A!

Aalto University
School of Science

Mining temporal networks

Aristides Gionis

Department of Computer Science, Aalto University
users.ics.aalto.fi/gionis

Workshop on online social networks and media
Network properties and dynamics (ONSED)

April 24, 2018




interconnected world

e networks model objects and their relations
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— social

— informational

— technological

— biological



impact of network science

e online communication networks and
social media

e implications in

— knowledge creation

information sharing

education

democracy

society as a whole




research questions

structure discovery

— finding communities, events, roles of individuals

study complex dynamic phenomena

— evolution, information diffusion, opinion formation

develop novel applications

design efficient algorithms



traditional view

e networks represented as pure graph-theory objects

no additional vertex / edge information
e emphasis on static networks

e dynamic settings model structural changes

vertex / edge additions / deletions



temporal networks

e ability to collect and store large volumes of network data
¢ available data have fine granularity
e lots of additional information associated to vertices/edges

e network topology is relatively stable, while
lots of activity and interaction is taking place

e giving rise to new concepts, new problems, and
new computational challenges



modeling activity in networks

1. network nodes perform actions (e.g., posting messages)
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2. network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)
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many novel and interesting concepts
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temporal networks — objectives

¢ identify new concepts and new problems
¢ develop algorithmic solutions

e demonstrate revelance to real-world applications



agenda

tracking important nodes
o temporal PageRank

e maintaining neighborhood profiles

reconstruction problems
e reconstructing an epidemic over time

e reconstruction of activity timelines



tracking important nodes

temporal PageRank

P. Rozenshtein and A. Gionis, ECML PKDD 2016



PageRank

e classic approach for measuring node importance

e listed in the top-10 most important data-mining algorithms
[Wu et al., 2008]

e numerous applications

— ranking web pages
— trust and distrust computation
— finding experts in social networks



PageRank

PageRank defined as the stationary distribution of
a random walk in the graph

inherently a static process

however, many modern networks can be viewed as

a sequence (stream) of edges
— temporal network : G = (V, E), with E = {(u, v, 1)}
— examples : twitter, instagram, IMs, email, ...

what is an appropriate PageRank definition for
temporal networks?



temporal networks

network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)
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motivating example

static network temporal network temporal network



research questions and objectives

o extend PageRank to incorporate temporal information
and network dynamics

e adapt PageRank to reflect changes in network dynamics
and node importance

 estimate importance of a node v at any given time ¢



dynamic PageRank vs. temporal PageRank

extensive work on dynamic PageRank

dynamic PageRank computation :
maintain correct PageRank during network updates
— e.g., edge additions / deletions

computation should return the static PageRank at a
given network snapshot

for edges present in a snapshot, order does not matter



static PageRank

graph G= (V. E)

corresponding row-stochastic matrix P ¢ R"*"

personalization vector h € R”

PageRank is the stationary distribution of a random walk,
with restart probability (1 — «)

:ZZ(wa Z h(v)Pr[z | V]

veV k=0 zeZ(v,u)
|z|=k

where, Z(v, u) is the set of all paths from v to u
and Pr[z | v] = H(/,j)ez P(i,J)



temporal PageRank

e make a random walk only on temporal paths
e.g., time-respecting paths
time-stamps increase along the path

¢ — b — a— c:time respecting

a-— ¢ — b — a: not time respecting




temporal PageRank

e intuition : probability of visiting node v at time ¢
given a random walk on temporal paths

e need to model probability of following next temporal edge
— we use an exponential distribution

o temporal PageRank definition

r(u,t) = Z 2(1 —a)ak Z Pr'[z| t]

veV k=0 zeZT(v,ult)
|z|=k

zZT(v,u | t) set of temporal paths from v to v until time ¢



computation

e simple online algorithm
e r(u,t): temporal PageRank estimate of u at time ¢
e s(u,t) : count of active walks visiting v at time ¢

input : F, transition probability 8, jumping probability «
r=0,s=0;
foreach (u,v,t) € E do

r(u) =r(u) + (1 — a);

r(v) =7(v) 4+ (s(u) + (1 — @)

s(v) = s(v) + (s(u) + (1 —a))(1 = B)oy

s(u) = (s(u) + (1 — a))B;

normalize 7;
return 7r;

