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Close agreement between the orientation 
dependence of hydrogen bonds observed in 
protein structures and quantum mechanical 
calculations. Morozov, Kortemme, Baker, PNAS, 
2003

Oligo(N-aryl glycines): A New Twist on Structured 
Peptoids, Shah, Butterfoss, 
Bonneau, Kirshenbaum, 2008, JACS

justification of functional-from-principles, parameters-from-data by example
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Prediction

overview

1. co-regulated
modules 
(integrate data types).

2. Learn topology and 
Dynamics with
greedy / local aprox.
(inferelator 1.0, 1.1)

3. improving performance
over multiple time-scales
(Inferelator 2.x)

Main results:

- Surprising predictive 
performance for
prokaryotic networks, 
T-cell and 
macrophage differentiation
EE Networks

- Longer time scale stability

- model flexibility
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cDNA
ESTs

libraries of
Functional RNA

phenotype

Automated
microscopy,
etc.

Gene sequencing
Whole Genome assembly

ChIP-chip
TF-DNA Binding
experiments

protein 
sequence 
databases,

Protein structures,

Proteomics

Protein-
protein
interactions

protein
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Metabolomics

Mass-spectroscopy
NMR
Chromotography

Genotype & sequencing

Measuring affinities / binding

Measuring Levels

Assaying functional outcome
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algorithms:
David J. Reiss (cMonkey)
Vesteinn Thorsson (Inferelator) 
Richard Bonneau
 
functional genomics:
Marc T. Facciotti
Amy Schmid, 
Kenia Whitehead
Min Pan, Amardeep Kaur,
Leroy Hood
Nitin S. Baliga
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An example : Halobacterium

why halobacterium:
• if your friends are working on

halo ... (Hood, Baliga)
• not a “model” system (originally)
• high IQ
• diverse environment
• small genome
• good genetics, cultivable, etc. 
• a very tough extremophile,

bioengineering

Data collection and modeling effort
✴ genome and genome annotation
✴ microarrays
✴ genetic and environmental perturbations
✴ proteomics
✴ ChIP-chip
✴ some protein-protein
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Halobacterium 
dataset including 

>800 microarrays
time series
knock outs

ChIP-chip 
experiments

proteomics

phenotype

among the most
complete 
prokaryotic 
datasets

M. Facciotti, N. Baliga

min pan, Kenia Whitehead, Amy Schmid
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cMonkey

integrative

biclustering

Expresion

Networks

Upstream

Biclusters,
motifs,

subnetworks

Inferelator

inference of

dynamic regulatory

networks

Regulatory
network
model

overview:
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Biological motivation:
Learn regulatory interactions from data that 
are predictive of equilibrium and dynamical 
systems behavior

Challenges:
 Interactions between transcription factors
 Number of interactions much greater than number of observations
 Heterogeneous data (e.g. equilibrium  and kinetic measurements)
 Indirect effects and noise (Causal symmetry between activators and 

targets)
 Resultant models are a complex low-level abstraction

of the systems behavior

    II. The Inferelator: 
         regulatory network inference
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  experimental design

τ dy
dt

= −y + g(β • Z ) (1)

βZ = β1x1 + β2x2 + β3 min(x1, x2 ) (2)

10 7 6 8 5 1 2 9 3 4

6

2

4

1

11

8

9

7

3

5

10

8 1 5 7 6 9 3 2 4 10

2

1

4

11

9

8

6

7

3

5

10

Optimal (?) :-) the usual  :-(

1. know your model/
framework:

2. Time series:
sampling with correct
rate(s)!

3. sampling
in correct regime.

4. Multifactorial on a budget:
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Inferelator v 1.0

steady-state kinetic

Bonneau, Reiss, Baliga, Thorsson, 2006

y
g( )

z = x1
z = min(x1,x2)
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steady 
state

time series/ 
kinetic

core assumption

steady-state

kinetic

Bonneau, Baliga, Thorsson, 2006
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2 Squashing functions: promoter 
saturation
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Representing Interactions:

� 

y j = β1x1 j + β2x2 j + β3 min(x1 j ,x2 j ) +1

 
yj = β1x1 β2x2  β1x1⊕β2x2( )

 
(,,⊕) x⊕ y := min{x, y}  

x y := x + y
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Model selection using L1-shrinkage:
avoiding overfitting

model size

(α̂, β̂) =
(α̂ , β̂ )

argmin yi −α − β j zij
j=1

p

∑
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why L1?
beta -> 0
LARS
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Predictive power over 130 new experiments

