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m ML, bias
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m  Keepitsimple...
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B Reveal biological processes



Gene signatures for outcome prediction
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(Gene expression signatures
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Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by
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Class Prediction by Gene
Expression Monitoring
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Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12:21)(p13:q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8:21)(q22;922) occurs in
15% of patients with AML (7).

Although the distinction between AML
and ALL has been well established, no single
test 1s currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.
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Guyon et al. (2002) Mach. Learn. 46, 389-422.
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Other cases of selection bias

1. Xiong et al. Genome Research, 2001,

m 10.7%vs. ~15% Colon;
m 0%\ ~5%Leukemia

2. Zhangetal. PNAS, 2001,
B 2%\Vs. ~15%Colon

3. Guyon et al. Machine Learning, 2002;
B (%\Vs ~15%Colon

4. Grate et al. WABI, 2002.
B 1% vs. ~35% /8 BC tumors!



Selection bias in gene extraction on the basis of
microarray gene-expression data
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In the context of cancer diagnosis and treatment, we consider the
problem of constructing an accurate prediction rule on the basis of
a relatively small number of tumor tissue samples of known type
containing the expression data on very many (possibly thousands)
genes. Recently, results have been presented in the literature
suggesting that it is possible to construct a prediction rule from
only a few genes such that it has a negligible prediction error rate.
However, in these results the test error or the leave-one-out
cross-validated error is calculated without allowance for the se-
lection bias. There is no allowance because the rule is either tested
on tissue samples that were used in the first instance to select the
genes being used in the rule or because the cross-validation of the
rule is not external to the selection process; that is, gene selection
is not performed in training the rule at each stage of the cross-
validation process. We describe how in practice the selection bias
can be assessed and corrected for by either performing a cross-
validation or applying the bootstrap external to the selection
process. We recommend using 10-fold rather than leave-one-out
cross-validation, and concerning the bootstrap, we suggest using
the so-called .632+ bootstrap error estimate designed to handle
overfitted prediction rules. Using two published data sets, we
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Fisher’s linear discriminant function is singular if n < g + p.
Second, even if all the genes can be used as, say, with a
Euclidean-based rule or a support vector machine (SVM; refs. 9,
16, and 17), the use of all the genes allows the noise associated
with genes of little or no discriminatory power, which inhibits
and degrades the performance of the rule R in its application to
unclassified tumors. That is, although the apparent error rate
(AE) of the rule R (the proportion of the training tissues
misallocated by R) will decrease as it is formed from more and
more genes, its error rate in classifying tissues outside of the
training set eventually will increase. That is, the generalization
error of R will be increased if it is formed from a sufficiently large
number of genes. Hence, in practice consideration has to be
given to implementing some procedure of feature selection
for reducing the number of genes to be used in constructing the
rule R.

A number of approaches to feature-subset selection have been
proposed in the literature (18). All these approaches involve
searching for an optimal or near optimal subset of features that
optimize a given criterion. Feature-subset selection can be
classified into two categories based or whether the criterion
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‘Out-of-the-loop’ gene selection
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‘Out-of-the-loop’ gene selection
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On a ‘no-Information’ dataset
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NKI 70 gene signature

Gene expression profiling predicts
clinical outcome of breast cancer
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Brmst cancer patients with lhc same sl.ig,c of dlsf."lsc can have
markedly different treatment responses and overall outcome. The
strongest predictors for metastases (for example, lymph node
status and histological grade) fail to classify accurately breast
tumours according to their clinical behaviour'=. Chemotherapy
or hormonal therapy reduces the risk of distant metastases by
approximately one-third; however, 70-80% of patients receiving
this treatment would have survived without it**. None of the
signatures of breast cancer gene expression reported to date®™"
allow for patient-tailored therapy strategies. Here we used DNA
microarray analysis on primary breast tumours of 117 young
patients, and applied supervised classification to identify a gene
expression signature strongly predictive of a short interval to
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tumours are the dominant feature in this two-dimensional display
(top and bottom of plot, representing 62 and 36 tumours, respec-
tively), suggesting that the tumours can be divided into two types on
the basis of this set of ~5,000 significant genes. Notably, in the
upper group only 34% of the sporadic patients were from the group
who developed distant metastases within 5 vears, whereas in the
lower group 70% of the sporadic patients had progressive disease
(Fig. 1b). Thus, using unsupervised clustering we can already, to
some extent, distinguish between ‘good prognosis’ and “poor prog-
nosis’ tumours.

