Probabilistic Model for
Time-series Data: Hidden
Markov Model

Hiroshi Mamitsuka
Bioinformatics Center
Kyoto University

Outline

* Three Problems for probabilistic models
in machine learning
1. Computing likelihood
2. Learning
3. Parsing (prediction)

- Define hidden Markov model (HMM)
* Three problems of HMM

- Computing likelihood by forward
probabilifies

- Learning by Baum-Welch
- Parsing by Viterbi

+ Summary

Probabilistic Model Learning

* An approach of "Machine learning”:
finding probabilistic patterns/rules
from given data

Prediction
Data Rules/Patterns

Probabilistic Model Learning

* Probabilistic model: has probabilistic (or

probability) parameters estimated from
given data

* Unsupervised learning

- One-class data: No labels attached to given
examples

- Model M gives a score (a likelihood) for a
training example X: P(X|M), which should be
higher by learning

- After learning, model M should give a score for
an arbitrary example X: P(X|M), which is
exactly prediction

Probabilistic Model
Ex: Finite Mixture Model

+ Clustering: Grouping examples and assigning
a given example to a cluster

+ Two variables
- X: observable variable, corresponding to example

- Z: latent variable, corresponding to cluster
(#clusters given)

+ Two probabilistic parameters

- P(Z): Probability of a cluster

- P(X|Z): Probability of an example given a cluster
- Likelihood of a given example, i.e. P(X|M):

- P(X)=2 P(X|2)P(2)

Probabilistic Model
Ex: Finite Mixture Model

- Learning: Estimating P(X|Z) and p(Z)
* Once learning is done, the objective of FMM

is to compute P(Z|X), i.e. probability of the
cluster assignment given an example

- Question: How can we compute P(Z|X) from

P(X|Z) and P(Z)?

- Answer: Follow the Bayes theorem:

p(z | x) - LPXI2P@)

_72 P(X12)P(2) ~P(X|Z)P(2)

Three Problems

* Must be solved by a probabilistic
model to be used in real-world machine
learning applications

1. Computing likelihood: computing how likely
a gijveln example can be generated from a
mode

2. Learning: estimating probability
parameters of a model from given data

3. Parsing: finding the most likely set of
parameters on an example given a model

Three Problems

1. Computing likelihood

- Likelihood: P(X|M), score given for an example by
the model

- Computing likelihood can be part of parameter
estimation (learning), for example as maximum
likelihood is used for learning

=== 2. Learning
- Parameter estimation, the most significant part
- Typical example: Maximum likelihood
3. Parsing
- Prediction and showing the reason of prediction
- Can be modified from likelihood computation

Three Problems:
Finite Mixture Model

1. Computing likelihood
- Computing P(X) due to the probabilistic

structure: L(X) = P(X) :ZP(X 1Z)P(2)
z
2. Learning
- Estimate probabilistic parameters:
P(X2),P(2)
3. Parsing

- S_how the cluster which maximizes the
likelihood: 5 _ argmax, P(X |Z)P(2)

Markov Model

* Markov property
- Current state depends only on a finite number of
past states
- 1s* order Markov property
+ Current state depends on the previous state only

R = g e g

* Markov model (Markov chain): generates a
string with Markov property

State transition: —?—?—?—?—

String: UUp) U(Up) D (Down) U (Up)

Hidden Markov Model (HMM)

- Defined by a state transition diagram, showing
possible state transitions, with
- State transition probability at an edge
- Letter generation probability at a hode

03 S 0.7 s, 05 S,
0.7 05 0.8,
’U:O.B 05 | U:0.5 ‘ 02 ’ uU:0.1 |0-8 %ﬁ 05 09 01
D:0.2 D:0.5 D:0.9 U U b U

* Generates a string, say "UUDU," by a state
transition path, say sssss, |
- with the likelihood of 0.8x0.7x0.5x0.5x0.9x0.8x0.1

1-to-many Correspondence between
String and State Transition Paths

035 07 S, ~05_ S

vos| 05 [uos]| 02[u.01 |08
D:0.2 D:0.5 D:0.9

$,5,5;S; :0.8x0.7x0.5x0.5x0.9x0.8x0.1
UUDU «—— 5;5,5;S, :0.8x0.7x0.5x0.5x0.9x0.2x0.5

$,5,5,S;3 : 0.8x0.3x0.8x0.7x0.5x0.5x0.1

Sum = likelihood by the model
Most probable state transition path is “hidden”!

