
Computational problems in mining urban data

Aristides Gionis

Department of Computer Science, Aalto University

users.ics.aalto.fi/gionis

SPIRE 2015, King’s College London, UK

September 1, 2015

I

urban data

I popular social-media applications are equiped with
geolocation functionalities

facebook, twitter, foursquare, instagram, flickr, . . .

I additional sensor data and open data

traffic sensors, mobile devices, emergency requests,
crime, public transportation, food inspections, . . .

I a lot of information about us and our relation with our
environment

places we go, how we move, when and with whom, what
we do, what we discuss, and (potentially) how we feel in
each place

mining urban data – motivation

I how to take advantage of the available information?

improve existing services and resource allocation

improve city planning

increase safety

increase public engagement

improve city design and citizens well-beingness

discover and enjoy the city

pick your taxi – taxibeat

or find love – happn

or find love – happn

agenda

I overview of a few problems on mining urban data

I discussion of the underlying algorithmic problem

application of existing methods or tailor-made techniques

use urban data to reason about travel itineraries

travel itineraries

I tourists in a city leave a digital footprint

I where they go, points of interest, entertainment,

how much time they spend where, where they go after

I can we combine the available info in order to

understand what is popular and worth visiting

suggest meaningful new itineraries, given constraints

constructing travel itineraries

[De Choudhury et al., 2010] :

I accomplish task using flickr data

I utilize location and timestamp of photos

Figure 1: Schematic Diagram for constructing timed paths. Given Photosets P, a city C and its POI set LC,
we first construct user photo streams SC. Second, we map the photos to di�erent POIs to get POI-associated
streams SL

C . Finally from SL
C, we generate timed paths, TPC.

an accurate taken time according to the above rule, it is
ignored for the rest of the process.

Finally, we group all photos that satisfy all three rules
by owner, and within each owner, sort the photos by their
taken time. The result is a collection of city photo streams
SC , one for each user.

3.2 Mapping Photos to Points of Interest
The next phase maps photos to POIs. It involves city-

specific POI extraction, followed by photo-POI association.

3.2.1 Extracting Candidate POIs
In this study, we rely on Lonely Planet to extract the

set of popular landmarks (LC) for a given city C. Further-
more, we employ the publicly available Yahoo! Maps API1

to extract the geo-locations (i.e., latitudes and longitudes)
of these POIs. Geo-locations are returned when querying
the Yahoo! Maps API with the names of the POIs.

3.2.2 Photo-POI Association
Algorithm 1 Algorithm for Associating Photos with POIs
Require: City-relevant photo streams SC ; a city C;
1: LC = getPOIs(C);
2: for (p 2 SC) do
3: for (� 2 LC) do
4: if (geoMap(p, �) || tagMap(p, �)) then
5: associate(p, �);
6: end if
7: end for
8: end for
9: return Photo streams with photos associated with city POIs

Given geo information of the POIs, there are two main
alternatives to map a photo to a particular POI: geo-based
or tag-based. The former relies on matching the photo’s geo
location to the POI’s geo location, while the latter relies
on matching the photo’s tags to the names of the POIs.
Specifically, for the former, we associate a geo-located photo
p to a POI � � LC whenever � is the POI closest to p,
and p was taken within � = 100 meters of �. This is our
preferred method for geo identification, especially for large
and distinctive POIs. Such POIs are often photographed
from afar (e.g., the Golden Gate Bridge in San Francisco),
and therefore the POI extracted from their tags may not
match the physical location of where they were taken.

When a photo lacks associated geo information, we apply
tag-based matching as a secondary measure. Given a photo

1http://developer.yahoo.com/maps/

tag and the name of a POI, we compute the similarity be-
tween the two based on their trigram set similarity. We thus
associate a photo p to a POI � whenever � has the highest
similarity with any tag of p among all the POIs, with that
similarity being above an empirically set threshold � = 0.3.

The overall POI association process is depicted in Algo-
rithm 1. It augments the previously identified individual
photo streams (SC) with associated POI information to pro-
duce the POI photo stream, SL

C .

3.3 Generating Timed Paths
Finally, we describe the process of constructing individ-

ual timed paths, TPC , from SL
C . As summarized in Algo-

rithm 2, it involves two main steps: time segmentation and
path construction.

3.3.1 Segmentation of Photo Streams
So far, a single stream contains all photos of a single user

in a single city. This is not very useful, as two photos might
be adjacent in the stream despite being taken (and their cor-
responding POIs visited) on di�erent days. To address this
issue, we segment each stream into sub-streams using a sim-
ple heuristic: we split the stream whenever the time di�er-
ence between two successive photos, ttpi+1 � ttpi is greater
than some threshold � (we use �=8 hours in our experi-
ments). Subsequently, each sub-stream containing photos
from a single POI, or containing less than �=3 photos over-
all, was discarded. Such sub-streams cannot reliably con-
tribute to the computation of visit and transit times.

3.3.2 Construction of Timed Paths
In constructing timed paths we rely on the notion of a

timed visit, defined as follows.

Definition 1 (Timed Visit). Let � � LC be a POI of

Algorithm 2 Algorithm for Generating Timed Paths

Require: POI-associated photo streams SL
C ; a city C; a time

threshold � ;
1: for (s 2 SL

C) do
2: SS = segmentStream(s, �);
3: for (ss 2 SS) do
4: pruneNonTourists(ss);
5: addPaths(TP C , ss);
6: end for
7: end for
8: return Timed Paths TPC ;

constructing travel itineraries

[De Choudhury et al., 2010]

nice mix of computational problems

I data cleaning issues

I data mining problems on finding frequent transitions
and assigning photos to points of interest

I but also theoretical abstractions

– set up itinerary construction as variant of orienteering

find a path to maximize reward, while satisfying constraints

(quasipolynomial) logarithmic approximation

call for customization

I locations have types (art, restaurant, shopping, . . .)

a user is interested in certain activities

I find a group of locations that satisfies user requirements,

and are in geographic proximity

[AG et al., 2014]

call for customization

I venues have types (art, restaurant, shopping, . . .)

a user is interested in certain activities

I find a group of venues that satisfies user requirements,

and are in geographic proximity

[AG et al., 2014]

problem setup

I starting and ending point (e.g., my hotel)

I type preferences: visit only specific types
e.g., museums, coffee shops, shopping malls, . . .

I type ordering: visit types in specific order
e.g., start ! breakfast ! museum ! lunch !
! shopping ! dinner ! drinks ! end

I distance constraints: travel at most distance D

I objective: maximize satisfaction

measuring satisfaction

additive:
I assign a score to each venue

(allows personalization for a user profile)
I find the tour that maximizes total score

coverage:
I each venue covers a set of desirable features

(e.g., local attractions, famous photo spots)
I overlap among covered sets is possible (and probable)
I find the tour that covers the most distinct features

algorithmic solution

I simple dynamic-programming solution

I for additive: optimal (pseudopolynomial) and FPTAS

I problem structure arises from the ordering constraint

restrictive for the user, in practice

can be relaxed to

partial orders, super types, type skips

evaluation

I collect data from foursquare

I nine venue types, three cities

I satisfaction proportional to popularity within each type

I outperforming simple greedy baselines

details in [AG et al., 2014]

in London

TOTAL : 0.153

0.054

0.061

TOTAL: 0.249

(a) Cover-DP

TOTAL : 0.142TOTAL: 0.142

(b) Cov-Greedy

Figure 5: Anecdotal results for the London dataset when tours are obtained as solutions to the AdditiveTour problem;
distance budget D = 6 miles, � = {Arts & Entertainment (1), Food (3), Shop & Services (6), Nightlife Spot (5)}.

the OP is that our locations (which we call venues) are as-
sociated with types, and only a certain number of each type
can be included in the tour. In addition, the user-specified
ordering constraints over these types are also absent from
OP. Thus, the OP-specific heuristics [11, 21, 28] are not
directly applicable to our problem.