 77. Amino acid uptake

! "

123 .Cell motility

150. Ribosome

205 . Phosphte uptake209 . Cation/ Zn transport

 214 . Fe transport

 217. Fe-S clusters, Heavy metal transport

244. Bop, DMSO resperation

251. DNA repair, nucleotide metabolism

258. Phosphate consumption

273. Pyrimidine biosynthesis

69 . K transport
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Prediction of outcome following genetic 
and Environmental perturbations
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156
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inferred trh controlled subnetwork: 

Homeostasis
is an emergent

property of
the global

network

Bonneau, et al, Genome Biology, 2006, Bonneau, et al. Cell, 2007

edges validated since by 
ChIP-chip
M. Facciotti, N. Baliga
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Finite difference approximation is poor

Inferelator 1--- Limitations

tk tk+1 tk+2

Error over long time intervals

PredictError propagation
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Finite difference approximation is poor

Inferelator 1--- Limitations

tk tk+1 tk+2

Error over long time intervals

Predict

Wednesday, June 24, 2009



Finite difference approximation is poor

Inferelator 1--- Limitations

tk tk+1 tk+2

Error over long time intervals
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Finite difference approximation is poor

Inferelator 1--- Limitations

tk tk+1 tk+2
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Predictors
levels are const.

Finite difference approximation is poor

Inferelator 1--- Limitations

tk tk+1 tk+2
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Explicit global solutions using 
Metropolis-Hastings:

Calculate gradient of the Energy with respect to 

� 

E β( ) = 1
2

xi(tk ) − xi
obs(tk )( )

i=1

M

∑
k=1

K

∑
2

(1)

� 

∂E β( )
∂β j

= xi(tk ) − xi
obs(tk )( )

i=1

M

∑
k=1

K

∑ ∂xi(tk )
∂β j

(2)

� 

β j
n+1 = β j

n − h ∂E(β
n )

∂β j

+ 2σh ∗ζ j
n

(3)

Slope

Slope
Step

Temperature

~N(0,1)

Aviv Madar on Right

Work done with Eric Vanden-Eijnden,
Courant Institute of Mathematical Sciences,
NYU
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Inferelator 2: Concepts

tk tk+1

Inject intermediate 
time points
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Inferelator 2: Concepts

tk tk+1
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Finite difference approximation is improved

Inferelator 2: Concepts

tk tk+1

Predictors
levels are not const.
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Finite difference approximation is improved

Inferelator 2: Concepts

tk tk+1

Predictors
levels are not const.
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Finite difference approximation is improved

Inferelator 2: Concepts

tk tk+1

Predictors
levels are not const.
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Finite difference approximation is improved

Inferelator 2: Concepts

tk tk+1

How do we estimate parameters?

Predictors
levels are not const.
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Markov
chain

Importance
sampling

Gaussian 
Noise term

Inferelator 2: Mathematical Overview

Error over time series data

Error over steady state data

L2 norm constraint/regularizer

Minimize Energy (scoring/objective function) 

Markov Chain Monte Carlo (MCMC) scheme 
to sample parameters
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Inferelator 2: Mathematical Overview

Error over time series data

Error over steady state data

L2 norm constraint/regularizer

Markov Chain Monte Carlo (MCMC) scheme 
to sample parameters

Wednesday, June 24, 2009



Markov
chain

Importance
sampling

Gaussian 
Noise term

Inferelator 2: Mathematical Overview

Error over time series data

Error over steady state data

L2 norm constraint/regularizer
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Inferelator 2: Gradient Approximation
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Inferelator 2: L1-norm of Parameters
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Inferelator 2: Performance 5

time interval, minutes ->

length of time interval
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mixed time scales / mixed data-types:
Learn regulatory interactions from sub-optimal datasets
Mixed signaling & regulatory nets
Adding metabolic effects

Inferelator 2, more explicit dynamics:
New proposal distributions
New functional forms for interactions
Testing in a wider variety of systems

Stochastic bayes /SDE aproach:
Estimate or measure system convergence as well as mean, model error,
multiple system paths

    II. The Inferelator: 
         Future Directions

Wednesday, June 24, 2009



post-docs for protein design, 
prediction & network inference
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1

Rosetta de novo structure 
prediction: The Human Proteome
folding Project

Kevin Drew,
Lars Malmstroem,

Glenn Butterfoss,

Richard Bonneau

Rosetta Commons
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4

Motivation: Genome Annotation
Cheaper sequencing technologies

New protein sequences 

Proteins w/ unknown function 

Shibu Yooseph et al. 2007 Plos Biology
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Background: Quick Example
Bacteriocin AS-48, Casp 4

