
Density-friendly graph decomposition

Nikolaj Tatti
Aalto University

nikolaj.tatti@aalto.fi

Aristides Gionis
Aalto University

aristides.gionis@aalto.fi

ABSTRACT
Decomposing a graph into a hierarchical structure via k-
core analysis is a standard operation in any modern graph-
mining toolkit. k-core decomposition is a simple and efficient
method that allows to analyze a graph beyond its mere de-
gree distribution. More specifically, it is used to identify
areas in the graph of increasing centrality and connected-
ness, and it allows to reveal the structural organization of
the graph.

Despite the fact that k-core analysis relies on vertex de-
grees, k-cores do not satisfy a certain, rather natural, density
property. Simply put, the most central k-core is not nec-
essarily the densest subgraph. This inconsistency between
k-cores and graph density provides the basis of our study.

We start by defining what it means for a subgraph to
be locally-dense, and we show that our definition entails a
nested chain decomposition of the graph, similar to the one
given by k-cores, but in this case the components are ar-
ranged in order of increasing density. We show that such
a locally-dense decomposition for a graph G = (V,E) can
be computed in polynomial time. The running time of the
exact decomposition algorithm is O(|V |2|E|) but is signifi-
cantly faster in practice. In addition, we develop a linear-
time algorithm that provides a factor-2 approximation to
the optimal locally-dense decomposition. Furthermore, we
show that the k-core decomposition is also a factor-2 ap-
proximation, however, as demonstrated by our experimental
evaluation, in practice k-cores have different structure than
locally-dense subgraphs, and as predicted by the theory, k-
cores are not always well-aligned with graph density.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
community detection, k-core analysis, dense subgraphs

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW ’15 Florence, Italy
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741119 .

a b

c d

e f

C1 C2 C3

(a) G1

a

b c

d e

f g

h

B1

(b) G2

Figure 1: Toy graphs used in Example 1.

1. INTRODUCTION
Finding dense subgraphs and communities is one of the

most well-studied problems in graph mining. Techniques for
identifying dense subgraphs are used in a large number of
application domains, from biology, to web mining, to anal-
ysis of social and information networks. Among the many
concepts that have been proposed for discovering dense sub-
graphs, k-cores are particularly attractive for the simplicity
of their definition and the fact that they can be identified in
linear time.

The k-core of a graph is defined as a maximal subgraph
in which every vertex is connected to at least k other ver-
tices within that subgraph. A k-core decomposition of a
graph consists of finding the set of all k-cores. A nice prop-
erty is that the set of all k-cores forms a nested sequence
of subgraphs, one included in the next. This makes the k-
core decomposition of a graph a useful tool in analyzing a
graph by identifying areas of increasing centrality and con-
nectedness, and revealing the structural organization of the
graph. As a result, k-core decomposition has been applied
to a number of different applications, such as modeling of
random graphs [8], analysis of the internet topology [12],
social-network analysis [23], bioinformatics [6], analysis of
connection matrices of the human brain [16], graph visual-
ization [3], as well as influence analysis [19, 28] and team
formation [9].

The fact that the k-core decomposition of a graph gives
a chain of subgraphs where vertex degrees are higher in the
inner cores, suggests that we should expect that the inner
cores are, in certain sense, more dense or more connected
than the outer cores. As we will show shortly, this statement
is not true. Furthermore, in this paper we show how to
obtain a graph decomposition for which the statement is
true, namely, the inner subgraphs of the decomposition are
denser than the outer ones. To quantify density, we adopt

a classic notion used in the densest-subgraph problem [13,
15], where density is defined as the ratio between the edges
and the vertices of a subgraph. This density definition can
be also viewed as the average degree divided by 2.

Our motivating observation is that k-cores are not or-
dered according to this density definition. The next example
demonstrates that the most inner core is not necessarily the
densest subgraph, and in fact, we can increase the density
by either adding or removing vertices.

Example 1. Consider the graph G1 shown in Figure 1,
consisting of 6 vertices and 9 edges. The density of the
whole graph is 9/6 = 1.5. The graph has three k-cores: a
3-core marked as C1, a 2-core marked as C2, and a 1-core,
corresponding the the whole graph and marked as C3. The
core C1 has density 6/4 = 1.5 (it contains 6 edges and 4
vertices), while the core C2 has density 8/5 = 1.6 (it contains
8 edges and 5 vertices). In other words, C1 has lower density
than C2, despite being an inner core.

