
1

Probabilistic Models for Mining 
from Labeled Ordered Trees: 

Application to GlycobiologyApplication to Glycobiology

Hiroshi Mamitsuka
Bioinformatics Center

Kyoto University

Outline

• Introduction
– Glycobiology: A specific tree application

• Probabilistic model-based approach
P li i  Hidd  M k  d l– Preliminary: Hidden Markov model

– OTMM: Probabilistic model for labeled 
ordered trees
• Parameter estimation for OTMM
• Empirical results

• Summary

Carbohydrate Chains or Glycans
“As indivisible units of life, the cells 
of all organisms consist of four 
fundamental macromolecular 
components: nucleic acids (including 
DNA and RNA), proteins, lipids, and 
glycans.”

J.D.Marth, A unified vision of the building blocks of 
life, Nature Cell Biology, 10(9), Sep. 2008.

Nucleic acids
(DNA, RNA) 

Glycans

Proteins Lipids
Science special issue:
Carbohydrates and Glycobiology
(Science, 291(5512), 2001)

Glycans: Biological Property
Extracelluler
Fluid

Cell membrane 
(Lipid bilayer)

Glycan

• Usually found on cell surfaces, connecting to glycoproteins
• Crucial to the development and functioning of multicellular

organisms

Cytosol
(Intracelluler
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Protein

Lipid
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What Does a Glycan Look Like? 
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• Building blocks: monosaccharides (sugars)
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What Does a Glycan Look Like? 

6
5

• Monosaccharide connected each 
other

• No looped connections

Glucose
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Carbon #

• No looped connections
• Only one monosaccharide 

connects to a glycoprotein
– Resulting in tree structures!

What Does a Glycan Look Like 
(in Summary) ?

• Labeled ordered tree 
1. Rooted tree Glycan 

(by IUPAC 2D representation)
– Only one monosaccharide 

connects to a glycoprotein
2. Labeled tree

– Nodes labeled by 
monosaccharides

3. Ordered tree
– Edges labeled by carbon #s 

and ordered
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Challenges in Glycobiology
• Complex structure and biosynthesis process
• Large range of biological functions, from 

unimportant to crucial for organism survival
Th   l   h  d ff  l• The same glycan may have different roles

• Experimentally different results based on 
different environments (i.e., in vitro or in vivo, 
etc.)

• Informatics must help glycobiology

Glycoinformatics

• Issues:
– Data collection and database generation
– Data modeling and glycan structure Data modeling and glycan structure 

representation
– Structure comparison
– Learning and prediction method/algorithms
etc.

The Objective!

• Develop a probabilistic model for 
aligning multiple glycans and capturing 
conserved patterns as in the case of conserved patterns as in the case of 
proteins/DNA by HMM

• Develop a probabilistic model for 
labeled ordered trees!

Review: Hidden Markov 
Models (HMMs)( )
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Training HMM
• Probability distributions trained (estimated) 

from strings to present patterns in the strings
• A standard approach (Baum-Welch) maximizes 

the likelihood to generate given stringsthe likelihood to generate given strings

UUDDU
DUUDDD
UDUUD
UUDDUU
DDDUUD

UUDDU
DUUDDD
UDUUD
UUDDUU
DDDUUD

Parameter
estimation
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Maximize the 
likelihood of 
given strings

Forward Probability: 
• Given a string, the probability that the current state 

is j and substring [1..t] is generated, i.e. the 
probability covering the first part of the string

• Can be computed by dynamic programming over t , 
due to Markov property

],[ jtσα

p p y
• Updating formula:

• Can be computed in
– where      is a set of states and     is the string length
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Backward Probability:
• Given a string, the probability that the current 

state is i and substring [t…n] is generated, i.e. the 
probability covering the last part of the string

• Can be computed by dynamic programming over t in 
a reverse direction, by the following updating rule:
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Baum-Welch Algorithm
• Iterates the following steps until convergence

– E-step:
1. Compute forward probabilities:            
2. Compute backward probabilities:           ],[ jtσβ

],[ itσα

3. Compute the expectation value of state transition ij using 
forward and backward probabilities:

– M-step:
1. Update transition probability using expectation values:
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Baum-Welch Algorithm Picture
• We can estimate expectation value on 

the state transition from i to j by using 
forward and backward probabilities:

∑ + jtbait ]1[)(][ βσα∑ ++
t

tjij jtbait ],1[)(],[ 1 σσ βσα
State

Time

i
j

tt-1 t+1 t+2

],[ itσα
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Probabilistic Models for 
Labeled Ordered Trees



4

Hidden Tree Markov Model (HTMM)
• Extension of HMM for strings to a model for trees
• Proposed in the literature of image processing
• State depends on that of the parent only

[Deligenti, 2003]

Labeled ordered tree Markov model (chain) 

: Tree edges
: Children ordering

: State transition
: Letter generation

HTMM Cannot Capture Sibling 
Dependencies!

