Probabilistic Model for Time-series Data: Hidden Markov Model

Hiroshi Mamitsuka
Bioinformatics Center
Kyoto University

Outline

- Three Problems for probabilistic models in machine learning

1. Computing likelihood
2. Learning
3. Parsing (prediction)

- Define hidden Markov model (HMM)
- Three problems of HMM
- Computing likelihood by forward probabilifies
- Learning by Baum-Welch
- Parsing by Viterbi
- Summary

Probabilistic Model Learning

- An approach of "Machine learning": finding probabilistic patterns/rules from given data

Probabilistic Model Learning

- Probabilistic model: has probabilistic (or probability) parameters estimated from given data
Unsupervised learning
- One-class data: No labels attached to given examples
- Model M gives a score (a likelihood) for a training example $X: P(X \mid M)$, which should be higher by learning
- After learning, model M should give a score for an arbitrary example $\mathrm{X}: P(X \mid M)$, which is exactly prediction

Probabilistic Model Ex: Finite Mixture Model

- Clustering: Grouping examples and assigning a given example to a cluster
Two variables
- X: observable variable, corresponding to example
- Z: latent variable, corresponding to cluster (\#clusters given)
- Two probabilistic parameters
- P(Z): Probability of a cluster
- $P(X \mid Z)$: Probability of an example given a cluster
- Likelihood of a given example, i.e. $P(X \mid M)$
- $\quad P(X)=\sum P(X \mid Z) P(Z)$

Probabilistic Model Ex: Finite Mixture Model

- Learning: Estimating $P(X \mid Z)$ and $p(Z)$
- Once learning is done, the objective of FMM is to compute $P(Z \mid X)$, i.e. probability of the cluster assignment given an example
- Question: How can we compute $P(Z \mid X)$ from $P(X \mid Z)$ and $P(Z)$?
- Answer: Follow the Bayes theorem:

$$
P(Z \mid X)=\frac{P(X \mid Z) P(Z)}{\sum_{Z} P(X \mid Z) P(Z)} \approx P(X \mid Z) P(Z)
$$

Three Problems

- Must be solved by a probabilistic model to be used in real-world machine learning applications

1. Computing likelihood: computing how likely a given example can be generated from a model
2. Learning: estimating probability parameters of a model from given data
3. Parsing: finding the most likely set of parameters on an example given a model

Three Problems:

 Finite Mixture Model1. Computing likelihood

- Computing $P(X)$ due to the probabilistic structure: $L(X)=P(X)=\sum_{Z} P(X \mid Z) P(Z)$

2. Learning

- Estimate probabilistic parameters:

$$
P(X \mid Z), P(Z)
$$

3. Parsing

- Show the cluster which maximizes the likelihood:

$$
\hat{z}=\arg \max _{z} P(X \mid Z) P(Z)
$$

Three Problems

1. Computing likelihood

- Likelihood: $P(X \mid M)$, score given for an example by the model
- Computing likelihood can be part of parameter estimation (learning), for example as maximum likelihood is used for learning

2. Learning

- Parameter estimation, the most significant part
- Typical example: Maximum likelihood

3. Parsing

- Prediction and showing the reason of prediction
- Can be modified from likelihood computation

Hidden Markov Model (HMM)

- Defined by a state transition diagram, showing possible state transitions, with
- State transition probability at an edge
- Letter generation probability at a node

- Generates a string, say "UUDU," by a state transition path, say $s_{1} s_{2} s_{3} s_{3}$,
- with the likelihood of $0.8 \times 0.7 \times 0.5 \times 0.5 \times 0.9 \times 0.8 \times 0.1$

Markov Model

- Markov property
- Current state depends only on a finite number of past states
- $1^{\text {st }}$ order Markov property
- Current state depends on the previous state only

- Markov model (Markov chain): generates a string with Markov property

State transition:
String:

1-to-many Correspondence between String and State Transition Paths

UUDU

Sum = likelihood by the model
Most probable state transition path is "hidden"!

Define HMM More Formally

- Input
- State transition diagram
- State in given state set: $S \in S$
- The size of states: M
- Data: Strings = time-series examples
- String in given string set: $\sigma \in \Lambda$
- Maximum length of a string: T
- Two types of probability parameters
- State transition probability at an edge for states i to j : $a_{i j}$
- Letter generation probability at node j (of the $t+1$ th letter): : $b_{j}\left(\sigma_{t+1}\right)$
- Likelihood of state transition $\pi \in \Xi$ for given string $\sigma: L(\sigma, \pi)$

Three Problems for HMMs

1. Computing likelihood

- which is the likelihood given to a string by the model, being equal to the sum of all likelihoods by all state transition paths

2. Learning

- is to estimate two types of probability parameters, given strings

3. Parsing

- is to find the state transition path, which gives the maximum likelihood

Computing Likelihood

Sum of the likelihoods of all possible state transition paths = the likelihood given to the string UUDU by the model: $\sum_{i \in I} L(\sigma, \pi)$

Computing Likelihood

- Need enumerating all state transition paths, given a string and probability parameters
- Sum of the likelihoods, each being that for a path
- => combinatorial hardness: $O\left(M^{T}\right)$

- Efficient computation manner needed: Dynamic Programming!

