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Introduction
Supervised Predictive approaches

How to learn biological networks from data ?

Predictive approaches : predict (only) edges in an unsupervised or
supervised way [scale (103) nodes]

Modeling approaches : model the network as a complex system, can
be used to simulate and predict the network behavior (scale : 10to102)]
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Supervised learning of edges

Directed edges : case of transcriptional regulatory network

Non directed edges: case of protein-protein interaction network
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Supervised learning of directed edges

Setting of the problem

Training sample S = {(wi = (vi , v ′i ), yi), i = 1...n} where wi are couples
of genes descriptors vi and v ′i (think transcription factor and potential
regulee)

yi ∈ {0, 1} indicates if there is vi is a transcription factor for v ′i .

Goal : from training data , learn a classification function able to predict if
an edge exists from a pair of inputs.

First reference : Qian et al. 2003, Bioinformatics, with SVM.

But you can use your preferred classifier
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Supervised prediction of non directed edges

Training sample LS = {(wi = (vi , v ′i ), yi), i = 1...n} where wi are
couples of components vi and v ′i (think proteins)

yi ∈ Y indicates if there is an edge or not between vi and v ′i .

Noble et al. in 2005 (SVM) with kernel combination

Further studied by Biau and Bleakley 2006, Bleakley, Biau and Vert,
2007
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Supervised prediction of non oriented edges by similarity learning

In the case of non oriented graphs, a similarity between components can
be learnt instead of a classification function (Yamanishi and Vert 2005)

Our proposal: see the task as kernel learning with a new kind of
regression:output kernel regression (Geurts et al. 2006,2007, 2009 in
prep.)
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Supervised Learning with output feature space

Suppose we have a learning sample LS = {xi = x(vi), i = 1, . . . ,N}
drawn from a fixed but unknown probability distribution

with an additional information provided by a Gram matrix
K = kij = k(vi , vj), fori, j = 1, . . . ,N that expresses how much objects
vi , i = 1...n are close to each other.

Let us call respectively φ the implicit output feature map corresponding
to k a positive definite kernel defined on V × V such that
< φ(v), φ(v ′) >= k(v , v ′).
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Supervised Learning with output feature space

From a learning sample {(xi ,Kij |i = 1, . . . ,N, j = 1, . . . ,N} with
xi ∈ X ,find a function f : X → FK that minimizes the empirical
mean of some loss function ` : Fk ×FK → IR (possibly with an
additional regularization term)
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Supervised inference of edges in a graph 1

For proteins v1, ..., vN , we have : feature vectors x(vi ), i = 1...N
Let’s assume that for these proteins we know the protein-protein interaction graph
Let’s define a Gram matrix K defined as Ki,j = k(vi , vj ) that reflects the proximity
between proteins v , as vertices in this graph.
What does it means ?
We can deal with vertices in the graph as vectors in the vectorial space spanned
by the φ(vi ).
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Supervised inference of edges in a graph 2

Define a new learning method that can infer a function hφ : X → FK to
get for a given x(v), an approximation hφ ∈ FK of φ(v)

This proxy will be used to get an approximation
g(x(v), x(v ′)) = 〈hφ(x(v)), hφ(x(v ′))〉 of the kernel value between v
and v ′ described by their input feature vectors x(v) and x(v ′)

By construction g is a kernel

Connect these two vertices if g(x(v), x(v ′)) > θ

by varying θ we get different tradeoffs between true positive and false
positive rates)
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A kernel on graph nodes

Given an adjacency matrix, define a diffusion kernel (Kondor and
Lafferty, 2002) as:
The Gram matrix K with Ki,j = k(vi , vj) is given by:

K = exp(−βL)

where the graph Laplacian L is defined by:

Li,j =

8<:
di the degree of node vi if i = j;
−1 if vi and vj are connected;
0 otherwise.
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Standard regression trees

A learning algorithm that solves the regression problem for
one-dimensional output with a tree structured model
Basic idea of the learning procedure:

Recursively split the learning sample with tests based on the inputs trying to
reduce as much as possible the variance of the output
Stop when the output is constant in the leaf (or some stopping criterion is
met)
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Regression trees on multiple outputs

The best split is the one that maximizes the empirical variance reduction
on current training data:

ScoreR(Test ,S) = var{y |S} − Nl

N
var{y |Sl} −

Nr

N
var{y |Sr},

where N is the size of S, Nl (resp. Nr ) the size of Sl (resp. Sr ), and
var{Y |S} denotes the variance of the output Y in the subset S:

var{y |S} =
1
N

NX
i=1

||yi − y ||2 with y =
1
N

X
i=1

yi

which is the average distance to the center of mass (or the average
variance over all outputs).

