Mining Significant Patterns from Trees

Hiroshi Mamitsuka Bioinformatics Center Kyoto University

Outline

Introduction

- Glycobiology: A specific tree application
- Frequent pattern mining-based approach 1. Mining alpha-closed frequent subtrees
 - Mining alpha-closed frequent subtrees
 Brief algorithm overview
 Empirical results
 - Re-ranking frequent subtrees by hypothesis testing
 Fisher's exact test
- Summany
- Summary

What Does a Glycan Look Like?

- Monosaccharide connected each other
- No looped connections
- Only one monosaccharide connects to a glycoprotein

 Resulting in tree structures!

Challenges in Glycobiology

- Complex structure and biosynthesis process
- Large range of biological functions, from unimportant to crucial for organism survival
- The same glycan may have different roles
- Experimentally different results based on different environments (i.e., in vitro or in vivo, etc.)
- Informatics must help glycobiology

Glycoinformatics

- Issues:
 - Data collection and database generation
 - Data modeling and glycan structure representation
 - Structure comparison
- Mining and prediction algorithms etc.

Frequent Pattern Mining-based Approach: Two Steps

- 1. Mining frequent subtrees
- 2. Finding significant subtrees from frequent subtrees by hypothesis testing

Frequent ≠ significant					
 Frequent subtrees obtained from KEGG Glycan database 					
	Support	Subtrees	_		
	1646	● β1 6 ●	-		
	1628	🔴 β1			
	1365	β14			
	:	•			
Significance test against control needed!					

- 1. Generate synthetic control (negative)
 - For each frequent pattern, count #appearances in both datasets
- 2. Apply Fisher's exact test to compute P-value
- 3. Rank by P-values

Frequent pattern mining-based approach

Result 1

Significant patterns examined

Result 2

Classification performance examined

Applying Significant Patterns to Classification for Comparison

Problem setting:

>Discriminate real O-glycans (positives) from randomly synthesized, almost similar trees (negatives or controls).

Input: T = (0,1,1,0,1,...,1,0)'

(i-th element is 1 if T has i-th significant subtree) 0 otherwise

Note: input vector size controllable by a!

Data and Procedure

Data

- > 485 positives: O-glycan structures
- > 485 synthetic control

Procedure

- > linear SVM
- > 10-fold cross-validation being averaged
- over 10 random controls
- > Use a-closed patterns obtained from the training data

Competing Methods

SVM with tree kernels

 Well-recognized as high-performance method in the current machine learning

Three cutting-edge tree kernels > Convolution kernel

- (Kashima, H. *et al* 2002)
- Co-rooted subtree kernel (Shawe-Taylor, J. et al 2004)
- 3-mer kernel (Hizukuri, Y. et al 2005)

AUC and Accuracy

Method	AUC (P-value)	Accuracy (P-value)
Proposed method	0.942	0.869
Convolution kernel	0.934 (6.91e-03)	0.857 (1.14e-02)
Co-rooted subtree kernel	0.916 (7.78e-11)	0.843 (1.03e-06)
3-mer kernel	0.904 (4.74e-18)	0.825 (9.91e-15)

P-value (α = 95%) in parenthesis

Outperformed all competing methods, being statistically significant!

Summary

- The new concept of a-closed frequent subtrees proposed and efficient algorithm for mining a-closed frequent subtrees presented
- Mining frequent subtrees combined with hypothesis testing for finding significant subtrees
- Performance confirmed experimentally
 Existing significant patterns detected correctly
 - Outperformed competing methods, including SVM with tree kernels
- Further analysis on found patterns ongoing

Acknowledgements Kyoto University Bioinformatics Center Minister Device Research · Kosuke Hashimoto · Ichigaku Takigawa · Motoki Shiga · Minoru Kanehisa

Reference Information

• [ECCB08]

 Mining Significant Tree Patterns in Carbohydrate Sugar Chains. Bioinformatics, 24 (16) (Proceedings of the Seventh European Conference on Computational Biology (ECCB 2008), Cagliari, Sardinia-Italy, September, 2008), i167-i173, 2008.

Funding Acknowledgements

- BIRD, JST
- Research fellowship for Young Scientists, JSPS
- Grant-in-Aid for Young Scientists, JSPS
- Kyoto University 21st Century COE program, Knowledge Information Infrastructure for Genome Science, JSPS
- Education and Research Organization for Genome Information Science, JST