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MetabolismMetabolism

• “Sum of all the chemical reactions that take place in every cell of a living 
organism, providing energy for the processes of life and synthesizing new 

( )cellular material.” (Encyclopædia Britannica)
• ≈ conversion of food to products/biomass/work/warmth/…
• divided into catabolism (destructive) and anabolism (constructive)( ) ( )
• substances are called metabolites
• catalysts are called enzymes (needed by practically every reaction)
• certain parts very similar between organisms evolved from the same• certain parts very similar between organisms, evolved from the same 

ancient pathway
• structure very constant, but can be changed e.g. by evolution / genetic 

changeschanges
• only part used at a time

metabolic phenotypes
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Metabolic networks and pathwaysMetabolic networks and pathways

• metabolism forms a network of interconnected metabolites and 
reactionsreactions

• known very well for many organisms
• reconstructions of the whole-cell (genome-wide) metabolism
• e g Saccharomyces cerevisiae 646 metabolites 1149 reactions 1• e.g. Saccharomyces cerevisiae 646 metabolites, 1149 reactions 

• pathways or networks?
• metabolic network: set of metabolites connected by reactions, 

consists of pathwaysp y
• pathway: systems of successive chemical reactions, “set of 

oriented reactions interacting under given physiological 
conditions via simple or apparently simple intermediates” 2
pathways sometimes defined by function / topology /• pathways sometimes defined by function / topology / …

often subjective
• objective definition later

[1] Duarte, N. C, Herrgård, M. J., and Palsson, B. O., “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully 
Compartmentalized Genome-Scale Metabolic Model,” Genome Research, 14(7), 1298-1309, 2004.
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[2] Selkov, E. Jr, Grechkin, Y., Mikhailova, N., and Selkov, E., “MPW: the metabolic pathways database,” Nucleic Acids Research, 
26(1), 43-45, 1998.
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Dummy model of metabolismDummy model of metabolism

• input: substrates (food, e.g. glucose, oxygen, …)
• output: products (biomass, waste, energy, …)
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Inside the black boxInside the black box

• input substances follow conversion routes (pathways) to outputs
• possible routes determined by enzymatic capabilities, reaction 

directionalities
• used (=active) routes depend on available substrates, enzymes, also 

other things
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GlycolysisGlycolysis
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From KEGG (http://www.genome.jp/kegg/)
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Reconstruction of metabolic networksReconstruction of metabolic networks

• central dogma of molecular biology: gene protein
gene• databases

• gene annotation
• biochemical information

gene

• publications, other databases
• identification of enzyme(=protein) coding genes

list of reactions

enzyme

• reconstruction of metabolic network
• result is a structural (stoichiometric) in silico model

• models available from the Internet reaction• models available from the Internet
• KEGG (www.genome.jp/kegg)
• MetaCyc (metacyc.org)

reaction
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Stoichiometry and fluxesStoichiometry and fluxes

• “Determination of the proportions (by weight or number of molecules) in 
hi h l t d t ith th ” (E l diwhich elements or compounds react with one another.” (Encyclopædia 

Britannica)

• stoichiometric coefficients
• elementary and charge balance
• constant
• known for every discovered metabolic reaction
• definition of direction for reversible reactions

• flux: rate of flow of particles
• note: not the same as reaction rate (velocity)
• e.g. the flux from metabolite A to reaction i is avig i
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Stoichiometric matrixStoichiometric matrix

• systems of several reactions described with stoichiometric matrix
• rows correspond to metabolites columns to reactionsrows correspond to metabolites, columns to reactions
• 2A + B → 3C + D => (-2, -1, 3, 1)T

• structure of metabolic network defined by stoichiometric matrix S and 
reversibilities of reactions

• sij is the stoichiometric coefficient of metabolite i in reaction j
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Different metabolic network modelsDifferent metabolic network models
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Levels of modeling metabolic networksLevels of modeling metabolic networks