Define HMM More Formally

+ Input
- State transition diagram
- Stafe in given state set:S € S
+ The size of states:
- Data: Strings = time-series examples
- String in given string set: O €
+ Maximum length of a string: T
+ Two types of probability parameters
- State transition probability at an edge for states /
to j: &
- Letter generation probability at node j (of the #+7-
th letter): : bj (O-t+1)
- Likelihood of state transition 7 € E for given
string o : L(o,7)

Three Problems for HMMs

1. Computing likelihood

- which is the likelihood given to a string by
the model, being equal to the sum of all
likelihoods by all state transition paths

2. Learning

- is to estimate two types of probability
parameters, given strings

3. Parsing

- is to find the state transition path, which
gives the maximum likelihood

Compuﬁng Likelihood

035

U:0.8 05 u05 0.2 u01 0.8
D:0.2 DO5 DO9

: 0.8x0.7x0.5x0.5x0.9x0.8x0.1 L(c, ﬂl)

uubdy — slszs S, 1 0.8x0.7x0.5x0.5x0.9x0.2x05 L(0,7,)

$,5,S,S5 : 0.8x0.3x0.8x0.7x0.5x0.5x0.1 L(J 73)

Sum of the Inkehhoods of all possible state
transition paths = the likelihood given to the
string UUDU by the model: D L(o,7)

TeE]|

Computing Likelihood

* Need enumeratin 09 all sTaTe transition paths,

given a strin probability parameters
- Sum of the kehhoods each being that for a path

+ => combinatorial hardness: O(M)

03 S 07

uog 0.5 uo5 0.2 uo1 0.8
uoz 005 D09

/ 353 ¢ : 0.8x0.7x0.5x0.5x0.9x0.8x0.1

UubuU Slq S4S, :0.8x0.7x0.5x0.5x0.9x0.2x0.5

S$;5{SpS; : 0.8x0.3x0.8x0.7x0.5x0.5x0.1
\/

- Efficient computation manner needed:

Dynamic Programming!

Review: Dynamic Programming

+ In the case where subproblems can be solved
repeatedly, solve simpler problems first and
save the result

+ Ex: Fibonacci number: 1,1, 2, 3,5, 8,13, 21, ..

- Recursive algorithm for computing Fibonacci number
which looks brief and very nice...

Algorithm: £ib(n)
{

if(n<=1)
return 1;
else
return fib(n - 1) + fib(n - 2) ;

Review: Dynamic Programming

Example: Fibonacci humber

* But this algorithm needs computing all past
numbers for each number

+ Trace of the recursive calculation of Fibonacci

number:

[

S i
- —
F4 —F3 BT R
-
B R 27 Rt [A T = M)
N PN PN PN
F2 FioFT o F R0 [T)
Fi” RO

* Makes complexity of 7ib(n) an exponential
order!

Review: Dynamic Programming
Example: Fibonacci humber

+ Solution for this problem: use a table to save,
instead of recursive computation!

+ Complexity of new_fib(n): On)

Trellis

* Two-dimension of Time x States
* Makes easy to understand the dynamic
programming process of HMM learning
* A stgte transition on HMM is a line
chg#T on Trellis

k) states
Algorithm: new_7ib(n) { a
if(n«e1))
return 1;
last = 1; nextTolast = 1 ; answer = 1;
for(i=2;i<=n;i++) { St Model — S3
answer = last + nextTolast ;
nextTolast = last ; (O s state < >
, last = un}swer 0} «— : transition
return answer ; i
f : Label output Z-SITe)
ring

Forward Probability: oIt il

Given a string, the probability that the current state
is jand substring [1.#] is generated, i.e. the
probability covering the first part of the string

Can be computed by dynamic programming over f,
due to Markov property

Updating formula: b B
o[t 1= Y ab @)a -1l [y

1
Can be computed inO(M?*-T)
- where M is the size of statesand T is the string length

Computing Likelihood with
Forward Probabilities

. Comru‘re forward probabilities, incrementing 7,

states

finally having the likelihood given a string and a
model: ZL(O-r”) :ZaT (l)

meg| i

Complexi‘ry: oM 2 -T)~O(M 3)

(i)

time

Training HMM
(Learning Parameters of HMM)

* Probability parameters trained (estimated) from
strings (time-series examples)

+ A standard manner is maximum likelihood for
given strings, based on EM (Expectation-
Maximization) algorithm

uubDU Purgme‘ter

DUUDDD estimation 035, 07 s, o5 .
UDUUD QO 0L >00)
UUDDUU Maximize the, [U:0.8 05 [u.05]| 02[u.01]08
DDDUUD likelihood of ' | D:0.2 D:0.5 D:0.9

given strings

EM Algorithm in General

Notation

- Observable variable: X
- Latent variable: Z

Parameter set:

Distribution: P
Purpose
- Maximize the likelihood of observable variables
- i.e. obtain parameters which maximize the

likelihood: q; —argmax, P,(X)

EM Algorithm in General

Notation
- Observable variable: X
- Latent variable: Z
- Parameter set:
- Distribution: P
Q function: Q(i#) =Y P,(X.2)logP, (X, 2)
Nice property of Q function:
Q(#:4') > Q(¢:¢) — P,.(X) > P,(X)

- This means if we find ¢'sa'risfying Q(#:¢') >Q(s;9) |
we can make P,,;'(X) > P¢(X)

Q(#:4') > Q(¢:¢) = P, (X) > B,(X)

* Proof: :4)-Q:9)
=>"P,(X,2)logP,(X,Z)- > P,(X,Z)logP,(X,Z)

P,(X,2)
P,(X,2)
P,(X,Z)
SZZ:P‘I,(X,Z)(PZ(X'Z)
=Y Pu(X,2)-P,(X,2)
=P, (X)-P,(X)
If Q(¢:¢')-Q(¢i¢) is positive,
P,(X)—P,(X) must be positive. O

=Y"P,(X,Z)log

-1) (logx<x-1)

EM Algorithm in General

1. Choose initial parameter values

2. Repeat following two steps alternately
until convergence
- E-step: Compute Q function: Q(¢;¢')
- M-step: Choose ¢™ =argmax, Q(¢;¢')

EM Algorithm for HMM

* Baum-Welch algorithm
+ Correspondence
- Observable variable = string: &
- Latent variable = state transition path: 7 € =
- Distribution = likelihood: L
- Q function: Q(#:4)
=Y"P,(X,Z)logP,(X,Z)
l =3 L,(c,7)logL, (o, 7)

* Problem: Find 4™ =argmax, Q(4;4)

Derivation of Baum-Welch (E-step)

* Assume ¢={g;}
- meaning that we here focus on state transition
probabilities only
+ Q function can be derived:
Q(#:¢)
= ZLa,(O',ﬂ')log Ly(o,7)

> L(o,7) ' & .
© \eetiojer means the expectation value

o) ate Transition with states from 7/to j

E-step of Baum-Welch

Expectation value computation needed

- Count the number of transition paths from
state /to state j

w E.[#(.0)ol= Yl

neEli— jer
- Enumerate all state transition paths, having
the fransition from state /to state j
Is enumerating all these state transition
paths possible???

Expectation Value Computation

+ Enumerating all possible paths having
certain stafe transition

- => combinatorial hardness! : O(M")

03 S : 07 s ;0_5 S,
o [Ba] o [555] %
D:0.2 D:0.5 D:0.9
31323353 : 0.8x0.7x0.5x0.5x0.9x0.8x0.1
UUDU «—— §;5,5;S, :0.8x0.7x0.5x0.5x0.9x0.2x0.5

$,5,5,S; : 0.8x0.3x0.8x0.7x0.5x0.5x0.1

Computing Expectation Value
for States /to j

We want to know #paths having states /to j
First, we fix #, ..

states

+ time

Forward Probability Again

a [t, j]:6iven a string, the probability that the
current state is jand substring [1.7] is generated, i.e.
the probability covering the first part of the string

Can be computed by dynamic programming over *
Updating formula: -

o[t 1= Y b (0)a, [t -Li]

i 1, Foeward peab. © a1,)

Can be computed in O(M?-T)

Backward Probability: A1l
+ Given a string, the probability that the current
state is 7and substring [7..#] is generated, i.e. the
probability covering the last part of the string
+ Can be computed by dynamic programming over #in
the reverse direction, by the following updating

sddle’ pILil=>ab(c,)A,[t+1]

Time

Computing Expectation Value for
Transition of States /to jat 7

Forward probabilities cover all possible state transition paths at state
/and time 7 for the first part of given string

Backwqrd;rqbabiliﬂes cover all possible state fransition paths at
state jand time 7+ for the last part of given string

By using these two, we can have the expectation value of the state
transition paths with state /to j

states a,t, i]aijbj (0B, [t+1, j]

-1 time

Computing Expectation Value for
Transition of States i to |

+ We can further sum the following over
all pOSSible t o, [tilab (o) B[t +1,]

Lo S len{ Xkl o)A L]
states resli>jer \i/

t1 ot tel 2 fime

E-step of Baum-Welch

+ E-step is to compute Q function, but Baum-
Welch instead the expectation values can be
computed

+ That is, expectation values on the state
transition from /7to j:

z L(o,7)= Zaa[t, i]aijbj (o) Bt +1,]]

reglio jer t

State

Time

tl f Fl 2

Baum-Welch Algorithm

1. Choose initial values for probability
parameters
2. Repeat E- and M-steps alternately
- E-step:

Computes expectation values (#counts) for each
state transition (or letter generation)

- M-step:
Updates probability parameters using expectation
values

Derivation of Baum-Welch (M-step)

- Derived Q function:
Q¢ =Y log(ay) > L,(0.7)

reEliojer

L]
* The problem is to maximize
F (X X) = Zci log(x)
CI

+ This problem is maximized by x :i if 2% =1x20
@ !

