
1

Probabilistic Model for 
Time-series Data: Hidden 

Markov Model

Hiroshi Mamitsuka
Bioinformatics Center

Kyoto University

Outline
• Three Problems for probabilistic models 

in machine learning
1. Computing likelihood
2. Learning
3. Parsing (prediction)

• Define hidden Markov model (HMM) 
• Three problems of HMM

– Computing likelihood by forward 
probabilities

– Learning by Baum-Welch
– Parsing by Viterbi

• Summary

Probabilistic Model Learning

• An approach of “Machine learning”: 
finding probabilistic patterns/rules 
from given data from given data 

Data Rules/Patterns
LearningLearning PredictionPrediction

Probabilistic Model Learning
• Probabilistic model: has probabilistic (or 

probability) parameters estimated from 
given data

• Unsupervised learning
– One-class data: No labels attached to given 

examples 
– Model M gives a score (a likelihood) for a 

training example X: P(X|M), which should be 
higher by learning

– After learning, model M should give a score for 
an arbitrary example X: P(X|M), which is 
exactly prediction

Probabilistic Model
Ex: Finite Mixture Model

• Clustering: Grouping examples and assigning 
a given example to a cluster

• Two variables
X: observable variable  corresponding to example– X: observable variable, corresponding to example

– Z: latent variable, corresponding to cluster 
(#clusters given)

• Two probabilistic parameters
– P(Z): Probability of a cluster
– P(X|Z): Probability of an example given a cluster

• Likelihood of a given example, i.e. P(X|M):
– ∑= )()|()( ZPZXPXP

Probabilistic Model
Ex: Finite Mixture Model

• Learning: Estimating P(X|Z) and p(Z)
• Once learning is done, the objective of FMM 

is to compute P(Z|X), i.e. probability of the 
cluster assignment given an examplecluster assignment given an example

• Question: How can we compute P(Z|X) from 
P(X|Z) and P(Z)?

• Answer: Follow the Bayes theorem：

)()|(
)()|(

)()|()|( ZPZXP
ZPZXP

ZPZXPXZP

Z

≈=
∑



2

Three Problems
• Must be solved by a probabilistic 

model to be used in real-world machine 
learning applications

1 C ti  lik lih d  ti  h  lik l  1. Computing likelihood: computing how likely 
a given example can be generated from a 
model

2. Learning: estimating probability 
parameters of a model from given data

3. Parsing: finding the most likely set of 
parameters on an example given a model

Three Problems
1. Computing likelihood

– Likelihood: P(X|M), score given for an example by 
the model

– Computing likelihood can be part of parameter 
estimation (learning), for example as maximum 
lik lih d i  d f  l i  likelihood is used for learning 

2. Learning
– Parameter estimation, the most significant part
– Typical example: Maximum likelihood

3. Parsing 
– Prediction and showing the reason of prediction
– Can be modified from likelihood computation

Three Problems:
Finite Mixture Model

1. Computing likelihood
– Computing P(X) due to the probabilistic 

structure: ∑== ZPZXPXPXL )()|()()(

2. Learning
– Estimate probabilistic parameters:

3. Parsing
– Show the cluster which maximizes the 

likelihood:

∑
Z

)()|()()(

)(),|( ZPZXP

)()|(maxargˆ ZPZXPz z=

Markov Model
• Markov property

– Current state depends only on a finite number of 
past states

– 1st order Markov property
• Current state depends on the previous state onlyp p y

• Markov model (Markov chain): generates a 
string with Markov property 

…

U (Up) D (Down)String:

State transition:

U (Up) U (Up)

Hidden Markov Model (HMM)
• Defined by a state transition diagram, showing 

possible state transitions, with
– State transition probability at an edge
– Letter generation probability at a nodeg p y

• Generates a string, say “UUDU,” by a state 
transition path, say            , 
– with the likelihood of 0.8x0.7x0.5x0.5x0.9x0.8x0.1

1s 2s 3s

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

3321 ssss

0.2

0.5

0.5

0.70.3

U U D U

1s 2s 3s 3s
0.8 0.5 0.9 0.1

0.7 0.5 0.8

1-to-many Correspondence between 
String and State Transition Paths

1s 2s 3s

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

0.2

0.5

0.5

0.70.3

3321 ssss : 0.8x0.7x0.5x0.5x0.9x0.8x0.1

UUDU 2321 ssss

3211 ssss

…

Most probable state transition path is “hidden”!

