Finding a Maximum Density Subgraph

A. V. Goldberg !

Computer Science Division
University of California

Berkeley, California 94720

f Supported by a Fannie and John Herts Foundation Fellowship.

Finding a Maximum Density Subgraph

A V. G’oldberg'r

Computer Science Division
University of California

Berkeley, California 94720

1. Introduction

The density of a graph is the ratio of the number of edges to the number of
vertices of the graph. In this paper we will develop a fast algorithm for the fol-
lowing problem: given an undirected graph G =(V, E) with |V|=n, |E|=m,
find a subgraph of G of maximum density. Since the density of a graph is half
the average degree, the problem is equivalent to that of finding a maximum aver-
age degree subgraph of a graph. Note that we can find a maximum density sub-
graph of a directed graph by applying the algorithm to the associated undirected
graph.

In the following discussion, we assume familiarity with basic network theory,

including network flows and the max-flow min-cut theorem. See, for example, [2].

We reduce the problem of finding a maximum density subgraph to a series
of minimum capacity cut computations, which in turn can be done using network
flow techniques. A similar approach to the same problem was used by Picard and
Queyranne [5]. Their soluticn, however, involves, in the worst case, n min-cut
computations on networks with n+2 nodes, whereas the algorithm presented

here requires O(logn) min-cut computations on networks of the same size.

T Supported by a Fannie and Jobn Herts Foundation Fellowship.

-92-

As we will show, our algorithm generalizes to multigraphs and to graphs
with nonnegative weights on edges. The algorithm also generalizes to graphs in
which both nodes and edges are weighted.

The algorithm works as follows. Let D be the density of a desired subgraph.
At each stage of the algorithm, we have a "guess‘* ¢ for D. Then we construct a
network and perform a min-cut computation that enables us to decide whether

our a binary search for D and to find a maximum density subgraph.

2. Network Construction

Let d; be the degree of vertex f of G. Given a "'guess‘ g, we convert G
into a network N =(Vy, Ey) as follows.

We add source s and sink ¢ to the set of vertices of G; replace each
(undirected) edge of G by two directed edges of capacity 1 each; connect source
to every node ¢ of G by an edge of capacity m; and connect every node it of G
to the sink by an edge of capacity (m + 2¢g - d;). Figure 1 illustrates the con-

struction.

More formally,

Vy= VU{s,t}

Ex={G,) {i,i}eEY U lts,N1ievViyl0lieV;
¢; =1 {1,7}€E

Cy = M eV

¢ = m+ 2g-4d; 2%

;=0 {i,1}¢EN-

Notice that all capacities are nonnegative because for any 1, d; < m, and our
"guess'* ¢ will always be nonnegative.

A partition of Vy into two sets, S and T, such that s € S and t €T, deter-
mines an s—f cut. Let V; = S-{s},and Vo= T-{t}.If |V,]| =0, then the

capacity of the cut ¢(S, T) = m | V'|; otherwise, the capacity of the cut is given

by (see figure 2)

C(Sv T) = E iy
1€S, ;€T
= E caj + E € + Z cij
JEV: tEV, i€V, JEV,
=m | Vo] + [m|V11+29|V1|“Zd; + Y €
i€V, tEV,JEV,
Ydi- Y 1
eV, 1€V, JEV,
=m|V|+ |Vil2]g-|- -
‘ 2| Vil

But ¥ d;- 3 1is twice the number of edges in the subgraph of G
eV, i€V, JEV:

induced by V, so
Y- 31
eV i€V, JEV,
2| Vil
is the density of the subgraph of G generated by V,. Therefore, c(S,, T,) =

D1=

m|V |+ 2| V{|(g-D;). The following theorem that gives a way to tell whether

g is too big or too small.

THEOREM 1 Assume that S and T give a minimum capacity cut. If
| V| %0, then ¢ < D;if | V| =0 (ie. S =1{s}), then ¢ 2 D.

PROOF Notice that if S, = {s}, T, = V[J{t}, then the capacity of the
cut (S,, Tg) is C, = m |V|. We have C, > ¢(5,T), ie. 2| Vyi(g-Dy) L0.
So if V; is not empty then g < D), i.e. there must exist a subgraph of G whose

density is at least g. Thus, ¢ < D, the maximum density of a subgraph of G.

Conversely, assume that there exists a subgraph of G, G = (V,E) with the
density D > g¢g. Then the capacity of the cut defined by

C=m|V|+2|V|(¢-D)<C,
It follows that in this case V, will not be empty, for otherwise the cut (S, T)

-4-

would not be a min-cut. In other words, if V; is empty, then the density of any

subgraph of G is less than or equal to g, and g 2> D.