* This directly derives the updating rule
of M-step:
2L(m) Yaiab (0)ba) Y aiab (c.)p.0)

2 7eZliojer t
a =

TYLED Ya®ah)b Xa®Ad
7wes it t

M-step of Baum-Welch

+ Update state transition probability by
using the expectation value and the

likelihood
PAOCT G0
4 = S —

Likelihood of all paths with /-]

i

time

71 7 7+l 72

Baum-Welch Algorithm

1. Choose initial values for probability parameters

2. Tterates E- and M-steps alternately until
convergence

- E-step: .

1. Compute forward probabilities: a[t]

2. Compute backward probabilities: /3, [t,]
3. Compute the expectation value of state transition from /to
Jusing forward and backward probabilities:

Ep, #((, 1), 0l c 3, [t iTayb; (07,) B, [t +1,]
- M-step: '
1. Update transition probability ausing expectation values:
5 L1l
'Y B [#((, J)o]
i

Summary of Baum-Welch

+ Algorithm for estimating probability
parameters of HMM
- i.e. Algorithm for training HMM

+ EM (Expectation-Maximization) algorithm,
meaning that the solution is local optimum
of maximum likelihood

* Makes simple enumeration efficient by
dynamic programming: O(M")— O(M?)

Parsing for HMM

* Given a string, we can compute
likelihoods for all possible state
transition paths

* Among them, we call the state
transition which gives the maximum the
maximum likelihood path, which is
exactly the solution of parsing

* Question: How can we compute that
efficiently?

Parsing for HMM

*+ Question: How can we compute that
efficiently?

+ If we try to enumerate all possible state
transition paths, computational hardness
again!

+ Solution:

- Remember forward probabilities
- Replace 3" with *max’
- Keep the maximum path

a, (i) = Zoﬂ (ayb;(o.,)

a,4(]) = max; at(i)aijbj (01.1)

Parsing for HMM

+ Viterbi Algorithm
- Computing maximum at each time (letter) and
remember the previous state so that the maximum
path is traceable finally
states

time

T T
.. ()= Zal(i)aljb] ()

o,y (§) = max; a((i)aijbj (004)

Three Problems for
Hidden Markov Model

1. Computing likelihood:

- Computing forward probabilities until the last
letter of a given string

2. Learning
- Maximizing the likelihood by Baum-Welch, an
EM (Expectation-Maximization) algorithm
3. Parsing

- Viterbi algorithm, a modification of
computing forward probabilities

Example: Profile HMM

- Allows to align multiple string (amino acid sequences) to
find conserved region (called consensus or motif)

State
transition

diagram g 4 e fond)

E 085 E 0.05 E 0.05 E 0.05
- Three types of states:
— M: normal state, for important (conserved) amino acids
— D: any letter not generated, for amino acids deletion

: a letter generated according to a fixed uniform distribution,
for unimportant (unconserved) amino acids

Training Profile HMM

Training strings example:

@ A 001 A_00 ADTC
Trained “Letter] — ‘0 WAEC
eneration
;g:robabilifies" oo oo = VEC
(called profile) ADC
_ AEC
WM (e _[I-. Gl
(agin) . f :
E 009

Consensus by Profile HMM

+ Find consensus
from M states
+ Have multiple
alignment by
checking the most
likely state path
Ex. ADTC:
A (M1:0.74) —
D (M2:0.41) —
T (I2:0.05) —
€ (M3:0.92)

Parsing!

Multiple alignment| - ¥ & -

»
L]
alaaaon

Consensus

"
A DE
S it
bot
Profile D e
E o3

Final Remark

* Three Problems for probabilistic models

in machine learning

1. Computing likelihood
2. Learning

3. Parsing (prediction)

- Define hidden Markov model (HMM)
* Three problems of HMM

- Computing likelihood by forward
probabilifies

- Learning by Baum-Welch
- Parsing by Viterbi

- Example: Profile HMM