To gain insight into the genes of the dominant expression
signatures, we associated them with histopathological data; for
example, oestrogen receptor (ER)-a expression as determined by
immunohistochemical (IHC) staining (Fig. 1b). Out of 39 IHC-
stained tumours negative for ER-o expression (ER negative), 34
clustered together in the bottom branch ofthe tumour dendrogram.
In the enlargement shown in Fig. 1¢, a group of downregulated
genes is represented containing both the ER-a gene (ESRI) and
genes that are apparently co-regulated with ER, some of which are
known ER target genes. A second dominant gene cluster is asso-
ciated with lvmphocytic infiltrate and incudes several genes
expressed primarily by B and T cells (Fig. 1d).

Sixteen out of eighteen tumours of BRCA[ carriers are found in
the bottom branch intermingled with sporadic tumours. This is
consistent with the idea that most BRCAI mutant tumours are ER
negative and manifest a higher amount of lymphocytic infiltrate®.
The two tumours of BRCAZ2 carriers are part of the upper cluster of
tumours and do not show similarity with BRCAI tumours. Neither
high histological grade nor angioinvasion is a specific feature of
either of the dusters (Fig. 1b). We conclude that unsupervised
clustering detects two subgroups of breast cancers, which differ in

FR statne and lvmnhacvtic infiltratinon A similar conclugsinn hag
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NKI 70 gene signature

70 genes; Nearest centroid classifier (cosine)
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Validation on series of 295 patients

Poor-ProGgNoOsIs Goob-PROGNOSIS

: SIGNATURE SIGNATURE P
All Patients CHARACTERISTIC (N=180) (N=115) VALUE
1.0 no. of patients (%)
Age <0.001
& <40 yr 52 (29) 11 (10)
= 0.8+ 40-44 yr 41 (23) 44 (38)
T O Good signature 45-49 yr 55 (31) 43 (37)
= o =50 yr 32 (18) 17 (15)
o No. of positive nodes 0.60
.o 0.6 0 91 (51) 60 (52)
S @ 1-3 63 (35) 3 (37)
=5 : = 26 (14) 12 (10)
=3 0.44 Poor signature Tumor diameter 0.012
a2 =20 mm 84 (47) 71 (62)
T = >20 mm 96 (53) 44 (38)
'8 Histologic grade <0.001
= 0.2- P<0.001 I (good) 19 (11) 56 (49)
o I (intermediate) 56 (31) 45 (39)
III (poor) 105 (58) 14 (12)
0.0 Vascular invasion 0.38
. ) I ) ) I 1 Absent 108 (60) 77 (67)
0o 2 4 6 8 10 12 1-3 Vessels 18 (10) 12 Eloj
Years >3 Vessels 54 (30) 26 (23)
Estrogen-receptor status <0.001
Negative 66 (37) 3(3)
Positive 114 (63) 112 (97)
Surgery 0.63
Breast-conserving therapy 97 (54) 64 (56)
Mastectomy 83 (406) 51 (44)
Chemotherapy 0.79
No 114 (63) 71 (62)
. Yes 66 (37) 44 (38)
van de Vljver M et al. N. Engl J. Med. 2002; Hormonal therapy 0.63

Yes

) No 157 (87) 98 (85)



Validation on series of 295 patients

E Lymph-Node-Positive Patients F Lymph-Node-Positive Patients
1.0 1.0 -
- Good signature
£ 0.8 1 0.8
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MNo. AT Risk No. AT RisK
Good signature 55 54 53 42 28 14 7 Good signature 55 55 54 43 30 19 11
Poor signature 83 74 56 43 26 16 8 Poor signature B89 81 68 &0 29 19 9

van de Vijver M et al. N. Engl. J. Med. 2002; 347: 1999-20009.