1E68 1NKL
GYFCESCRKIIQKLEDMVGPQPNEDTVTQAAS
QVCDKLKILRGLCKKIMRSFLRRISWDILTGKKP
QAICVDIKICKE

MAKEFGIPAAVAGTVLNVVEAGGW
VTTIVSILTAVGSGGLSLLAAAGRES
IKAYLKKEIKKKGKRAVIAW 4%=

=

Cyclic Bacterial Lysin = NK Lysin

Structure:

Function:

Sequence:

Bonneau, R., Tsai, J., Ruczinski, I., Baker, D. Functional Inferences from Blind ab Initio Protein Structure Predictions. J. Structural Biology. (2001)
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Plasmodium

SBRI top candidates for Vaccine

for preventing pregnancy 

malaria
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Arabidopsis example:

RPT3

1: cofactor

2: point of mutation causing 

differential response to morphogen

1

2
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E Andersen-Nissen, R Bonneau, 
R Strong, A Aderem
Journal of Experimental Medicine, 2007

Distant Multi-template fold 
recognition for Toll receptors

Wednesday, June 24, 2009



Lars Malmstroem

Kevin Drew
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Rosetta

Local Sequence 
Bias

            Non-local
            Interactions

Kevin Drew, Chivian, D., Bonneau, R. Ab initio structure prediction. (In) Bourne, P.E. (2007) Structural Bioinformatics (Methods of Biochemical Analysis, 
V. 44). New York: John Wiley & Sons; ISBN: 0471201995. Second Edition.
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Rosetta

Local Sequence 
Bias

            Non-local
            Interactions

C
C

R

N

F Y

N

Hq

HH d

    Experimental, 
       Evolution                    

Kevin Drew, Chivian, D., Bonneau, R. Ab initio structure prediction. (In) Bourne, P.E. (2007) Structural Bioinformatics (Methods of Biochemical Analysis, 
V. 44). New York: John Wiley & Sons; ISBN: 0471201995. Second Edition.

Wednesday, June 24, 2009



Rosetta Fragment Libraries

• 25-200 fragments for each/every 3 and 9 residue sequence 
window (overlapping)

• Selected from database of known structures
 > 2.5Å resolution
 < 50% sequence identity

• Ranked by sequence similarity and similarity of predicted 
and known secondary structure 

• Fragments restrict search to protein-like local 
conformations

Sequence similar or exact sequence BUT not long enough 
that the similarity is attributable to evolution (not 
homologous strictly speaking).
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χ

χ

Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

d

E

CLASH!!

� 

(rij
2 − dij

2 )2

rijj< i
∑

i
∑ ;dij < rij

� 

d = distance

r = radii∑

Evaluate between Centoids and Backbone Atoms 
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

Pair-wise probability based on PDB statistics
(electrostatics)

� 

−ln
P(aai,aa j | sijdij )

P(aai | sijdij )P(aai | sijdij )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

j> i
∑

i
∑

aa = residue type
d   = centroid distance (binned, interpolated)
s   = sequence seperation (must be > 8 res )
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

neighbors within 10 Å of Cβ

binned by : 0-3, 4,5, … , >30

also interpolated� 

−ln P(aai | neighborsi)[ ]
i
∑

Probability of burial /exposure
(solvation)
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

Optimize 2º orientation 
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

N

R1

R2

C

O

Represent protein as vectors of
2 residue “strands”

sheet vector

helix vector
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

 Coordinate system 

v1

v2

θ

φ

σ

r

hb

Scores selected to discriminate “near native structures 
for “non native”:

Relative direction (φ,θ)

Relative H-bond orientation (hb)

Distance (r, rσ)

Number of sheets given number of strands

Helix-Strand Packing 
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Low resolution:

Atom Model
 
      centroid reduction of side chains

Energy function terms

      van der Waals repulsion

      “pair” terms (electrostatics)

       residue environment (prob of burial)

       2º structure pairing terms (H-bonds)

       radius of gyration

       packing density

Implicit terms

      fragments (local interactions)

     

Used in earlier stages and for filtering� 

RG = dij
2

Density = −ln
Pcompact (neighborsi,sh )
Prandom (neighborsi,sh )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

sh
∑

i
∑

Promote a compact fold
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χ

χ

High resolution:

Atom Model
 
      full atom representation

Energy function terms

      Rotamer (Dunbrack)