Review: Dynamic Programming

- In the case where subproblems can be solved repeatedly, solve simpler problems first and save the result
- Ex: Fibonacci number: $1,1,2,3,5,8,13,21, \ldots$
- Recursive algorithm for computing Fibonacci number which looks brief and very nice...

```
Algorithm: fib(n)
\(\{\quad\) if( \(n<=1\) )
    return 1:
    else
\}
    return fib \((n-1)+\) fib \((n-2)\);
```


Review: Dynamic Programming Example: Fibonacci number

- But this algorithm needs computing all past numbers for each number
- Trace of the recursive calculation of Fibonacci number:

[^0]
Review: Dynamic Programming Example: Fibonacci number

- Solution for this problem: use a table to save, instead of recursive computation!
- Complexity of new_fib(n): $O(n)$

```
Algorithm: new_fib(n) \{
if \((n<=1)\)
```

return 1;
last =1; nextTolast =1; answer =1;
for ($\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) \{
answer = last + nextTolast :
nextTolast = last ;
last = answer :
return answer: \}

Trellis

- Two-dimension of Time \times States
- Makes easy to understand the dynamic programming process of HMM learning
- A state transition on HMM is a line

Forward Probability: $\alpha_{\sigma}[t, j]$

- Given a string, the probability that the current state is j and substring [1..t] is generated, i.e. the probability covering the first part of the string
- Can be computed by dynamic programming over t, due to Markov property
- Updating formula:
$\alpha_{\sigma}[t, j]=\sum a_{i j} b_{j}\left(\sigma_{t}\right) \alpha_{\sigma}[t-1, i]$
- Can be computed in $O\left(M^{2} \cdot T\right)$
where M is the size of states and T is the string length

Computing Likelihood with Forward Probabilities

- Compute forward probabilities, incrementing t, finally having the likelihood given a string and a model:

$$
\sum_{\pi \in \Xi} L(\sigma, \pi)=\sum_{i} \alpha_{T}(i)
$$

- Complexity: $O\left(M^{2} \cdot T\right) \approx O\left(M^{3}\right)$
states

Training HMM (Learning Parameters of HMM)

- Probability parameters trained (estimated) from strings (time-series examples)
- A standard manner is maximum likelihood for given strings, based on EM (ExpectationMaximization) algorithm

EM Algorithm in General

- Notation
- Observable variable: X
- Latent variable: Z
- Parameter set: ϕ
- Distribution: P
- Purpose
- Maximize the likelihood of observable variables
- i.e. obtain parameters which maximize the likelihood:

$$
\hat{\phi}=\arg \max _{\phi} P_{\phi}(X)
$$

EM Algorithm in General

- Notation
- Observable variable: X
- Latent variable: Z
- Parameter set: ϕ
- Distribution: P
- Q function: $Q\left(\phi ; \phi^{\prime}\right)=\sum P_{\phi}(X, Z) \log P_{\phi}(X, Z)$
- Nice property of Q function:

$$
Q\left(\phi ; \phi^{\prime}\right)>Q(\phi ; \phi) \rightarrow P_{\phi}(X)>P_{\phi}(X)
$$

- This means if we find ϕ^{\prime} satisfying $Q\left(\phi ; \phi^{\prime}\right)>Q(\phi ; \phi)$, we can make $P_{\phi}(X)>P_{\phi}(X)$

$$
Q\left(\phi ; \phi^{\prime}\right)>Q(\phi ; \phi) \rightarrow P_{\phi^{\prime}}(X)>P_{\phi}(X)
$$

- Proof: $Q\left(\phi ; \phi^{\prime}\right)-Q(\phi ; \phi)$
$=\sum_{Z} P_{\phi}(X, Z) \log P_{\phi}(X, Z)-\sum_{z} P_{\phi}(X, Z) \log P_{\phi}(X, Z)$
$=\sum_{z} P_{\phi}(X, Z) \log \frac{P_{\phi}(X, Z)}{P_{\phi}(X, Z)}$
$\leq \sum_{z} P_{\phi}(X, Z)\left(\frac{P_{\phi}(X, Z)}{P_{\phi}(X, Z)}-1\right)(\log x \leq x-1)$
$=\sum_{P_{\phi}}(X, Z)-P_{\phi}(X, Z)$
$=P_{\phi}(X)-P_{\phi}(X)$
If $Q\left(\phi ; \phi^{\prime}\right)-Q(\phi ; \phi)$ is positive,
$P_{\phi^{\prime}}(X)-P_{\phi}(X)$ must be positive.

