Stoichiometric analysis of metabolic networks

SGN-6156 Computational systems biology II

Antti Larjo antti.larjo@tut.fi Department of Signal Processing Computational Systems Biology group 30.4.2008

Contents

Networks in cells Metabolism Metabolic networks and pathways Models of metabolism Reconstruction of metabolic networks Stoichiometry and fluxes Metabolic pathway analysis steady-state Flux balance analysis Minimization of metabolic adjustment **Elementary modes** Extreme pathways applications

Networks in cells

Metabolism

- "Sum of all the chemical reactions that take place in every cell of a living organism, providing energy for the processes of life and synthesizing new cellular material." (Encyclopædia Britannica)
- ≈ conversion of food to products/biomass/work/warmth/...
- divided into catabolism (destructive) and anabolism (constructive)
- substances are called metabolites
- catalysts are called enzymes (needed by practically every reaction)
- certain parts very similar between organisms, evolved from the same ancient pathway
- structure very constant, but can be changed e.g. by evolution / genetic changes
- only part used at a time
 → metabolic phenotypes

Metabolic networks and pathways

- metabolism forms a network of interconnected metabolites and reactions
- known very well for many organisms
 - reconstructions of the whole-cell (genome-wide) metabolism
 - e.g. Saccharomyces cerevisiae 646 metabolites, 1149 reactions ¹
- pathways or networks?
 - metabolic network: set of metabolites connected by reactions, consists of pathways
 - pathway: systems of successive chemical reactions, "set of oriented reactions interacting under given physiological conditions via simple or apparently simple intermediates" ²
 - pathways sometimes defined by function / topology / ...
 - \rightarrow often subjective
 - objective definition later

GLC

[1] Duarte, N. C, Herrgård, M. J., and Palsson, B. O., "Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model," *Genome Research*, 14(7), 1298-1309, 2004.

[2] Selkov, E. Jr, Grechkin, Y., Mikhailova, N., and Selkov, E., "MPW: the metabolic pathways database," *Nucleic Acids Research*, 26(1), 43-45, 1998.

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Signal Processing

Dummy model of metabolism

- input: substrates (food, e.g. glucose, oxygen, ...)
- output: products (biomass, waste, energy, ...)

Inside the black box

- input substances follow conversion routes (pathways) to outputs
- possible routes determined by enzymatic capabilities, reaction directionalities
- used (=active) routes depend on available substrates, enzymes, also other things

Glycolysis

From KEGG (http://www.genome.jp/kegg/)

Stoichiometric analysis of metabolic networks

Reconstruction of metabolic networks

- central dogma of molecular biology: gene \rightarrow protein
- databases
 - gene annotation
 - biochemical information
 - publications, other databases
- identification of enzyme(=protein) coding genes
- \rightarrow list of reactions
- reconstruction of metabolic network
 - result is a structural (stoichiometric) in silico model
- · models available from the Internet
 - KEGG (www.genome.jp/kegg)
 - MetaCyc (metacyc.org)

Stoichiometry and fluxes

- "Determination of the proportions (by weight or number of molecules) in which elements or compounds react with one another." (Encyclopædia Britannica)
- stoichiometric coefficients
 - elementary and charge balance
 - constant
 - · known for every discovered metabolic reaction
 - definition of direction for reversible reactions
- flux: rate of flow of particles
 - note: not the same as reaction rate (velocity)
 - e.g. the flux from metabolite A to reaction *i* is av_i

Stoichiometric matrix

- systems of several reactions described with stoichiometric matrix
 - rows correspond to metabolites, columns to reactions
 - $2A + B \rightarrow 3C + D => (-2, -1, 3, 1)^{T}$
- structure of metabolic network defined by stoichiometric matrix S and reversibilities of reactions
- s_{ii} is the stoichiometric coefficient of metabolite *i* in reaction *j*

Different metabolic network models

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Signal Processing

Stoichiometric analysis of metabolic networks

Levels of modeling metabolic networks

•structural

· only connections between metabolites

•stoichiometric

• proportions of needed metabolites

•kinetic

• dynamics of reactions

$$\bigcirc^{\mathbf{a}} \quad \mathbf{v} = f([A], [B]) \quad \mathbf{b}$$

•regulatory

• effects of e.g. gene regulation

Modeling the system boundary

- internal metabolite
 - inside the system boundary
 - · factors affecting the concentration are included in the system
- external metabolite
 - some factors affecting the concentration not known or excluded from the system
 - concentration assumed constant
 - also called sources or sinks
- internal fluxes
 - fluxes whose both sides are inside the system
- exchange flux
 - flux capable of transferring material across the system boundary
 - practically the same as a flux going to an external metabolite

Metabolic pathway analysis

- finding a single flux distribution
 - optimal: Flux balance analysis (FBA)
 - suboptimal: Minimization of metabolic adjustment (MOMA)
- determining all the conversion routes (=pathways)
 - Elementary (flux) modes (EM / EFM)
 - Extreme pathways (EP)
- measuring internal fluxes
 - ¹³C-labeling