Comparison (Nested Cross-validation)

Repeat 100 times
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Wessels et al. (2005) Bioinformatics 21(19):3755-62




Simple approaches perform best

Reporter selection Predictor T (%) T (%) V (%) V (%) k* W D L
Mean SD Mean SD

Filter NMC 64.3 3.8 62.7 3.1 92 152 6 142
DLDC 62.3 39 60.6 3 88 119 9 172
SBGC 60.8 42 59.7 3 69 103 6 191
INN 61.2 4 60.3 3.5 95 109 4 187
SNN 612 4 593 35 102 108 4 188
9NN 60.7 42 588 33 88 90 4 206
RF1L.D[0] 61.1 56 592 4 96 97 3 200
RFLD[1] 61.8 5.6 60.7 38 93 117 4 179
RFLD[10] 63.4 4 618 3.1 86 132 4 164
LinSVC 60.6 43 60.6 3. 102 111 2 187

PLS NMC 62.5 3.1 61.7 22 12.4 138 4 158
DLDC 61.6 3.6 60.1 32 12.4 116 3 181
SBGC 612 39 58 3.6 10.7 92 2 206
INN 56.6 29 51.9 3.6 10.1 29 1 270
5NN 56.7 3 527 3 89 29 1 270
9NN 56 3 52.5 2.7 8.4 30 0 270
RFLD|O] 59.5 3.5 55.7 35 9.2 67 2 231
RFLDJ[1] 59.5 3.5 55.7 34 9.2 66 3 231
RFLD[10] 60.8 3.6 58.6 32 11.6 89 4 207
LinSVC 59.2 3.7 564 32 12.1 64 2 234

SC SC 65 3.4 62.9 1.9 909 — — —

RFE LinSVC 62.8 3.8 59.8 34 648 107 4 189




Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer

Yixin Wang, Jan G M Kijn, YiZhang Anieta M Sievwerts, Maxime PLook, Fei Yang, Dmitri Talantov, Mieke Timme mans, Lancer 2005; 365: 671-79
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Methods We analysed, with Affymetrix Human U133a § .
RNA of frozen tumour samples from 236 lymph-node-if Study profile
treatment.

286 patients

Findings In a training set of 115 tumours, we identified
positive for oestrogen receptors (ER) and 16 genes for ER

and 48% specihicity in a subsequent independent testing ¢ ¢
was highly informative in identifying patients who deve
[959 CI 2.59-12.4]), even when corrected for tradi 209 patients had ER 77 patients had ER
[2- 46-12- 5]). The 76-gene profile also represented a str =10 fmol per =10 fmol per
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recurrence. The ability to identify patients who hj
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Introduction Validiticn
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Gene-expression profiles to predict distant metastasis of

lymph-node-negative primary breast cancer
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Summary

Background Genome-wide measures of gene expression can identify patterns of gene activity that subclassify
tumours and might provide a better means than is currently available for individual risk assessment in patients

with lymph-node-negative breast cancer.

Methods We analysed, with Affymetrix Human U133a
ENA of frozen umour samples from 286 lymph-node-n
treatment.
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positive for oestrogen receptors (ER) and 16 genes for ER-
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[2- 46-12- 5]). The 76-gene profile also represented a stror

the subgroups of 84 premenopausal patients (9. 60 [2- 25
and 79 parients with tumours of 10-20 mm (14-1 [3.3

prognosis is especially difficult.

Interpretation The identified signature provides a pu:-wer:]

recurrence. The ability to identify patients who h
conhrmation, allow clinicians to avoid adjuvant systemic

Introduction
About

'if]-'l .|1_r1-1-1n.|l1 nnf']-:h Fiaratire

Lancer 2005; 365: 671-70
Se Comiment page 634

Werldex LLC. a Johnson &
Jehnsan Cornpanmy, San Dlego,
A USA (v'Wang Ph: ¥ Zhang
PhO, Fyang Msc D Talanmoe FAD,
10 PhD, T jarkoe BSc); Verldes
LL a Johnson & johnson

Company. Warren, NY, LISA
S : .

Study profile

286 patients

v

v

breast]
alone.

-1 -

Overlap of 1 gene with the 70 genes
|

76-gene set

209 patients had ER 77 patients had ER
=10 fmol per =10 fmol per
mgq protein mg protein
80 patients 35 patients 171 patients
(training) (training) (testing)
U Bootstrapping U
\ Gene selection
Validation



Lancet 2005; 365: 488-92

See Comment page 454
Biostatistics and Epidemiology
Unit (5 Michizls M5c, 5 Kosciglny
FhD, € Hill PhD), Functional
Genomics Unit (5 Michiels), and
Inserm UG0S (5 Koscielny),
Institut Gustave Roussy,
Villejuif, France
Comespondence to:

DrSenge Koscielrny, Biostatistics
and Epidemiclogy Unit, Institut
Gustave Roussy, 39 nue Camille
Desmoulins, 94805 Villgjuif,
France

koscielny@igr.fr

Prediction of cancer outcome with microarrays: a multiple
random validation strategy

Stefan Michiels, Serge Koscielny, Catherine Hill

Summary

Background General studies of microarray gene-expression profiling have been undertaken to predict cancer
outcome. Knowledge of this gene-expression profile or molecular signature should improve treatment of patients by
allowing treatment to be tailored to the severity of the disease. We reanalysed data from the seven largest published
studies that have attempted to predict prognosis of cancer patients on the basis of DNA microarray analysis.