Let us now consider G2 shown in Figure 1. This graph has
a single core, namely a 2-core, containing the whole graph.
The density of this core is equal to 11/8 = 1.375. However,
a subgraph B1 contains 7 edges and 5 vertices, giving us
density 7/5 = 1.4, which is higher than the density of the
only core.

This example motivates us to define an alternative, more
density-friendly, graph decomposition, which we call locally-
dense decomposition. We are interested in a decomposition
such that (i) the density of the inner subgraphs is higher
than the density of the outer subgraphs, (ii) the most inner
subgraph corresponds to the densest subgraph, and (iii) we
can compute or approximate the decomposition efficiently.

We achieve our goals by first defining a locally-dense sub-
graph, essentially a subgraph whose density cannot be im-
proved by adding and deleting vertices. We show that these
subgraphs are arranged into a hierarchy such that the den-
sity decreases as we go towards outer subgraphs and that
the most inner subgraph is in fact the densest subgraph.

We provide two efficient algorithms to discover this hier-
archy. The first algorithm extends the exact algorithm for
discovering the densest subgraph given by Goldberg [15].
This algorithm is based on solving a minimum cut problem
on a certain graph that depends on a parameter α. Goldberg
showed that for a certain value α (which can be found by
binary search), the minimum cut recovers the densest sub-
graph. One of our contributions is to shed more light into
Goldberg’s algorithm and show that the same construction
allows to discover all locally-dense subgraphs by varying α.

Our second algorithm extends the linear-time algorithm
by Charikar for approximating dense subgraphs [13]. This
algorithm first orders vertices by deleting iteratively a ver-
tex with the smallest degree, and then selects the densest
subgraph respecting the order. We extend this idea by us-
ing the same order, and finding first the densest subgraph
respecting the order, and then iteratively finding the second
densest subgraph containing the first subgraph, and so on.
We show that this algorithm can be executed in linear time
and it achieves a factor-2 approximation guarantee.

Charikar’s algorithm and the algorithm for discovering a
k-core decomposition are very similar: they both order ver-
tices by deleting vertices with the smallest degree. We show
that this connection is profoundly deep and we demonstrate
that a k-core decomposition provides a factor-2 approxima-

tion for locally-dense decomposition. On the other hand,
our experimental evaluation shows that in practice k-cores
have different structure than locally-dense subgraphs, and as
predicted by the theory, k-cores are not always well-aligned
with graph density.

The remainder of paper is organized as follows. We give
preliminary notation in Section 2. We introduce the locally-
dense subgraphs in Section 3, present algorithms for discov-
ering the subgraphs in Section 4, and describe the connection
to k-core decomposition in Section 5. We present the related
work in Section 6 and present the experiments in Section 7.
Finally, we conclude the paper with discussion in Section 8.

2. PRELIMINARIES
Graph density. Let G = (V,E) be a graph with |V | = n
vertices and |E| = m edges. Given a subset of vertices X ⊆
V , it is common to define E(X) = {(x, y) ∈ E | x, y ∈ X},
i.e., the edges of G that have both end-points in X. The
density of the vertex set X is then defined to be

d(X) =
|E(X)|
|X| ,

that is, half of the average degree of the subgraph induced
by X. The set of vertices X ⊆ V that maximizes the density
measure d(X) is the densest subgraph of G.1

The problem of finding the densest subgraph can be solved
in polynomial time. A very elegant solution that involves a
mapping to a series of minimum-cut problems was given
by Goldberg [15]. As the fastest algorithm to solve the
minimum-cut problem runs in O(mn) time, this approach is
not scalable to very large graphs. On the other hand, there
exists a linear-time algorithm that provides a factor-2 ap-
proximation to the densest-subgraph problem [4, 13]. This
is a greedy algorithm, which starts with the input graph, and
iteratively removes the vertex with the lowest degree, until
left with an empty graph. Among all subgraphs considered
during this vertex-removal process, the algorithm returns
the densest.