EM Algorithm in General

1. Choose initial parameter values
2. Repeat following two steps alternately until convergence

- E-step: Compute Q function: $Q\left(\phi ; \phi^{\prime}\right)$
- M-step: Choose $\phi^{\text {new }}=\arg ^{\max }{ }_{\phi^{\prime}} Q\left(\phi ; \phi^{\prime}\right)$

EM Algorithm for HMM

- Baum-Welch algorithm
- Correspondence
- Observable variable $=$ string: σ
- Latent variable = state transition path: $\pi \in \Xi$
- Distribution = likelihood: L
- Q function: $Q\left(\phi ; \phi^{\prime}\right)$

	$=\sum_{Z} P_{\phi}(X, Z) \log P_{\phi}(X, Z)$
	$=\sum_{\pi \in \Xi} L_{\phi}(\sigma, \pi) \log L_{\phi}(\sigma, \pi)$

- Problem: Find $\phi^{\text {new }}=\operatorname{argmax}_{\phi^{\prime}} Q\left(\phi ; \phi^{\prime}\right)$

Derivation of Baum-Welch (E-step)

- Assume $\phi=\left\{a_{i j}\right\}$
- meaning that we here focus on state transition probabilities only
- Q function can be derived:

$$
\begin{aligned}
& Q\left(\phi ; \phi^{\prime}\right) \\
& =\sum_{\pi \in \xi} L_{\phi}(\sigma, \pi) \log L_{\phi}(\sigma, \pi) \\
& =\sum_{\pi \in \Xi} L_{\phi}(\sigma, \pi) \sum_{1}^{x \mid} \log \left(a^{\prime}, \quad\left(\pi=\pi_{1}, \ldots, \pi_{|\pi|}\right)\right.
\end{aligned}
$$

$$
\sum_{=i} L_{\phi}(\sigma, \pi
$$

$$
{\underset{\varepsilon \in \mapsto i \rightarrow j \in \pi}{L_{\phi}}(0, n)}^{L_{i}} \text { means the expectation value }
$$

$$
\text { of state transition with states from ito } j
$$

E-step of Baum-Welch

- Expectation value computation needed
- Count the number of transition paths from state ito state j

$$
E_{P_{\sigma}}\left[\#((i, j), \sigma]=\sum_{\pi \in \equiv i \rightarrow j \in \pi} L(\sigma, \pi)\right.
$$

- Enumerate all state transition paths, having the transition from state i to state j
- Is enumerating all these state transition paths possible???

Expectation Value Computation

- Enumerating all possible paths having certain state transition
- => combinatorial hardness! : $O\left(M^{T}\right)$

Forward Probability Again

- $\alpha_{\sigma}[t, j]$:Given a string, the probability that the current state is j and substring [1..t] is generated, i.e. the probability covering the first part of the string
- Can be computed by dynamic programming over t Updating formula:
$\alpha_{\sigma}[t, j]=\sum a_{i j} b_{j}\left(\sigma_{t}\right) \alpha_{\sigma}[t-1, i]$

- Can be computed in $O\left(M^{2} \cdot T\right)$

Computing Expectation Value for

 Transition of States i to j at tForward probabilities cover all possible state transition paths at state i and time t for the first part of given string
Backward probabilities cover all possible state transition paths at state j and time $t+1$ for the last part of given string
By using these two, we can have the expectation value of the state
transition paths with state i to j
states

$$
\alpha_{\sigma}[t, i] a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{\sigma}[t+1, j]
$$

Computing Expectation Value for States i to j

- We want to know \#paths having states i to j - First, we fix t....

Backward Probability: $\beta_{\sigma}[t, i]$

- Given a string, the probability that the current state is iand substring [$t \ldots n$] is generated, i.e. the probability covering the last part of the string
- Can be computed by dynamic programming over t in the reverse direction, by the following updating

Computing Expectation Value for Transition of States ito j

- We can further sum the following over all possible $t . \alpha_{\sigma}[t, i] a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{\sigma}[t+1, j]$

E-step of Baum-Welch

- E-step is to compute Q function, but BaumWelch instead the expectation values can be computed
- That is, expectation values on the state transition from i to j :

Baum-Welch Algorithm

1. Choose initial values for probability parameters
2. Repeat E-and M-steps alternately

- E-step:

Computes expectation values (\#counts) for each state transition (or letter generation)

- M-step:

Updates probability parameters using expectation values

Derivation of Baum-Welch (M-step)