Methods The standard strategy is to identify a molecular signature (ie, the subset of genes most differentially
expressed in patients with different outcomes) in a training set of patients and to estimate the proportion of
misclassifications with this signature on an independent validation set of patients. We expanded this strategy
(based on unique training and validation sets) by using multiple random sets, to study the stability of the
molecular signature and the proportion of misclassifications.

Findings The list of genes identified as predictors of prognosis was highly unstable; molecular signatures strongly
depended on the selection of patients in the training sets. For all but one study, the proportion misclassified
decreased as the number of patients in the training set increased. Because of inadequate validation, our chosen
studies published overoptimistic results compared with those from our own analyses. Five of the seven studies
did not classify patients better than chance.

Interpretation The prognostic value of published microarray results in cancer studies should be considered with
caution. We advocate the use of validation by repeated random sampling.

Introduction

The expression of several thousand genes can be studied
simultaneously by use of DNA microarrays. These
microarrays have been used in many specialties of
medicine. In oncology, their use can identify genes with
different expressions in tumours with different
outcomes.** These gene-expression profiles or molecular
signatures are expected to assist in the selection of

guidelines (Minimum Information About a Microarray
Experiment®). This approach offers an opportunity to
propose alternative analyses of these data. We have taken
advantage of this opportunity to analyse different datasets
from published studies of gene expression as a predictor
of cancer outcome. We aimed to assess the extent to
which the molecular sighature depends on the
constitution of the training set, and to study the



Studies evaluated

Outcome prediction based on gene expression

Author Tumor type Classlabel

Rosenwald Non-Hodgkin lymphoma Survival

Yeoh Acute lymphocytic leukaemia  Relapse-free survival

van 't Veer Breast cancer 5-year metastasis-free survival
Beer Lung adenocarcinoma Survival
Bhattacharjee/Ramaswamy 7 Lung adenocarcinoma 4-year survival

Pomeroy Medulloblastoma Survival

lizuka Hepatocellular carcinoma 1-year recurrence-free survival




Michiels et al. Lancet 2005. Results |

Proportion of misclassifications

Proportion of misclassifications
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Repeated Random Resampling (1)
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Validation set: Validate
25% (stratified) classifier
1
Training set: L Rank genes USZr:gF)Zgg’ t%)OO
75% (stratified) onSNR : .
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\ 4
500
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(gene sets)




Repeated Random Resampling (2)

: S0 Create histogram based on Select the ‘GOLD
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Genes

Michiels et al. Lancet 2005. Results |

Study by van 't Veer and colleagues?
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Michiels et al. Lancet 2005. Findings:

m The list of geneswas highly unstable

m signaturesstrongly depended on the selection of
patients

m proportion misclassified decreased as# patients
Increased

m published overoptimistic results (inadequate
validation)

m 5/7 did not classify patients better than chance.



Michiels et al. Lancet 2005. Conclusions:

m ‘The prognostic value of published microarray
results in cancer studies should be considered with
caution.’

m ‘We advocate the use of validation by repeated
random sampling’.



How good is the gold standard?

Veer 231 genes

B True gene set not known
m Design artificial dataset with known ranking



Artificial data

m 2-classes
m classconditional: Normal distributions, N(u,1)
B genesassumed to be independent

True means

Mean of a gene

0 1000 2000 3000 4000 5000

Gene rank



Experiment on artificial data (2)

m p=5000 genes (2500 informative)
m n=200samples (100 per class)

Most informative
Least Informative
> Uninformative
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Samples

150

200

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Genes



Experiment on artificial data (3)
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Artificial data: gene selection results
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From subsets to datasets

m  When sampling from one BC dataset, Michiels observed signature
Instability
We currently have 6 BC datasets totaling 947 samples
BC datasets are resamplings from the BC population.
Limited signature overlap =signature instability when
subsampling
m  Given 947 samples:
m ML pool the data
m Heterogeneity of data may be detrimental
m Investigate effects of pooling on performance, signature stability

m First look at pooling of 6 artificial datasets sampled from the
artificial model



