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ABSTRACT

In many models, variances are assumed to be constant
although this assumption is known to be unrealistic.
Joint modelling of means and variances can lead to in-
finite probability densities which makes it a difficult
problem for many learning algorithms. We show that
a Bayesian variational technique which is sensitive to
probability mass instead of density is able to jointly
model both variances and means. We discuss a model
structure where a Gaussian variable which we call vari-
ance neuron controls the variance of another Gaussian
variable. Variance neuron makes it possible to build
hierarchical models for both variances and means. We
report experiments with artificial data which demon-
strate the ability of learning algorithm to find the un-
derlying explanations—variance sources—for the vari-
ance in the data. Experiments with MEG data verify
that variance sources are present in real-world signals.

1. INTRODUCTION

Most unsupervised learning techniques model the
changes in the mean of different quantities while vari-
ances are assumed constant. This assumption is often
known to be invalid but suitable techniques for jointly
estimating both means and variances have been lack-
ing. The basic problem is that if the mean is modelled
by a latent variable model such as independent com-
ponent analysis (ICA) [1], the modelling error of any
single observation can be made zero. If the learning
method is based on maximising likelihood or posterior
density, it runs into problems when trying to simultane-
ously estimate the variance as the density will become
infinite when the variance approaches zero.
In this paper we show how the problem can be

solved by variational Bayesian learning. We are able
to jointly estimate both the means and the variances
by a hierarchical model because the learning criterion
is based on posterior probability mass rather than the
problematic probability density. The case mentioned
above no longer poses problems because when variance
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approaches zero, posterior probability will have an in-
creasingly higher but at the same time narrower peak.
The narrowing of the peak compensates the higher den-
sity and results in a well behaved posterior probability
mass.
The basic method used here was reported in [2].

There a set of building blocks that can be used to con-
struct various latent variable models was introduced.
In this paper we concentrate on how to build models of
variance from Gaussian variables and linear mappings.
In Section 2, we introduce the variance neuron, a

Gaussian variable which converts predictions of mean
into predictions of variance and discuss various models
which utilise it. Section 3 shows how these models are
learned. Experiments where such a model is applied to
artificial and natural data are reported in Section 4.

2. VARIANCE NEURON

Variance neuron [2] is a time-dependent Gaussian vari-
able u(t) which specifies the variance of another time-
dependent Gaussian variable ξ(t):

ξ(t) ∼ N(m(t), exp[−u(t)]) , (1)

where N(µ, σ2) is the Gaussian distribution andm(t) is
the prediction for the mean of ξ(t) given by other parts
of the model. As can be seen from (1), u(t) = − log σ2.
This parametrisation is justified in Section 3.
Variance neurons are useful as such for modelling

super-Gaussian distributions because a Gaussian vari-
able ξ whose variance has fluctuations over time gener-
ates a super-Gaussian distribution (see e.g. [3]). Vari-
ance neurons alone cannot generate sub-Gaussian dis-
tributions1, but in many cases sub-Gaussian models are
not needed. This is particularly true in connection with
dynamics. Real signals such as oscillations have sub-
Gaussian distributions but their innovation processes
are almost invariably super-Gaussian. A linear ICA
model with super-Gaussian source distributions gener-
ated by Gaussian sources s with variance neurons us

attached to each source is depicted in Fig. 1(a).
From the point of view of other parts of the model

which predict the value of the variance neuron, the vari-
ance neuron is as any other Gaussian variable. This

1Mixture-of-Gaussian distributions can be used for sub-
Gaussian distributions. See e.g. [4].
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Fig. 1. Various model structures utilising variance
neurons. Observations are denoted by x, linear map-
pings by A and B, sources by s and r and variance
neurons by u.

means that it enables to translate a conventional model
of mean into a model of variance. A simple extension
of ICA which utilises variance neurons in this way is
shown in Fig. 1(b). The sources can model concurrent
changes in both the observations x and the modelling
errors of the observations through the variance neurons
ux. Such a structure would be useful for instance in a
case where a source characterises the rotation speed of
a machine. It is plausible that the rotation speed af-
fects the mean of a set of variables and the modelling
error of another, possibly overlapping set of variables.
In this paper we present experiments with a hier-

archical extension of the linear ICA model, shown in
Fig. 1(c). The concurrent changes in the variance of
conventional sources are modelled by higher-order vari-
ance sources. As a special case, this model structure is
able to perform subspace ICA [5, 6, 7, 1]. In that case,
each conventional source would be modelled by only
one of the variance sources, i.e. the mapping B would
have only one non-zero entry on each row. Moreover,
usually each subspace has equal dimension, i.e. each
column of B has an equal number of non-zero entries.
We are not going to impose such restrictions. The ef-
fects of variance sources can thus be overlapping.
Just as conventional sources of time-series data have

temporal structure [1], variance sources of such data
can be expected to change slowly, in fact, more slowly
than the conventional sources. This is because the vari-
ance sources have similarity to the invariant features
extracted by adaptive subspace SOM [8] and other re-
lated models, e.g. [7]. This is demonstrated in the ex-
periment with magnetoencephalographic data in Sec-
tion 4.