Steady-state

- - c_i concentration, r_i rates
- dynamic mass balance equation $\mathbf{S}\mathbf{v} = \frac{d\mathbf{c}}{dt} = \mathbf{a}$
 - **S** is the stoichiometric matrix
 - **v** is the reaction rate vector
 - c is the concentration vector
 - **a** is the accumulation vector
- a=0
 - no accumulation = <u>steady-state</u> (mass balance / flux balance)
 - long time scales
 - large cell populations \rightarrow average cell state

Stoichiometric analysis of metabolic networks

Metabolic networks in steady-state

- arrange reaction rate vector $\mathbf{v} = \begin{bmatrix} \mathbf{v}_{rev} \\ \mathbf{v}_{rev} \end{bmatrix}$ \mathbf{v}_{rev} : rates of reversible reactions **V**_{rev}

 - **v**_{irr}: rates of irreversible reactions
- arrange the columns of stoichiometric matrix S (dimension mxr) accordingly
- the set of vectors \mathbf{v} satisfying the steady-state condition $S\mathbf{v}=\mathbf{0}$ is given as the null-space $\mathbf{K} = null(\mathbf{S})$
 - linear basis vectors
 - linearly independent, not unique
 - routes not necessarily minimal
- however, $\mathbf{v}_{irr} \ge \mathbf{0}$
 - · defines half-spaces in the null-space
 - result is a convex polyhedral cone
 - convex analysis / polyhedral computation needed

Metabolic networks in steady-state (2)

convex polyhedral cone (flux cone) F

- convex combination $\forall \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{F}, \ 0 \le \lambda \le 1 : \lambda \mathbf{v}_1 + (1 \lambda) \lambda \mathbf{v}_2 \in \mathbf{F}$
- $\forall \mathbf{v} \in \mathbf{F}, \ \alpha \ge 0 : \alpha \mathbf{v} \in \mathbf{F}$

cone F defined by

٢

- Sv = 0 and $v_{irr} \ge 0$ (*H*-representation) or
- combination of generating vectors (also called extreme rays) (*V-representation*)

$$\mathbf{F} = \left\{ \mathbf{v} \in \mathbb{R}^r \middle| \mathbf{v} = \sum_k \lambda_k \mathbf{f}_k + \sum_j \beta_j \mathbf{b}_j, \ \lambda_k, \beta_j \in \mathbb{R}, \ \lambda_k \ge 0 \right\}$$

where \mathbf{f}_k are the irreversible generating vectors and \mathbf{b}_j are the reversible generating vectors

- · generating vectors unambiguously define the cone
 - not necessarily linearly independent

18

Flux balance analysis

constraints-based modeling •thermodynamical constraints (irreversibilities) $\alpha_i \leq v_i \leq \beta_i$

maximal capacities of reactions

- from enzyme kinetics
- from measurements
- \rightarrow sets a cap to the flux cone

•steady-state (flux balance) Sv = 0

environment (substrates)

• i.e. definition of external metabolites or exchange fluxes

•the solution space

- defined by the constraints
- contains feasible states of the metabolic network

Flux balance analysis (2)

- objective function $Z = \mathbf{c} \cdot \mathbf{v} = \sum c_i v_i$
 - assumption: evolution drives the organism to the optimum
 - e.g. maximal growth
- maximize objective function
 - use linear programming
 - maximize Z subject to
 - $\alpha_i \leq v_i \leq \beta_i$ and $\mathbf{Sv} = \mathbf{0}$
 - \rightarrow optimal point
- optimal growth rates
- viability of knock-out mutants
- screening for possible drug targets
- consistent with experimental results¹
- different choices of objective function
 - exploring organism's capabilities, guiding in metabolic engineering

[1] Edwards, J. S., Ibarra, R. U., and Palsson, B. O., "In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data," *Nature Biotechnology*, 19, 125 – 130, 2001.

Example biomass reaction

- (1.1348) 13BDglcn + (0.4588) ala-L + (0.046) amp + (0.1607) arg-L + (0.1017) asn-L + (0.2975) asp-L + (59.276) atp + (0.0447) cmp + (0.0066) cys-L + (0.0036) damp + (0.0024) dcmp + (0.0024) dgmp + (0.0036) dtmp + (0.0007) ergst + (0.1054) gln-L + (0.3018) glu-L + (0.2904) gly + (0.5185) glycogen + (0.046) gmp + (59.276) h2o + (0.0663) his-L + (0.1927) ile-L + (0.2964) leu-L + (0.2862) lys-L + (0.8079) mannan + (0.0507) met-L + (0.00006) pa_SC + (0.00006) pc_SC + (0.000045) pe_SC + (0.1339) phe-L + (0.1647) pro-L + (0.02) so4 + (0.1914) thr-L
- + (0.0234) tre + (0.000066) triglyc_SC + (0.0284) trp-L + (0.102) tyr-L + (0.0599) ump + (0.2646) val-L + (0.0015) zymst
- → (59.276) adp + (58.7162) h + (59.305) phosphate

From N. Duarte, M. Herrgård, and B. Palsson, "Reconstruction and Validation of *Saccharomyces cerevisiae* iND750, a Fully Compartmentalized Genome-Scale Metabolic Model," Genome Research, 14(7):1298-309, 2004.