•structural
l i b b li• only connections between metabolites

•stoichiometric
• proportions of needed metabolites

•kinetic
a b

• dynamics of reactions

a b[ ] [ ]( )BAfv ,=

•regulatory
• effects of e.g. gene regulationeffects of e.g. gene regulation
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Modeling the system boundaryModeling the system boundary

• internal metabolite
i id h b d• inside the system boundary

• factors affecting the concentration are included in the system
• external metabolite

• some factors affecting the concentration not known or excluded from the 
system

• concentration assumed constant
• also called sources or sinks

• internal fluxes
• fluxes whose both sides are inside the system

• exchange flux
• flux capable of transferring material across the system boundaryg y y
• practically the same as a flux going to an external metabolite
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Metabolic pathway analysisMetabolic pathway analysis

• finding a single flux distribution
i l Fl b l l i (FBA)• optimal: Flux balance analysis (FBA)

• suboptimal: Minimization of metabolic adjustment (MOMA)

• determining all the conversion routes (=pathways)
• Elementary (flux) modes (EM / EFM)
• Extreme pathways (EP)

• measuring internal fluxes
• 13C-labelingC labeling
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Steady stateSteady-state

• rate of accumulation1
transiuseiconsiprodi

i rrrr
dt
dc

,,,, ±−−=

• ci concentration, ri rates
• dynamic mass balance equation

S is the stoichiometric matrix

dt

acSv ==
dt
d

• S is the stoichiometric matrix
• v is the reaction rate vector
• c is the concentration vectorc is the concentration vector
• a is the accumulation vector

• a=0
• no accumulation = steady-state (mass balance / flux balance)
• long time scales

l ll l ti ll t t• large cell populations average cell state
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[1] Schilling, C. H., Edwards, J. S., and Palsson, B. O., “Toward metabolic phenomics: analysis of genomic data using 
flux balances,” Biotechnol. Prog., 15, 288-295, 1999.
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Metabolic networks in steady stateMetabolic networks in steady-state

• arrange reaction rate vector 
f ibl i
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rev

v
v

v
• vrev: rates of reversible reactions
• virr: rates of irreversible reactions

• arrange the columns of stoichiometric matrix S (dimension mxr) 

⎦⎣ irrv

accordingly

• the set of vectors v satisfying the steady-state condition                is given =Sv 0
( )as the null-space

• linear basis vectors
• linearly independent, not unique 

( )null=K S

• routes not necessarily minimal

• however, virr ≥ 0, irr
• defines half-spaces in the null-space
• result is a convex polyhedral cone
• convex analysis / polyhedral computation needed
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Metabolic networks in steady state (2)Metabolic networks in steady-state (2)

convex polyhedral cone (flux cone) F
bi i ( ) FF∀ 110 λλλλ• convex combination

•
cone F defined by

( ) FvvFvv ∈−+≤≤∈∀ 2121 1:10,, λλλλ
FvFv ∈≥∈∀ αα :0,

• and virr ≥ 0 (H-representation) or
• combination of generating vectors (also called extreme 

rays) (V-representation)

=Sv 0
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where fk are the irreversible generating vectors and
bj are the reversible generating vectors

⎭⎩ j

• generating vectors unambiguously define the cone
• not necessarily linearly independent
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Flux balance analysisFlux balance analysis

constraints-based modeling
•thermodynamical constraints (irreversibilities)
•maximal capacities of reactions

• from enzyme kinetics

} iii v βα ≤≤

• from measurements
• sets a cap to the flux cone

•steady-state (flux balance) =Sv 0y ( )
•environment (substrates)

• i.e. definition of external metabolites or exchange fluxes

•the solution space
• defined by the constraints

t i f ibl t t f th t b li t k• contains feasible states of the metabolic network
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Flux balance analysis (2)Flux balance analysis (2)

• objective function
i l i d i h i h i

∑=⋅= iivcZ vc
• assumption: evolution drives the organism to the optimum
• e.g. maximal growth