3. VARIATIONAL BAYESIAN LEARNING

Variational Bayesian learning techniques are based on
approximating the true posterior probability density
of the unknown variables of the model by a func-
tion with a restricted form. Currently the most com-

mon technique is ensemble learning where Kullback-
Leibler divergence measures the misfit between the ap-
proximation and the true posterior. It has been ap-
plied to ICA and a wide variety of other models (see,
e.g. [9, 4, 10, 11, 12, 13, 14]). An example of a vari-
ational technique other than ensemble learning can be
found in [15].
In ensemble learning, the posterior approximation

is required to have a suitably factorial form. During
learning, the factors are typically updated one at a time
while keeping others fixed. Here we use the method in-
troduced in [2]. The posterior has a maximally factorial
form, i.e. each unknown variable is approximated to be
independent a posteriori of the rest of the variables.
The computational complexity of each individual up-
date is then proportional to the number of connections
it has with other variables. Consequently, the update
of the posterior variance of all variables in the model
can be accomplished in time proportional to the total
number of connections in the model.
For each update of the posterior approximation

q(θ), the variable θ requires the prior distribution
p(θ | parents) given by its parents and the likelihood
p(children | θ) obtained from its children. The relevant
part of the Kullback-Leibler divergence to be minimised
is

C(q(θ)) =

〈

ln
q(θ)

p(θ | parents)p(children | θ)

〉

q

, (2)

where the expectation is taken over the posterior ap-
proximations q(θi) of all unknown variables.
In ensemble learning, conjugate priors are com-

monly used because they make it very easy to solve the
variational minimisation problem of finding the optimal
q(θ) which minimises (2).
As an example, consider linear mappings with

Gaussian variables. First, note that in (2), the neg-
ative logarithm of the prior and likelihood is needed.
We shall call this quantity the potential. Gaussian
prior has a quadratic potential. The likelihood aris-
ing from a linear mapping to Gaussian variables also
has a quadratic potential. The sum of the potential
is quadratic and the optimal posterior approximation
can be shown to be the Gaussian distribution whose
potential has the same second and first order terms.
The minimisation thus boils down to adding the coef-
ficients of second and first order terms of the prior and
likelihood.
The likelihood which variance neuron receives from

the Gaussian node whose logarithmic variance is mod-
elled has a linear term and an exponential term. The
commonly used parametrisation is inverse variance as
then the potential corresponds to Gamma-distribution
and hence a Gamma-prior yields a Gamma-posterior.
It would, however, be difficult to build a hierarchical
model with Gamma-distributed variables and therefore
we choose to have a Gaussian prior and parametrise
the variance on logarithmic scale. The resulting sum
potential has both a quadratic term (from the prior)
and an exponential term (from the likelihood), but it



is well approximated by a Gaussian posterior q(θ)
def
=

N(θ;m, v). It can be shown [2] that in this case (2)
equals

C(m, v) =Mm+ V [m2 + v]+

E exp(m+ v/2)−
1

2
ln v + const , (3)

where M , V and E are the coefficients of the terms in
the mixed potential. The optimisation method for the
mixed potential is derived in Appendix A.

4. EXPERIMENTS

In this section, experiments with artificial data and real
magnetoencephalographic (MEG) data are reported.

4.1. Model structure

According to the model used for the experiments, the
observations are generated by conventional source vec-
tors s(t) mapped linearly to the observation vectors
x(t) which are corrupted by additive Gaussian noise
n(t). For each source si(t) there is a variance neuron
usi(t) which represents the negative logarithm of the
variance. The values of the variance neurons us(t) are
further modelled by higher-level variance sources r(t)
which map linearly to the variance neurons. Variance
sources, too, have variance neurons ur(t) attached to
them.

x(t) = As(t) + n(t) (4)

si(t) ∼ N(µsi(t), expusi(t)) (5)

us(t) = Br(t) +m(t) (6)

ri(t) ∼ N(ri(t− 1), expuri(t)) (7)

The additive Gaussian noise terms n(t) and m(t) are
allowed to have non-zero bias. The model structure is
shown in Fig. 1(c). Note that it makes sense to have
two layers although the model is linear and all variables
are Gaussian since the variance neurons us translate
the higher-order source model into a prediction of vari-
ance. The variance sources are also responsible for gen-
erating super-Gaussian distributions for s(t) and r(t).
As (7) shows, the variance sources have a dynamic

model. The predicted mean for the variance source was
taken to be the value at the previous time instant. In
the artificial data, µsi(t) in (6) equals zero, but the
MEG signals have strong temporal dependences and
we used µsi(t) = si(t− 1).