3. The Algorithm

The maximum density, D, can take on only a finite set of values. Recall
that D is the ratio of a number of edges to the number of vertices of for some

subgraph of G, so

!
D E{-r:—,-l o< m' Sm,lSn'Sn}
It follows that D lies between 0 and m; furthermore, the smallest distance

. To see this, we notice

between the two different possibe values of D 1is 1)
n —

that the difference A between two different possibe values is

A m, mo mnys—Mon,
BT nn2
If n,=n,, then |A]| > 1 , otherwise n;n, < n{n-1), so |A| > 1 we
- n n(n-1)

have the following theorem:

THEOREM 2 If G' is a subgraph of G with density D', and no subgraph

1
n(n-1)

, then G' is a max-

of G has a density greater than or equal to D' +

imum density subgraph.

The theorem tells us when we can stop the search. Now we can describe the

algorithm.
The algorithm is given below.

During the execution of the algorithm, V contains vertices of a subgraph of

G with density greater than or equal to [. When the algorithm terminates, we

know that there is no subgraph with density {+ or greater, so, by

1
n(n-1)

| —0; u—m; V,+ enply;

while 4 -1 > —— do
n(n-1)

begin
u+1
g+ 7
Construet N=(Vy, Ex);
Find min—cut (S, T);
if S={s}then u«—g

else

begin
l+g;
VieS-{s};
end;
end;
return (subgraph of G induced by Vi)

Theorem 2, the subgraph returned is a maximum density subgraph.

4. The Running Time

THEOREM 3 Let M(v,e) be the time required to find a minimum capa-
city cut in a network with v vertices and e edges. Then the algorithm runs in

time O(M({n,n + m)logn).

PROOF There is only one loop which is executed flog((m + Nn(n-1))] =
O(logn) times. Inside the loop, finding min-cut is the dominating step. The net-
work has n + 2= O(n) vertices and 2m + 2n =C(n + m) edges. So the run-

ning time is O(M(n, n + mjlogn).

If we use Karzanov algorithm [1] which finds a minimum capacity cut in a
network with k vertices in O(k®) steps, we can find a maximum density subgraph

in time O{n®logn). Of course, use of a faster min-cut algorithm improves the

-8-

running time of our graph density algorithm. The algorithm of Sleator and Tar-
jan [6], for example, has M(v, e) = O(velogv). The use of this min-cut algorithm
results in an O(n(n+ m)log(n)log(n+ m)) graph- density algorithm, which gives
a better bound for sparse graphs. For a discussion of other max-flow min-cut

algorithms, see [4].

5. Generalization to weighted graphs

We can generalize the notion of density to weighted graphs in a natural way
by defining the density of a weighted graph to be the ratio of the sum of weights
of all edges of the graph to the number of vertices in it. With minor
modifications, the algorithm can solve the problem for graphs with nonnegative
rational weights (also, for multigraphs, which in the context of the problem are

equivalent to integer weighted graphs).

By multiplying all weights of the edges by the product of denominators of
weights, we obtain an equivalent problem with integer weights. The network 1s
constructed as before except the capacities of the edges that correspond to the
edges of G are equal to the weights of the corresponding edges, and d; is the sum
of weights of all edges of G incident to the node 1. Since the weights are integers,

we can stop the binary search when the size of the interval of uncertainty is less

than T(J—l_)- (the proof is same as before). The density of any subgraph of G
n_

does not exceed W, the sum of weights of all edges of the graph, so we start the
search with u equal to W. W is no greater than the product of all denominators
and non-zero numerators of the weights in the original problem, and the product
is less than or equal to 2!, where [is the length of the input to the problem. Note
that [> n for any reasonable encoding of the problem, so the number of itera-
tions of the algorithm is O(Iog(n(n—l)2’))= O(l). The total running time of the

algorithm is polynomial in [; if we use Karsanov min-cut algorithm [1], the run-

ning time is O(In®) < o(14).
Notice that we require the graph to have nonnegative weights on edges so
that the resulting network has nonnegative capacities and we can apply a max-

flow min-cut algorithm.

We also can find a maximum density subgraph if weights are nonnegative
real numbers. To do this we use Megiddo's technique [3]. In order for this tech-
nique to be applicable the essential computation (the max-fiow, min cut computa-
tion) must use only additions and comparisons. Karsanov algorithm, as well as
many other algorithms for max-flow computation, have this property. We also
require the algorithm to produce a maximal S-set of the min-cut so that the
remark to Theorem 1 applies. Karzanov algorithm is an example of such an algo-

rithm.