• maximize objective function
• use linear programming
• maximize Z subject to

andiii v βα ≤≤ =Sv 0
• optimal point

• optimal growth rates
• viability of knock-out mutants

optimal solution

y
• screening for possible drug targets
• consistent with experimental results1

diff t h i f bj ti f ti• different choices of objective function
• exploring organism’s capabilities, guiding in metabolic 

engineering
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[1] Edwards, J. S., Ibarra, R. U., and Palsson, B. O., “In silico predictions of Escherichia coli metabolic capabilities are consistent 
with experimental data,” Nature Biotechnology, 19, 125 – 130, 2001.
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Example biomass reaction

(1.1348) 13BDglcn + (0.4588) ala-L + (0.046) amp + (0.1607) arg-L + 
(0 1017) L + (0 2975) L + (59 276) t + (0 0447) + (0 0066)(0.1017) asn-L + (0.2975) asp-L + (59.276) atp + (0.0447) cmp + (0.0066) 
cys-L + (0.0036) damp + (0.0024) dcmp + (0.0024) dgmp + (0.0036) 
dtmp + (0.0007) ergst + (0.1054) gln-L + (0.3018) glu-L + (0.2904) gly + 
(0 5185) glycogen + (0 046) gmp + (59 276) h2o + (0 0663) his L +(0.5185) glycogen + (0.046) gmp + (59.276) h2o + (0.0663) his-L + 
(0.1927) ile-L + (0.2964) leu-L + (0.2862) lys-L + (0.8079) mannan + 
(0.0507) met-L + (0.000006) pa_SC + (0.00006) pc_SC + (0.000045) 
pe SC + (0 1339) phe-L + (0 1647) pro-L + (0 000017) ps SC +pe_SC + (0.1339) phe-L + (0.1647) pro-L + (0.000017) ps_SC + 
(0.000053) ptd1ino_SC + (0.1854) ser-L + (0.02) so4 + (0.1914) thr-L

+ (0.0234) tre + (0.000066) triglyc_SC + (0.0284) trp-L + (0.102) tyr-L + 
(0 0599) ump + (0 2646) val L + (0 0015) zymst(0.0599) ump + (0.2646) val-L + (0.0015) zymst 
(59.276) adp + (58.7162) h + (59.305) phosphate

From N. Duarte, M. Herrgård, and B. Palsson, “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized 
Genome-Scale Metabolic Model,” Genome Research, 14(7):1298-309, 2004.
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FBA: Phenotype phase plane analysisFBA: Phenotype phase plane analysis

• FBA gives only particular solutions
• phenotype phase plane analysis

• select two fluxes and calculate FBA as 
the function of these (by changing the ( y g g
values of       and      )

• dependency of optimal solution on 
some flux constraints

iα iβ

some flux constraints
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Minimization of Metabolic Adjustment (MOMA)

• optimal growth may be a good assumption for wild-type but not 
for knock out mutantsfor knock-out mutants

• not enough time & evolutionary pressure in lab
• alternative approximation: steady-state flux distributionalternative approximation: steady state flux distribution 

responds minimally to perturbation
• denote by       the feasible space of mutant j and by        the 

ild t ti l l ti (FBA)

jΦ WTv

2

1
( , ) ( )

N
WT WT

i i
i

D v x
=

= −∑v x
wild-type optimal solution (FBA)

• find vector             minimizing the Euclidean distance
• can be written as a standard quadratic programming (QP)

j∈Φx

1( )
2

Tf = +x Lx x Qx
can be written as a standard quadratic programming (QP) 
problem

• shows much higher correlation with measurement data than 
FBA1
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[1] D. Segrè , D. Vitkup, and G. M. Church, “Analysis of optimality in natural and perturbed metabolic 
networks,” PNAS, 99(23), 15112 – 15117, 2002.
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Elementary modesElementary modes

