RECONSTRUCTING BIOLOGICAL NETWORKS FROM DATA: CMONKEY & INFERELATOR

RICHARD BONNEAU

BONNEAU@NYU.EDU

HTTP://WWW.CS.NYU.EDU/ ~BONNEAU/

NEW YORK UNIVERSITY,

DEPT. OF BIOLOGY &

COMPUTER SCIENCE DEPT.

justification of functional-from-principles, parameters-from-data by example

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Morozov, Kortemme, Baker, PNAS, 2003

Oligo(N-aryl glycines): A New Twist on Structured Peptoids, Shah, Butterfoss, Bonneau, Kirshenbaum, 2008, JACS

B. (Bi)clustering

C. Dynamical network model

D. Prediction

OVERVIEW

1. CO-REGULATED MODULES (INTEGRATE DATA TYPES).

2. LEARN TOPOLOGY AND DYNAMICS WITH GREEDY / LOCAL APROX. (INFERELATOR 1.0, 1.1)

3. IMPROVING PERFORMANCE OVER MULTIPLE TIME-SCALES (INFERELATOR **2.**X)

MAIN RESULTS:

- SURPRISING PREDICTIVE PERFORMANCE FOR PROKARYOTIC NETWORKS, T-CELL AND MACROPHAGE DIFFERENTIATION EE NETWORKS
- LONGER TIME SCALE STABILITY
- MODEL FLEXIBILITY

algorithms: David J. Reiss (cMonkey) Vesteinn Thorsson (Inferelator) **Richard Bonneau**

functional genomics: Marc T. Facciotti Amy Schmid, Kenia Whitehead Min Pan, Amardeep Kaur, Leroy Hood Nitin S. Baliga

AN EXAMPLE : HALOBACTERIUM

WHY HALOBACTERIUM:

- if your friends are working on halo ... (Hood, Baliga)
- not a "model" system (originally)
- high IQ
- diverse environment
- small genome
- good genetics, cultivable, etc.
- a very tough extremophile, bioengineering

DATA COLLECTION AND MODELING EFFORT

- * genome and genome annotation
- * microarrays
- * genetic and environmental perturbations
- * proteomics
- ✤ ChIP-chip
- * some protein-protein

HALOBACTERIUM DATASET INCLUDING

>800 MICROARRAYS TIME SERIES KNOCK OUTS

CHIP-CHIP EXPERIMENTS

PROTEOMICS

PHENOTYPE

AMONG THE MOST COMPLETE PROKARYOTIC DATASETS

M. FACCIOTTI, N. BALIGA

MIN PAN, KENIA WHITEHEAD, AMY SCHMID

II. THE INFERELATOR: REGULATORY NETWORK INFERENCE

BIOLOGICAL MOTIVATION:

Learn regulatory interactions from data that are predictive of equilibrium and dynamical systems behavior

CHALLENGES:

- Interactions between transcription factors
- Number of interactions much greater than number of observations
- Heterogeneous data (e.g. equilibrium and kinetic measurements)
- Indirect effects and noise (Causal symmetry between activators and targets)
- Resultant models are a complex low-level abstraction of the systems behavior

EXPERIMENTAL DESIGN

1. KNOW YOUR MODEL/ **FRAMEWORK:**

2. TIME SERIES: SAMPLING WITH CORRECT RATE(S)!

$$\tau \frac{dy}{dt} = -y + g(\beta \bullet Z) \qquad (1)$$
$$\beta \mathbf{Z} = \beta_1 x_1 + \beta_2 x_2 + \beta_3 \min(x_1, x_2)$$

4. MULTIFACTORIAL ON A BUDGET:

3. SAMPLING IN CORRECT REGIME.

INFERELATOR V 1.0

Bonneau, Reiss, Baliga, Thorsson, 2006

CORE ASSUMPTION

Bonneau, Baliga, Thorsson, 2006

2 SQUASHING FUNCTIONS: PROMOTER SATURATION

REPRESENTING INTERACTIONS:

Model selection using L1-shrinkage: avoiding overfitting

$$\sum_{j=1}^{p} \left| \hat{\beta}_{j} \right| \le t \sum_{j=1}^{p} \left| \beta_{ols_{j}} \right| \qquad (\hat{\alpha}, \hat{\beta}) = \arg\min_{(\hat{\alpha}, \hat{\beta})} \left\{ \sum_{i=1}^{N} \left(y_{i} - \alpha - \sum_{j=1}^{p} \beta_{j} z_{ij} \right)^{2} \right\}$$