The connection between our problems and the Traveling
Salesman Problem (TSP) [4] and its prize-collecting ver-
sions [7, 9] is equally abstract. The TSP problem considers
a set of cities and distances between them and asks for the
shortest possible tour that visits each city exactly ones and
returns to the original city. The prize-collecting version of
the same problem assumes that there is a benefit associated
with visiting every city and the goal is to maximize the total
benefit by visiting cities, divided by the total distance cov-
ered by the tour. The consideration of multiple venue types,
the ordering constraints and the freedom to not visit all the
venues (but only some from every type) make our prob-
lems distinct from all the above formulations. Moreover,
the CoveringTour version of our problem is very distinct
from any prize-collecting problem that has appeared in rel-
evant literature, since the benefit induced by every venue
does not depend solely on the venue itself, but also on the
rest of the venues included in the tour. In short, the existing
algorithms for the di�erent TSP versions are not applicable
for solving the problems that we study in our work.

Travel package recommendations: Tangential to the
spatial recommendation problems, is that of travel package
recommendations, where the goal is to recommend vacation
packages (i.e., destination, hotels and organized activities).
Although these studies (e.g., [20]) also fall into the general
realm of - group - recommendation systems, they are distinct
from our work. First, their focus is on creating combinatorial
packages that satisfy di�erent constraints, rather than on
the concept of creating ordered routes which is essential to
our work. We consider such systems to be complementary
to ours: once a user is in a given urban area, possibly picked
by one of the package-recommendation approaches discussed

above, our work provides a system that is able to provide a
customized tour based on her preferences.

6. CONCLUSIONS
We have presented two alternative instantiations of a frame-

work for generating customized tour recommendations as a
paradigm of an intelligent urban navigation service. The
first one, AdditiveTour, assigns a benefit to each location
and retrieves the sequence of venues with the maximum total
benefit, constrained by a given distance budget and a pre-
ferred visitation order for the types of venues in the tour.
The second formulation, CoveringTour, assigns to each
venue a set of associated attractions covered by it (i.e., are
within range). The goal is to maximize the total number
of attractions covered, under the same set of constraints.
We study the complexity of these problems and provide ef-
ficient algorithmic solutions. Furthermore, we evaluate our
methods on a large dataset from Foursquare, the largest
location-based social network to date. The results demon-
strate the practical utility of the proposed formulations and
the e�cacy of the proposed algorithms.

Acknowledgments
This research was partially funded by NSF grants III 1218437
and CAREER 1253393 and gifts from Microsoft and Google.

7. REFERENCES
[1] Foursquare as a recommendation engine:

https://foursquare.com/about/.
[2] United nations-world urbanization prospects: The 2011

revision – highlights: http://esa.un.org/unup.
[3] A. M. W. Alan A. Lew, C. Michael Hall. A Companion to

Tourism. Wiley, 2004.
[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The

Traveling Salesman Problem: A Computational Study.
2006.

[5] L. Ardissono, A. Goy, G. Petrone, M. Segnan, and
P. Torasso. Intrigue: Personalized recommendation of
tourist attractions for desktop and hand held devices.
Applied Artificial Intelligence, 17(8-9), 2003.

321

distance = 6 miles
(1) = arts & entertainment, (3) = food, (6) = shop & services,
(5) = nightlife

use urban data to reason about events

monitoring activity in the city

I understanding what is going on in the city

I events: collective activity, in time and place,
which takes place out of the normal life cycle

I social events, festivities, traffic accidents, weather disasters

I how to monitor activity data and detect events?

events in the city

e.g., in Barcelona :
City events

Anomalous day Regular day

Event is a real-world occurrence that took place in space
and time:
social events, traffic accidents, weather disasters,..

ordinary day, no events

City events

Anomalous day Regular day

Event is a real-world occurrence that took place in space
and time:
social events, traffic accidents, weather disasters,..

an eventful day

data we can monitor

I example I :
social media and location-based social networks

event detection

• input data: recordings of a certain
measurement in space and time

(a) Barcelona bicycle-share:
11.09.12 National Day of
Catalonia

(b) Minneapolis bicycle-share:
4.07.12 Independence Day in
the USA

(c) Washington,DC
bicycle-share: 27.05.13
Memorial Day in the USA

(d) Los Angeles Twitter
messages: 31.05.10 Memorial
Day in the USA

(e) New York Twitter messages:
6.09.10 Labor Day in the USA

Figure 8: Public holiday city-events

score C(S) for an event S is defined as follows,

C(S) =
1

|S|
�

v�S

|Nk(v) � S|
k

,

where k is a nearest-neighbors parameter and Nk(v) denotes
the set of the k-nearest neighbors of v in the graph. From
the panels (g) and (h) of Figures 6 and 7, we see that
small values of � give low compactness. This is because
of the small sizes of detected events for those values of
�. When � increases, the accuracy increases and so
does compactness. However, when � becomes very large,
the algorithms downweight the distance objective and the
detected events include noisy nodes. The fact that the
compactness measure “flattens out” gives us some guidance
in selecting an appropriate value of �. In our experiments,
using the Pareto curves and the notion of compactness we
processed real-world datasets to discover meaningful events.

Case studies. In Figure 8 we show events discovered
by our algorithms on the bike-share and twitter data.
These are events found by our algorithms on problem
instances whose solution exhibits high value with respect to
other instances. We are able to a posteriori characterize
those events and associate them with state holidays in
the corresponding cities: National day of Catalonia (for
Barcelona), Independence day, Memorial day and Labor

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

nodes

ru
n

n
in

g
 t

im
e

,
se

c

Figure 9: Scalability of the GreedyAP algorithm

day for the USA. All those days are characterized by high
activity levels, clustered in the center of the cities.

Scalability. The proposed greedy algorithms are e�cient
and can scale to large networks. We report on the scalability
behavior of the GreedyAP algorithm. We use the twitter
dataset, with tweets from the whole US, to compile activity
networks with increased number of nodes. We use k-means
with k up to 10 000 centroids and we apply the GreedyAP
algorithm to detect events in the resulting graph. The
results, shown in Figure 9, are obtained by executing the
algorithm on an Intel Core i7 (4 cores) machine, with 8 GB
RAM and processor running at 2.30GHz. We see that the
algorithm is e�cient and scales linearly with the size of the
graph.

6. CONCLUSION
We formalize the problem of detecting events in

activity networks, as a problem of finding compact
subgraphs in graphs with vertex weights. Depending
on the notion of compactness used—sum of all pairs
of distances or Steiner-tree distance—we formulate two
di�erent optimization problems. By using ideas from
semidefinite programming and the primal-dual scheme, we
provide approximation algorithms for the two problems
we consider. We also provide simpler and faster greedy
algorithms, for which we are also able to show approximation
guarantees that rely on the submodularity property of the
objective function. Our experiments show that the greedy
approaches are more light-weight and perform as good as
the more sophisticated approximation algorithms.

The event-detection setting we consider has many
applications. In this paper we are experimenting with
real-world datasets from city sensors and social media
applications, and we show that our methods are able to
discover successfully real events.

Our work opens many interesting directions for future
work. One challenge is to incorporate the temporal
dimension of the activity network in the graph-theoretic
framework and be able to discover events of varying
temporal support.

7. REFERENCES
[1] L. Akoglu and C. Faloutsos. What is strange in large

networks? graph-based irregularity and fraud
detection. Available at
http://www.cs.stonybrook.edu/~leman/icdm12,
2012. Tutorial presented at IEEE ICDM 2012.

