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Carbohydrate Chains or Glycans

“As indivisible units of life, the cells

of all organisms consist of four

fundamental macromolecular

b components: nucleic acids (including

m:‘\ DNA and RNA), proteins, lipids, and

§  glycans.”

& J.D.Marth, A unified vision of the building blocks of
life, Nature Cell Biology. 10(9). Sep. 2008.

Science

Nucleic acids Glycans
(DNA, RNA)

Science special issue:
Carbohydrates and Glycobiology Proteins Lipids
(Science, 291(5512), 2001)

Glycans: Biological Property
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+ Usually found on cell surfaces, connecting to glycoproteins

+ Crucial to the development and functioning of multicellular
organisms

What Does a Glycan Look Like?

+ Building blocks: monosaccharides (sugars)
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What Does a Glycan Look Like?

What Does a Glycan Look Like
(in Summary) ?

+ Complex structure and biosynthesis process

- Large range of biological functions, from
unimportant to crucial for organism survival

+ The same glycan may have different roles

+ Experimentally different results based on
different environments (i.e., in vitro or in vivo,
etc.)

+ Informatics must help glycobiology
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Challenges in Glycobiology Glycoinformatics

+ Issues:

- Data collection and database generation

- Data modeling and glycan structure
representation

- Structure comparison

—p - Learning and prediction method/algorithms

etc.

The Objectivel

+ Develop a probabilistic model for
aligning multiple glycans and capturing
conserved patterns as in the case of
proteins/DNA by HMM

+ Develop a probabilistic model for
labeled ordered trees!

Review: Hidden Markov
Models (HMMs)




Training HMM

* Probability distributions trained (estimated)
from strings to present patterns in the strings

* A standard approach (Baum-Welch) maximizes
the likelihood to generate given strings
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given strings

Forward Probability: oIt il

Given a string, the probability that the current state
is jand substring [1.f] is generated, i.e. the
probability covering the first part of the string

Can be computed by dynamic programming over #,
due to Markov property

Updating formula: s |
oIt j1= 2 aby(o)a ft-1i] |/ AW

1 i

i i
Can be computed in O(IS |V |)
- where S isaset of states and |V | is the string length

Backward Probability: 4.1t
+ Given a string, the probability that the current
state is 7and substring [ 7..#] is generated, i.e. the
probability covering the last part of the string
+ Can be computed by dynamic programming over #in
a reverse direction, by the following updating rule:

State ﬂa[tvi]:Zaijbj(6\+1)ﬁg[t+lv il

Time

Baum-Welch Algorithm

Tterates the following steps until convergence
- E-step: )
1. Compute forward probabilities: &,[ti]
2. Compute backward probabilities: f [t, j]

3. Compute the expectation value of state transition /jusing
forward and backward probabilities:

Ep [#((, i), ol D, [ i1ayb; (0,,) B, [t +1, ]
- M-step: !
1. Update transition probability &;using expectation values:
5= E, [#((i j).o
'Y E (G 0).0]
j

Baum-Welch Algorithm Picture

+ We can estimate expectation value on
the state transition from /to jby using
forward and backward probabilities:

z a,lt, i]aijbj (0u) B[t +1 j]
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Yo N Time
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Probabilistic Models for
Labeled Ordered Trees




Hidden Tree Markov Model (HTMM)
[Deligenti, 2003]
- Extension of HMM for strings to a model for trees
+ Proposed in the literature of image processing
+ State depends on that of the parent only

Labeled ordered tree Markov model (chain)

% &

— : Tree edges

) . —p: State transition
----- » : Children ordering = |etter generation

HTMM Cannot Capture Sibling
Dependencies!

=—p: State transition
=>: Letter generation

Our First Model: Probabilistic Sibling-
dependent Tree Markov Model (PSTMM)

[SDMO4, ISMBO4, TKDEO5, ISMBO6]
Labeled ordered tree Markov model

— : Tree edges

. . = State transition
----- » : Children ordering = |etter generation

Note: State of a hode depends upon the states of both elder sibling
and parent, except the case that the node is the eldest sibling

Properties of PSTMM

Advantage

- Empirically outperformed simpler models, such as HTMM,
in classifying labeled ordered trees in synthetic as well as
real data

+ Drawbacks

- Computational complexity in learning is equivalent to that
of context free grammars for strings: maximum practical
bound

- Time: O(T|-|SF:IV[-IC]), Space: O(S[)
- where T is a set of given trees, S is aset of states, \/ isa
set of nodes and C is the maximum size of children

- Overfitting problems!
- Difficult o retrieve patterns from learned states

Our New Model: Ordered Tree Markov
Model (OTMM)  opos, Tkoos)

Labeled ordered tree Markov model (chain)

% d.