- Derived Q function:

$$
Q\left(\phi ; \phi^{\prime}\right)=\sum_{i, j} \log \left(a_{i j}^{\prime}\right) \sum_{\pi \in E \mathrm{El} \rightarrow+i \in \pi} L_{\phi}(\sigma, \pi)
$$

The problem is to maximize

$$
f\left(x_{1}, \ldots, x_{K}\right)=\sum_{i}^{K} c_{i} \log \left(x_{i}\right)
$$

- This problem is maximized by $x_{i}=\frac{c_{i}}{\sum^{K} c_{i}}$ if $\sum_{i} x_{i}=1, x_{i} \geq 0$
- This directly derives the updating rule of M-step:
$\hat{a}_{i j}=\frac{\sum_{\pi \in \Xi i \rightarrow j \in \pi} L_{\phi}(\sigma, \pi)}{\sum_{\pi \in \Xi} L_{\phi}(\sigma, \pi)}=\frac{\sum_{t} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{t+1}(j)}{\sum_{i, j, t} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{t+1}(j)}=\frac{\sum_{t} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{t+1}(j)}{\sum_{t} \alpha_{t}(i) \beta_{t}(i)}$

Baum-Welch Algorithm

1. Choose initial values for probability parameters
2. Iterates E - and M-steps alternately until convergence

- E-step:

1. Compute forward probabilities: $\alpha_{\sigma}[t, i]$
2. Compute backward probabilities: $\beta_{\sigma}[t, j]$
3. Compute the expectation value of state transition from ito $j u s i n g$ forward and backward probabilities:
$E_{P_{\sigma}}\left[\#((i, j), \sigma] \propto \sum \alpha_{\sigma}[t, i] a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{\sigma}[t+1, j]\right.$

- M-step:

1. Update transition probability $a_{i j}$ using expectation values:

$$
\hat{a}_{i j}=\frac{E_{P_{\sigma}}[\#((i, j), \sigma]}{\sum_{i} E_{P_{\sigma}}[\#(i, j), \sigma]}
$$

M-step of Baum-Welch

- Update state transition probability by using the expectation value and the

Summary of Baum-Welch

- Algorithm for estimating probability parameters of HMM
- i.e. Algorithm for training HMM
- EM (Expectation-Maximization) algorithm, meaning that the solution is local optimum of maximum likelihood
- Makes simple enumeration efficient by dynamic programming: $O\left(M^{T}\right) \rightarrow O\left(M^{3}\right)$

Parsing for HMM

- Given a string, we can compute likelihoods for all possible state transition paths
- Among them, we call the state transition which gives the maximum the maximum likelihood path, which is exactly the solution of parsing
- Question: How can we compute that efficiently?

Parsing for HMM

- Question: How can we compute that efficiently?
- If we try to enumerate all possible state transition paths, computational hardness again!
- Solution:
- Remember forward probabilities
- Replace \sum with 'max'
- Keep the maximum path
$\alpha_{t+1}(j)=\sum_{i} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right) \Longrightarrow \alpha_{t+1}(j)=\max _{i} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right)$

Parsing for HMM

- Viterbi Algorithm
- Computing maximum at each time (letter) and remember the previous state so that the maximum path is traceable finally
states

$\alpha_{t+1}(j)=\sum_{i} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right) \square \alpha_{t+1}(j)=\max _{i} \alpha_{t}(i) a_{i j} b_{j}\left(\sigma_{t+1}\right)$

Three Problems for Hidden Markov Model

1. Computing likelihood:

- Computing forward probabilities until the last letter of a given string

2. Learning

- Maximizing the likelihood by Baum-Welch, an EM (Expectation-Maximization) algorithm

3. Parsing

- Viterbi algorithm, a modification of computing forward probabilities

Example: Profile HMM

- Allows to align multiple string (amino acid sequences) to find conserved region (called consensus or motif)

- Three types of states:
- M: normal state, for important (conserved) amino acids
- D: any letter not generated, for amino acids deletion
- I: a letter generated according to a fixed uniform distribution, for unimportant (unconserved) amino acids

Training Profile HMM

Consensus by Profile HMM

- Find consensus
from M states
Have multiple alignment by checking the most likely state path
- Ex. ADTC:

A (M1:0.74) \rightarrow $D(M 2: 0.41) \rightarrow$ T(I2:0.05) \rightarrow C (M3:0.92)

Parsing!

Final Remark

- Three Problems for probabilistic models in machine learning

1. Computing likelihood
2. Learning
3. Parsing (prediction)

- Define hidden Markov model (HMM)
- Three problems of HMM
- Computing likelihood by forward probabilifies
- Learning by Baum-Welch
- Parsing by Viterbi
- Example: Profile HMM

[^0]: - Makes complexity of fib(n) an exponential order!