Predictions at leaf nodes are the centers of mass

1
NL

NLX
i=1

yi
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Regression trees in output feature space

Given a kernel k on the output space (with corresponding feature map φ,
the idea is to grow a multiple output regression tree in the output feature
space F‖:

The variance becomes:

var{φ(v)|S} =
1
N

NX
i=1

||φ(vi )−
1
N

X
i=1

φ(vi )||2

Using kernel trick, we have:

var{φ(v)|S} ==
1
N

NX
i=1

k(vi , vi )−
1

N2

NX
i,j=1

k(vi , vj )

Predictions at leaf nodes are still the average of output data:

φ̂L =
1

NL

NLX
i=1

φ(vi )
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Kernelization

The variance may be written:

var{φ(v)|S} =
1
N

NX
i=1

||φ(vi )−
1
N

X
i=1

φ(vi )||2

=
1
N

NX
i=1

< φ(vi ), φ(vi ) > −
1

N2

NX
i,j=1

< φ(vi ), φ(vj ) >,

which makes use only of dot products between vectors in the output feature space

We can use the kernel trick and replace these dot-products by kernels:

var{φ(v)|S} =
1
N

NX
i=1

k(vi , vi )−
1

N2

NX
i,j=1

k(vi , vj )

From kernel values only, we can thus grow a regression tree that minimizes output
feature space variance
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Improvements by Ensemble methods with Output Kernel trees

Trees can be improved if combined linearly in random forests (ET,...), in
bagging and boosting methods

All ensemble methods can be extended to deal with Output kernel
regression

Drawback: loss of interpretability, still the importance of each feature can
be computed easily
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Gradient boosting with square loss (Friedman 1999

If `(y1, y2) = (y1 − y2)
2/2, the algorithm becomes:

LS Boost

1 F0(x) = 1
N

PN
i=1 yi

2 For m = 1 to M do:

1 ym
i = yi − Fm−1(xi ), i = 1, . . . ,N (compute the residuals)

2 am = arg mina
PN

i=1(y
m
i − h(xi ; a))2 (fit them)

3 Fm(x) = Fm−1(x) + h(x ; am) (update the function)

e.g., h(x ; a) are small regression trees (Friedman’s Multiple Additive Regression
Trees, MART).

In practice, it is very useful to use a shrinkage parameter (ν << 1) to control the
learning rate
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Kernelizing the output

LS Boost in a kernelized output space

1 Fφ0 (x) = 1
N

PN
i=1 φ(yi)

2 For m = 1 to M do:
1 φm

i = φ(yi )− Fφm−1(xi ), i = 1, . . . ,N (compute the residuals)
2 am = arg mina

PN
i=1 ||φm

i − hφ(xi ; a)||2 (fit them)
3 Fφm(x) = Fφm−1(x) + hφ(x ; am) (update the function)

Replace y by a vector φ(y) from some feature space H (in which we
only assume it is possible to compute dot-products)

Fφ and hφ are now functions from X to H
Minimizes square error in H:

Ex,y{||φ(y)− Fφ(x)||2}
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Kernelizing the output

LS Boost in a kernelized output space

1 Fφ
0 (x) = 1

N
PN

i=1 φ(yi )

2 For m = 1 to M do:
1 φm

i = φ(yi )− Fφ
m−1(xi ), i = 1, . . . ,N (compute the residuals)

2 am = arg mina
PN

i=1 ||φ
m
i − hφ(xi ; a)||2 (fit them)

3 Fφ
m (x) = Fφ

m−1(x) + hφ(x ; am) (update the function)

To be a feasible solution, we need to be able to compute from kernel
only:

the output Gram matrix K m at step m, i.e. K m
i,j = 〈φm

i , φ
m
j 〉 (to compute 2.2)

〈FφM(x), φ(y)〉, ∀x , y (to compute predictions, pre-images)

This is possible when hφ(x ; am) at step m may be written

hφ(x ; am) =
NX

i=1

wi(x ; am)φm
i
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Results

Application to two networks in the Yeast:
Protein-protein interaction network: 984 proteins, 2478 edges (Kato et al.,
2005)
Enzyme network: 668 enzymes and 2782 edges (Yamanishi et al., 2005)

Input features:
Expression data: expression of the gene in 325 experiments
Phylogenetic profiles: presence or absence of an ortholog in 145 species
Localization data: presence or absence of the protein in 23 intracellular
location
Yeast two hybrid data: data from a high-throughput experiment to detect
protein-protein interactions
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Comparison with full kernel based methods

Protein network

Inputs OK3+ET [1]
expr 0.851 0.776
phy 0.693 0.767
loc 0.725 0.788
y2h 0.790 0.612
All 0.910 0.939

Enzyme network

Inputs OK3+ET [2]
expr 0.714 0.706
phy 0.815 0.747
loc 0.587 0.577
All 0.847 0.804

[1] Kato et al. : EM based algorithm for kernel matrix completion
[2] Yamanishi et al. : compare a kernel canonical correlation analysis based
solution and a metric learning approach
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Interpretability: rules and clusters (an example with a protein-protein
network)
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Network completion and function prediction for yeast data
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Challenges in supervised predictive approaches

Transductive learning (current work : completion of the protein-protein
interaction network around CFTR protein (cystic fibrosis) with A.
Edelman, Necker)

Issue : unbalanced distribution of positive and negative examples

Change cost functions

Interpret learning in feature output space as an interpolation problem
(find a surrogate function of the kernel)
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