Stoichiometric analysis of metabolic networks

FBA: Phenotype phase plane analysis

- FBA gives only particular solutions
- phenotype phase plane analysis
 - select two fluxes and calculate FBA as the function of these (by changing the values of α_i and β_i)
- dependency of optimal solution on some flux constraints

Minimization of Metabolic Adjustment (MOMA)

- optimal growth may be a good assumption for wild-type but not for knock-out mutants
 - not enough time & evolutionary pressure in lab
- alternative approximation: steady-state flux distribution responds minimally to perturbation
- denote by Φ^j the feasible space of mutant j and by v^{WT} the wild-type optimal solution (FBA)
- find vector $\mathbf{x} \in \Phi^{j}$ minimizing the Euclidean distance $D(\mathbf{v}^{W})$

$$^{WT}, \mathbf{x}) = \sqrt{\sum_{i=1}^{N} (v_i^{WT} - x_i)^2}$$

- can be written as a standard quadratic programming (QP) problem $f(\mathbf{x}) = \mathbf{L}\mathbf{x} + \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x}$
- shows much higher correlation with measurement data than FBA¹

[1] D. Segrè , D. Vitkup, and G. M. Church, "Analysis of optimality in natural and perturbed metabolic networks," *PNAS*, 99(23), 15112 – 15117, 2002.

Elementary modes

- v is an elementary (flux) mode if it fulfills
 - steady-state: **Nv = 0**
 - feasibility: $\mathbf{v}_{irr} \ge \mathbf{0}$
 - non-decomposability: setting any of the nonzero rates in
 v to zero will make the whole mode zero
- unique up to scaling
- not necessarily linearly independent
- all feasible states given as non-negative linear combinations of EMs

$$\mathbf{v} = \sum_{j} \alpha_{j} \mathbf{v}_{j}, \quad \alpha_{j} \ge 0$$

- problem: combinatorial explosion
 - computation difficult (impossible) for big networks
 - · analysis of results cumbersome

Example of elementary modes

Stoichiometric analysis of metabolic networks

Example of elementary modes (2)

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Signal Processing

Extreme pathways

- minimal possible conversion routes
 - steady-state Sv=0
 - network reconfiguration: split reversible internal fluxes into two irreversible fluxes
 - thermodynamic constraints $v_i \ge 0$
 - non-decomposability (minimality)
 - systemic independence
- unique set
- all other possible routes given as their linear combinations ≈ basis
- EPs are the minimal set of EMs needed to span the feasible steady-state
 - (proper) subset of elementary modes
- combinatorial explosion
 - whole-cell analysis practically impossible

Redundancy removal / network compression

some methods can be used to alleviate the computational problems

- enzyme subsets
 - reactions that necessarily operate together in steady-state
 - can be found from null-space matrix as the rows whose values are proportional to each other
- uniquely produced / consumed metabolites

Decomposition of metabolic networks

- allows a sort of divide-and-conquer approach
- reduces computational burden
- metabolic networks have modular structure
 - molecules \rightarrow modules \rightarrow networks \rightarrow cells
- Girvan-Newman method
 - shortest paths for all pairs of nodes
 - edges between modules
- compute EMs for subnetworks
- combine EMs to yield whole-network EMs
- parallelization easy

Stoichiometric analysis of metabolic networks

EM / EP: Applications

- objective (mathematical) definition of pathways
 - however, dependent on classification of metabolites to external
- constraints, basis
 - every feasible steady-state given as linear combination of EMs / EPs
- optimal growth rates & maximal yields
- testing network models
 - model must be able to produce certain products from given substrates
- knock-out mutant viability
 - removing a reaction removes all EMs / EPs that contain this reaction
 - if all vital EMs removed, the organism dies
- identifying possible drug targets
 - finding the smallest set of reactions whose removal blocks a certain "disease metabolism" (minimal cut sets)

EM / EP: Applications (2)

- enhancement points for metabolic engineering
 - identification of bottlenecks in production
- correlated reaction sets
 - hypothesis: these could be under the same regulatory control
- robustness of networks
 - e.g. how many alternative routes there are between any two metabolites
- can also be applied to e.g. genetic networks

¹³C-labeling

- problems with the above methods: parallel pathways sometimes indistinguishable, balancing of energy metabolites very tricky
- feeding of ¹³C-labeled substrate (e.g. glucose)
 - in steady-state
 - until isotopical steady-state
- isotopomer of a metabolite with *n* carbon atoms: one of the 2ⁿ different labeling states
 - measurement (NMR, MS)
 - put the isotopomer fractions to the labeling state vector **x**
- isotopomer labeling balance equation $f(\mathbf{v}, \mathbf{x}^{inp}, \mathbf{x}) = \mathbf{0}$
 - \mathbf{x}^{inp} contains the isotopomer fractions of input metabolites
- more details in ¹

[1] Wiechert, W., "¹³C Metabolic flux analysis," *Metabolic Engineering*, 3, 195 – 206, 2001.

