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interconnected world

• networks model objects and their relations

• many different network types

– social

– informational

– technological

– biological

– . . .
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Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.
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impact of network science

• online communication networks and
social media

• implications in

– knowledge creation

– information sharing

– education

– democracy

– society as a whole

O. Kostakis et al.
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Fig. 9 Linear layouts of 5 summaries discovered for the Twitter World Cup dataset, for k = 38 and h = 2.
The plotted graphs contain only those vertices with degree greater or equal to the 50th largest degree value
of each graph. Blue edges are unique to a summary, red edges occur in each summary, and the remaining
edges are colored green (Color figure online)

notice that the hashtags in the sumamries form communities. For example, those for
football (soccer) are separated from those of American football. Similarly, there is a
cluster of hashtags relating to music bands, that also happens to re-appear.
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research questions

• structure discovery

– finding communities, events, roles of individuals

• study complex dynamic phenomena

– evolution, information diffusion, opinion formation

• develop novel applications

• design efficient algorithms



traditional view

• networks represented as pure graph-theory objects

– no additional vertex / edge information

• emphasis on static networks

• dynamic settings model structural changes

– vertex / edge additions / deletions



temporal networks

• ability to collect and store large volumes of network data

• available data have fine granularity

• lots of additional information associated to vertices/edges

• network topology is relatively stable, while
lots of activity and interaction is taking place

• giving rise to new concepts, new problems, and
new computational challenges



modeling activity in networks

1. network nodes perform actions (e.g., posting messages)
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2. network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)
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many novel and interesting concepts
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temporal networks — objectives

• identify new concepts and new problems

• develop algorithmic solutions

• demonstrate revelance to real-world applications



agenda

tracking important nodes

• maintaining neighborhood profiles

• temporal PageRank



tracking important nodes

maintaining sliding-window neighborhood profiles

R. Kumar, T. Calders, A. Gionis, and N. Tatti, ECML PKDD 2015



distance distributions in graphs

• given graph G, a node u, and distance r :

how many nodes of G are in distance r from u?

• fundamental graph-mining primitive

– median distance, diameter, effective diameter

• related to small-world phenomena

• a measure of centrality for nodes of G



distance distributions in graphs

• exact solution requires all-pairs shortest path computation

– Floyd-Warshall algorithm: O(n3)

– or, BFS for unweighted graphs: O(nm)

• clearly non scalable

• resort to approximations based on diffusion methods



diffusion-based computation

[Palmer et al., 2002]

• let Bt(x) be the ball of radius t around x
(the set of nodes at distance ≤ t from x)

• clearly B0(x) = {x}

• moreover Bt+1(x) =
⋃

(x ,y) Bt(y)
⋃{x}

• so computing Bt+1 from Bt just takes a single (sequential)
scan of the graph



diffusion-based computation

• every set requires O(n) bits, hence O(n2) bits overall

• amount of space is prohibitively large

• instead use sketching for counting distinct elements

• probabilistic counters require very small space (log log)

• HyperANF algorithm [Boldi et al., 2011]

– uses HyperLogLog counters [Flajolet et al., 2007]

– with 40 bits you can count up to 4 billion with
– standard deviation 6%



estimating the number of distinct values (F0)

• [Flajolet and Martin, 1985]

• estimate distinct values seen in data stream x1, x2, . . .

• consider a bit vector of length O(log n)

• upon seen xi , set:

– the 1st bit with probability 1/2
– the 2nd bit with probability 1/4
– . . .
– the i-th bit with probability 1/2i

• important: bits are set deterministically for each xj

• let R be the index of the largest bit set

• return Y = 2R





extension to temporal networks

• limitations of existing solutions

– consider static network

– multi-pass algorithm

• in this work

– extension to temporal networks

– streaming algorithm for sliding-window model :

– consider only the most recent interactions (edges)



setting

• temporal network G = (V ,E)

• stream of edges E = 〈(u1, v1, t1), (u2, v2, t2), . . .〉
with t1 ≤ t2 ≤ . . .