— : Tree edges .
i X =) State transition
..... » : Children ordering = Letter generation

Note: State of a hode depends upon the states of only elder sibling,
except the eldest sibling, where the state depends upon that of parent

Define OTMM Parameters

+ Two main probability parameters
- State transition probability (two cases):
alg,ml=a[s,,s, 1(= P(z} =5, 12;’=5,)

* Probability that the state of jis S given that the
state of the parent is s‘l ‘Sgl@ siblings)

afl,ml=a[s,s,1(=P(z] =5,z =s)

* Probability that the state of jis S~ given that the
state of the immediately elder sibling is S,
(otherwise)

- Label output probability: b[s,, o]
+ Probability that the state S, outputs g




Training OTMM

+ Probability distributions trained (estimated)
from “labeled ordered trees” to present
patterns/rules in them

+ A standard approach of HMMs extended
- Computational complexities kept at the same level !

Parameter
estimation 035 07 S, 05__ S,
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Review Again: Baum-Welch
+ We caﬁigr?mr;lrtbmegrlaggrlfl \'/:J?Ue on

the state transition from /to j by using
forward and backward probabilities:

z a,lt, i]aijbj (0B [t+1, j]

State

_ ; U[t§+1, il
I 1 i

Time
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Four Marginalized Probabilities

+ Four directions: Parent-child & Siblings
- Child to Parent
- Parent to Child
- Younger sibling to elder sibling
- Elder sibling o younger sibling
+ Define four probabilities for a tree v
with nodes x;, ..., x,
+ Covers subtree
- Downward D, (5, x;)
+ Covers wholel tree except the subtree
- Backward 8, (s, x;)
+ Covers subtrees of all younger siblings
- Forward £, (5, XJ)

+ Covers whole free except that by
Backward

+ Each computed by dynamic
programming (DP) efficiently

Upward Probabilities

- Cover subtree

* Can be computed from backward
probabilities (covering younger siblings
and their children) of the eldest child

If . p) = ¥ then blg, o} ]
otherwise

L3
A | erhf."? B,im, j)

(s.t. xf .r‘i‘ ipl)

Uilg, p) =

blg. o

Backward Probabilities

+ Cover younger siblings and their
subtrees

* Can be computed from the upward
probability of the eldest child and
backward probabilities of the younger
child

Backward

Ifx" = x® { p) then U,im, j),
otherwise

Buim, j) = 5.
f-'..'m._.l'l}_,'!lrrl.a’l.’.f._-‘f.j + 1)
i=1

Computing Backward and Upward
Probabilities with Dynamic Programming

+ Example
Backward: /\

Upward: '\




Computing Backward and Upward
Probabilities with Dynamic Programming

+ Example
Backward: / "\

Upward: '\

Computing Backward and Upward
Probabilities with Dynamic Programming

Backward: /\

Upward: '\

Computing Backward and
Upward wiTDP

Backward: /\

Upward: '\

Computing Backward and
Upward wiTDP

Backward: /\

Upward: '\

Computing Backward and
Upward with DP

Backward: /\

Upward: '\

Computing Backward and
Upward with DP

Backward: /\

Upward: '\




Computing Backward and
Upward wi‘rDP

Backward: / "\

Upward: 1\

Computing Backward and
Upward wi‘rDP

Backward: /\

Upward: |\

Computing Backward and
Upward wiTDP

Backward: / \

Upward: |\

Computing Backward and
Upward with DP
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Upward: |\
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Computing Backward and
Upward with DP

Backward: / \

Upward: '\

Computing Backward and
Upward with DP

Backward: / \

Upward: '\




Computing Backward and
Upward with DP

Backward: / "\

Upward: '\

.

+ Possible by just using forward

* Can be computed for a given set of

Computing Likelihood

probabilities only, since they can cover

all nodes of the input tree:
1S
L(T,) =) #llU.Q, 1.
=1

trees: o o e
LT =[] LT =[] =, 1.

u=1 u=11I=1

- Define four probabilities for a tree v

+ Each computed by dynamic

Four Marginalized Probabilities

+ Four directions: Parent-child & Siblings

- Child to Parent
- Parent to Child
- Younger sibling to elder sibling
- Elder sibling o younger sibling

with nodes x;, ..., x,
- Upward U, (5, x,)
+ Covers subtree
- Downward D, (5, x;)
+ Covers wholel tree except the subtree
- Backward 8, (5, x;)
+ Covers subtrees of all younger siblings
- Forward £, (5, XJ)

+ Covers whole free except that by
Backwar:

programming (DP) efficiently

Dynamic Programming for
Marginalized Probabilities

Upward Backward

Learning OTMM

+ Extension of Baum-Welch of HMM to
OTMM

* Made possible by using four auxiliary
probabilities: forward, backward,
upward and downward