N O Ok WN



static vs. temporal PageRank

o temporal PageRank is designed to capture changes
in network dynamics and concept drifts

e what if the edge distribution is stable?



static vs. temporal PageRank

e consider static network Gs = (V, Es, w)

e time period [1..... T]

e construct temporal network G = (V, E) by sampling edges
proportionally to their weight

proposition :
as T — oo, the temporal PageRank on G
converges to the static PageRank on Gg,
with personalization vector equal to weighted out-degree



experiment — adaptation to concept drift
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tracking important nodes

maintaining sliding-window neighborhood profiles

R. Kumar, T. Calders, A. Gionis, and N. Tatti, ECML PKDD 2015



distance distributions in graphs

given graph G, a node v, and distance r :

how many nodes of G are in distance r from u?

fundamental graph-mining primitive

— median distance, diameter, effective diameter

related to small-world phenomena

a measure of centrality for nodes of G



distance distributions in graphs

e exact solution requires all-pairs shortest path computation
— Floyd-Warshall algorithm: O(n?)
— or, BFS for unweighted graphs: O(nm)

e clearly non scalable

e resort to approximations based on diffusion methods



diffusion-based computation

[Palmer et al., 2002]

e let B;(x) be the ball of radius { around x
(the set of nodes at distance < f from x)

e clearly By(x) = {x}
o moreover By, 1(x) = U, ) Bi(y) U{x}

e so computing B;. 1 from B; just takes a single (sequential)
scan of the graph



diffusion-based computation

every set requires O(n) bits, hence O(n?) bits overall

amount of space is prohibitively large

instead use sketching for counting distinct elements

probabilistic counters require very small space (loglog)

HyperANF algorithm [Boldi et al., 2011]
— uses HyperLogLog counters [Flajolet et al., 2007]

— with 40 bits you can count up to 4 billion with
standard deviation 6%
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extension to temporal networks

e limitations of existing solutions
— consider static network

— multi-pass algorithm

e in this work
— extension to temporal networks
— streaming algorithm for sliding-window model :

consider only the most recent interactions (edges)



setting

e temporal network G = (V. E)

e stream of edges E = ((uy, vq,t), (Uo, Vo, bp), .. .)
with t; <t < ...

e sliding window length w

¢ snapshot network G(f, w) at time ¢ contains all edges
with time-stamps in (f — w, {]

problem :
given node u, window length w, and distance r, how many
nodes in G(1, w) are within distance r from v at time 1?



example
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a toy example, 3 snapshot graphs with a window size of 3



proposed online algorithms

1. an exact but memory-inefficient streaming algorithm
2. an approximate memory-efficient streaming algorithm

— approximate algorithm uses logic of exact algorithm,
combined with hyperloglog sketches



horizons

e path horizon : time-stamp of the oldest edge on the path

e h(u,v,i): the horizon for length / between nodes v and v :
the maximum horizon of any path of length at most /



example
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two snapshot graphs along with h(u, b, i) fori =0,...,4



neighborhood summaries

e observation : if for a node u we know all horizons h(u, v, i),
for all distances / and all nodes v, we can give complete
neighborhood profile for u for any window length

» neighborhood summary : Sf = (S{[0],..., S{[r])

where S{[i] = {(v, ht(u, v,i)) | he(u, v, i) > —oo}



updating neighborhood summaries

e edge deletion : simply delete entries from summaries

e edge addition : a change in summary at distance / for
a node v will introduce a change in the summary of its
neighbors at distance / + 1

— updates propagate in a BFS fashion



exact algorithm

e update time : O(rmnlog n)
e space complexity : O(rn?)