[2] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karlo�.
Improved approximation algorithms for

data we can monitor

I example II :
sensor networks and traffic measurements

City events

Dataset – fixed spatially scattered sources of time series

Our dataset: city-movements sensor – public transport
stations and statistics on its activity

using the bicing data

15.11.2012
ordinary day, no events

General problem formulation

Find an event – a subset of spatially and/or temporally close
time sub-series with anomalous behavior

← Normal day

15.11.12: no events

Event day →

11.09.12:
• National day of

Catalonia
• FC Barcelona -

Igualada HC

11.09.2012
Catalunya national dayGeneral problem formulation

Find an event – a subset of spatially and/or temporally close
time sub-series with anomalous behavior

← Normal day

15.11.12: no events

Event day →

11.09.12:
• National day of

Catalonia
• FC Barcelona -

Igualada HC

setting up the problem

I given a graph G = (V , E , d , w)

with a distance function d : E ! R on edges

and weights on vertices w : V ! R

I find a subset of vertices S ✓ V

so that

1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014]

setting up the problem

I what does total weight and close to each other mean?

I total weight
W (S) =

X

v2S

w(v)

I close to each other

D(S) =
X

u2S

X

v2S

d(u, v)

I want to maximize W (S) and minimize D(S)

I maximize
Q(S) = � W (S) � D(S)

[Rozenshtein et al., 2014]

remarks

1. not a temporal model

working with snapshots
temporal information is used to infer node weights
large weight ! abnormal activity

2. not a geometric model

building a proximity graph and working with it
considering geometry would allow more efficient methods
but we can discover events of arbitrary shape

application to general networks

I find events in any social network with activity recordings

twitter, blogs, entity graphs, news feeds

the event detection problem

I maximize Q(S) = � W (S) � D(S)

I objective can by negative

I add a constant term to ensure non-negativity

I maximize Q(S) = � W (S) � D(S) + D(V)

algorithmic solution

I maximize Q(S) = � W (S) � D(S) + D(V)

I objective is submodular (but not monotone)

I can obtain 1
2-approximation guarantee

[Buchbinder et al., 2012]

I problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee

[Rozenshtein et al., 2014]

events discovered with foursquare and bicing data

(a) Barcelona: 11.09.12
National Day of Catalonia

(b) Minneapolis: 4.07.12
Independence Day

(c) Washington, DC:
27.05.13 Memorial Day

(d) Los Angeles: 31.05.10
Memorial Day

(e) New York: 6.09.10
Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

(a) 01.06.12 Primavera
sound music festival

(b) 18.09.12 festival of the
Poblenou neighborhood (c) 31.10.12 Halloween

Figure 5: Top-3 diverse events discovered from Barcelona bicing data using the SDP algorithm.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.
Kalita. An e�ective unsupervised network anomaly
detection method. ICACCI, 2012.

[10] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and
D. Williamson. A note on the prize-collecting traveling
salesman problem. Mathematical programming,
59(1-3), 1993.

[11] B. Boden, S. Günnemann, H. Ho�mann, and T. Seidl.
Mining coherent subgraphs in multi-layer graphs with
edge labels. KDD, 2012.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. SIGMOD, 2000.

[13] N. Buchbinder, M. Feldman, J. S. Naor, and
R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. FOCS,
2012.

[14] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. APPROX, 2000.

[15] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. ICWSM, 2011.

[16] U. Feige, G. Kortsarz, and D. Peleg. The dense
k-subgraph problem. Algorithmica, 29(3), 2001.

[17] M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2), 1995.

[18] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. JACM, 42(6), 1995.

[19] V. Guralnik and J. Srivastava. Event detection from
time series data. KDD, 1999.

[20] N. A. Heard, D. J. Weston, K. Platanioti, and D. J.
Hand. Bayesian anomaly detection methods for social
networks. Ann. Appl. Stat., 4(2), 2010.

[21] D. S. Johnson, M. Minko�, and S. Phillips. The
prize-collecting Steiner tree problem: theory and
practice. SODA, 2000.

[22] S. Khuller and B. Saha. On finding dense subgraphs.
ICALP, 2009.

[23] M. Kulldor�. A spatial scan statistic. Communications
in Statistics-Theory and Methods, 26(6), 1997.

[24] M. Olson, A. Liu, M. Faulkner, and K. M. Chandy.
Rapid detection of rare geospatial events: earthquake
warning applications. DEBS, 2011.

[25] G. P. Patil and C. Taillie. Upper level set scan
statistic for detecting arbitrarily shaped hotspots.
Environmental and Ecological Statistics, 11, 2004.

[26] S. Seufert, S. J. Bedathur, J. Mestre, and G. Weikum.
Bonsai: Growing interesting small trees. In ICDM,
pages 1013–1018, 2010.

[27] T. Tango and K. Takahashi. A flexibly shaped spatial
scan statistic for detecting clusters. International
Journal of Health Geographics, 4-11, 2005.

[28] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3
— a Matlab software package for semidefinite
programming, version 1.3. Optimization methods and
software, 11(1-4), 1999.

[29] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. KDD, 2013.

[30] M. Walther and M. Kaisser. Geo-spatial event
detection in the twitter stream. ECIR, 2013.

[31] K. Watanabe, M. Ochi, M. Okabe, and R. Onai.
Jasmine: a real-time local-event detection system
based on geolocation information propagated to
microblogs. CIKM, 2011.

use urban data to reason about city neighborhoods

from social-media data to city maps

[Kennedy et al., 2007]

it; we use Xp to denote this set of tags. The set of all tags

over all photos is defined as: X �
= �p�PXp. We can use the

equivalent notation to denote the set of tags that appear in
any subset PS � P of the photo set as XS . For convenience,
we define the subset of photos associated with a specific tag

as: Px
�
= {p � P | x � Xp}. Accordingly, photos with the

tag x in a subset PS of P are denoted PS,x
�
= {PS � Px}.

The third element in the dataset is users, the set of which

we denote by the letter U �
= {up}. Equivalently, we use

US
�
= {up | p � PS} and Ux

�
= {up | p � Px} to denote users

that exist in the set of photos PS and users that have used
the tag x, respectively.

4. EXTRACTINGKNOWLEDGEABOUTLO-
CATIONS

How do we extract knowledge about geographic regions
from community contributions of images and metadata? Us-
ing the data described in Section 3 we wish to automati-
cally identify tags that are “representative” for each given
geographical area. It is important to note that these repre-
sentative tags are often not the most commonly used tags
within the area under consideration. Instead, we wish to
surface tags that uniquely define sub-areas within the area
in question. For example, if the user is examining a por-
tion of the city of San Francisco, then there is very little to
be gained by showing the user the San Francisco2 or Bay
Area tags, even if these tags are the most frequent, since the
tags apply to the entire area under consideration. Instead,
we would ideally show tags such as Golden Gate Bridge,
Alcatraz and Fisherman’s Wharf which uniquely represent
specific locations, landmarks and attractions within the city.

Before we can determine the “representativeness” of a tag,
we need to have an intuition of what the term implies. We
follow some simple heuristics that guide us in devising the
algorithms. The heuristics attempt to capture the human
attention and behavior as represented in the photos and tag
dataset. Our heuristics are aimed toward both finding im-
portant locations and identifying represntative tags. For
example, the number of photographs taken in a location is
an indication of the relative importance of that location; a
similar indication is found in the number of individual pho-
tographers that have taken photos in a location. Looking at
tags, users are likely to use a common set of tags to identify
the objects/events/locations that occur in photographs of a
location; and tags that occur in a concentrated area (and do
not occur often outside that area) are more representative
than tags that occur di�usely over a large region.

We start by assuming that the system considers a single
given geographic area G, and the photos that were taken in
this area, PG. The system attempts to extract the represen-
tative tags for area G. This computation is done in two main
steps: in the first step, we cluster the set of photos PG us-
ing the photos’ geographic locations. In the second step, we
score the tags in each cluster for their “representativeness”.