+ Dynamic programming: polynomial
(cubic!) order computation time and
space

E-step FUD ™ M-step

EM Iteration Procedure

n a
uB e Y ‘ ‘ L
{D b \ FD 6 b Likelihood

UB UB UB maximized!f
N ) Compute Update

Compute marginalized expectation ./ probability
probabilities values parameters




OTMM: Computational Complexity

+ Notation
- |T|:#trees, |S|:#states, |V|:string length
- Comparison with PSTMM (and HTMM)
- Efficiency always increased by |S|

[a
OTMM (7 O(|T]- [S]”- V)
HTMM [ OUTI{51V])
PSTMM VO(IT]- 1S - V] ]C])

Space
OTMM | ymax{O([S5] - [V]),0(S]").0(S[- 2]
HTMM max{O(|S| - [V]),0(S"), O0(|S] - | 3. )
PSTMM | max{O(|S[* - [V]), O(|S"), O(IS]*- % )}

Synthetic Data Experiment

+ Evaluated by classification
- Data (Pos vs Neg): Trees with vs. without fixed patterns
- # random training and test frees: 100

- AUC (Area under the ROC curve) for both training and

test
100 | PSTMM {train) _

OTMM (train)

AUC (%)
&

OTMM {test)
750 0 PSTMM (test)

2 4 6 8 10 12
# states (5]}

Overfitting caused by PSTMM, relieved by OTMM

Synthetic Data Experiment

- Fifteen patterns of tree fragments embedded in

positives
Q1 Q2 Q3 [aT| Q5 . Q6 Qr, QF
‘.': ra / Y iy
' SN . /\ AN J A
Q0 o~ Q0 Qll Q12 Q13 Q14 Q15
; e VAN LIN . AN -
e /,-\\-.. . ,_-'/. .\.. f . e \\,. - , [_;‘ :\'\,.

Synthetic Data Experiment
Performance (AUC)

- Increase #training trees (ITl? and #states (ISJ)
with Q=1, #patterns=3 and fully-connected models

- Increase #paTTerr;é and #states ( l S|) with Q:l
| T|=600 and fully-connected models

—p———r e

Y

Synthetic Data Experiment
Computation Time

- Increase #training trees (| T|) and #states (|S|)
with Q=1. #batterns=3 and fullv-connected models
T] = 200 |T] = 400 |T] = 60

EEE

f |

+ Increase #patterns and #states (|S|) with Q=1,
| T|=600 and fully-connected models
1 K 2 K 1

K =

K

Synthetic Data Experiment
Summary of AUC

+ AUC for fifteen patterns of tree fragments
Fragment OTMM PSTMM HTMM

Q1 91.2 93.1 60,2
Q2 86.3 D08 57.6
Q3 91.7 91.3 58.2
Q4 95.5 95.2 637
Q5 91.0 89.9 60.9
Q6 88.7 87.8 604
Q7 87.1 BR.O 60,2
Q8 91.9 91.1 654.8
Q9 7.2 0.2 55.2
Q10 83.3 B6.7 61.2
Q11 BB.T 88.3 G1.2
Q12 83.0 85.2 58.1
Q13 82.6 83.0 53.9
Q14 87.2 #5.6 54.4

Q15 73.9 75.1 54.9




Glycan Data Experiment

+ Evaluated in classification
- 10-fold Cross-validation
- Pos vs. Neg: N-glycans vs. O-glycans

- Used parameter settings achieved the best per‘formance in
synthetic data

100 <omm . ﬁoo%
5 %0 / PSTMM > :mo'é
<- PSTMM =
OTMM -> E
“ - o . g
p G 2 3
W% 4 & & @ *0°
# states {|S[)
OTMM computed efficiently,

keeping the same predictive performance

Multiple Tree Alignment

* Most likely state paths for three glycans
allow multiple tree alignment:

~ Actual glycans

3"39“7@'

\x-—&-\ Sra=Ss+5s \»—&-—\
f‘ >\
SreSy s o e Ky b \
5-‘-\ -8 SawSse=5,
s o~ \ e s /
G pe s

Most likely state paths

Glycan Pattern Mining

* Assigning states for node labels by most
likely state path (by Viterbi algorithm)

Findings from Glycans

+ Actual glycans and the most likely state paths
in three classes
~ Actual glycans

:| High-mannose | | Hybrid | —s | Complex r:

" Most likely state paths

Summary

- New Markov model for “labeled ordered
trees” presented

- Has moderate complexity, keeping high
representation power

- Is an extension of hidden Markov model

+ Advantages:

- Noise robustness

- Biological comprehensibility

+ Drawback: patterns (probabilities) are
dependencies between neighboring tree
nodes, being unable to show a larger pattern
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