The network is constructed as before except g is kept as a symbolic parame-
ter. At every step of the algorithm, we have some interval of uncertainty [z, y]
for ¢ (initially, [-00,cc]). Because of the requirement on the network flow algo-
rithm, the expressions that occur during the computation of the network flow
algorithm are linear in g (possibly constants). Every time the network flow algo-
rithm makes a comparison, the outcome may depend_ on g. However, since the
functions compared are linear in g, there is at most one critical value g¢'. If
g' ¢[z,y], we know which branch to choose; otherwise, we determine if the
"guess* ¢’ is too big or too small in the same way as in the original algorithm,

and choose [z, ¢'] or [g’, y] as our next interval of uncertainty.
g g

When the symbolic computation is finished, we know that there is only one
plausible value of ¢ in the interval of uncertainty [z, y], so we plug z instead of ¢
and do a network flow computation to obtain a maximum density subgraph.
Because of the second requirement on the network flow algorithm, the subgraph

is produced even if the maximal density is equal to z. For more details, see

Megiddo’s paper {3].

It follows from the Megiddo's main theorem that if the network flow algo-
rithm uses O(p(n,m)) comparisons and O(q(n, m)) additions, and therefore runs
in time O(p(n,m)+ g(n,m)), then the algorithm described above runs in time
O(p(n, m)(p(n, m)+ g(r,m))).

If Karsanov min-cut algorithm is used, the running time is O(n%).

8. Generalization to node weighted graphs

We assume now that both edges and nodes of G are weighted. Let w, ,e€E

be weights of the edges and v;,1<j <n be weights of the nodes. As before, we
Sw, + Y v

“id 7

e€E 1<j<n
n

. We

assume that w, > 0. The density of G is defined as

show how to modify the above algorithms to find a maximal density subgraph in
this case.
The network has the same structure, but edge capacities are a little

different. We define the capacities to be

C;j = Wi {i,7}€V
¢ = m' eV

¢ = m' + 29 -d; -2y eV

i =0 (i, /}¢Ew

where m' is such that all capacities are nonnegative, and d; is the sum of
weights of all edges of G adjacent to node ¢. These capacities are much like
before, except there is a term -2u; in the expression for capacities of the edges
connecting node § to sink to account for the weight of the node, and m' is used

instead of m to insure nonnegativity of all edges.

If S and T define an s—¢ cut, its capacity is

(S, T)= Y ¢

d ¥

i€5,5€T

-9-

= Z Coj + E €y + E ¢y

JEV, eV, IEVLJEV,
=m' | Vol + [m [Vil +20 | ViI-2 d-2¥ u|+ ¥ w
t’EVl "EVI {EVhJEV’z
Y- ¥ w; Y
1€V, i€V, JEV, i€V,
=m' |V]|+ |Vi|2]g- -
2|V, | Vil

But Y d- Y w;is twice the weight of edges in the subgraph of G

—~
eV, teV,jeV,

generated by Vy, so

Y- Y w PR

iEV) i€V, JEV: " eV,
2| Vil | Vil

is the density of the subgraph of G generated by V.

Dl=

It is straightforward to see that all the above results go through, and we can
solve the problem with weighted nodes in the same way (for rational or real
weights).

It is also reasonable to define the density of the node weighted graph to be
the ratio of the sum of weights of edges over the sum of weights of nodes. The
reader can verify that the algorithm can be modified to handle this definition as

well by changing capacities of the edges going into the sink as follows:
¢, = m' + 2gv; - d; icV.
7. Conclusion

We have shown how to combine the network flow techniques with binary
search to obtain an efficient algorithm for finding a maximum density subgraph
of a graph. We also demonstrated that the algorithm can be easily adapted to

handle various of generalizations of the problem.

Acknowledgment

- 10 -

The author is very grateful to Gene Lawler and David Shmoys for helpful

discussion and suggestions.

References
[1] Karzanov, A. V., Soviet Math. Dokl,, Vol 15, 1974, 434-437.

[2] Lawler, EL., "Combinatorial Optimization: Networks and matroids®’, Holt,

Rinehart, and Winston, New York, 1976.

[3] Megiddo, N., "Combinatorial Optimization with Rational Objective Func-

tion‘, Mathematics of Operations Research, Vol.4, No.4, November 1679.

[4] Papadimitriou, C. H. and Steiglitz, K., Algorithms and Complezity®,

Prentice-Hall, Inc, 1982, 216-217.

[3] Picard, J.-C. and Queyranne, M., with Applications to Graph Theory*‘, Net-
works , Vol 12 (1982), 141-159.

[6] Sleator, D.D., PH.D. dissertation, Stanford University, 1930.

chure]

F(ﬂure Z