In the first step, the system geographically clusters the
set of photographs PG. We use the k-Means clustering al-
gorithm, based on the photos’ latitude and longitude. Ge-
ographical distance is used as the distance metric, and the
stopping condition for the k-Means algorithm is when each

2We use this format to represent tags in the text.

Figure 1: Representative tags for San Francisco

cluster’s centroid movement drops below 50 meters. The
number of seed points used for the k-Means algorithm is
based on |PG|, the number of photographs in the area under
question. Based on empirical observation of the results, we
set the seed value to range from three for sparse areas (un-
der 100 photographs) to 15 for denser areas (greater than
4000 photographs).

Once the clusters have been determined, the system scores
each cluster’s tags to extract representative tags. In other
words, we consider each cluster C, and the set of tags XC

that appear with photos from the cluster. We score each tag
x � XC according to the factors defined below.

One of the factors we use is TF-IDF (term frequency, in-
verse document frequency). This metric assigns a higher
score to tags that have a larger frequency within a cluster
compared to the rest of the area under consideration. Again,
the assumption is that the more unique a tag is for a specific
cluster, the more representative the tag is for that cluster.
Of course, we do not wish to use tags that only appear a
few times in the cluster; the term frequency element prefers
popular tags.

The TF-IDF is computed with slight deviation from its
regular use in Information Retrieval. The term frequency for
a given tag x within a cluster C is the count of the number

of times x was used within the cluster: tf(C, x)
�
= |PC,x|.

The inverse document frequency for a tag x, in our case,
computes the overall ratio of the tag x amongst all photos

in the region G under consideration: idf(x)
�
= |PG|/|PG, x|.

Note that we only consider a limited set of photos (PG) for
the IDF computation, instead of using the statistics of the
entire dataset. This restriction to the current area, G, allows
us to identify local trends for individual tags, regardless of
their global patterns.

While the tag weight is a valuable measure of the popu-
larity of the tag, it can often be a�ected by a single photog-
rapher who takes a large number of photographs using the
same tag. To guard against this scenario, we include a user
element in our scoring, that also reflects the heuristic that a
tag is more valuable if a number of di�erent photographers
use it. In particular, we factor in the percentage of photog-

raphers in the cluster C that use the tag x: uf
�
= UC,x/UC .

The final score for tag x in cluster C is computed by
Score(C, x) = tf · idf ·uf. The higher the tf-idf score, and the
user score, the more distinctive the tag is within a cluster.

I spatial scan methods for finding high discrepancy areas

[Kulldorff, 1997]

questions to consider

I how people experience and interact with their cities

I how are neighborhoods defined

I what is happening, what is unique in each neighborhood

I which neighborhood is similar to which?
(in the same city or across cities)

I application: recommendations

the data

I venues (location, category) from foursquare

I check-ins (person, venue, time) from foursquare

I photos (person, location, time, tags) from flickr

[Le Falher et al., 2015]

foursquare venues

foursquare checkins

flickr photos

location: Helsinki, Finland
time: Dec 4, 2013, 11am
tags: foodporn, stockmann,
helsinki

location: Helsinki, Finland
time: Feb 20, 2011, 6pm
tags: white cathedral, snow, helsinki

20 cities, 5 million checkins, 8 million photos

some data exploration

hourly check-in frequency

hourly check-in frequency

hourly check-in frequency

time activity of different venues

high-entropy venues

Paris

Eiffel tower Gare SNCF de Paris Nord

Barcelona

sagrada familia estacio sants

data model and problem setting

I each venue has geo coordinates (x , y)

I each venue described by a feature vector (dim = 30)

I city / neighborhood : set of geo-located feature vectors

I the similarity search problem:

find the most similar neighborhood to a given one

(similarity? efficiency?)

comparing feature vectors distributions

I a number of different options

earth mover’s distance (EMD)
Jensen–Shannon divergence (JSD)
min-cost matching (MCM) on a set of centroids
. . .

I which one works the best for our setting?

recall: earth mover’s distance

recall: earth mover’s distance

a small-scale user study

I ask locals to characterize neighborhoods in their cities

I 6 cities (Barcelona, NY, Paris, Rome, SF, Wash. DC)

target neighborhoods and answers for Paris

3. Minimum cost matching distance of set centroids. A
very simple way to compute a distance between two sets of
feature vectors is to compute the centroid of each set and
then compute the distance between the two centroids. We
extend this simple definition with k centroids. Given a set of
feature vectors we perform k-means clustering, and represent
the set with k centroids. Then, given two sets of feature
vectors, and their corresponding k-set centroids, we compute
the distance of a min-cost matching, using the Hungarian
algorithms (Munkres 1957). We experiment with different
values of k and report the best results, obtained for k = 3.

Evaluation methodology. We now describe our evaluation
process for selecting the best function for measuring distance
over feature vector sets. Consider a neighborhood R in a
source city C, and a target city C �. Assume that we have
obtained k ground-truth neighborhoods R1, . . . , Rk in C �,
which are the most similar to R. For example, if R is a
neighborhood with many offices, companies, and financial
services in C, so are neighborhoods R1, . . . , Rk in C �.

Given a distance measure � we want to evaluate, we can
then compute the distance �(F (R), F (R�)) for each possible
neighborhood R� of C � and rank all those neighborhoods
in order of increasing distance. We can evaluate the quality
of this ranking by checking the position that the ground-
truth neighborhoods R1, . . . , Rk appear in the ranking—if
appearing at all. The higher we find a match, the better the
ranking, and thus, the better the distance measure �.

Since we do not have any a-priori neighborhood bound-
aries (and in fact we do not want to use any, since a neigh-
borhood may be defined in a dynamic way, different than
what administrative boundaries would give), any subset of
venues that corresponds to a closed and connected region is
a candidate neighborhood. As there are exponentially many
such subsets, we restrict our search to regions of a certain
shape. We consider neighborhoods R� to be circles (v�, r),
centered at a venue v� and with radius r. We take as v� regu-
larly spaced venues in C � and r � {200, 275, 350, 425, 500}
meters, with the additional constraint that the resulting circle
should contain at least 20 venues.

After ranking all possible such circular neighborhoods R�

in order of increasing distance �(F (R), F (R�)) we remove
overlapping neighborhoods (in an Eratosthenes-sieve way)
so that the resulting ranking does not contain overlapping
neighborhoods.

To evaluate the resulting ranking, we need a relevance
score for each neighborhood R� in the ranking with respect
to the ground-truth neighborhoods R1, . . . , Rk. Note that R�

may not be identical to any of the ground-truth neighborhoods
(for one, R� is circular, while the ground-truth neighborhoods
can have arbitrary shapes) but there may have significant
overlap with some of them. To account for such overlap, we
define the relevance of each R� as the best overlap of R�

with a ground-truth neighborhood R1, . . . , Rk, where the
overlap is measured using the Jaccard coefficient on the sets
of venues of two neighborhoods.

rel(R� | R1, . . . , Rk) =
k

max
i=1

|V (R�) � V (Ri)|
|V (R�) � V (Ri)|

,

Table 2: Neighborhood description used in user study and
corresponding Paris neighborhoods. Participants in the study
were asked to identify up to 5 most similar districts in their
own city.

1 Fashion shops, luxurious places Golden triangle

2 College & student neighborhood Quartier Latin

3 Red light district Pigalle

4 Touristic and artsy district Montmartre

5 Government buildings Official

6 LGBT neighborhood Le Marais

7 Expensive residences 16th arrondissement

8 Parks & leisure The banks of Seine

Having assigned a relevance score for each neighborhood
R� in the ranking, we evaluate the quality of the ranking using
discounted cumulative gain (DCG) (Sakai 2007). The gain
is a measure of relevance and we accumulate them (or sum
them) but discount results that came too far in the ranking
according to

DCG =
X

i=1

2rel(Ri) � 1

log2(i + 1)
.