• sliding window length w

• snapshot network G(t ,w) at time t contains all edges
with time-stamps in (t − w , t ]

problem :
given node u, window length w , and distance r , how many
nodes in G(t ,w) are within distance r from u at time t?
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proposed online algorithms

1. an exact but memory-inefficient streaming algorithm

2. an approximate memory-efficient streaming algorithm

– approximate algorithm uses logic of exact algorithm,
combined with hyperloglog sketches



horizons

• path horizon : time-stamp of the oldest edge on the path

• h(u, v , i) : the horizon for length i between nodes u and v :
the maximum horizon of any path of length at most i
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neighborhood summaries

• observation : if for a node u we know all horizons h(u, v , i),
for all distances i and all nodes v , we can give complete
neighborhood profile for u for any window length

• neighborhood summary : Su
t = (Su

t [0], . . . ,S
u
t [r ])

where Su
t [i] = {(v ,ht(u, v , i)) | ht(u, v , i) > −∞}



updating neighborhood summaries

• edge deletion : simply delete entries from summaries

• edge addition : a change in summary at distance i for
a node u will introduce a change in the summary of its
neighbors at distance i + 1

– updates propagate in a BFS fashion



exact algorithm

• update time : O(rmn log n)

• space complexity : O(rn2)

– where r an upper bound on max distance

• quadratic dependence not acceptable for large graphs

– hence approximation algorithm



approximate algorithm

• sliding HyperLogLog sketch : extension of HyperLogLog to
maintain a distinct set counter over sliding window

• if number of buckets in the HLL counter is k then the
worst case complexity changes to

– update time :

– O(rm2k log2 n) from O(rmn log n)

– space complexity :

– O(rn2k log n) from O(rn2)



empirical evaluation — quality

nodes dist total clus diam eff avg rel
dataset edges edges coef diam error

(k=7)

Facebook 4 039 88 234 88 234 0.60 8 4.7 0.08
Cit-HepTh 27 771 352 801 352 801 0.31 13 5.3 0.10
Higgs 166 840 249 030 500 000 0.19 10 4.7 0.14
DBLP 192 357 400 000 800 000 0.63 21 8.0 0.09



empirical evaluation — running time 0
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Fig. 4. Time needed to process 1 000 edges for di↵erent `
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Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large
networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.

contrast (DBLP)
– offline HyperANF : 3.6 sec / sliding window
– proposed approach : 0.003 sec / sliding window



tracking important nodes

temporal PageRank

P. Rozenshtein and A. Gionis, ECML PKDD 2016



PageRank

• classic approach for measuring node importance

• listed in the top-10 most important data-mining algorithms
[Wu et al., 2008]

• numerous applications

– ranking web pages
– trust and distrust computation
– finding experts in social networks
– . . .



PageRank

• PageRank defined as the stationary distribution of
a random walk in the graph

• inherently a static process

• however, many modern networks can be viewed as
a sequence (stream) of edges

– temporal network : G = (V ,E), with E = {(u, v , t)}
– examples : twitter, instagram, IMs, email, . . .

• what is an appropriate PageRank definition for
temporal networks?



temporal networks

network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)
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motivating example
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

static network temporal network temporal network



research questions and objectives

• extend PageRank to incorporate temporal information
and network dynamics

• adapt PageRank to reflect changes in network dynamics
and node importance

• estimate importance of a node u at any given time t



dynamic PageRank vs. temporal PageRank

• extensive work on dynamic PageRank

• dynamic PageRank computation :
– maintain correct PageRank during network updates
– e.g., edge additions / deletions

• computation should return the static PageRank at a
given network snapshot

• for edges present in a snapshot, order does not matter



static PageRank

• graph G = (V ,E)

• corresponding row-stochastic matrix P ∈ Rn×n

• personalization vector h ∈ Rn

• PageRank is the stationary distribution of a random walk,
with restart probability (1− α)

π(u) =
∑

v∈V

∞∑

k=0

(1− α)αk
∑

z∈Z(v ,u)
|z|=k

h(v)Pr[z | v ]

where, Z(v ,u) is the set of all paths from v to u

and Pr[z | v ] = ∏
(i,j)∈z P(i , j)



temporal PageRank

• make a random walk only on temporal paths
– e.g., time-respecting paths
– time-stamps increase along the path
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

c → b → a→ c : time respecting

a→ c → b → a : not time respecting



temporal PageRank

• intuition : probability of visiting node u at time t
given a random walk on temporal paths

• need to model probability of following next temporal edge
– we use an exponential distribution

• temporal PageRank definition

r(u, t) =
∑

v∈V

t∑

k=0

(1− α)αk
∑

z∈ZT (v ,u|t)
|z|=k

Pr′[z| t ]

ZT (v ,u | t) set of temporal paths from v to u until time t



computation

• simple online algorithm
• r(u, t) : temporal PageRank estimate of u at time t
• s(u, t) : count of active walks visiting u at time t