      Ramachandran

      Solvation (Lazaridius Karplus)

      Hydrogen bonding

      Lennard-Jones 

      Pair (electrostatic)

      Reference energies

       

     

Wednesday, June 24, 2009



9

Process of Obtaining Structures
1. Split proteins into domains (ginzu, 

Chivian) 
(chop, Rost)

2. Find domains we can annotate 
using Rosetta

3. Fold remaining domains using 
Rosetta on IBM’s World 
Community Grid

• 180,000 domains folded from 120 genomes

BIG caveat emptor:
all results from this point
for domains < 170 aa
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worldcommunitygrid.org & 
grid.org

collaborators: Lars Malmstroem, Viktors Berstis, 
Mike Riffle, Leroy Hood, David Baker
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Bacterial and Archaea:
Bonneau, & Baliga. (2004)Genome Biology:
Annotaion of Halobacterium NRC-1
identification of transcription factors
role of chemotaxis sensing domains 

Yeast:
Malstroem, Baker, Bonneau (2006) Plos 
Biology

Human & others:
Bonneau, Malstroem, IBM: 
Human and others (in Progress)

Completed and ongoing projects
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overview of approach
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Molecular Function GO Tree

P( MF | Predicted Structure, 
             GO Process, 
             GO Localization, …  )

specificity

overview of approach
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1. Structure (MCM) Score

2. Training Set (attaching 
structure to GO)

3. Naïve Bayes
• Naïve Bayes with continuous SF prob
• Naïve Bayes with GO terms

overview of approach
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Mammoth Confidence Metric (MCM)
• Compare Cluster Representatives 

to PDB Structures
• MCM Score [0…1] probability 
• based on:

– Quality of match
– Rosetta quality
– Length ratio of PDB and cluster 

rep
– Contact Order
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Gene Ontology (GO) & Training Data 
• Function, Process, Localization terms

• 1.6 million sequences with annotations
•

BLAST astral sequences to GO sequences 
(astral = pdb w/ SCOP SF)

• Cluster using CD-hit to reduce redundancy

• Cluster again using genome of benchmark sequences 
and remove matches
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Naïve Bayes

y = molecular function and x = {sf, bp, cc}
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Naïve Bayes w/ Superfamilies

• How to take continuous probabilities of SF (by way of mcm scores) 
– we weight log-likelihood by the mcm scores:
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Naïve Bayes w/ GO terms
• Problem: Go terms are not 

independent 
– if we use all terms annotated to a sequence we end up 

double counting

• Solution: pick a term that will be 
predictive
– Mutual information between term and MF
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Results: Solved Structures
How accurate are we when we predict SCOP Superfamily for PDB Structures?
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Results: Since Solved Structures (2005)
How accurate are we when we predict SCOP Superfamily for Swissprot Proteins?

P(s|rosetta)
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Results: Bayes Function Prediction (Swissprot Benchmark )
How accurate are our function predictions using structure only?

77 unique molecular functions100 unique molecular functions

P(MF|rosetta)
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Results: Bayes Function Prediction (Swissprot Benchmark )
How accurate are our function predictions using GO process & structure?

P(MF|rosetta,P)
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VAM6/ YDL077C: Vacuolar protein that plays a critical role in the tethering steps of vacuolar membrane fusion by 
facilitating guanine nucleotide exchange on small guanosine triphosphatase Ypt7p.We find the following: 
(domain1) unknown (domain 2) Rosetta hit to Polynucleotide phosphorylase/guanosine pentaphosphate synthase 
(PNPase/GPSI), domain 3 (domain 3) Clathrin proximal leg (domain 4)  Rosetta de novo hit to Hemerythrin 
(domain 5) Rosetta hit to SAM/ Pointed domain.

VPS29: Endosomal protein that is a subunit of the membrane-associated retromer complex essential for endosome-to-Golgi retrograde transport; forms a 
subcomplex with Vps35p and Vps26p that selects cargo proteins for endosome-to-Golgi retrieval. But, with this context so well defined, there is still no molecular 
function known, that is to say there is no precise mechanistic role known for this protein. We find a strong hit to Mre11 ( a double stranded mismatch repair 
protein, metal dependent phosphotase for domain 1 and a strong Rosetta hit for domain 2 to the PUA-domain like fold (implicated in RNA binding OR ATP 
sulfurylase N-terminal domain). The fold predictions are as confident as we ever see (MCM = 0.95, psiblast evalue to domain 1 hit Z = 13. ). 

Results: HPF:
vesicle transport
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