<u>why L1?</u> beta -> 0 LARS

PREDICTIVE POWER OVER 130 NEW EXPERIMENTS

PREDICTION OF OUTCOME FOLLOWING GENETIC AND ENVIRONMENTAL PERTURBATIONS

C. Downregulation of DNA gyrase B by VNG0019H

INFERRED TRH CONTROLLED SUBNETWORK:

Bonneau, et al, Genome Biology, 2006, Bonneau, et al. Cell, 2007

Error over long time intervals

Error over long time intervals

AVIV MADAR ON RIGHT

Explicit global solutions using Metropolis-Hastings:

(1)
$$E(\beta) = \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{M} \left(x_i(t_k) - x_i^{obs}(t_k) \right)^2$$

Calculate gradient of the Energy with respect to

(2)
$$\frac{\partial E(\beta)}{\partial \beta_{j}} = \sum_{k=1}^{K} \sum_{i=1}^{M} \left(x_{i}(t_{k}) - x_{i}^{obs}(t_{k}) \right) \frac{\partial x_{i}(t_{k})}{\partial \beta_{j}}$$
Slope

Work done with Eric Vanden-Eijnden, Courant Institute of Mathematical Sciences, NYU

How do we estimate parameters?

Inferelator 2: Mathematical Overview

Minimize Energy (scoring/objective function)

Markov Chain Monte Carlo (MCMC) scheme to sample parameters

Inferelator 2: Mathematical Overview

Markov Chain Monte Carlo (MCMC) scheme to sample parameters

Inferelator 2: Mathematical Overview

$$\begin{split} \beta_{i,j}^{n+1} &= \beta_{i,j}^n + \sqrt{\sigma h} \, \xi_{i,j}^n - h \frac{\partial E(\pmb{\beta}^n)}{\partial \beta_{i,j}} \\ & & \\$$

Inferelator 2: Gradient Approximation

Inferelator 2: L1-norm of Parameters

Inferelator 2: Performance 5

time interval, minutes ->
II. THE INFERELATOR: FUTURE DIRECTIONS

MIXED TIME SCALES / MIXED DATA-TYPES:

Learn regulatory interactions from sub-optimal datasets

Mixed signaling & regulatory nets

Adding metabolic effects

INFERELATOR 2, MORE EXPLICIT DYNAMICS:

New proposal distributions

New functional forms for interactions

Testing in a wider variety of systems

STOCHASTIC BAYES /SDE APROACH:

Estimate or measure system convergence as well as mean, model error, multiple system paths

post-docs for protein design, prediction & network inference

Wednesday, June 24, 2009

Bonneau lab:

Glenn Butterfoss Kevin Drew Aviv Madar Peter Waltman Thadeous Kacmarczyk Shailla Musharof Devorah Kengmana Chris Poultny (Shasha) Irina Nudelman Alex Pearlman (Ostrer) Alex Pine

NYU:

Eric Vanden-Eijnden Harry Ostrer Mike Purugganan Patrick Eichenberger Dennis Shasha

<u>Acknowledgments</u>

Tacitus-Howard Coale

IBM

- Robin Wilner
- Bill Boverman
- Viktors Berstis
- Rick Alther
- ETH Zurich
 - Reudi Aebersold
 - Lars Malmstroem

Mike Boxem Marc Vidal

Dave Goodlett

Jochen Supper (Zell Lab)

- ISB

- Nitin Baliga (&lab)
- Leroy Hood
- Marc Facciotti
- David Reiss
- Vesteinn Thorsson
- Paul Shannon
- Iliana Avila-Campillo (MERC) Alan Aderem

Rosetta Commons

Charlie Strauss (los alamos) David Baker (UW seattle)

DOD-computing and society, NSF ABI, NSF Plant genome NSF DBI, DOE GTL

ROSETTA DE NOVO STRUCTURE PREDICTION: THE HUMAN PROTEOME FOLDING PROJECT

KEVIN DREW,

LARS MALMSTROEM,

GLENN BUTTERFOSS,

RICHARD BONNEAU

ROSETTA COMMONS

Motivation: Genome Annotation

Shibu Yooseph et al. 2007 Plos Biology

Background: Quick Example

Bacteriocin AS-48, Casp 4

1E68

Sequence:

MAKEFGIPAAVAGTVLNVVEAGGW VTTIVSILTAVGSGGLSLLAAAGRES IKAYLKKEIKKKGKRAVIAW

4%=

GYFCESCRKIIQKLEDMVGPQPNEDTVTQAAS QVCDKLKILRGLCKKIMRSFLRRISWDILTGKKP QAICVDIKICKE

1NKL

Structure:

Function:

Cyclic Bacterial Lysin

NK Lysin

7

Bonneau, R., Tsai, J., Ruczinski, I., Baker, D. Functional Inferences from Blind ab Initio Protein Structure Predictions. J. Structural Biology. (2001)

PLASMODIUM

SBRI TOP CANDIDATES FOR VACCINE

FOR PREVENTING PREGNANCY

MALARIA

ARABIDOPSIS EXAMPLE:

RPT3

1: COFACTOR

2: POINT OF MUTATION CAUSING

DIFFERENTIAL RESPONSE TO MORPHOGEN

Wednesday, June 24, 2009

Distant Multi-template fold recognition for Toll receptors

We demonstrate that mouse and human TLR5 discriminate between different flagellins, and we use this difference to map the flagellin recognition site on TLR5 to 228 amino acids of the extracellular domain. Through molecular modeling of the TLR5 ectodomain, we identify two conserved surface-exposed regions. Mutagenesis studies demonstrate that naturally occurring amino acid variation in TLR5 residue 268 is responsible for human and mouse discrimination between flagellin molecules. Mutations within one conserved surface identify residues D295 and D367 as important for flagellin recognition. These studies localize flagellin recognition to a conserved surface on the modeled TLR5 structure, providing detailed analysis of the interaction of a TLR with its ligand. These findings suggest that ligand binding at the β sheets results in TLR activation and provide a new framework for understanding TLR-agonist interactions.

E Andersen-Nissen, R Bonneau, R Strong, A Aderem Journal of Experimental Medicine, 2007

Lars Malmstroem

Rosetta

Non-local mar and 15 Interactions **Local Sequence** Bias

Kevin Drew, Chivian, D., Bonneau, R. Ab initio structure prediction. (In) Bourne, P.E. (2007) Structural Bioinformatics (Methods of Biochemical Analysis, V. 44). New York: John Wiley & Sons; ISBN: 0471201995. Second Edition.

Rosetta

Kevin Drew, Chivian, D., Bonneau, R. Ab initio structure prediction. (In) Bourne, P.E. (2007) Structural Bioinformatics (Methods of Biochemical Analysis, V. 44). New York: John Wiley & Sons; ISBN: 0471201995. Second Edition.

Rosetta Fragment Libraries

- 25-200 fragments for each/every 3 and 9 residue sequence window (overlapping)
- Selected from database of known structures
 > 2.5Å resolution
 < 50% sequence identity
- Ranked by sequence similarity and similarity of predicted and known secondary structure
- Fragments restrict search to protein-like local conformations
- Sequence similar or exact sequence **BUT** not long enough that the similarity is attributable to evolution (not homologous strictly speaking).

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

fragments (local interactions)

Wednesday, June 24, 2009

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2° structure pairing terms (H-bonds)

radius of gyration

packing density

Implicit terms

fragments (local interactions)

Scores selected to discriminate "near native structures for "non native":

Relative direction (ϕ, θ)

Relative H-bond orientation (hb)

Distance (r, $r\sigma$)

Number of sheets given number of strands

Helix-Strand Packing

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

radius of gyration

packing density

Implicit terms

fragments (local interactions)

$$RG = \sqrt{\left\langle d_{ij}^{2} \right\rangle}$$

Density = $\sum_{i} \sum_{sh} -\ln \left[\frac{P_{compact}(neighbors_{i,sh})}{P_{random}(neighbors_{i,sh})} \right]$

Used in earlier stages and for filtering

High resolution:

Process of Obtaining Structures

- Split proteins into domains (ginzu, Chivian) (chop, Rost)
- 2. Find domains we can annotate using Rosetta
- 3. Fold remaining domains using Rosetta on IBM's World Community Grid

180,000 domains folded from 120 genomes

BIG caveat emptor: all results from this point for <u>domains</u> < 170 aa

WORLDCOMMUNITYGRID.ORG &

GRID.ORG

COLLABORATORS: LARS MALMSTROEM, VIKTORS BERSTIS, MIKE RIFFLE, LEROY HOOD, DAVID BAKER

COMPLETED AND ONGOING PROJECTS

BACTERIAL AND ARCHAEA:

BONNEAU, & BALIGA. (2004)GENOME BIOLOGY: ANNOTAION OF HALOBACTERIUM NRC-1 IDENTIFICATION OF TRANSCRIPTION FACTORS ROLE OF CHEMOTAXIS SENSING DOMAINS

YEAST:

MALSTROEM, BAKER, BONNEAU (2006) PLOS BIOLOGY

HUMAN & OTHERS:

BONNEAU, MALSTROEM, IBM: HUMAN AND OTHERS (IN PROGRESS)

overview of approach

overview of approach

overview of approach

- 1. Structure (MCM) Score
- 2. Training Set (attaching structure to GO)