where r an upper bound on max distance

e quadratic dependence not acceptable for large graphs

— hence approximation algorithm



approximate algorithm

e sliding HyperLoglLog sketch : extension of HyperLogLog to
maintain a distinct set counter over sliding window

e if number of buckets in the HLL counter is k then the
worst case complexity changes to

— update time :

O(rm2¥log? n) from  O(rmnlogn)
— space complexity :

O(rn2¥log n) from  O(rn?)



empirical evaluation — quality

nodes dist total clus diam eff avgrel

dataset edges edges coef diam error
(k=7)

Facebook 4039 88234 88234 0.60 8 4.7 0.08
Cit-HepTh 27771 352801 352801 0.31 13 53 0.10
Higgs 166840 249030 500000 0.19 10 4.7 0.14
DBLP 192357 400000 800000 0.63 21 8.0 0.09




empirical evaluation — running time
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contrast (DBLP)
— offline HyperANF : 3.6 sec / sliding window
— proposed approach : 0.003 sec / sliding window



reconstructing an epidemic over time

P. Rozenshtein, A. Gionis, B.A. Prakash, J. Vreeken, KDD 2016



motivation

e consider a sequence of timestamped edges
— an edge between people represents some interaction
phonecall, emalil, retweet, ...

¢ infection reconstruction :
— consider a unknown dynamic propagation process
virus, idea, topic, gossip, ...
— incomplete reported cases of infection

e goal :
— reconstruct paths of infection,
which explains cases of reported infection, and
recovers missing infected nodes and interactions



model

e interaction (temporal) network G = (V. E)
nnodes V; m directed interactions £ = {(u, v, 1)}

convenient to consider timestamped nodes V = {(u;, f;)}




model

¢ infection (activity)
— infection starts externally
— it may propagate only via interactions
— infected nodes remain infected
— no assumption about the model

e reports
— reported infections R = {(u., 1)}
— report can be later than activation
— not all infected nodes are reported



problem definition

EPIDEMICRECOSTRUCTION
e input : given
interactions E = {(u, v, 1)}
set of reported infections R = {(u. 1)}
set of candidate seeds C C V
integer k

e find : set of temporal paths P such that
set of paths P spans R
seeds in Parein C
number of seeds in P is at most k
cost(P | R) = > ocp w(e) minimized



problem definition

EPIDEMICRECOSTRUCTION

e input : given
interactions £ = {(u, v, 1)}
set of reported infections R = {(u. 1)}
set of candidate seeds C C V
integer k

e find : set of temporal paths P such that
set of paths P spans R
seeds in Parein C
number of seeds in P is at most k
cost(P | R) = > ocp w(e) minimized

EPIDEMICRECOSTRUCTION is NP-hard



related problem

MINDIRSTEINERTREE
e input : given
directed graph H = (U, F, w) with edge weights w
root node r € U
set of terminal nodes R C U

e find : directed tree T rooted at r such that
T contais paths from r to all nodes in R
> ec7 W(e) is minimized



related problem

MINDIRSTEINERTREE
e input : given
directed graph H = (U, F, w) with edge weights w
root node r € U
set of terminal nodes R C U

e find : directed tree T rooted at r such that
T contais paths from r to all nodes in R
> ec7 W(e) is minimized

EPIDEMICRECOSTRUCTION can be mapped to
MINDIRSTEINERTREE



transformation

add a dummy node, and
connect it with the earliest occurrence of each candidate seed,
with zero cost



solution idea

input
interactions E, reports R, candidates C, integer k
transformation

1. construct a static graph H = (U, F, w), where
U = V U {d} time-stamped nodes and dummy node d

2. edges from d to earliest occurrence candidate seeds
set weight to o
solve MINDIRSTEINERTREE on H
— subtrees of d are temporal paths P
— number of subtrees monotonic on weight «