Evaluation results. To perform the evaluation described
above we need ground-truth information regarding neighbor-
hoods in cities. Since ground truth requires concrete knowl-
edge of a city, we conducted a user study. Our study involved
six cities: Barcelona, New York, Paris, Rome, San Francisco,
and Washington DC. The participants in the study are inter-
national friends and colleagues of ours, who have lived for
many years in at least one of those cities. The participants
were given textual description of neighborhoods and were
asked to mark some neighborhoods in their own city that
matched best that description. The descriptions are shown in
Table 2. The table also shows matching neighborhoods for
Paris, as chosen by the first author of this paper who happens
to have lived in that city. The participants provided their an-
swers via a graphical interface.4 The answers were curated,
so that if more than one person provided answers for one
city, the answers were merged. To give a better sense of the
typical size and shape of these neighborhoods, we present in
Figure 3 three of them in Paris and in Barcelona.

Starting with each of the 6 cities as a source city and for
each of the 8 query neighborhoods, we compute the most
similar neighborhoods in all other cities, using each of the
distance measures that we want to evaluate.5 The results are
shown in Table 3. Each row corresponds to a source city.
DCG scores are averaged over all target cities and all 8 query
neighborhoods.

4http://where-would-you.herokuapp.com/
5Note that we experiment with 203 queries instead of 6 � (6 �

1) � 8 = 240, as in a couple of cases (pairs of city - neighborhood
description) our study did not yield a ground-truth neighborhood
with enough venues inside.

user-study interface

Paris

Figure 3: Three neighborhoods selected in Paris (top) and the
corresponding annotations from Barcelona (bottom) experts:
16th arrondissement Montmartre , and Official . The
black dots on each map represent the venues of our dataset.

We see that EMD-EUCL is the best-performing measure,
while JSD and EMD-t-SNE perform rather poorly. EMD-
LMNN performs only slightly worse than EMD-EUCL. An-
other observation is that the absolute DCG scores of all mea-
sures are relatively low. One reason for the low scores is that
many neighborhoods in the ground truth have non-circular
shapes (e.g., a long street of luxurious shops). Thus, even
if our measures discover an area very close to the ground
truth, due to its circular shape it can have low overlap with
the ground truth, and low relevance score.

Searching for similar
neighborhoods efficiently

We now turn our attention to the efficiency aspects of the
neighborhood similarity-search problem, i.e., the Problem 1
defined in page 2. Following our evaluation from the previ-
ous section, we focus on the EMD distance. The brute-force
approach to solve this problem is an exhaustive search al-
gorithm, as the one used above for the evaluation of neigh-
borhood distance measures. Namely, given neighborhood R,
consider all candidate neighborhoods R� of a certain shape
(circle, rectangle, or other) in the target city C �, evaluate the
distance EMD(F (R), F (R�)), and return the neighborhood
that achieves the smallest distance.

In this section, we show how to speedup the search task
significantly, with very little loss in accuracy. Our solution

Table 3: Average score of each metric from a given city. The
best metric in each city is highlighted and the last row is the
average score over all cities.

Query Min cost EMD- EMD- EMD- EMD- JSD EMD-
Source matching EUCL LMNN ITML t-SNE PARTIAL

Barcelona .083 .078 .084 .033 .028 .042 .078
New York .059 .059 .059 .049 .026 .057 .053
Paris .061 .091 .078 .021 .044 .045 .061
Rome .024 .042 .039 .055 .038 .021 .029
San Franc. .045 .045 .040 .060 .042 .033 .044
Wash. DC .043 .034 .038 .035 .026 .033 .038

Average .052 .058 .056 .042 .033 .038 .051

0 500 1000 1500 2000
0

10

20

30

Venues in Barcelona

V
en

ue
s

in
qu

er
y

re
gi

on

Figure 4: Intuition behind our pruning strategy: for two neigh-
borhoods with small EMD, the venues of one neighborhood
are in the k-NN set of the venues of the other.

relies on the following observation: the EMD between two
sets of feature vectors F (R) = F and F (R�) = F � is zero,
if all feature vectors in F and F � coincide. Relaxing this
condition, the EMD is small, if for many vectors in F there
is some near vector in F �. Put differently, when one feature
vector in F is far away from all vectors in F �, it contributes
a large cost to EMD.

Therefore we can reduce the search space by preprocessing
all venues in the target city and keeping only those venues
whose feature vectors are close to feature vectors of venues in
the query neighborhood. The venues kept in this preprocess-
ing step can be used as anchors. We can then look for areas
in the target city that are dense in anchor venues, and group
them in candidate neighborhoods, for which we calculate the
actual EMD.

To see how this idea works, consider Figure 4, where we
search in Barcelona to find the neighborhood that is most
similar to Pigalle (Paris). Each row in the figure corresponds
to one venue v in Pigalle, and contains the ranking of all
venues in Barcelona sorted by distance to v. There is a cross
(x) in i-th position of the ranking if the i-th ranked venue in
Barcelona belongs to the ground truth neighborhood (in this
case, el Raval, which we know from our user study). We see
that if we restrict ourselves to the 100 nearest neighbors of
each venue in the query neighborhood, we recover most of
the venues in the ground-truth neighborhood.

Our algorithm works as follows. Starting from the query
neighborhood R and target city C � (or cities), we obtain the

Barcelona

Figure 3: Three neighborhoods selected in Paris (top) and the
corresponding annotations from Barcelona (bottom) experts:
16th arrondissement Montmartre , and Official . The
black dots on each map represent the venues of our dataset.

We see that EMD-EUCL is the best-performing measure,
while JSD and EMD-t-SNE perform rather poorly. EMD-
LMNN performs only slightly worse than EMD-EUCL. An-
other observation is that the absolute DCG scores of all mea-
sures are relatively low. One reason for the low scores is that
many neighborhoods in the ground truth have non-circular
shapes (e.g., a long street of luxurious shops). Thus, even
if our measures discover an area very close to the ground
truth, due to its circular shape it can have low overlap with
the ground truth, and low relevance score.

Searching for similar
neighborhoods efficiently

We now turn our attention to the efficiency aspects of the
neighborhood similarity-search problem, i.e., the Problem 1
defined in page 2. Following our evaluation from the previ-
ous section, we focus on the EMD distance. The brute-force
approach to solve this problem is an exhaustive search al-
gorithm, as the one used above for the evaluation of neigh-
borhood distance measures. Namely, given neighborhood R,
consider all candidate neighborhoods R� of a certain shape
(circle, rectangle, or other) in the target city C �, evaluate the
distance EMD(F (R), F (R�)), and return the neighborhood
that achieves the smallest distance.

In this section, we show how to speedup the search task
significantly, with very little loss in accuracy. Our solution

Table 3: Average score of each metric from a given city. The
best metric in each city is highlighted and the last row is the
average score over all cities.

Query Min cost EMD- EMD- EMD- EMD- JSD EMD-
Source matching EUCL LMNN ITML t-SNE PARTIAL

Barcelona .083 .078 .084 .033 .028 .042 .078
New York .059 .059 .059 .049 .026 .057 .053
Paris .061 .091 .078 .021 .044 .045 .061
Rome .024 .042 .039 .055 .038 .021 .029
San Franc. .045 .045 .040 .060 .042 .033 .044
Wash. DC .043 .034 .038 .035 .026 .033 .038

Average .052 .058 .056 .042 .033 .038 .051

0 500 1000 1500 2000
0

10

20

30

Venues in Barcelona

V
en

ue
s

in
qu

er
y

re
gi

on

Figure 4: Intuition behind our pruning strategy: for two neigh-
borhoods with small EMD, the venues of one neighborhood
are in the k-NN set of the venues of the other.

relies on the following observation: the EMD between two
sets of feature vectors F (R) = F and F (R�) = F � is zero,
if all feature vectors in F and F � coincide. Relaxing this
condition, the EMD is small, if for many vectors in F there
is some near vector in F �. Put differently, when one feature
vector in F is far away from all vectors in F �, it contributes
a large cost to EMD.

