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• Brief algorithm overview
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2. Re-ranking frequent subtrees by hypothesis 
testing
• Fisher’s exact test

• Summary 

Carbohydrate Chains or Glycans
“As indivisible units of life, the cells 
of all organisms consist of four 
fundamental macromolecular 
components: nucleic acids (including 
DNA and RNA), proteins, lipids, and 
glycans.”

J.D.Marth, A unified vision of the building blocks of 
life, Nature Cell Biology, 10(9), Sep. 2008.

Nucleic acids
(DNA, RNA) 

Glycans

Proteins Lipids
Science special issue:
Carbohydrates and Glycobiology
(Science, 291(5512), 2001)

Glycans: Biological Property
Extracelluler
Fluid

Cell membrane 
(Lipid bilayer)

Glycan

• Usually found on cell surfaces, connecting to glycoproteins
• Crucial to the development and functioning of multicellular

organisms

Cytosol
(Intracelluler
Fluid)

Protein

Lipid

(Lipid bilayer)

What Does a Glycan Look Like? 

6G l

• Building blocks: monosaccharides (sugars)

Glucose
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Galactose
N-acetylgalactosamine
Glucose
N-acetylglucosamine
Mannose
Fucose
Xylose

Carbon #

. . .

Disaccharides

• Edge, linking two 
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What Does a Glycan Look Like? 

6
5

• Monosaccharide connected each 
other

• No looped connections

Glucose

1
5

4

3 2

Carbon #

• No looped connections
• Only one monosaccharide 

connects to a glycoprotein
– Resulting in tree structures!

What Does a Glycan Look Like 
(in Summary) ?

• Labeled ordered tree 
1. Rooted tree Glycan 

(by IUPAC 2D representation)
– Only one monosaccharide 

connects to a glycoprotein
2. Labeled tree

– Nodes labeled by 
monosaccharides

3. Ordered tree
– Edges labeled by carbon #s 

and ordered
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4 Root

(by IUPAC 2D representation)

Challenges in Glycobiology
• Complex structure and biosynthesis process
• Large range of biological functions, from 

unimportant to crucial for organism survival
Th   l   h  d ff  l• The same glycan may have different roles

• Experimentally different results based on 
different environments (i.e., in vitro or in vivo, 
etc.)

• Informatics must help glycobiology

Glycoinformatics

• Issues:
– Data collection and database generation
– Data modeling and glycan structure Data modeling and glycan structure 

representation
– Structure comparison
– Mining and prediction algorithms
etc.

Conserved Structures in Glycans

Lanctot, P.M. et al. (2007) Curr. Opin. Chem. Biol., 11, 373-380

Various substructures known as functional motifs

The Objective!

• Efficiently finding conserved 
patterns from glycan structures!patterns from glycan structures!

• An idea:
– Frequent pattern mining-based approach
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Frequent Pattern 
Mining-based Approach:

Two Steps

1. Mining frequent subtrees

2. Finding significant subtrees from 
frequent subtrees by hypothesis 
testing

Frequent Subtrees (1/2)
Definition: Frequent subtree T

support (T) ≥ minsup
support (T): #trees containing T
minsup       : a threshold for support

Related work:
• Mining frequent trees

Zaki, M. J. (2002) In KDD, 71-80, Edmonton, Canada
• CMTreeMiner

Chi, Y. et al. (2005) IEEE TKDE, 17, 190-202

minsup       : a threshold for support

Frequent Subtrees (2/2)
• Frequent subtrees obtained from 

KEGG Glycan database
SubtreesSupport

4β1 4β11365

1346

1310

β1 4 4β1

β1 4 4β1β1 6

...

...
Too many redundant subtrees

Closed Frequent Subtrees (1/2)

β16α2T1 T2 T3

Definition: Closed frequent subtree T

support (T’) < support (T),  T’: a supertree of T
support (T) ≥ minsup  &
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6 T1 T2 T3

β1

4
β1

2

6α2

support (B) = 3

Subtrees

β1

4
β1

2

support (A) = 3

A B

Closed Frequent Subtrees (2/2)

SubtreesSupport

4β11365

• Closed frequent subtrees obtained 
from KEGG Glycan database

4β11365

1346

1310

β1 4 4β1

β1 4 4β1β1 6

...

