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Cancer research

• Find oncogenes and tumor suppressors
• If these are known we better understand 
mechanisms of cancer

• We can devise better targeted treatments• We can devise better targeted treatments
• Exploit viral integration in model systems to hunt 
for oncogenes and tumor suppressors



Virus

Experimental overview

Mouse genome

Harvest tumors
Locate insertion loci
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What happens in a tumor?

• But, non-causal insertions ‘piggy-back’ 

Require that insertion occurs frequently across tumors



Cancer genes: common insertion sites
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Common insertion sites (2)

CIS? CIS?

• Common Insertion Site (CIS):
Region in the genome hit by viral inserts in multiple 
independent tumors significantly more than expected.

• CISs can be different sizes



Finding cancer genes and cancer pathways

• Cancer genes:
– genes individually frequently ‘hit’

• Cancer gene ‘pairs’:
– pairs of genes frequently ‘hit’ in a specific pattern– pairs of genes frequently ‘hit’ in a specific pattern
– (a gene and a family of genes frequently hit)
– Co-operating, mutually exclusive

• Cancer pathways/networks
– groups of genes frequently ‘hit’ in a specific pattern



Previous approaches: Poisson model
W base pairs

Genome of G base pairs

b insertions

• Background model: insertions uniformly distributed
• k = Number of insertions in a window of W base pairs
• k ∼ Poisson(W;λ)
• λ = Average number of insertions in W base pairs ≈ b/G
• Compute when the number of insertions exceeds the background, 
at a fixed α-level
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Previous approaches (3)

Choose significance level: α

b: screen size

W: genomic window



Previous approaches (3)

• Large datasets (large b) → more FPs
• To reduce FPs, reduce window size, W
• Undesirable error control, window size is a biological 
parameter 

• Desirable: decouple error control and scale

α=                                   
α=

• Desirable: decouple error control and scale



Goal

1. Evaluates significance at any desired scale
2. Keeps control of the error
3. Compensates for background biases

Develop a framework to analyze insertional 
mutagenesis data which:

3. Compensates for background biases



Kernel convolution framework

Main ingredients:
1. Kernel smoothing 

1. smoothed count 
2. alleviates data sparseness
3. models effect of insertion on neighborhood3. models effect of insertion on neighborhood

2. Permutation scheme to keep the FWE under control
3. Scale space: vary kernel width to vary smoothing
4. Background model



Kernel convolution framework
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De Ridder et al. 2006, PLoS Comput Biol. 2(12): e166.
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RTCGD Results

• Cdkn2a-/- have a 
notable bias towards 
sub-CIS1 and sub-CIS3

• Functionality of sub-CISs



Background correction

• MLV favors integration near TSS
• TSS may be a predictor for hot spots. 
• Background model:

– locations of the 5’ ends of ENSEMBLE genes (should – locations of the 5’ ends of ENSEMBLE genes (should 
be ‘active’ genes)

• There are more (unknown) factors influencing 
the selective behavior



Background correction (2)



Kernel function

• Many possibilities
• We consider Gaussian, Triangular, Rectangular



Artificial data

Goal:
– Evaluate kernel functions
– Characterize error properties

Experiment:
– Uniform background (400 insertions on 2.6 x 108 bp genome)
– One CIS locus:

• uniform distribution 
• WCIS [100bp – 100kbp] wide
• NCIS insertions in a window

– Insertion frequency slightly higher in CIS locus
– For each setting, 500 artificial datasets were generated.



Definitions

• TP: detection of artificial CIS (overlap of 
estimated and artificial CIS)

• FP: detection of all other CISs



Results (2)
F
al
se
 p
os
iti
ve
 r
at
e

F
al
se
 p
os
iti
ve
 r
at
e

Method scale parameter

F
al
se
 p
os
iti
ve
 r
at
e

F
al
se
 p
os
iti
ve
 r
at
e

Method scale parameter



Results (1)
F
al
se
 p
os
iti
ve
 r
at
e

Method scale parameter

F
al
se
 p
os
iti
ve
 r
at
e

Method scale parameter



F
al
se
/tr
ue
 p
os
iti
ve
 r
at
e

False positives True positives
F
al
se
/tr
ue
 p
os
iti
ve
 r
at
e

Method scale parameter



Results (4)