Therefore we can reduce the search space by preprocessing
all venues in the target city and keeping only those venues
whose feature vectors are close to feature vectors of venues in
the query neighborhood. The venues kept in this preprocess-
ing step can be used as anchors. We can then look for areas
in the target city that are dense in anchor venues, and group
them in candidate neighborhoods, for which we calculate the
actual EMD.

To see how this idea works, consider Figure 4, where we
search in Barcelona to find the neighborhood that is most
similar to Pigalle (Paris). Each row in the figure corresponds
to one venue v in Pigalle, and contains the ranking of all
venues in Barcelona sorted by distance to v. There is a cross
(x) in i-th position of the ranking if the i-th ranked venue in
Barcelona belongs to the ground truth neighborhood (in this
case, el Raval, which we know from our user study). We see
that if we restrict ourselves to the 100 nearest neighbors of
each venue in the query neighborhood, we recover most of
the venues in the ground-truth neighborhood.

Our algorithm works as follows. Starting from the query
neighborhood R and target city C � (or cities), we obtain the

expensive residences, touristic and artsy, government buildings

user-study results

I which method agrees the most with user assessements

Figure 3: Three neighborhoods selected in Paris (top) and the
corresponding annotations from Barcelona (bottom) experts:
16th arrondissement Montmartre , and Official . The
black dots on each map represent the venues of our dataset.

We see that EMD-EUCL is the best-performing measure,
while JSD and EMD-t-SNE perform rather poorly. EMD-
LMNN performs only slightly worse than EMD-EUCL. An-
other observation is that the absolute DCG scores of all mea-
sures are relatively low. One reason for the low scores is that
many neighborhoods in the ground truth have non-circular
shapes (e.g., a long street of luxurious shops). Thus, even
if our measures discover an area very close to the ground
truth, due to its circular shape it can have low overlap with
the ground truth, and low relevance score.

Searching for similar
neighborhoods efficiently

We now turn our attention to the efficiency aspects of the
neighborhood similarity-search problem, i.e., the Problem 1
defined in page 2. Following our evaluation from the previ-
ous section, we focus on the EMD distance. The brute-force
approach to solve this problem is an exhaustive search al-
gorithm, as the one used above for the evaluation of neigh-
borhood distance measures. Namely, given neighborhood R,
consider all candidate neighborhoods R� of a certain shape
(circle, rectangle, or other) in the target city C �, evaluate the
distance EMD(F (R), F (R�)), and return the neighborhood
that achieves the smallest distance.

In this section, we show how to speedup the search task
significantly, with very little loss in accuracy. Our solution

Table 3: Average score of each metric from a given city. The
best metric in each city is highlighted and the last row is the
average score over all cities.

Query Min cost EMD- EMD- EMD- EMD- JSD EMD-
Source matching EUCL LMNN ITML t-SNE PARTIAL

Barcelona .083 .078 .084 .033 .028 .042 .078
New York .059 .059 .059 .049 .026 .057 .053
Paris .061 .091 .078 .021 .044 .045 .061
Rome .024 .042 .039 .055 .038 .021 .029
San Franc. .045 .045 .040 .060 .042 .033 .044
Wash. DC .043 .034 .038 .035 .026 .033 .038

Average .052 .058 .056 .042 .033 .038 .051

0 500 1000 1500 2000
0

10

20

30

Venues in Barcelona

V
en

ue
s

in
qu

er
y

re
gi

on

Figure 4: Intuition behind our pruning strategy: for two neigh-
borhoods with small EMD, the venues of one neighborhood
are in the k-NN set of the venues of the other.

relies on the following observation: the EMD between two
sets of feature vectors F (R) = F and F (R�) = F � is zero,
if all feature vectors in F and F � coincide. Relaxing this
condition, the EMD is small, if for many vectors in F there
is some near vector in F �. Put differently, when one feature
vector in F is far away from all vectors in F �, it contributes
a large cost to EMD.

Therefore we can reduce the search space by preprocessing
all venues in the target city and keeping only those venues
whose feature vectors are close to feature vectors of venues in
the query neighborhood. The venues kept in this preprocess-
ing step can be used as anchors. We can then look for areas
in the target city that are dense in anchor venues, and group
them in candidate neighborhoods, for which we calculate the
actual EMD.

To see how this idea works, consider Figure 4, where we
search in Barcelona to find the neighborhood that is most
similar to Pigalle (Paris). Each row in the figure corresponds
to one venue v in Pigalle, and contains the ranking of all
venues in Barcelona sorted by distance to v. There is a cross
(x) in i-th position of the ranking if the i-th ranked venue in
Barcelona belongs to the ground truth neighborhood (in this
case, el Raval, which we know from our user study). We see
that if we restrict ourselves to the 100 nearest neighbors of
each venue in the query neighborhood, we recover most of
the venues in the ground-truth neighborhood.

Our algorithm works as follows. Starting from the query
neighborhood R and target city C � (or cities), we obtain the

I answer: EMD

similarity search

I challenges

1. searching over distributions of feature vectors

2. complex distance measure

3. exponential search space

I option 1: exhaustive search

search for a predefined shape

still too slow

I option 2: prune the search space

how exactly?

designing pruning strategy

I consider two areas with small EMD distance

I venues of one are in the top-k NN set of the other

Figure 3: Three neighborhoods selected in Paris (top) and the
corresponding annotations from Barcelona (bottom) experts:
16th arrondissement Montmartre , and Official . The
black dots on each map represent the venues of our dataset.

We see that EMD-EUCL is the best-performing measure,
while JSD and EMD-t-SNE perform rather poorly. EMD-
LMNN performs only slightly worse than EMD-EUCL. An-
other observation is that the absolute DCG scores of all mea-
sures are relatively low. One reason for the low scores is that
many neighborhoods in the ground truth have non-circular
shapes (e.g., a long street of luxurious shops). Thus, even
if our measures discover an area very close to the ground
truth, due to its circular shape it can have low overlap with
the ground truth, and low relevance score.

Searching for similar
neighborhoods efficiently

We now turn our attention to the efficiency aspects of the
neighborhood similarity-search problem, i.e., the Problem 1
defined in page 2. Following our evaluation from the previ-
ous section, we focus on the EMD distance. The brute-force
approach to solve this problem is an exhaustive search al-
gorithm, as the one used above for the evaluation of neigh-
borhood distance measures. Namely, given neighborhood R,
consider all candidate neighborhoods R� of a certain shape
(circle, rectangle, or other) in the target city C �, evaluate the
distance EMD(F (R), F (R�)), and return the neighborhood
that achieves the smallest distance.

In this section, we show how to speedup the search task
significantly, with very little loss in accuracy. Our solution

Table 3: Average score of each metric from a given city. The
best metric in each city is highlighted and the last row is the
average score over all cities.

Query Min cost EMD- EMD- EMD- EMD- JSD EMD-
Source matching EUCL LMNN ITML t-SNE PARTIAL

Barcelona .083 .078 .084 .033 .028 .042 .078
New York .059 .059 .059 .049 .026 .057 .053
Paris .061 .091 .078 .021 .044 .045 .061
Rome .024 .042 .039 .055 .038 .021 .029
San Franc. .045 .045 .040 .060 .042 .033 .044
Wash. DC .043 .034 .038 .035 .026 .033 .038

Average .052 .058 .056 .042 .033 .038 .051

0 500 1000 1500 2000
0

10

20

30

Venues in Barcelona

V
en

ue
s

in
qu

er
y

re
gi

on

Figure 4: Intuition behind our pruning strategy: for two neigh-
borhoods with small EMD, the venues of one neighborhood
are in the k-NN set of the venues of the other.

relies on the following observation: the EMD between two
sets of feature vectors F (R) = F and F (R�) = F � is zero,
if all feature vectors in F and F � coincide. Relaxing this
condition, the EMD is small, if for many vectors in F there
is some near vector in F �. Put differently, when one feature
vector in F is far away from all vectors in F �, it contributes
a large cost to EMD.