...

Still too many redundant subtrees

Proposed Idea: a-closed 
Frequent Subtrees

Definition: α-closed frequent subtree T

support (T’) < max(α x support (T), minsup)
support (T) ≥ minsup  &

[ECCB08]

β1

4
β1

2

6α2

support(B)=95
β1

4
β1

2

support(A)=100

A B

α=98%  => A 

α=90%  => A

95%
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Nice properties of a-closed 
Frequent Subtrees

Definition: α-closed frequent subtree T
support (T) ≥ minsup  &

If  α = 1

β1

4
β1

2

6α2

support(B)=95
β1

4
β1

2

support(A)=100

A B

95%

support (T’) < max(α x support (T), minsup)

Nice properties of a-closed 
Frequent Subtrees

Definition: α-closed frequent subtree T
support (T) ≥ minsup  &

If  α = 1

β1

4
β1

2

6α2

support(B)=95
β1

4
β1

2

support(A)=100

A B

α=100% => A : closed
95%

support (T’) < max(1 x support (T), minsup)

Direct comparison between support of T and T’

Nice properties of a-closed 
Frequent Subtrees

Definition: α-closed frequent subtree T
support (T) ≥ minsup  &

If  α = 0

β1

4
β1

2

6α2

support(B)=95
β1

4
β1

2

support(A)=100

A B

95%

support (T’) < max(α x support (T), minsup)

Nice properties of a-closed 
Frequent Subtrees

Definition: α-closed frequent subtree T
support (T) ≥ minsup  &

If  α = 0

β1

4
β1

2

6α2

support(B)=95
β1

4
β1

2

support(A)=100

A B

α=0% => A if B is infrequent: maximal 
95%

support (T’) < max(0 x support (T), minsup)
Direct comparison between support of T’ and minsup

Summary: Nice properties of 
a-closed Frequent Subtrees

Definition: a-closed frequent subtree T

support (T’) < max(a x support (T), minsup)
support (T) ≥ minsup  &

• If a=1, a-closed frequent subtrees are 
closed frequent subtrees.

• If a=0, a-closed frequent subtrees are 
maximal frequent subtrees.

• a-closed frequent subtrees are a 
monotone increasing family from 0 to 1.

Enumeration of 
Frequent Subtrees

Example)
A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3

B
D

D DB
D

minsup = 2
Subtree T is frquent if support(T) ≥ 2, where
support (T) = #trees including at least one T

eg.  support (       ) = 3C
B

Use an enumeration tree for efficiencyUse an enumeration tree for efficiency
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A
support
=1

frequentinfrequent

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3
Subtrees with one node:

B
support
=3

C
support
=3

D
support
=3

(T1 only)

minsup = 2

B
D

D DB
D

(T1,T2, T3)

C

D

A

C

B

A

C C

A

C C

A

C

B B

A

C C

D(no need to check)

patterns including an infrequent 
subtree
are always infrequent

Downward closure property!

A

B

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3
A

support
=1

B
support
=3

C
support
=3

D
support
=3

Grow frequent subtrees only

infrequentB
D

D DB
D

q

noneB
D

support
=3

C
B

support
=3

C
C

support
=2

minsup = 2
infrequent

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3
Grow frequent subtrees further

B C
D B

C
C

support= support= support=2B
D

D DB
D

pp
3

pp
3

none C
B
D

support=
3

C
C
B

support=1

BC
C

support=2

infrequent

minsup = 2

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3
Grow frequent subtrees further

C
B
D

BC
CC

C
B support=2B

D
D DB

D
D B

support=
3

support=1
support=2

infrequent

none

none

B
C

D
C

support=
2

infrequent

infrequent

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3 Complete frequent subtree set