: State transition
: Letter generation

Our First Model: Probabilistic Sibling-
dependent Tree Markov Model (PSTMM)

Labeled ordered tree Markov model 
[SDM04, ISMB04, TKDE05, ISMB06]

: Tree edges
: Children ordering

: State transition
: Letter generation

Note: State of a node depends upon the states of both elder sibling 
and parent, except the case that the node is the eldest sibling 

Properties of PSTMM
• Advantage

– Empirically outperformed simpler models, such as HTMM, 
in classifying labeled ordered trees in synthetic as well as 
real data

D b ks• Drawbacks
– Computational complexity in learning is equivalent to that 

of context free grammars for strings: maximum practical 
bound

• Time:                                     ,    Space: 
– where       is a set of given trees,       is a set of states,     is a 

set of nodes and       is the maximum size of children                   
– Overfitting problems!
– Difficult to retrieve patterns from learned states

|)||||||(| 3 CVSO ⋅⋅⋅Τ )|(| 3SO
SΤ

C
V

Our New Model: Ordered Tree Markov 
Model (OTMM)

Labeled ordered tree Markov model (chain) 

[KDD06, TKDD08]

: Tree edges
: Children ordering

: State transition
: Letter generation

Note: State of a node depends upon the states of only elder sibling, 
except the eldest sibling, where the state depends upon that of parent 

Define OTMM Parameters
• Two main probability parameters

– State transition probability (two cases):

• Probability that the state of j is         given that the 
state of the parent is         (eldest siblings)s ms

)|(](,[],[ q
u
pm

u
jmq szszPssamqa ====

state of the parent is         (eldest siblings)

• Probability that the state of j is         given that the 
state of the immediately elder sibling is        
(otherwise)

– Label output probability:
• Probability that the state        outputs 
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u
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u
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Training OTMM
• Probability distributions trained (estimated) 

from “labeled ordered trees” to present 
patterns/rules in them

• A standard approach of HMMs extended
– Computational complexities kept at the same level ! 

Parameter
estimation 1S

2S 3S
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Maximize the 
likelihood of 
given trees … … …

Review Again: Baum-Welch 
Algorithm Picture• We can estimate expectation value on 

the state transition from i to j by using 
forward and backward probabilities:
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Time
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Four Marginalized Probabilities 
• Four directions: Parent-child & Siblings

– Child to Parent
– Parent to Child
– Younger sibling to elder sibling
– Elder sibling to younger sibling

• Define four probabilities for a tree u
with nodes x1   x

D
with nodes x1, …, xn
– Upward Uu (sq, xp)

• Covers subtree
– Downward Du (sl, xi)

• Covers wholel tree except the subtree
– Backward Bu (sm, xj)

• Covers subtrees of all younger siblings
– Forward Fu (sl, xj)

• Covers whole tree except that by 
Backward

• Each computed by dynamic 
programming (DP) efficiently

F B

U

Upward Probabilities

• Cover subtree
• Can be computed from backward 

probabilities (covering younger siblings 
and their children) of the eldest childand their children) of the eldest child

Upward

Backward Probabilities

• Cover younger siblings and their 
subtrees

• Can be computed from the upward
probability of the eldest child and probability of the eldest child and 
backward probabilities of the younger 
child Backward

• Example S1
aBackward:

Upward:

Computing Backward and Upward 
Probabilities with Dynamic Programming

S2 S3

S2 S4 S3

b

a d

c

b

S3

b
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S1
aBackward:

Upward:

Computing Backward and Upward 
Probabilities with Dynamic Programming

• Example

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

S1
aBackward:

Upward:

Computing Backward and Upward 
Probabilities with Dynamic Programming

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP

S1
aBackward:

Upward:

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP

S1
aBackward:

Upward:

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP
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aBackward:

Upward:

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP

S1
aBackward:

Upward:

S2 S3

S2 S4 S3

b

a d

c

b

S3

b
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Computing Backward and 
Upward with DP

S1
aBackward:

Upward：

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP
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Upward：
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Computing Backward and 
Upward with DP
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aBackward：

Upward：

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Backward and 
Upward with DP

S1
aBackward：

Upward：

S2 S3

S2 S4 S3

b

a d

c

b
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b

Computing Backward and 
Upward with DP
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aBackward：

Upward：
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a d
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b

Computing Backward and 
Upward with DP
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aBackward：

Upward：
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Computing Backward and 
Upward with DP

S1
aBackward:

Upward:

S2 S3

S2 S4 S3

b

a d

c

b

S3

b

Computing Likelihood

• Possible by just using forward 
probabilities only, since they can cover 
all nodes of the input tree:

• Can be computed for a given set of 
trees:  

Four Marginalized Probabilities 
• Four directions: Parent-child & Siblings

– Child to Parent
– Parent to Child
– Younger sibling to elder sibling
– Elder sibling to younger sibling

• Define four probabilities for a tree u
with nodes x1   x

D
with nodes x1, …, xn
– Upward Uu (sq, xp)

• Covers subtree
– Downward Du (sl, xi)

• Covers wholel tree except the subtree
– Backward Bu (sm, xj)

• Covers subtrees of all younger siblings
– Forward Fu (sl, xj)

• Covers whole tree except that by 
Backward

• Each computed by dynamic 
programming (DP) efficiently

F B

U

Dynamic Programming for 
Marginalized Probabilities

Upward Backward

DownwardForward

Learning OTMM

• Extension of Baum-Welch of HMM to 
OTMM

• Made possible by using four auxiliary 
probabilities: forward  backward  probabilities: forward, backward, 
upward and downward

• Dynamic programming: polynomial 
(cubic!) order computation time and 
space  

EM Iteration Procedure

FD

η
E-step M-step

UB

U U
F F

BB

UB

D D

a 
b 

η
γ
δ

U
D

U

D

F

L

Compute marginalized 
probabilities

Compute 
expectation 
values

Update 
probability
parameters

Likelihood 
maximized!D

B

F F
B
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OTMM: Computational Complexity
• Notation

– |T|:#trees, |S|:#states, |V|:string length
• Comparison with PSTMM (and HTMM)

– Efficiency always increased by |S|

Synthetic Data Experiment
• Evaluated by classification

– Data (Pos vs Neg): Trees with vs. without fixed patterns
– # random training and test trees: 100
– AUC (Area under the ROC curve) for both training and 

test

Overfitting caused by PSTMM, relieved by OTMM 

Synthetic Data Experiment
• Fifteen patterns of tree fragments embedded in 

positives

Synthetic Data Experiment
Performance (AUC)

• Increase #training trees (|T|) and #states (|S|) 
with Q=1, #patterns=3 and fully-connected models

• Increase #patterns and #states (|S|) with Q=1, 
|T|=600 and fully-connected models

Synthetic Data Experiment
Computation Time

• Increase #training trees (|T|) and #states (|S|) 
with Q=1, #patterns=3 and fully-connected models

• Increase #patterns and #states (|S|) with Q=1, 
|T|=600 and fully-connected models

Synthetic Data Experiment
Summary of AUC

• AUC for fifteen patterns of tree fragments
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Glycan Data Experiment
• Evaluated in classification

– 10-fold Cross-validation
– Pos vs. Neg: N-glycans vs. O-glycans
– Used parameter settings achieved the best performance in 

synthetic data

OTMM computed efficiently, 
keeping the same predictive performance

Multiple Tree Alignment
• Most likely state paths for three glycans 

allow multiple tree alignment:
Actual glycansActual glycans

Most likely state pathsMost likely state paths

Glycan Pattern Mining
• Assigning states for node labels by most 

likely state path (by Viterbi algorithm)

Findings from Glycans
• Actual glycans and the most likely state paths 

in three classes
Actual glycansActual glycans

Most likely state pathsMost likely state paths

High-mannose Hybrid Complex

Summary
• New Markov model for “labeled ordered 

trees” presented
– Has moderate complexity, keeping high 

representation power 
– Is an extension of hidden Markov model

• Advantages:
– Noise robustness
– Biological comprehensibility

• Drawback: patterns (probabilities) are 
dependencies between neighboring tree 
nodes, being unable to show a larger pattern

Acknowledgements

• Kosuke HashimotoKosuke Hashimoto
• Nobuhisa Ueda
• Kiyoko Flora Aoki-Kinoshita (Currently Soka 

University)
• Minoru Kanehisa



11

Reference Information
• [TKDD08] 

– A New Efficient Probabilistic Model for 
Mining Labeled Ordered Trees Applied to 
Glycobiology., ACM Transactions on 
K l d  Dis  f m D t  2 (1)  Knowledge Discovery from Data, 2 (1), 
Article No. 6, 2008.

• [DDT08] 
– Informatic Innovations in Glycobiology: 

Relevance to Drug Discovery., Drug 
Discovery Today, 13(3/4), 118-123 (2008). 

Funding Acknowledgements
• BIRD, JST
• Research fellowship for Young Scientists, 

JSPS
• Grant-in-Aid for Young Scientists, JSPS
• Kyoto University 21st Century COE program, 

Knowledge Information Infrastructure for 
Genome Science, JSPS

• Education and Research Organization for 
Genome Information Science, JST