: 0.8x0.7x0.5x0.5x0.9x0.2x0.5

: 0.8x0.3x0.8x0.7x0.5x0.5x0.1

Sum = likelihood by the model



3

Define HMM More Formally
• Input

– State transition diagram
• State in given state set: 
• The size of states: 

– Data: Strings = time-series examples
• String in given string set: 

M
Ss∈

Λ∈σ
• Maximum length of a string: 

• Two types of probability parameters
– State transition probability at an edge for states i

to j :
– Letter generation probability at node j (of the t+1-

th letter): : 
• Likelihood of state transition             for given 

string     : 

ija

)( 1+tjb σ

T

),( πσL
Ξ∈π

σ

Three Problems for HMMs
1. Computing likelihood

– which is the likelihood given to a string by 
the model, being equal to the sum of all 
likelihoods by all state transition pathslikelihoods by all state transition paths

2. Learning
– is to estimate two types of probability 

parameters, given strings
3. Parsing

– is to find the state transition path, which 
gives the maximum likelihood

Computing Likelihood
1s 2s 3s

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

3321 ssss

0.2

0.5

0.5

0.70.3

: 0.8x0.7x0.5x0.5x0.9x0.8x0.1 ),( 1πσL
3321 ssss

UUDU 2321 ssss

3211 ssss …

Sum of the likelihoods of all possible state 
transition paths = the likelihood given to the 
string UUDU by the model: 

: 0.8x0.7x0.5x0.5x0.9x0.2x0.5

: 0.8x0.3x0.8x0.7x0.5x0.5x0.1

∑
Ξ∈ |

),(
π

πσL

),( 1

),( 2πσL

),( 3πσL

…

Computing Likelihood
• Need enumerating all state transition paths, 

given a string and probability parameters
– Sum of the likelihoods, each being that for a path 

• => combinatorial hardness: )( TMO

1S
2s 3s0.50.70.3 1s

• Efficient computation manner needed: 
Dynamic Programming!

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

3321 ssss

0.20.5

: 0.8x0.7x0.5x0.5x0.9x0.8x0.1

UUDU 2321 ssss

3211 ssss …

: 0.8x0.7x0.5x0.5x0.9x0.2x0.5

: 0.8x0.3x0.8x0.7x0.5x0.5x0.1

Review: Dynamic Programming
• In the case where subproblems can be solved 

repeatedly, solve simpler problems first and 
save the result

• Ex: Fibonacci number: 1, 1, 2, 3, 5, 8, 13, 21, …Ex  Fibonacci number  1, 1, 2, 3, 5, 8, 13, 21, …
– Recursive algorithm for computing Fibonacci number 

which looks brief and very nice…
Algorithm: fib(n)
{

if( n <= 1 )
return 1;

else
return fib(n - 1) + fib(n - 2) ;

}

Review: Dynamic Programming
Example: Fibonacci number

• But this algorithm needs computing all past 
numbers for each number

• Trace of the recursive calculation of Fibonacci 
number:number

• Makes complexity of fib(n) an exponential 
order!



4

Review: Dynamic Programming
Example: Fibonacci number

• Solution for this problem: use a table to save, 
instead of recursive computation!

• Complexity of new_fib(n): O(n) p y ( ) ( )
Algorithm: new_fib(n)  {

if( n <= 1 ) 
return 1;

last = 1; nextTolast = 1 ; answer = 1;
for( i = 2 ; i <= n ; i++ ) {

answer = last + nextTolast ;
nextTolast = last ;
last = answer ;   }

return answer ;  }

Trellis
• Two-dimension of Time x States
• Makes easy to understand the dynamic 

programming process of HMM learning
• A state transition on HMM is a line 

chart on Trellis
t tstates

Time
(String)

: Label output

: transition

: state

ija

Model

)(kbj

1s

2s

3s

Forward Probability: 
• Given a string, the probability that the current state 

is j and substring [1..t] is generated, i.e. the 
probability covering the first part of the string

• Can be computed by dynamic programming over t , 
due to Markov property

],[ jtσα

p p y
• Updating formula:

• Can be computed in
– where      is the size of states and     is the string length

∑ −=
i

tjij itbajt ],1[)(],[ σσ ασα

)( 2 TMO ⋅
M T

Computing Likelihood with 
Forward Probabilities

• Compute forward probabilities, incrementing t, 
finally having the likelihood given a string and a 
model:

• Complexity: 

∑∑
Ξ∈

=
i

T iL )(),(
|

απσ
π

)()( 32 OO• Complexity: 
states

time

i
j

tt-1

)(itα

T

)()( 32 MOTMO ≈⋅

Training HMM
(Learning Parameters of HMM)

• Probability parameters trained (estimated) from 
strings (time-series examples)

• A standard manner is maximum likelihood for 
given strings, based on EM (Expectation-
Maximization) algorithm

UUDDU
DUUDDD
UDUUD
UUDDUU
DDDUUD

UUDDU
DUUDDD
UDUUD
UUDDUU
DDDUUD

Parameter
estimation

1s 2s 3s

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

0.2

0.5

0.5

0.70.3

Maximize the 
likelihood of 
given strings

EM Algorithm in General
• Notation

– Observable variable:
– Latent variable:
– Parameter set:

X
Z
φParameter set:

– Distribution:  
• Purpose

– Maximize the likelihood of observable variables
– i.e. obtain parameters which maximize the 

likelihood:  

φ
P

)(maxargˆ XPφφφ =



5

EM Algorithm in General
• Notation

– Observable variable:
– Latent variable:
– Parameter set:

X
Z
φ

– Distribution:  
• Q function: 
• Nice property of Q function: 

– This means if we find      satisfying                                 , 
we can  make 

P
∑=

Z

ZXPZXPQ ),(log),()';( 'φφφφ

)()();()';( ' XPXPQQ φφφφφφ >→>

'φ );()';( φφφφ QQ >
)()(' XPXP φφ >

• Proof:

),(
),(

log),(

),(log),(),(log),(
);()';(

'

'

ZXP
ZXP

ZXP

ZXPZXPZXPZXP
QQ

z

zZ

φ

φ
φ

φφφφ

φφφφ

=

−=

−

∑

∑∑

)()();()';( ' XPXPQQ φφφφφφ >→>

)1(log −≤ xx

)()(

),(),(

)1
),(
),(

)(,(

'

'

'

XPXP

ZXPZXP

ZXP
ZXP

ZXP

z

z

φφ

φφ

φ

φ
φ

−=

−=

−≤

∑

∑

If                             is positive,
must be positive.  

);()';( φφφφ QQ −
)()(' XPXP φφ −

EM Algorithm in General

1. Choose initial parameter values
2 Repeat following two steps alternately 2. Repeat following two steps alternately 

until convergence
– E-step: Compute Q function: 
– M-step: Choose  )';(maxarg ' φφφ φ Qnew =

)';( φφQ

EM Algorithm for HMM
• Baum-Welch algorithm
• Correspondence 

– Observable variable = string: 
– Latent variable = state transition path:

  l k l   

σ
Ξ∈π

– Distribution = likelihood:  
• Q function:

• Problem: Find 

L

∑

∑

Ξ∈

=

=

π
φφ

φφ

πσπσ

φφ

),(log),(

),(log),(
)';(

'

'

LL

ZXPZXP
Q

Z

)';(maxarg ' φφφ φ Qnew =

Derivation of Baum-Welch (E-step)
• Assume

– meaning that we here focus on state transition 
probabilities only

• Q function can be derived:
φφQ )';(

}{ ija=φ

• means the expectation value 
of state transition with states from i to j

∑∑

∑∑

∑

∈→Ξ∈

Ξ∈

Ξ∈

=

=

=

+

ππ
φ

π

ππ
π

φ

π
φφ

πσ

πσ

πσπσ
φφ

jiji
ij La

aL

LL
Q

ii

|,

||

1

'

),()'log(

)'log(),(

),(log),(
);(

1

∑
∈→Ξ∈ ππ
φ πσ

ji

L
|

),(

),...,( ||1 ππππ =

E-step of Baum-Welch
• Expectation value computation needed

– Count the number of transition paths from 
state i to state j

• ∑LjiE )(])(([#

– Enumerate all state transition paths, having 
the transition from state i to state j

• Is enumerating all these state transition 
paths possible???