4.2. Learning scheme

The basic operations in learning were iteration and
pruning. An iteration consisted of updating the pos-
terior approximation q(·) for each latent variable, one
at a time. Pruning involves going through the param-
eters of the linear mappings and removing them from
the model if that resulted in a decrease of the cost
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Fig. 2. Artificial data x(t) (8 out of 20 time series).
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Fig. 3. Sources s(t) estimated from the artificial data
(8 out of 20 sources).

function. In ensemble learning, the cost function gives
a lower bound for the model evidence and thus enables
this kind of pruning.
The model was built in two stages. First, only

the conventional sources were estimated, i.e. the model
structure was as in Fig. 1(a). The sources were ini-
tialised using PCA components calculated from the
data. If the source model had dynamics, low-pass fil-
tering was applied to the data before PCA. During the
first few iterations the sources were kept fixed to the
initialisation in order to have a reasonable estimate for
the mixing matrix A. Learning was then continued for
two hundred iterations to find reasonable values for the
variance neurons.
After that, the second layer was added. Initialisa-

tion for the variance neurons was similar to the con-
ventional ones except instead of a few iterations, they
were kept fixed for two hundred iterations. Learning
was continued until the changes in the parameters were
very small.

4.3. Artificial data

In order to test the learning algorithms, we generated
data that fits the model structure. There were two vari-
ance sources r(t) and 20 conventional sources s(t). The
mappings A and B were sampled from normal distri-
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Fig. 4. Variance neurons us(t) corresponding to the
sources shown in Fig. 3.
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Fig. 5. Estimated variance sources r(t) (2nd and 4th
row) which model the regularities found in the variance
neurons of Fig. 4. The corresponding true underlying
variance source are shown on 1st and 3rd row.

bution. The biases for the additive noise of us(t) were
chosen such that the sources s(t) had unit variances.
Part of the generated signals are shown in Fig. 2.
The linear mappings were known to be fully con-

nected and therefore no pruning was applied. The re-
sults after 10,000 iterations are depicted in Figs. 3–5.
The estimated posterior mean of q(·) for each quantity
is shown. As can be seen in Figure 5, the estimated
variance sources are very close to the true underlying
variance sources which were used for generating the
data. In general, a reliable estimate of variance needs
more observations than the estimate of mean. This
is reflected in the fact that small random variations in
the variance source are not captured although on larger
time scale the estimate is accurate.

4.4. Biomedical data

In these experiments, we used part of the MEG data
set [16]. The data consists of signals originating from
brain activity. The signals are contaminated by exter-
nal artefacts such as a digital watch, heart beat as well
as eye movements and blinks. We used 2,500 samples
of the original data set. The most prominent feature
in this area is the biting artefact where muscle activity
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Fig. 6. MEG recordings (seven out of 122 time series).

contaminates many of the channels starting after 1,600
samples as can be seen in Fig. 6.
Initially the model had 40 sources s(t) and 10 vari-

ance sources r(t). Starting after 5,000 iterations, the
linear mappings were pruned every 200 iterations. This
resulted in two of the variance sources losing all their
out-going connections after which they were removed.
After 10,000 iterations, pruning was applied to vari-
ance neurons instead of the parameters of the linear
mappings. The three surviving variance sources are
shown in Fig. 9. None of the conventional sources lost
all their out-going connections and they survived even
when pruning was applied to them directly after 10,000
iterations. The sources and their variance neurons are
depicted in Figs. 7 and 8, respectively.
The conventional sources are comparable to those

reported in the literature for this data set [16]. The first
variance source in Fig. 9 clearly models the biting arte-
fact. This variance source integrates information from
several conventional sources and its activity varies very
little over time. This is partly due to the dynamics but
experiments with a static model confirm that the vari-
ance source acts as an invariant feature which reliably
detects the biting artefact.
The second variance source appears to represent in-

creased activity during the onset of the biting. The
third variance neuron seems to be related to the
amount of rythmic activity on the sources. Two such
sources can be found in Fig. 7 (third and fourth source).
Interestingly, it seems that the amount of rythmic ac-
tivity on these sources is negatively correlated.