- Naïve Bayes with continuous SF prob
- Naïve Bayes with GO terms

Mammoth Confidence Metric (MCM)

- Compare Cluster Representatives
 to PDB Structures
- MCM Score [0...1] probability
- based on:
 - Quality of match
 - Rosetta quality
 - Length ratio of PDB and cluster rep
 - Contact Order

ф.,

$$\log \left(\frac{P_{_{MCM}}}{1 - P_{_{MCM}}} \right) = a \cdot zscore + b \cdot CO + c \cdot converg + d \cdot \left| \log \left(\frac{L_{_{Astral}}}{L_{_{predicted}}} \right) \right| + C$$

$$P(sf)_{mcm} = 1 - \prod_{k=1}^{n} (1 - p_k)$$

Wednesday, June 24, 2009

8.# 8.#

16

Gene Ontology (GO) & Training Data

- Function, Process, Localization terms
- 1.6 million sequences with annotations
- BLAST astral sequences to GO sequences (astral = pdb w/ SCOP SF)
- Cluster using CD-hit to reduce redundancy
- Cluster again using genome of benchmark sequences and remove matches

17

Naïve Bayes

y = molecular function and **x** = {sf, bp, cc}

$$LL_X = log\left(\frac{P(y = TRUE)}{P(y = FALSE)}\right) + \sum_{j=1}^d log\left(\frac{P(x_j|y = TRUE)}{P(x_j|y = FALSE)}\right)$$

Naïve Bayes w/ Superfamilies

How to take continuous probabilities of SF (by way of mcm scores)
 – we weight log-likelihood by the mcm scores:

$$LL_{PLS} = log\left(\frac{P(MF)}{P(\bar{M}F)}\right) + \sum_{i=1}^{N} \left[P_{mcm}(sf_i) * log\left(\frac{P(sf_i|MF)}{P(sf_i|\bar{M}F)}\right)\right] + \sum_{j=P,L} log\left(\frac{P(x_j|MF)}{P(x_j|\bar{M}F)}\right)$$

Naïve Bayes w/ GO terms

- Problem: Go terms are not independent
 - if we use all terms annotated to a sequence we end up double counting
- Solution: pick a term that will be predictive
 - Mutual information between term and MF

$$I(F;Y) = \sum_{f \in F} \sum_{y \in Y} P(F = f, Y = y) \log \frac{P(F = f, Y = y)}{P(F = f)P(Y = y)}$$

Results: Solved Structures

How accurate are we when we predict SCOP Superfamily for PDB Structures?

histogram of scop_benchmark : 565 true / 988 total

grey = all mcm scores, cadetblue = correct based on since solved, KS-test: D= 0.5 p-value= 0e+00

Results: Since Solved Structures (2005)

How accurate are we when we predict SCOP Superfamily for Swissprot Proteins?

histogram of swissprot_benchmark : 3709 true / 6143 total

grey = all mcm scores, seagreen = correct based on since solved, KS-test: D= 0.67 p-value= 0e+00

count

Results: Bayes Function Prediction (Swissprot Benchmark)

How accurate are our function predictions using structure only?

Histogram of Function Prediction for swissprot_benchmark : s predictors

Results: Bayes Function Prediction (Swissprot Benchmark)

How accurate are our function predictions using GO process & structure?

Histogram of Function Prediction for swissprot_benchmark : ps predictors

RESULTS: HPF:

VESICLE TRANSPORT

VAM6/ YDL077C: Vacuolar protein that plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine nucleotide exchange on small guanosine triphosphatase Ypt7p.We find the following: (domain1) unknown (domain 2) Rosetta hit to Polynucleotide phosphorylase/guanosine pentaphosphate synthase (PNPase/GPSI), domain 3 (domain 3) Clathrin proximal leg (domain 4) Rosetta de novo hit to Hemerythrin (domain 5) Rosetta hit to SAM/ Pointed domain.

VPS29: Endosomal protein that is a subunit of the membrane-associated retromer complex essential for endosome-to-Golgi retrograde transport; forms a subcomplex with Vps35p and Vps26p that selects cargo proteins for endosome-to-Golgi retrieval. But, with this context so well defined, there is still no molecular function known, that is to say there is no precise mechanistic role known for this protein. We find a strong hit to Mre11 (a double stranded mismatch repair protein, metal dependent phosphotase for domain 1 and a strong Rosetta hit for domain 2 to the PUA-domain like fold (implicated in RNA binding OR ATP sulfurylase N-terminal domain). The fold predictions are as confident as we ever see (MCM = 0.95, psiblast evalue to domain 1 hit Z = 13.).

