Probabilistic Models for Mining from Labeled Ordered Trees:
Application to Glycobiology

Hiroshi Mamitsuka Bioinformatics Center Kyoto University

Outline

- Introduction
 - Glycobiology: A specific tree application
- · Probabilistic model-based approach
 - Preliminary: Hidden Markov model
 - OTMM: Probabilistic model for labeled ordered trees
 - Parameter estimation for OTMM
 - · Empirical results
- Summary

What Does a Glycan Look Like?

- Monosaccharide connected each other
- No looped connections
- Only one monosaccharide connects to a glycoprotein
 - Resulting in **tree** structures!

What Does a Glycan Look Like (in Summary)?

- · Labeled ordered tree
 - 1. Rooted tree
 - Only one monosaccharide connects to a glycoprotein
 - 2. Labeled tree
 - Nodes labeled by monosaccharides
 - 3. Ordered tree
 - Edges labeled by carbon #s
 and ordered

Challenges in Glycobiology

- · Complex structure and biosynthesis process
- Large range of biological functions, from unimportant to crucial for organism survival
- · The same glycan may have different roles
- Experimentally different results based on different environments (i.e., in vitro or in vivo, etc.)
- · Informatics must help glycobiology

Glycoinformatics

- · Issues:
 - Data collection and database generation
 - Data modeling and glycan structure representation
 - Structure comparison
- Learning and prediction method/algorithms etc.

The Objective!

- Develop a probabilistic model for aligning multiple glycans and capturing conserved patterns as in the case of proteins/DNA by HMM
- Develop a probabilistic model for labeled ordered trees!

Review: Hidden Markov Models (HMMs)

Training HMM

- Probability distributions trained (estimated) from strings to present patterns in the strings
- A standard approach (Baum-Welch) maximizes the likelihood to generate given strings

UUDDU
DUUDDD
UDUUD
UUDDUU
UUDDUU
DDDUUD
DDDUUD

Parameter estimation
0.3 S₁
0.7 S₂
0.7 S

Forward Probability: $\alpha_{\sigma}[t, j]$

- Given a string, the probability that the current state is j and substring [1..t] is generated, i.e. the probability covering the first part of the string
- Can be computed by <u>dynamic programming</u> over t, due to Markov property

Updating formula: $\alpha_{\sigma}[t,j] = \sum_{i} a_{ij}b_{j}(\sigma_{t})\alpha_{\sigma}[t-1,i]$

- Can be computed in $O(|S|^2 \cdot |V|)$
 - where S is a set of states and |V| is the string length

Backward Probability: $\beta_{\sigma}[t,i]$

- Given a string, the probability that the current state is / and substring [t...n] is generated, i.e. the probability covering the last part of the string
- Can be computed by <u>dynamic programming</u> over *t* in a reverse direction, by the following updating rule:

Baum-Welch Algorithm

- Iterates the following steps until convergence
 - E-step:
 - 1. Compute forward probabilities: $\alpha_{\sigma}[t,i]$
 - 2. Compute backward probabilities: $\beta_{\sigma}[t,j]$
 - Compute the <u>expectation value</u> of state transition *ij* using forward and backward probabilities:

$$E_{P_{\sigma}}[\#((i,j),\sigma] \propto \sum \alpha_{\sigma}[t,i] a_{ij} b_{j}(\sigma_{t+1}) \beta_{\sigma}[t+1,j]$$

- M-step:
 - 1. Update $\underline{\text{transition probability}}\ a_{ij}$ using expectation values:

$$\hat{q}_{ij} = \frac{E_{P_{\sigma}}[\#((i,j),\sigma]}{\sum_{i} E_{P_{\sigma}}[\#((i,j),\sigma]}$$

Baum-Welch Algorithm Picture

 We can estimate expectation value on the state transition from / to / by using forward and backward probabilities:

Probabilistic Models for Labeled Ordered Trees

Properties of PSTMM Advantage - Empirically outperformed simpler models, such as HTMM, in classifying labeled ordered trees in synthetic as well as real data - Drawbacks - Computational complexity in learning is equivalent to that of context free grammars for strings: maximum practical bound - Time: $O(|T| \cdot |S|^3 \cdot |V| \cdot |C|)$, Space: $O(|S|^3)$ - where T is a set of given trees, S is a set of states, V is a set of nodes and V is the maximum size of children

- Difficult to retrieve patterns from learned states

- Overfitting problems!