Pooling 2 artificial datasets
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Pooling 2 artificial datasets

Double Loop Cross
Validation Error
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Pooling 1 to 6 artificial datasets

1.07e-024

Correlation between the number of datasets pooled and DLCV error: Pearson=—0.91 p
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Pooling 1 to 6 artificial datasets

0.85 p=1.83e—-018

Correlation between the number of datasets pooled and the number of genes in the signatures: Pearson
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Pooling 1 to 6 artificial datasets

0.85 p=1.83e—-018

Correlation between the number of datasets pooled and the number of genes in the signatures: Pearson
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2008: Seven breast cancer datasets

B Six datasets (all Affymetrix HG U133A)

B Same pre-processing applied

m  Overlapping samples discarded

m  Seventh dataset used for validation (Vijver et al.)

Publication: Label Survival Total
Desmedt et al. Des DMFS 147
Minn et al. Min DMFS 96
Miller et al. Mil SOS 247
Pawitan et al. Paw SOS 156
Loi et al. Loi DMFS 178
Chinet al. Chi DMFS 123

Total number of samples: 947




Pooling 2 breast cancer datasets

Significant synergy: 11/15 improved performance



Pooling 1 to 6 breast cancer datasets

3.95e-002

-0.26 p

Correlation between the number of datasets pooled and DLCV error: Pearson:
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Choice of classifier (1)

Tested classifiers:

m Nearest mean classifier
m K-Nearest Neighbor (3-NN)
m Support Vector Machine classifier (SVM)

ney all show the same trends: pooling leads to a
better classifier



Cholice of classifier (2)

m Previous work: Nearest mean classifier performs best.
m  Non-linear classifiers should benefit from more samples...

Performance using pooled combination of all six datasets

DLCV Validation on Vijver data
0.4 - : . .

0.4
038 038}
z z
L 036/ L 036
Lo L
) o
E 0.34 | E 0.34}
w ]
0.32} 0.32}
0.3 0.3
NMC  KNN  SVM NMC  KNN  SVM

Nearest mean classifier remains the best option



Pooling 1 to 6 breast cancer datasets

1.85e-003

Correlation between the number of datasets pooled and the number of genes in the signatures: Pearson=0.38 p:
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Signatures fram each combination of pooled datasets
Enrichment p-values, Bonferronl comected per signature, for each gene set at least 1 ervichment p<0u05
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4.03e-006

0.54 p=

2 gene sets

Correlation between the enrichment of GO:0007067: mitosis and the number of datasets: Pearson

Functional enrichment
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0.65 p=

Correlation between the enrichment of GO:0003777: microtubule motor activity and the number of datasets: Pearson
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Limited overlap among signatures (1)
Two existing signatures: 1 gene overlap

-lve explanations:

Different platform technologies;

Differences in supervised protocols;

Dissimilar genes, the same pathways;

Clinical composition (i.e. sample heterogeneity);
Small sample size problems

a & w0 D PF



Limited overlap among signatures (2)

Five explanations:
1.  Different platform technologies;
2. Differencesin supervised protocols;

A Signatures from single datasets
100 -

—> Signature ) ) ~log10(P)=2.11
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i i . > Average <
i i | all pairs § w0l
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Reject Explanations 1 and 2.



Limited overlap among signatures (3)

Five explanations:
3.  Dissimilar genes, the same pathways,

Signatures from single datasets
100 :

~log10(P)=0.14

oo
o

(=)}
o

1N
o

[
o

o

Percentage of enriched gene sets in these signatures

1 2
Number of signatures to which

an enriched gene set belongs

Also limited overlap, reject Explanation 3
(When Is a process represented in asignature?)



Limited overlap among signatures (4)

Five explanations:
4.  Clinical compaosition (i.e. sample heterogeneity)

Bvaluation:

1.  Repeat analysis on ER+/ER- subgroups
2. Thesame trends/limited overlap

Reject Explanation 4



Limited overlap among signatures (5)

Five explanations:

5.

Small sample size problems

Pool 2 dataset and compare signatures

~
—» Signature

>
—» Signature

~
—» Signature
>
— Signature
J 1 2

Pool 3 dataset and compare signatures
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Limited overlap among signatures (6)

Five explanations:

5.