Therefore we can reduce the search space by preprocessing
all venues in the target city and keeping only those venues
whose feature vectors are close to feature vectors of venues in
the query neighborhood. The venues kept in this preprocess-
ing step can be used as anchors. We can then look for areas
in the target city that are dense in anchor venues, and group
them in candidate neighborhoods, for which we calculate the
actual EMD.

To see how this idea works, consider Figure 4, where we
search in Barcelona to find the neighborhood that is most
similar to Pigalle (Paris). Each row in the figure corresponds
to one venue v in Pigalle, and contains the ranking of all
venues in Barcelona sorted by distance to v. There is a cross
(x) in i-th position of the ranking if the i-th ranked venue in
Barcelona belongs to the ground truth neighborhood (in this
case, el Raval, which we know from our user study). We see
that if we restrict ourselves to the 100 nearest neighbors of
each venue in the query neighborhood, we recover most of
the venues in the ground-truth neighborhood.

Our algorithm works as follows. Starting from the query
neighborhood R and target city C � (or cities), we obtain the

the pruning strategy

1. find matching locations

2. group locations by density-based clustering

3. expand and refine matching neighborhood

how well does it work?

accuracy

set of k-nearest neighbors Nk(v) ✓ V (C �) for each venue
v � V (R). All venues found in at least one k-NN set form the
set of anchor venues VA =

�
v�V (R) Nk(v). The set of an-

chor venues VA is then treated with respect to its geographic
coordinates: the DBSCAN algorithm is applied and areas with
low density in anchor venues are discarded. DBSCAN also pro-
duces a clustering of venues, which are treated as candidate
neighborhoods. For the candidate neighborhoods the exact
EMD is computed. If a candidate neighborhood is too large,
the exact EMD is computed for sliding subareas. Finally, to
account for misses that may happen during the pruning phase,
each area considered is extended by adding to its radius a
distance of j � 50 meters, j = 0, . . . , �, and the extended
area is also treated as a candidate neighborhood. In the end
of the process, the algorithm returns the the neighborhood
with the smallest distance (or top-m smallest distances).

The two parameters of the algorithm, k and �, offer an
accuracy vs. efficiency trade-off. Our experiments in the next
Section , as detailed in Section , suggest that the algorithm
produces very accurate results even for small values of the
parameters (which also give the highest efficiency). With
respect to k, we found that in our data, k = 50 works very
well, as in most cases, this value returns around 50% of
the venues in the ground truth, while covering only 33% of
the city. With respect to �, even � = 0 (no extension) works
quite well. While the robustness of EMD (and more generally
optimal transport based distance) has recently lead to active
research about speeding up their computation (e.g. Pele and
Werman, 2009; Cuturi, 2013; Tang et al., 2013), we find that
our simple filtering approach is more than adequate for our
purposes.

Scalability experiments
In this section we quantify how well our proposed method
approximates a brute-force EMD search. We conduct our
performance evaluation on the 203 query triplets (C, R, C �)
that were used in the analysis shown in Table 3.

For each of these queries, we execute the brute-force
search ; namely, we compute the EMD for all circles
(v�, r) centered at a venue v� of C � and with radius r �
{200, 275, 350, 425, 500} meters. We also execute the neigh-
borhood similarity-search algorithm, described in the pre-
vious section. We compare these two methods in terms of
execution time and quality of solution found. In particular,
given a query triple (C, R, C �) let RBF be the most simi-
lar neighborhood found by the brute force and let RA be
the most similar neighborhood found by the approximation
method. Let the corresponding closest distances be DBF =
EMD(F (R), F (RBF)) and DA = EMD(F (R), F (RA)),
respectively. We define the relative distance � for that query
as

� =
DA

DBF
(4)

The smaller is �, the better the approximation. We would
in fact expect that � is greater than 1, as values less than
1 indicate that the approximation method is better than the
brute force. However, as the brute force is constrained to
circular neighborhoods, it is possible that the approximation

0 1 2 3 4

1

1.5

1.019 0.994 0.982 0.981 0.979

Number of region extensions �

re
la

ti
v
e

d
is

ta
n
ce

(a) Box plot of � defined in Equation 4 as � varies. Values smaller
than 1 indicate that the approximation method finds a neighborhood
with smaller distance than the brute force.

0 50 100 150 200

101

102

103

query

sp
ee

d
u
p

� = 0 � = 1

� = 2 � = 3

� = 4

(b) Time speed-up for each query, in descending order. Original
brute force searches take between 19 and 2129 seconds. Note the
logarithmic scale.

Figure 5: Approximation performance.

method finds better solutions. Removing this constraint from
the brute force implies searching over other shape families
(rectangles, diamonds, etc.), which will increase its running
time even more.

Overall, our results show that for the range of parameters
we experiment with, the approximation method is much faster
than the brute force—in most cases by at least one order of
magnitude, while often by two or even three. At the same
time the relative distance is very close to 1, often below 1,
and rarely above 1.5.

In more detail, we first analyze the effect of �, the number
of times we extend the initial regions found after clustering,
while using k = 50. As � increases, more EMD computations
are required, but the chances to find a more similar region
increase. Indeed, as we see in Figure 5a, the relative distance
decreases as � increases, while the computation becomes
more expensive (Figure 5b). We also note that after � = 1,
the gain is small, suggesting that the initial regions are already
relevant enough.

We perform the same experiment for k �
{8, 25, 50, 80, 160} with � = 1. As shown in Table 4,
the relative distance is very small for all values of k, showing
the robustness of the method. At the same time, k does not
affect much the running time of the algorithm (results not
shown), as the bottleneck is the computation of EMD.

how well does it work?

efficiency

set of k-nearest neighbors Nk(v) ✓ V (C �) for each venue
v � V (R). All venues found in at least one k-NN set form the
set of anchor venues VA =

�
v�V (R) Nk(v). The set of an-

chor venues VA is then treated with respect to its geographic
coordinates: the DBSCAN algorithm is applied and areas with
low density in anchor venues are discarded. DBSCAN also pro-
duces a clustering of venues, which are treated as candidate
neighborhoods. For the candidate neighborhoods the exact
EMD is computed. If a candidate neighborhood is too large,
the exact EMD is computed for sliding subareas. Finally, to
account for misses that may happen during the pruning phase,
each area considered is extended by adding to its radius a
distance of j � 50 meters, j = 0, . . . , �, and the extended
area is also treated as a candidate neighborhood. In the end
of the process, the algorithm returns the the neighborhood
with the smallest distance (or top-m smallest distances).

The two parameters of the algorithm, k and �, offer an
accuracy vs. efficiency trade-off. Our experiments in the next
Section , as detailed in Section , suggest that the algorithm
produces very accurate results even for small values of the
parameters (which also give the highest efficiency). With
respect to k, we found that in our data, k = 50 works very
well, as in most cases, this value returns around 50% of
the venues in the ground truth, while covering only 33% of
the city. With respect to �, even � = 0 (no extension) works
quite well. While the robustness of EMD (and more generally
optimal transport based distance) has recently lead to active
research about speeding up their computation (e.g. Pele and
Werman, 2009; Cuturi, 2013; Tang et al., 2013), we find that
our simple filtering approach is more than adequate for our
purposes.

Scalability experiments
In this section we quantify how well our proposed method
approximates a brute-force EMD search. We conduct our
performance evaluation on the 203 query triplets (C, R, C �)
that were used in the analysis shown in Table 3.