• Two main probability parameters • State transition probability (two cases): $a[q,m] = a[s_q,s_m] (= P(z_j^u = s_m \mid z_p^u = s_q))$ • Probability that the state of j is S_m given that the state of the parent is S_q (eldest siblings) $a[l,m] = a[s_l,s_m] (= P(z_l^u = s_m \mid z_l^u = s_l))$ • Probability that the state of j is S_m given that the state of the immediately elder sibling is S_l (otherwise) • Label output probability: $b[s_l,\sigma_h]$ • Probability that the state S_l outputs σ_h

Training OTMM • Probability distributions trained (estimated) from "labeled ordered trees" to present patterns/rules in them • A standard approach of HMMs extended • Computational complexities kept at the same level! Parameter estimation Parameter estimation Output Outpu

Computing Likelihood

 Possible by just using forward probabilities only, since they can cover all nodes of the input tree:

$$L(T_u) = \sum_{l=1}^{|S|} \pi[l] U_u(l, 1).$$

 Can be computed for a given set of trees:

$$L(\mathbf{T}) = \prod_{u=1}^{|\mathbf{T}|} L(T_u) = \prod_{u=1}^{|\mathbf{T}|} \sum_{l=1}^{|S|} \pi[l] U_u(l\,,\,1).$$

Learning OTMM

- Extension of Baum-Welch of HMM to OTMM
- Made possible by using four auxiliary probabilities: forward, backward, upward and downward
- Dynamic programming: polynomial (cubic!) order computation time and space

Synthetic Data Experiment Summary of AUC AUC for fifteen patterns of tree fragments			
Fragment	OTMM	PSTMM	HTMM
Q1	91.2	93.1	60.2
Q_2	86.3	90.8	57.6
Q3	91.7	91.3	58.2
Q4	95.5	95.2	63.7
Q5	91.0	89.9	60.9
Q6	88.7	87.8	60.4
Q7	87.1	88.0	60.2
Q8	91.9	91.1	64.8
Q9	71.2	70.2	55.2
Q10	83.3	86.7	61.2
Q11	88.7	88.3	61.2
Q12	83.0	85.2	58.1
Q13	82.6	83.0	53.9
Q14	87.2	85.6	54.4
Q15	73.9	75.1	54.9

Glycan Data Experiment • Evaluated in classification • 10-fold Cross-validation • Pos vs. Neg: N-glycans vs. O-glycans • Used parameter settings achieved the best performance in synthetic data OTMM computed efficiently, keeping the same predictive performance

Summary

- New Markov model for "labeled ordered trees" presented
 - Has moderate complexity, keeping high representation power
 - Is an extension of hidden Markov model
- Advantages:
 - Noise robustness
 - Biological comprehensibility
- Drawback: patterns (probabilities) are dependencies between neighboring tree nodes, being unable to show a larger pattern

Acknowledgements

Kyoto University
Bioinformatics Center

- · Kosuke Hashimoto
- · Nobuhisa Ueda
- Kiyoko Flora Aoki-Kinoshita (Currently Soka University)
- · Minoru Kanehisa

Reference Information

- · [TKDD08]
 - A New Efficient Probabilistic Model for Mining Labeled Ordered Trees Applied to Glycobiology., ACM Transactions on Knowledge Discovery from Data, 2 (1), Article No. 6, 2008.
- · [DDT08]
 - Informatic Innovations in Glycobiology: Relevance to Drug Discovery., Drug Discovery Today, 13(3/4), 118-123 (2008).

Funding Acknowledgements

- · BIRD, JST
- Research fellowship for Young Scientists, JSPS
- Grant-in-Aid for Young Scientists, JSPS
- Kyoto University 21st Century COE program, Knowledge Information Infrastructure for Genome Science, JSPS
- Education and Research Organization for Genome Information Science, JST