent if support(T) > 2, where
support (T) = #trees including at least one T

eg. support ( g )=3

Use an enumeration tree for efficiency




Enumeration of
Frequent Subtrees

Subtrees with one node:
infrequent

frequent
support|support support supporT
=1 =3 =3 =
(T1nly) (T1,T2, T3)

Downward closure propertyl!
patterns including an infrequent

subtree
nr‘e alwuys mfrequenT
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Enumeration of
Frequent Subtrees
s@or‘r fuppor’r fupporT fu@ppor'r
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Enumeration of
Frequent Subtrees

Grow frequent subtrees further
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Enumeration of
Frequent Subtrees
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Grow frequent subtrees further
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Enumeration of
Frequent Subtrees

Complete frequent subtree set
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Enumeration of
Frequent Subtrees
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Complete frequent subtree set




Pruning Enumeration Tree
1. Downward Closur'e

Tm_T2_ T3 \@
@] 5 oo
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® all infrequent / \
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all infrequent @) (®
Downward closure ®

Trees including an infrequent subtree
are all infrequent.

Nice properties of a-closed
Frequent Subtrees

Definition: a-closed frequent subtree T
support (T) > minsup &
support (T') < max(a x support (T), minsup)

« If a=1, a-closed frequent subtrees are
closed frequent subtrees.

e If a=0, a-closed frequent subtrees are
maximal frequent subtrees.

» a-closed frequent subtrees are a
monotone increasing family from O to 1.

Pruning Enumeration Tree

Frequent subtree hierarchy

Pruned by
downward
a-closed subtrees
closure
maximal subtrees property
controllable by a

We can further prune:
(1) frequent but not closed
(2) closed but not a-closed

Pruning Enumeration Tree
2. Closedness and a-closedness

We can prune:

(1) frequent but not closed %
(2) closed but not a-closed
\% ®or(2)

We can prune the branch
if all subtrees are (1) or (2).

Mor (@)
(1) Check closedness
(2) Check a-closedness

Pruning by Closedness
or a-closedness

Compare frequent subtrees between neighboring levels
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(1) Closedness

Use Left- and Right-blanket pruning (Chi et al., 2005)
of closed frequent subtrees

(2) a-closedness
Unless a-closed, there can be frequent supertree T'
with "support(T')> a support(T)" in the next level.

Pruning by Closedness:
A Bit Detail

Compare frequent subtrees between neighboring levels

SICM I R

LI IR LY YN
1. Examine the closedness in % Ve
the closure relation
“etween neighboring
2vels.
2. If found, a smaller
subtree can be discarded.




Frequent ¢ significant
* Frequent subtrees obtained from
KEGG Glycan database
Support  Subtrees

1646 @pI——6@
1628 e@p—+4+H
1365 mp1——A

m) Significance test against control needed!

Statistical Hypothesis Testing
(1: Procedure)

1. Generate synthetic control (negative)

- For each frequent pattern, count
#appearances in both datasets

2. Apply Fisher's exact test to compute
P-value
3. Rank by P-values

Statistical Hypothesis Testing
(2: Contingency Table)

2x2 contingency table for frequent subtree T

Positives Controls Total

With T #truepositives (ntp)  # falsepositives (ngp nr
WithoutT # false negatives (ngy) # true negatives(npy ng

Total np nN n

Statistical Hypothesis Testing
(3: Fisher's Exact Test)

Probability from this table in random fashion:

o))
(v)

nr!ng!nplny!

" ninre!nee Inpy Ty !
follows hypergeometric distribution.

p-value can be computed by using the
CDF of hypergeometric distribution!

Frequent pattern
mining-based approach

Result 1

Significant patterns examined

Data and Parameter Setting

1. Data

» 7454 positives from KEGG GLYCAN
» 7454 synthetic control, being kept the same as
positives in

* topology

+ parent-child pairs

2. Parameter settings

> alpha (0~100%)
» minsup (0.5%, 1%, 2%)




#frequent Subtrees versus a
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Top 5 Significant Subtrees
Ranked by P-values

Rank P-value  Support Substructures Name

1 16e46 381 " >im Lewis X

Aar-

2 1.1e-40 164 O-glycan core

Obl— 4 M.
o
3
Obt-

Obl— 3Mbl— 30bl—4@

Glycosphingolipid core
lactoseries

3 5.0e-26 109

4 5.6e-26 233

Obi— 3Mbi—30 Glycosphingolipid core

lactoseries

5 8.2e-26 83 Lewis A

Aal.
>§ln1—3o
Ob

alpha=40%, minsup=0.5%

Top 6-10 Significant Subtrees
Ranked by P-values

Rank P-value Support

Substructures Name

N-glycan core
high mannose type

6 13e-24 79

N-glycan core
complex type

7 27e24 78

N-glycan core
complex type

8 2921 68

N-glycan core
complex type

9 2921 68

10 3.2e-20 74 Blood group H

Au—20p—:Wp—30

Frequent pattern
mining-based approach

Result 2

Classification performance examined

(

Applying Significant Patterns to
Classification for Comparison

Problem setting:

>Discriminate real O-glycans (positives) from
randomly synthesized, almost similar ftrees
(negatives or controls).

Input: T =(0,1,1,0,1,....,1,0)

i-th element is 1 if T has i-th significant subtree
0 otherwise

Note: input vector size controllable by al

)




Data and Procedure

Data
> 485 positives: O-glycan structures
> 485 synthetic control

Procedure
> linear SVM
» 10-fold cross-validation being averaged
over 10 random controls
> Use a-closed patterns obtained from the
training data

Competing Methods

SVM with tree kernels
= Well-recognized as high-performance
method in the current machine learning

Three cutting-edge tree kernels

» Convolution kernel
(Kashima, H. et a/ 2002)

> Co-rooted subtree kernel
(Shawe-Taylor, J. et a/ 2004)

> 3-mer kernel
(Hizukuri, Y. et a/ 2005)

Performance Results
(a=0.7 ~1.0)

Proposed method =——s—
Convolution kernel
Co-rooted subtree kernel
3-mer kernel

AUC Accuracy

0.94 /’/”\ 087 /\

0.86
0.93

0.85

0.92

07 08 0.9 1 0.7 08 0.9 1

AUC and Accuracy

Method AUC (P-value) Accuracy (P-value)
Proposed method 0.942 0.869

Convolution kernel 0.934 (6.91e-03) 0.857 (1.14e-02)
Co-rooted subtree kernel 0.916 (7.78e-11) 0.843 (1.03e-06)
3-mer kernel 0.904 (4.74e-18) 0.825 (9.91e-15)

P-value (o = 95%) in parenthesis

Outperformed all competing methods,
being statistically significant!

Summary

+ The new concept of a-closed frequent
subtrees proposed and efficient algorithm
for mining a-closed frequent subtrees
presented

* Mining frequent subtrees combined with
hypothesis testing for finding significant
subtrees

+ Performance confirmed experimentally
- Existing significant patterns detected correctly

- Outperformed competing methods, including SVM with tree
kernels

+ Further analysis on found patterns ongoing
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