— binary search on «, until less than k subtrees



solving MINDIRSTEINERTREE

MINDIRSTEINERTREE is NP-hard

recursive algorithm [Charikar et al., 1999]

defined for recursion depth / > 1

approximation guarantee /(/ — 1)|X\1f
running time O(| V|'|X|") [Huang et al., 2015]

weuse =2



main result

speedup
e MINDIRSTEINERTREE pre-computes transitive closure of H
— running time O(m?)
« need to calculate shortest paths for ‘only’ O(n?) pairs
— ascan on E requiring O(nm) time [Huang et al., 2015]

proposition
for the EPIDEMICRECOSTRUCTION problem, we can obtain
approximation 2\n]% in time O(mn)



experimental evaluation

datasets : synthetic, facebook, tumblr, students, and enron

weights : w(u, v, t) = 3(|t — ta(u)| + |t — ta(V)|)

setting : simulate epidemic cascades with different models
sample infections reports
compare with ground truth

baseline : one-hop extension
evaluation metric : Matthews correlation coefficient
TP-TN - FP-FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =




experimental evaluation — results
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Figure 4: Effect of the fraction of interactions in the interaction history E that are relevant to the propagation.
Reconstruction quality measured by MCC on the Facebook dataset, for different infection models.



reconstructing activity timelines in temporal networks

P. Rozenshtein, A. Gionis, N. Tatti, ECML PKDD 2017



the timeline reconstruction problem

e consider a set of entities

e entities can become active or inactive

e entities interact over time, forming a temporal network
e each interaction is attributed to an active entity

e can we reconstruct the activity timeline that explains
best the observed temporal network?



the timeline reconstruction problem

e consider a set of entities

e entities can become active or inactive

e entities interact over time, forming a temporal network
e each interaction is attributed to an active entity

e can we reconstruct the activity timeline that explains
best the observed temporal network?

e assumption: being active is more costly,
thus we want to minimize total activity time



the timeline reconstruction problem

e motivating example

e analyze a discussion in twitter about a topic (e.g., brexit)
e entities are hashtags

e two hashtags interact if they appear in the same tweet

e summarize the discussion by reconstructing a timeline

¢ pick a set of important hashtags and the time intervals
they are active



the timeline reconstruction problem

motivating example

#economy 1

#brexit [

#negotiations [
#hardbrexit
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the timeline reconstruction problem

motivating example

#economy
#brexit
#negotiations
#hardbrexit
#tory

time



problem formalization

e given a temporal network G = (V, E) with E = {(u, v, 1)}

¢ find a set of intervals associated with nodes
(the intervals that nodes are active)
at most k per node

e that cover all edges, and
— k-SUM-SPAN : minimize the sum of interval lengths

— Kk-MAX-SPAN : minimize the max interval length



results

1-MAX-SPAN : solvable in linear time (related to 2-SAT)
1-SUM-SPAN : NP-hard
k-MAX-SPAN, k > 1 : inapproximable

k-SUM-SPAN, k > 1 : inapproximable

efficient and practical algorithms for hard problems



timeline reconstruction — case study
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Fig. 7. Part of the output of Inner algorithm on Twitter dataset for November'13. Tags, co-occurring with hashtags #s1ush13, #mtvema and
#nokiaemg. Activity intervals and active moments of interactions (hashtags’ co-occurrences) are colored blue, inactive moments of interactions
are colored orange. Only edges between an active and inactive hashtags are shown.




timeline reconstruction — case study
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Fig. 8. Part of the output of k-Inner algorithm on Twitter dataset years 2011-2013 with k&
intervals and active moments of interactions (hashtags’ co-occumrences) are colored blue,
Only edges between an active and inactive hashtags are shown.

3. Tags, co-occurring with hashtag #slush. Activity
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summary

e examples of mining temporal networks
— temporal PageRank
— maintaining sliding-window neighborhood profiles
— reconstructing an epidemic over time
— reconstructing activity timelines

e potential for new concepts, new problem definitions,
new computational methods, and new applications
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