Algorithm 2: stream processing

input : E, transition probability �, jumping probability ↵
1 r = 0, s = 0;
2 foreach (u, v, t) 2 E do
3 r(u) = r(u) + (1 � ↵);
4 r(v) = r(v) + (s(u) + (1 � ↵))↵;
5 s(v) = s(v) + (s(u) + (1 � ↵))(1 � �)↵;
6 s(u) = (s(u) + (1 � ↵))�;

7 normalize r;
8 return r;

3.2 Temporal vs. static PageRank

Temporal PageRank is defined to handle network dynamics and concept drifts.
An intuitive property that one may expect is that if the edge distribution of the
temporal edges remains constant, then temporal PageRank approximates static
PageRank. In this section we show that indeed this is the case.

Consider a weighted directed graph Gs = (V, Es, w) and a time period
T = [1, .., T ]. Without loss of generality assume

P
e2Es

w(e) = 1 and let Nout(u)
be the out-link neighbors of u. Let edges e 2 Es be associated with a sampling
distribution SE : p[e = (u, v)] = w(e). A temporal graph G = (V, E) is con-
structed by sampling T edges from Gs using SE (probability to pick an edge
into E is proportional to the weight of this edge in the static graph). We will
consider a simple case of transition probability � = 1: a random walk takes the
first suitable interaction to continue.

In the setting described above we can prove the following statement.

Proposition 2. The expected values of temporal PageRank on graph G = (V, E)
converge to the values of static PageRank on graph Gs = (V, Es, w), with per-
sonalization vector h(u) =

P
v2Nout(u) w(e = (u, v)) (weighted out-degree).

Proof. At any time moment t every vertex u 2 V has PageRank score r(u, t)
and active mass (number of walkers that wait to continue) equal to s(u, t).

The expected value E(r(v, T )) of the PageRank count of node v at time T is
a sum over expected increments of r(v) over time:

E(r(v, T )) =
TX

t=1

E(�r(v, t)).

At time t the increment of r(v) can be caused by selecting an edge e(t) =
(v, q) with starting point in v and q 2 V . In this case r(v) is incremented by
(1 � ↵). Another possibility to increment r(v) is to select an edge e(t) = (q, v)
with u as an end point and q 2 V . In this case r(v) is incremented by ↵s(q, t),
where s(q, t) is a value of active mass in node q at time t. Let p(u) be a probability



static vs. temporal PageRank

• temporal PageRank is designed to capture changes
in network dynamics and concept drifts

• what if the edge distribution is stable?



static vs. temporal PageRank

• consider static network GS = (V ,ES,w)

• time period [1, . . . ,T ]

• construct temporal network G = (V ,E) by sampling edges
proportionally to their weight

proposition :

as T →∞, the temporal PageRank on G
converges to the static PageRank on GS,
with personalization vector equal to weighted out-degree



experiment — adaptation to concept drift

(a) Facebook (b) Twitter (c) Students

Fig. 5: Adaptation for the change of sampling distribution.

(a) Facebook (b) Twitter (c) Students

Fig. 6: Convergence to static PageRank with increasing number of random scans
of edges.

Measures. To evaluate the settings in which temporal PageRank is expected to
converge to the static PageRank of a corresponding graph, we compare temporal
and static PageRank using three di↵erent measures: we use (i) Spearman’s ⇢ to
compare the induced rankings, we also use (ii) Pearson’s correlation coe�cient r,
and (iii) Euclidean distance ✏ on the PageRank vectors.

All the reported experimental results are averaged over 100 runs. Damping
parameter is set of ↵ = 0.85. Waiting probability � for temporal PageRank is
set to 0 unless specified otherwise.

4.1 Results

Convergence. In the first set of experiments we test how fast the tempo-
ral PageRank algorithm converges to corresponding static PageRank. In this
setting we process datasets with m temporal edges and compare the tempo-
ral PageRank ranking with the corresponding static PageRank ranking. In the
plots of Figure 2 we report Pearson’s r, Spearman’s ⇢ and Euclidean error ✏.
The first column corresponds to the calculation of temporal PageRank without
any a priori knowledge of personalization vector. Thus, the resulting temporal
PageRank corresponds to the static PageRank with out-degree personalization:



summary

• examples of mining temporal networks

– maintaining sliding-window neighborhood profiles

– temporal PageRank

• potential for new concepts, new problem definitions,
new computational methods, and new applications
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