• All kernels control error at 5%-level 
for all scales 

• The GKC controls at an average    
of 5% 

• TKC and especially the RKC are 
more conservative

• GKC has constant control across 
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• GKC has constant control across 
scales

• Discrete nature of RKC causes 
non-uniform control
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Results (5)

• Conservativeness results in 
lower TPs

• Max TP at scale that 
matches CIS width (‘blue 
shift’)
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• Range of scales where CIS 
is detected is largest for 
GKC

• Measure of robustness Tr
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Summary

• GKC shows 
– Some advantage on positional accuracy
– consistent error distribution across scales 

• Therefore, use the GKC to analyze the data from 
the RTCGD (Retroviral Tagged Cancer Gene 
Database)



RTCGD

• Retroviral Tagged Cancer Gene Database
• RTCGD contains 1076 tumors, 4K inserts
• Various genetic backgrounds
• Various methods to define CISs• Various methods to define CISs



Results

Simulation results:
• Framework suitable for large datasets
• Decoupled error control and window size

RTCGD resultsRTCGD results
• We find only 160, but at a guaranteed FWE
• 10 novel CISs over RTCGD. 
• 6 of these due to integral analysis.
• Mikkers et al. CIS definition 
(2 inserts in 26kb) → 451 CISs

• 244 (54%) are estimated to be false                           
detections with MC 



Mutapedia results
(500 tumors, ~11K insertions, ~300 CISs, p < 0.05)
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Finding cancer genes and cancer pathways

• Cancer genes:
– genes individually frequently ‘hit’

• Cancer gene ‘pairs’:
– pairs of genes frequently ‘hit’ in a specific pattern– pairs of genes frequently ‘hit’ in a specific pattern
– (a gene and a family of genes frequently hit)
– Co-operating, mutually exclusive

• Cancer pathways/networks
– groups of genes frequently ‘hit’ in a specific pattern



Cancer pairs: 
Common co-occurrence of insertions

Tumor 1

Tumor 2

Tumor 3

Tumor 4

Co-occurrence?

Harvest tumors
Locate insertion loci



The co-occurrence space
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The co-occurrence space

a

b

IC: Insertion co-occurrence

ab



The co-occurrence space

CCI: Common co-occurrence

of insertions 

IC: insertion co-occurrence
CCI: Common Co-occurrence 
of Insertions

CCI: region in the co-
occurrence space hit by 
viral inserts in multiple viral inserts in multiple 
independent tumors 
significantly more than 
expected.

IC: Insertion co-occurrence



CCI

2D Gaussian Kernel Convolution

Need to find this 
threshold



Permutation procedure
Randomly permute all 

insertions within tumors Map permuted insertions to ICs 

in the co-occurrence space

Peak heightApply 2D Gaussian Kernel Convolution

α

Set CCI threshold



RTCGD result (1076 tumors, 4K inserts)
(Retroviral Tagged Cancer Gene Database)

de Ridder et al. (2007) Bioinformatics 23; i133-i141.



Building a scale space

scale

g1

g2



Scale space for 2D GKC: Myb-Gfi1

MybGfi1



Scale space for 2D GKC: Rasgrp1-Cebpb

Cepbp
Rasgrp1



Finding cancer genes and cancer pathways

• Cancer genes:
– genes individually frequently ‘hit’

• Cancer gene ‘pairs’:
– pairs of genes frequently ‘hit’ in a specific pattern– pairs of genes frequently ‘hit’ in a specific pattern
– (a gene and a family of genes frequently hit)
– Co-operating, mutually exclusive

• Cancer pathways/networks
– groups of genes frequently ‘hit’ in a specific pattern



Cooperating genes and families

oncogene 2oncogene 1

Gene family

• Genes cooperate interchangeable
• Example: Myc and the Pim-Family
• Exploit this to detect more interactions

TUMOR



Family-mapped CCI
Myc and the Pim family

Pim family

Myc



Family-mapped CCI
Sox4 and the Cyclin dependent kinases family

Cyclin dependent 

kinases family

Sox4
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