5. DISCUSSION

In statistics, a distribution characterised by changing
variance is called heteroskedastic. Heteroskedasticity is
known to be commonplace and there are various tech-
niques for modelling the variance (see e.g. [17]). How-
ever, previously mean has been estimated separately
from variance in order to avoid problems related to in-
finite probability densities. We have shown that it is
possible to estimate both mean and variance jointly.
This has the benefit that the estimation of the mean
can use the information about the variance and vice
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Fig. 7. Sources estimated from the MEG data (eight
out of 40 sources).
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Fig. 8. Variance neurons corresponding to the sources
shown in Fig. 7.

versa. In the experiments reported here, this implies
that estimation of the sources can utilise the informa-
tion provided by the variance sources.
We reported experiments with one model struc-

ture which utilises variance neurons but we have only
touched the tip of an iceberg. Since the variance neu-
rons allow to translate models of mean into models of
variance, we can go through a large number of models
discussed in the literature and consider whether they
are useful for modelling variance. The cost function
used in ensemble learning is very useful in this task as
it allows model comparison.
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A. MINIMISING MIXED POTENTIALS

Here we show how to minimise a function

C(m, v) =Mm+V [m2+v]+E exp(m+v/2)−
1

2
ln v .

A unique solution exists when V > 0 and E > 0.
This problem occurs when a Gaussian posterior with
mean m and variance v is fitted to a probability dis-
tribution whose logarithm has both a quadratic and
exponential part resulting from Gaussian prior and log-
Gamma likelihoods, respectively, and Kullback-Leibler
divergence is used as the measure of the misfit.
The minimisation is iterative. At each iteration,

one Newton-iteration step for m and one fixed-point
iteration step for v is performed. The steps are taken
until they become smaller than a predefined threshold.

A.1. Newton iteration for m

Newton iteration for m is obtained by

mi+1 = mi −
∂C(mi, vi)/∂mi

∂2C(mi, vi)/∂m2
i

=

mi −
M + 2V mi + E exp(mi + vi/2)

2V + E exp(mi + vi/2)
(8)

Newton iteration converges in one step if the second
derivative remains constant. The step is too short if the
second derivative decreases and too long if the second
derivative increases. For stability, it is better to take
too short than too long steps.
In this case, the second derivative always decreases

if m decreases and vice versa. For stability it is there-
fore useful to restrict the increases in m because the in-
creases are consistently over-estimated. We have found
that restricting the increase to be at most four yields
robust convergence.

A.2. Fixed-point iteration for v

A simple fixed-point iteration rule is obtained for v by
solving the zero of the derivative:

0 =
∂C(m, v)

∂v
= V +

E

2
exp(m+ v/2)−

1

2v
⇔

v =
1

2V + E exp(m+ v/2)

def
= g(v) (9)

vi+1 = g(vi) (10)

In general, fixed-point iterations are stable around the
solution vopt if |g

′(vopt)| < 1 and converge the best
when the derivative g′(vopt) is near zero. In our case
g′(vi) is always negative and can be less than −1, i.e.
the solution can be an unstable fixed-point. This can
be remedied by taking a weighted average of (10) and
a trivial iteration vi+1 = vi:

vi+1 =
ξ(vi)g(vi) + vi

ξ(vi) + 1

def
= f(vi) (11)

The weight ξ should be such that the derivative of f
is close to zero at the optimal solution vopt which is
achieved exactly if ξ(vopt) = −g

′(vopt).
It holds

g′(v) = −
E/2 exp(m+ v/2)

[2V + E exp(m+ v/2)]
2
=

g2(v)

[

V −
1

2g(v)

]

= g(v)

[

V g(v)−
1

2

]

⇒

g′(vopt) = vopt

[

V vopt −
1

2

]

⇒

ξ(vopt) = vopt

[

1

2
− V vopt

]

. (12)

The last steps follow from the fact that vopt = g(vopt)
and the requirement that f ′(vopt) = 0. We can assume
that v is close to vopt and use

ξ(v) = v

[

1

2
− V v

]

. (13)

Note that the iteration (10) can only yield estimates
with 0 < vi+1 < 1/2V which means that ξ(vi+1) > 0.
Therefore the step defined by (11) is always shorter
than the step defined by (10).
Since we know that the solution lies between 0 and

1/2V , we can set v0 = 1/2V if the current estimate is
greater than 1/2V .
In order to improve stability, step sizes need to be

restricted. Increases in v are more problematic than
decreases since the exp(m + v/2) term behaves more
nonlinearly when v increases. Again, we have found
experimentally that restricting the increase to be at
most four yields robust convergence.

A.3. Summary of the iteration

1. Set v0 ← min(v0, 1/2V ).

2. Iterate

(a) Solve new m by (8) under the restriction
that the maximum step is 4

(b) Solve new v by (13) and (11) under the re-
striction that the maximum step is 4

until both steps are smaller than 10−4.