C C

B C D
support=3support=3support=3

BB
D

D DB
D

B
C

D
C

support=
2

C
B
D

support=
3

BC
C

support=
2

C
B

support=
3

C
C

support=2

B
D

support=
3minsup = 2

Enumeration of 
Frequent Subtrees

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3

B C D
support=3 support=3 support=3

Complete frequent subtree set 
over the enumeration tree

B
D

D DB
D B

D
C

B

C
C

C

B
D

C
C B

C
C B

D

support=3

support=3 support=3 support=3

support=3 support=2

support=2

support=2

support=3

minsup = 2
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Pruning Enumeration Tree
1. Downward Closure

A

B
C B

C

D
C B

C

D
C
B

C

T1 T2 T3
A B C D

B
D

C

B

C
C

support=3

infrequent support=3 support=3 support=3

support=3 support=2

Downward closure
Trees including an infrequent subtree
are all infrequent.

all infrequent

all infrequent

B
D

D DB
D C

B
D

C
C
B

C
C B

C
C B

D

support 3

infrequent

support 3 support 2

support=2

support=2

support=3minsup = 2

Nice properties of a-closed 
Frequent Subtrees

Definition: a-closed frequent subtree T

support (T’) < max(a x support (T), minsup)
support (T) ≥ minsup  &

• If a=1, a-closed frequent subtrees are 
closed frequent subtrees.

• If a=0, a-closed frequent subtrees are 
maximal frequent subtrees.

• a-closed frequent subtrees are a 
monotone increasing family from 0 to 1.

Pruning Enumeration Tree

frequent subtrees
closed subtrees
α-closed subtrees

Frequent subtree hierarchyFrequent subtree hierarchy

(1)
Pruned by 
downward 
Pruned by 
downward α-closed subtrees

maximal subtrees
controllable by αcontrollable by α

( )
(2)

(1) frequent but not closed
(2) closed but not α-closed

We can further prune:

closure 
property
closure 
property

Pruning Enumeration Tree
2. Closedness and α-closedness

(1) frequent but not closed
(2) closed but not α-closed

We can prune:

(1) or (2)

We can prune the branch
if all subtrees are (1) or (2).
We can prune the branch
if all subtrees are (1) or (2).

(1) or (2)

(1) or (2)

(1) Check closedness
(2) Check α-closedness

Pruning by Closedness 
or α-closedness

level-2
(2-node trees)

level 3

Compare frequent subtrees between neighboring levelsCompare frequent subtrees between neighboring levels

(1) Closedness

(2) α-closedness

Use Left- and Right-blanket pruning (Chi et al., 2005) 
of closed frequent subtrees

Unless α-closed, there can be frequent supertree T’ 
with “support(T’)≥ α support(T)” in the next level.

level-3
(3-node trees)

Pruning by Closedness: 
A Bit Detail

Compare frequent subtrees between neighboring levelsCompare frequent subtrees between neighboring levels

level-2
(2-node trees)

level-3
(3-node trees)

1. Examine the closedness in 
the closure relation 
between neighboring 
levels.

2. If found, a smaller 
subtree can be discarded.
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Frequent ≠ significant

SubtreesSupport

• Frequent subtrees obtained from 
KEGG Glycan database

Significance test against control needed!

4β11365
1628
1646 β1 6

...

...

β1 4

Statistical Hypothesis Testing 
(1: Procedure)

1. Generate synthetic control (negative) 
– For each frequent pattern, count For each frequent pattern, count 

#appearances in both datasets
2. Apply Fisher's exact test to compute 

P-value
3. Rank by P-values

Statistical Hypothesis Testing 
(2: Contingency Table)

2x2 contingency table for frequent subtree T

# true negatives(

# false positives (

Positives Controls

With T # true positives (nTP nFP) nT
WithoutT # false negatives (nFN nTN) nT

Total nP nN n

Total

)

)

Statistical Hypothesis Testing 
(3: Fisher’s Exact Test)

Pr =

nT
nTP

nT
nFN

Probability from this table in random fashion:

n
nP

=
nT!nT!nP!nN!

n!nTP!nFP!nFN!nTN!

follows hypergeometric distribution. 

p-value can be computed by using the 
CDF of hypergeometric distribution!
p-value can be computed by using the 
CDF of hypergeometric distribution!