∑
∈→Ξ∈

=
ππ

πσσ
σ

ji
P LjiE

|

),(]),,(([#



6

Expectation Value Computation
• Enumerating all possible paths having 

certain state transition
• => combinatorial hardness! : )( TMO

1S
2s 3s

0.8U:0.1
D:0.9

U:0.5
D:0.5

U:0.8
D:0.2

3321 ssss

0.2

0.5

0.5

0.70.3

: 0.8x0.7x0.5x0.5x0.9x0.8x0.1

UUDU 2321 ssss

3211 ssss …

: 0.8x0.7x0.5x0.5x0.9x0.2x0.5

: 0.8x0.3x0.8x0.7x0.5x0.5x0.1

1s

Computing Expectation Value 
for States i to j

• We want to know #paths having states i to j
• First, we fix t, …

states

time

i
j

t

Forward Probability Again 
• :Given a string, the probability that the 

current state is j and substring [1..t] is generated, i.e. 
the probability covering the first part of the string

• Can be computed by dynamic programming over t
• Updating formula:

],[ jtσα

Updating formula:

• Can be computed in

∑ −=
i

tjij itbajt ],1[)(],[ σσ ασα

)( 2 TMO ⋅

Backward Probability:
• Given a string, the probability that the current 

state is i and substring [t…n] is generated, i.e. the 
probability covering the last part of the string

• Can be computed by dynamic programming over t in 
the reverse direction, by the following updating 

],[ itσβ

, y g p g
rule: ∑ += +

j
tjij jtbait ],1[)(],[ 1 σσ βσβState

Time

i
j

t t+1

Computing Expectation Value for 
Transition of States i to j at t

• Forward probabilities cover all possible state transition paths at state 
i and time t for the first part of given string 

• Backward probabilities cover all possible state transition paths  at 
state j and time t+1 for the last part of given string

• By using these two, we can have the expectation value of the state 
transition paths with state i to j

states

time

i
j

tt-1 t+1 t+2

],1[)(],[ 1 jtbait tjij ++ σσ βσα

Computing Expectation Value for 
Transition of States i to j

• We can further sum the following over 
all possible t:

∑∑ += +tjij jtbaitL ],1[)(],[),( 1 σσ βσαπσ

],1[)(],[ 1 jtbait tjij ++ σσ βσα

states

time

i
j

tt-1 t+1 t+2

∈→Ξ∈ tji| ππ



7

E-step of Baum-Welch
• E-step is to compute Q function, but Baum-

Welch instead the expectation values can be  
computed

• That is, expectation values on the state 
transition from i to j :

∑∑ += jtbaitL ]1[)(][)( βσαπσ ∑∑ += +
∈→Ξ∈ t

tjij
ji

jtbaitL ],1[)(],[),( 1
|

σσ
ππ

βσαπσ

State

Time

i
j

tt-1 t+1 t+2

],[ itσα
],1[ jt +σβ

Baum-Welch Algorithm

1. Choose initial values for probability 
parameters

2. Repeat E- and M-steps alternately
– E-step:

• Computes expectation values (#counts) for each 
state transition (or letter generation)

– M-step:
• Updates probability parameters using expectation 

values

Derivation of Baum-Welch (M-step)
• Derived Q function:

• The problem is to maximize 

Thi  bl  i  i i d b              if
∑=
K

i
iiK xcxxf )log(),...,( 1

∑∑
∈→Ξ∈

=
ππ
φ πσφφ

jiji
ij LaQ

|,
),()'log()';(

ic 01 ≥∑• This problem is maximized by             if

• This directly derives the updating rule 
of M-step:

i

∑
= K

i
i

i
i

c

cx 0,1 ≥=∑ i
i

i xx

∑
∑

∑
∑

∑
∑ ++

++

++

Ξ∈

∈→Ξ∈ ===

t
tt

t
ttjijt

tji
ttjijt

t
ttjijt

ji
ij ii

jbai

jbai

jbai

L

L
a

)()(

)()()(

)()()(

)()()(

),(

),(
ˆ

11

,,
11

11
|

βα

βσα

βσα

βσα

πσ

πσ

π
φ

ππ
φ

M-step of Baum-Welch
• Update state transition probability by 

using the expectation value and the 
likelihood

∑
∑ ++

=

t
tt

t
ttjijt

ij ii

jbai
a

)()(

)()()(
ˆ

11

βα

βσα

Likelihood of all paths

Likelihood of all paths with i→j

t

state

time

i
j

tt-1 t+1 t+2

),( jia

)(itα

)(1 jt+β

Likelihood of all paths

Baum-Welch Algorithm
1. Choose initial values for probability parameters
2. Iterates E- and M-steps alternately until 

convergence
– E-step:

1 Compute forward probabilities:            ],[ itσα1. Compute forward probabilities:            
2. Compute backward probabilities:           
3. Compute the expectation value of state transition from i to 

j using forward and backward probabilities:

– M-step:
1. Update transition probability using expectation values:

],[ jtσβ

∑ +∝ +
t

tjijP jtbaitjiE ],1[)(],[]),,(([# 1 σσ βσασ
σ

ija

∑
=

j
P

P
ij jiE

jiE
a

]),,(([#
]),,(([#

ˆ
σ

σ

σ

σ

Summary of Baum-Welch

• Algorithm for estimating probability 
parameters of HMM
– i.e. Algorithm for training HMM

EM (Ex t ti M ximi ti ) l ithm  • EM (Expectation-Maximization) algorithm, 
meaning that the solution is local optimum 
of maximum likelihood

• Makes simple enumeration efficient by 
dynamic programming: )()( 3MOMO T →



8

Parsing for HMM
• Given a string, we can compute 

likelihoods for all possible state 
transition paths

• Among them  we call the state • Among them, we call the state 
transition which gives the maximum the 
maximum likelihood path, which is 
exactly the solution of parsing

• Question: How can we compute that 
efficiently?

Parsing for HMM
• Question: How can we compute that 

efficiently?
• If we try to enumerate all possible state 

transition paths, computational hardness 
!

∑ ++ =
i

tjijtt baij )()()( 11 σαα

again!
• Solution:

– Remember forward probabilities
– Replace       with `max’
– Keep the maximum path

)()(max)( 11 ++ = tjijtit baij σαα

∑

Parsing for HMM
• Viterbi Algorithm

– Computing maximum at each time (letter) and 
remember the previous state so that the maximum 
path is traceable finally

states

time

i
j

tt-1

)(itα

∑ ++ =
i

tjijtt baij )()()( 11 σαα )()(max)( 11 ++ = tjijtit baij σαα

Three Problems for 
Hidden Markov Model

1. Computing likelihood:
– Computing forward probabilities until the last 

letter of a given stringg g
2. Learning

– Maximizing the likelihood by Baum-Welch, an 
EM (Expectation-Maximization) algorithm

3. Parsing
– Viterbi algorithm, a modification of 

computing forward probabilities

Example: Profile HMM
• Allows to align multiple string (amino acid sequences) to 

find conserved region (called consensus or motif)

State 
transition 
diagram

• Three types of states:
– M: normal state, for important (conserved) amino acids
– D: any letter not generated, for amino acids deletion 
– I: a letter generated according to a fixed uniform distribution, 

for unimportant (unconserved) amino acids

diagram

Training Profile HMM

Trained “Letter 
generation 

b b l ”

Training strings example:Training strings example:
ADTC
WAEC
VEC

ADTC
WAEC
VECprobabilities”

(called profile)
VEC
ADC
AEC

VEC
ADC
AEC



9

Consensus by Profile HMM 
• Find consensus 

from M states
• Have multiple 

alignment by 
Consensus

Multiple alignment

g y
checking the most 
likely state path
– Ex. ADTC:

Profile

A (M1:0.74)
D (M2:0.41)
T (I2:0.05)
C (M3:0.92)

Parsing!

Final Remark
• Three Problems for probabilistic models 

in machine learning
1. Computing likelihood
2. Learning
3. Parsing (prediction)

• Define hidden Markov model (HMM) 
• Three problems of HMM

– Computing likelihood by forward 
probabilities

– Learning by Baum-Welch
– Parsing by Viterbi

• Example: Profile HMM