Small sample size problems

1 dataset 2 datasets
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Limited overlap among signatures (3)
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Limited overlap among signatures (/)

Five explanation:
5. Small sample size problems

1 dataset 2 datasets
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Conclusions

B Repeated Random Resampling
m Leads to inferior ranking of genes

m Pooling datasets

m Pooling leads to higher accuracy and a convergence of
signature genes

Nearest mean classifier remains the best choice
Limited signature overlap due to small sample size

m Notel: heterogeneity
m Note 2: same processes?

B Toextract sighatures, datasets should be pooled,
rather than analyzed in isolation
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Alternative analysis

m Given large collection of BCsamples

m  Many BC gene expression signatures (outcome)

m Setoutto:

m Compare existing signatures

m Derive new (functional) insights from the large
collection of data



BC prognostic gene signatures

m  Sevenstudies that published signatures

m Nine signatures (two studies with two variants)
m Signatures applied as described in studies

m Allsignatures are claimed to be prognostic

Study Label Detail

Wang et al. Wang Untreated, LN-

Chang et al. CR Core serum response
Carter et al. CIN25/70 Chromosomal Instability
Teschendorff et al. T17/52 ER+

Hu et al. HU Intrinsic genes

Liu et al. IGS Invasiveness signhature

Sotiriou et al. GGl Genomic grade index




Seven breast cancer datasets

m Six datasets (all Affymetrix HG U133A)

m  Same pre-processing applied from raw data

m  Seventh dataset used for validation (NKI 295, Vijver et al.)
m  Outcome: Distant Metastasis Hee Survival (DMFS)

Study Label Total
Desmedt et al. Des 147
Minn et al. Min 96
Miller et al. Mil 247
Pawitan et al. Paw 156
Loi et al. Loi 178
Chinetal. Chi 123

Total number of samples: 947
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Distant metastasis free survival (DMFS)
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Signatures

A

Signature concordance (1)
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Signatures

N

Signature concordance (2)
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Signatures

N

Signature concordance (3)
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Signatures

N

Signature concordance (4)
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Signatures

A

Signature concordance (5)
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Signatures

N

Signature concordance (6)

/% events

St W LT

HER2

-
Wa
GG
CIN25
CIN70 f

CSR|

35% events

IGS |
T17f
 T52f

. l
100 200

IF

l

Good outcome

- Poor outcome




Classification using existing signatures (3)
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Which processes are represented?

®m Limited signature overlap
B Same processes, but different genes

m Enlarging signatures
m  Single gene from processsufficient for prediction, not to
detect enrichment

m  Strengthen this signal by enlarging the signatures with
correlated genes (Spearman rank correlation > 0.7)

m  Chinand Lol as training sets, rest astest set

® Enrichment analysis

m Databases with processinformation (GO, KEGG etc.)
m  Compute enrichment of processes in enlarged signatures



Enrnchment of enlarged signatures

Functional grouping results in 10 modules:

Not enriched
Enriched p<0.05

|GS Enlarged
T52 Enlarged
Wang Enlarged
HU Enlarged
CIN70 Enlarged
GGl Enlarged
CSR Enlarged

N v vV "= C O OO
wn aml <EOCfI
8 3 m"g-d:oc
o = xmﬁ%_
8 £ %2
<C QZ
Q. o

Extracellular Matrix
Antiproliferation
Focal Adhesion



Do all modules have prognostic power?

m Train aclassifier using genes from modules
m Significant separation: p=10-3-10-/ (logrank test)
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Composite classifier

m Bvaluated all pair-wise combinations
m 3 groups.
m concordant good

®m concordant poor
m Discordant

m RNASsplicing - Immune response the best



RNA splicing — Immune classifier

RNA-splicing Immune classifier RNA-splicing Immune classifier
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Conclusions (1)

m Sighature performance issimilar

44% concordance amongst signatures
dentified 10 different functional modules
ndividual modules all have prognostic power
Proliferation Is a strong common denominator

mmune, Proliferation and RNA splicing show best
performance
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Ennchment analysis (1)

m Databases:
m Reactome database
m KEGG
m  Molecular Signatures Database (Broad)
m  Gene ontology database

m Only setswith at least 5 probe sets: 1889 sets
m Benjamini-Hochberg correction
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