Result 1

Frequent pattern 
mining-based approach

Result 1
Significant patterns examined

Data and Parameter Setting

7454 positives from KEGG GLYCAN
7454 synthetic control, being kept the same as 

1. Data

alpha (0~100%)
minsup (0.5%, 1%, 2%)

2. Parameter settings

7  yn  n r , ng p   am  a  
positives in

• topology
• parent-child pairs
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#frequent Subtrees versus a
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Top 5 Significant Subtrees 

Ranked by P-values

3
4

a1

b1 Lewis X

b14b1
O l

381

164

Substructures NameSupport

1.6e-46

1 1 40

P-valueRank

1

2 3
6

b1
O-glycan core

4b13b13b1

3b13b1

3b13
4

b1

a1
Lewis A

Glycosphingolipid core
lactoseries

164

109

233

83

Glycosphingolipid core
lactoseries

1.1e-40

5.0e-26

5.6e-26

8.2e-26

2

3

4

5

alpha=40%, minsup=0.5%

Top 6-10 Significant Subtrees 
Ranked by P-values

  6
3

4β1

α12α12α1

α13
6

α1

α1

N-glycan core
high mannose type

N l4
α14β1

791.3e-24

Substructures NameSupportP-valueRank

6

N-glycan core
complex type

N-glycan core
complex type

  6
3

4β1

α12β14β1

α12
4

α1 4β1

β

4β1

  6
3

4β1

α12β14β1

4β1

α12
4

α1

α14β1

4β16α2

N-glycan core
complex type

  6
3

4β1 4β1

α12
4

α1

α14β1

4β1

α12
6

α1

α14β1

4β1
α1

6

3β13β12α1 Blood group H

78

68

68

74

2.7e-24

2.9e-21

2.9e-21

3.2e-20

7

8

9

10

Result 2

Frequent pattern 
mining-based approach

Result 2
Classification performance examined

Applying Significant Patterns to 
Classification for Comparison

Discriminate real O-glycans (positives) from 
randomly synthesized, almost similar trees 

Problem setting:

y y
(negatives or controls).

Input: T = (0,1,1,0,1,....,1,0)’
i-th element is 1 if T has i-th significant subtree 

0 otherwise

Note: input vector size controllable by α!

( )
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Data and Procedure

485 positives: O-glycan structures
485 synthetic control

Data

linear SVM
10-fold cross-validation being averaged 

over 10 random controls
Use α-closed patterns obtained from the 

training data

Procedure

Competing Methods
SVM with tree kernels

Well-recognized as high-performance 
method in the current machine learning

Convolution kernel

Co-rooted subtree kernel

3-mer kernel

(Kashima, H. et al 2002)

(Shawe-Taylor, J. et al 2004)

(Hizukuri, Y. et al 2005)

Three cutting-edge tree kernels

Performance Results 
(α = 0.7 ~ 1.0)

AUC Accuracy

Proposed method
Convolution kernel

Co-rooted subtree kernel
3-mer kernel

0.91

0.92

0.93

0.94

0.7 0.8 0.9 1
α (%)

0.83

0.84

0.85

0.86

0.87

0.7 0.8 0.9 1
α (%)

AUC and Accuracy

Method AUC (P-value) Accuracy (P-value)

Proposed method 0.942 0.869
Convolution kernel 0.934 (6.91e-03) 0.857 (1.14e-02)

P-value (α = 95%) in parenthesis

( ) ( )
Co-rooted subtree kernel 0.916 (7.78e-11) 0.843 (1.03e-06)
3-mer kernel 0.904 (4.74e-18) 0.825 (9.91e-15)

Outperformed all competing methods, 
being statistically significant!
Outperformed all competing methods, 
being statistically significant!

Summary
• The new concept of α–closed frequent 

subtrees proposed and efficient algorithm 
for mining a-closed frequent subtrees 
presented

• Mining frequent subtrees combined with Mining frequent subtrees combined with 
hypothesis testing for finding significant 
subtrees

• Performance confirmed experimentally
– Existing significant patterns detected correctly
– Outperformed competing methods, including SVM with tree 

kernels
• Further analysis on found patterns ongoing
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