• v is an elementary (flux) mode if it fulfills
d N 0• steady-state: Nv = 0

• feasibility: virr ≥ 0
• non-decomposability: setting any of the nonzero rates in 

v to zero will make the whole mode zerov to zero will make the whole mode zero
• unique up to scaling
• not necessarily linearly independent
• all feasible states given as non-negative linear 

combinations of EMs

0≥∑ αα vv

• problem: combinatorial explosion
• computation difficult (impossible) for big networks

0, ≥=∑ j
j

jj αα vv

• computation difficult (impossible) for big networks
• analysis of results cumbersome
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Example of elementary modesExample of elementary modes
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Example of elementary modes (2)Example of elementary modes (2)

metabolites A, G, and 
H are external
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Extreme pathwaysExtreme pathways

• minimal possible conversion routes
d S 0• steady-state Sv=0

• network reconfiguration: split reversible internal fluxes into two irreversible 
fluxes
thermodynamic constraints v ≥ 0• thermodynamic constraints vi ≥ 0

• non-decomposability (minimality)
• systemic independence
i t• unique set

• all other possible routes given as their linear combinations ≈ basis
• EPs are the minimal set of EMs needed to span the feasible steady-state

• (proper) subset of elementary modes
• combinatorial explosion

• whole-cell analysis practically impossiblewhole cell analysis practically impossible
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Redundancy removal / network compressionRedundancy removal / network compression

some methods can be used to alleviate the computational problems
• enzyme subsets

• reactions that necessarily operate together in steady-state
• can be found from null-space matrix as the rows whose values are proportional 

h hto each other
• uniquely produced / consumed metabolites
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Decomposition of metabolic networksDecomposition of metabolic networks

• allows a sort of divide-and-conquer approach
• reduces computational burden
• metabolic networks have modular structure

• molecules modules networks cells
• Girvan-Newman method

• shortest paths for all pairs of nodes
• edges between modulesg

• compute EMs for subnetworks
• combine EMs to yield whole-network EMs

parallelization easy• parallelization easy
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EM / EP: ApplicationsEM / EP: Applications

• objective (mathematical) definition of pathways
• however dependent on classification of metabolites to externalhowever, dependent on classification of metabolites to external

• constraints, basis
• every feasible steady-state given as linear combination of EMs / EPs
ti l th t & i l i ld• optimal growth rates & maximal yields

• testing network models
• model must be able to produce certain products from given substrates

• knock-out mutant viability
• removing a reaction removes all EMs / EPs that contain this reaction
• if all vital EMs removed, the organism dies

• identifying possible drug targets
• finding the smallest set of reactions whose removal blocks a certain “disease 

metabolism” (minimal cut sets)

Department of Signal Processing Stoichiometric analysis of metabolic networks



31

EM / EP: Applications (2)EM / EP: Applications (2)

• enhancement points for metabolic engineering
id ifi i f b l k i d i• identification of bottlenecks in production

• correlated reaction sets
• hypothesis: these could be under the same regulatory control

• robustness of networks
• e.g. how many alternative routes there are between any two metabolites

• can also be applied to e.g. genetic networkspp g g
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13C labeling13C-labeling

• problems with the above methods: parallel pathways sometimes 
i di ti i h bl b l i f t b lit t i kindistinguishable, balancing of energy metabolites very tricky

• feeding of 13C-labeled substrate (e.g. glucose)
• in steady-state
• until isotopical steady-state

• isotopomer of a metabolite with n carbon atoms: one of the 2n different 
labeling states

• measurement (NMR, MS)
• put the isotopomer fractions to the labeling state vector x

• isotopomer labeling balance equation ( ) 0xxv =,, inpfp g q
• xinp contains the isotopomer fractions of input metabolites

• more details in 1

( ),,f

“13C f ”
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[1] Wiechert, W., “13C Metabolic flux analysis,” Metabolic Engineering, 3, 195 – 206, 2001.