For each of these queries, we execute the brute-force
search ; namely, we compute the EMD for all circles
(v�, r) centered at a venue v� of C � and with radius r �
{200, 275, 350, 425, 500} meters. We also execute the neigh-
borhood similarity-search algorithm, described in the pre-
vious section. We compare these two methods in terms of
execution time and quality of solution found. In particular,
given a query triple (C, R, C �) let RBF be the most simi-
lar neighborhood found by the brute force and let RA be
the most similar neighborhood found by the approximation
method. Let the corresponding closest distances be DBF =
EMD(F (R), F (RBF)) and DA = EMD(F (R), F (RA)),
respectively. We define the relative distance � for that query
as

� =
DA

DBF
(4)

The smaller is �, the better the approximation. We would
in fact expect that � is greater than 1, as values less than
1 indicate that the approximation method is better than the
brute force. However, as the brute force is constrained to
circular neighborhoods, it is possible that the approximation

0 1 2 3 4

1

1.5

1.019 0.994 0.982 0.981 0.979

Number of region extensions �

re
la

ti
v
e

d
is

ta
n
ce

(a) Box plot of � defined in Equation 4 as � varies. Values smaller
than 1 indicate that the approximation method finds a neighborhood
with smaller distance than the brute force.

0 50 100 150 200

101

102

103

query

sp
ee

d
u
p

� = 0 � = 1

� = 2 � = 3

� = 4

(b) Time speed-up for each query, in descending order. Original
brute force searches take between 19 and 2129 seconds. Note the
logarithmic scale.

Figure 5: Approximation performance.

method finds better solutions. Removing this constraint from
the brute force implies searching over other shape families
(rectangles, diamonds, etc.), which will increase its running
time even more.

Overall, our results show that for the range of parameters
we experiment with, the approximation method is much faster
than the brute force—in most cases by at least one order of
magnitude, while often by two or even three. At the same
time the relative distance is very close to 1, often below 1,
and rarely above 1.5.

In more detail, we first analyze the effect of �, the number
of times we extend the initial regions found after clustering,
while using k = 50. As � increases, more EMD computations
are required, but the chances to find a more similar region
increase. Indeed, as we see in Figure 5a, the relative distance
decreases as � increases, while the computation becomes
more expensive (Figure 5b). We also note that after � = 1,
the gain is small, suggesting that the initial regions are already
relevant enough.

We perform the same experiment for k �
{8, 25, 50, 80, 160} with � = 1. As shown in Table 4,
the relative distance is very small for all values of k, showing
the robustness of the method. At the same time, k does not
affect much the running time of the algorithm (results not
shown), as the bottleneck is the computation of EMD.

what does it actually find?

I quality depends on the available data

Figure 6: A query in Washington and its result in New-York.

Related work
Our work lies within the scope of urban computing, an area
of increasing interest. In one line of work, the concentra-
tion of social online activity is used to determine interesting
geographic regions of cities. For instance, Deng, Chuang,
and Lemmens, (2009) use DBSCAN to cluster Flickr pho-
tos, and they exploit tag co-occurrence to characterize the
discovered clusters. Rattenbury and Naaman, (2009) also
employ spatial methods to discover hotspot regions in San
Francisco where certain photo tags appear in burst. Moreover,
Wakamiya, Lee, and Sumiya, (2012) used geolocated data
from Twitter to detect sentiment and movement and draw
a socio-cognitive map of the Kinki region in Japan.

Closer to our work, Cranshaw et al., (2012) analyze 18 mil-
lion Foursquare check-ins to find so-called livehoods.6
They build a spatial neighbor graph between venues, where
edges are weighted by the cosine similarity of the user distri-
bution of two venues, and then perform spectral clustering.
Faced with the same difficulty as ours to evaluate their re-
sults, they interview residents of Pittsburgh who validate the
resulting subdivisions. Another approach was proposed by
Zhang et al., (2013), also based on Foursquare check-ins.
Each venue is assigned a category, a peak activity time, and
a binary label: touristic or not. The venues are then clustered
along these features, and the city is divided into a regular grid,
where grid cells are described by their feature density. Similar
cells are then clustered into neighborhoods. With respect to
the last two papers, our work makes a number of advances:
different notions of similarity between neighborhoods are
defined and evaluated, the problem of finding similar neigh-
borhoods in other cities is considered, and the scalability of
the search problem is addressed.

In addition to the analysis of static data like check-ins,
another line of work takes advantage of dynamic data, such
as trajectories. For instance, Giannotti et al., (2011) analyze
GPS data in Italian cities to find temporal patterns, which
can then be used for detect events or regulate traffic jams.

6http://livehoods.org/

Figure 7: Top: the neighborhood query in Barcelona (La
Ribera). Bottom: the results in Rome match the ground truth
(in orange), both from Barcelona (green) and Paris (blue, the
query is showed in blue in Figure 3).

Similarly, Cao, Cong, and Jensen, (2010) extract “stay points”
from car GPS data and assess the significance of each point by
the number of visitors, time taken to reach there, and duration
of stay. Uddin, Ravishankar, and Tsotras, (2011) develop
efficient methods to address closely-related tasks. Once the
semantics of locations is known, it is still challenging to find
frequent patterns efficiently (Zhang et al. 2014).

The problem of identifying and characterizing neighbor-
hoods has also been addressed by companies. For instance, re-
search in Flickr has shown that by computing the �-shape
of a set of tagged photos, it is possible to recover neighbor-
hood boundaries;7 we remind that the �-shape is a generaliza-
tion of the convex hull (Edelsbrunner, Kirkpatrick, and Seidel
1983). Likewise, Airbnb, a social lodging renting website,
has recently produced a ranking of cities by hospitality8, as
well as data-driven characterization of neighborhoods.9 How-
ever, the methods and details for these commercial systems
are not publicly available.

Finally we note that our setting is tangentially related to
work on spatio-temporal topic modeling. In this line of work,
Yin et al., (2011) address the problem of finding k localized
topics and n Gaussian spatial regions. They develop and ap-
ply a latent geographical topic analysis framework: each
region has a topic distribution and each topic is a multino-
mial distribution over all possible photos tags. By taking into
account user information, such an approach can be used to

7http://code.flickr.net/2008/10/30/the-shape-of-alpha
8http://nerds.airbnb.com/most-hospitable-cities
9http://airbnb.com/locations

touristic and artsy neighborhoods in Rome

ground truth, and results with queries from Barcelona, Paris

conclusions

I wealth of data, wealth of problems

mining, learning, recommendations, discovery, search

I challenges due to size, noise, heterogeneity,
high dimensionality

I improve existing methods or work on new problems

I fun data to play and visualize

credits

Aris
AnagnostopoulosTed Lappas

Géraud
Le Falher

Michael
Mathioudakis

Kostas
Pelechrinis

Polina
Rozenshtein

Nikolaj Tatti Evimaria Terzi

references

Buchbinder, N., Feldman, M., Naor, J. S., and Schwartz, R. (2012).
A tight linear time (1/2)-approximation for unconstrained submodular
maximization.
FOCS.

De Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel,
R., and Yu, C. (2010).
Automatic construction of travel itineraries using social breadcrumbs.
In HT.

Kennedy, L., Naaman, M., Ahern, S., Nair, R., and Rattenbury, T. (2007).
How flickr helps us make sense of the world: Context and content in
community-contributed media collections.
In International Conference on Multimedia.

Kulldorff, M. (1997).
A spatial scan statistic.
Communications in Statistics-Theory and Methods, 26(6):1481–1496.

references (cont.)

Le Falher, G., Mathioudakis, M., and Gionis, A. (2015).
Where is the Soho of Rome? Measures and algorithms for finding
similar neighborhoods in cities.
In ICWSM.

Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014).
Event detection in activity networks.
In KDD.