Next we will provide graph-density definitions that relate
pairs of vertex sets. Given two non-overlapping sets of ver-
tices X and Y we first define the cross edges between X and
Y as

E×(X,Y) = {(x, y) ∈ E | x ∈ X, y ∈ Y } .

We then define the marginal edges from X with respect to
Y . Those are the edges that have one end-point in X and
the other end-point in either X or Y , that is,

E∆(X,Y) = E(X) ∪ E×(X,Y) .

The set E∆(X,Y) represents the additional edges that will
be included in the induced subgraph of Y if we expand Y
by adding X.

Assume that X and Y are non-overlapping. Then, we
define the outer density of X with respect to Y as

d(X,Y) =
|E∆(X,Y)|
|X| .

Again, this is the “extra density” that we bring to Y if we
expand it by appending X to it.

1We should point out that density is also often defined as

|E(X)|/
(|X|

2

)
. This is not the case for this paper.

We will be often dealing with the case where X and Y are
overlapping and we would be interested in the outer density
of vertices in X that are not already included in Y . Hence,
we will expand the definition of outer density to a more
general case by defining

d(X,Y) = d(X \ Y, Y) .

k-cores. We briefly review the basic background regarding
k-cores. The concept was introduced by Seidman [23].

Given a graph G = (V,E), a set of vertices X ⊆ V is a k-
core if every vertex in the subgraph induced by X has degree
at least k, and X is maximal with respect to this property.
A k-core of G can be obtained by recursively removing all
the vertices of degree less than k, until all vertices in the
remaining graph have degree at least k.

It is not hard to see that if {Ci} is the set of all distinct
k-cores of G then {Ci} forms a nested chain

∅ = C0 (C1 (· · · (C` = V.

Furthermore, the set of vertices Sk that belong in a k-core
but not in a (k − 1)-core is called k-shell.

The k-core decomposition of G is the process of identify-
ing all k-cores (and all k-shells). Therefore, the k-core de-
composition of a graph identifies progressively the internal
cores and decomposes the graph shell by shell. A linear-time
algorithm to obtain the k-core decomposition was given by
Matula and Beck [20]. The algorithm starts by provisionally
assigning each vertex v to a core of index deg(v), an upper
bound to the correct core of a vertex. It then repeatedly
removes the vertex with the smallest degree, and updates
the core index of the neighbors of the removed vertex. Note
the similarity of this algorithm, with the 2-approximation
algorithm for the densest-subgraph problem [13].

3. LOCALLY-DENSE GRAPH
DECOMPOSITION

In this section we present the main concept introduced in
this paper, the locally-dense decomposition of a graph. We
also discuss the properties of this decomposition. We start
by defining the concept of a locally-dense subgraph.

Definition 2. A set of vertices W is locally dense if
there are no X ⊆ W and Y satisfying Y ∩ W = ∅ such
that

d(X,W \X) ≤ d(Y,W) .

In other words, for W to be locally dense there should not
be an X “inside”W and a Y “outside”W so that the density
that Y brings to W is larger than the density that X brings.

Due to the notational simplicity, we will often refer to
these sets of vertices as subgraphs.

Interestingly, the property of being locally dense induces
a nested chain of subgraphs in G.

Proposition 3. Let U and W be locally-dense subgraphs.
Then either U ⊆W or W ⊆ U .

Proof. Assume otherwise. Define X = U \W and Y =
W\U . BothX and Y should be non-empty sets. Then either
d(X,U ∩W) ≤ d(Y,U ∩W) or d(X,U ∩W) > d(Y,U ∩W).
Assume the former. This implies

d(X,U \X) = d(X,U ∩W)

≤ d(Y,U ∩W)

≤ d(Y,U) ,

which contradicts the fact that U is locally dense. For the
first equality we used the fact that U \X = U ∩W , while for
the last inequality we used the fact that E×(Y,U ∩W) ≤
E×(Y,U).

The case d(X,U ∩W) > d(Y,U ∩W) is similar.

The proposition implies that the set of locally-dense sub-
graphs of a graph forms a nested chain, in the same way
that the set of k-cores does.

Corollary 4. A set of locally-dense subgraphs can be ar-
ranged into a sequence B0 (B1 (· · · (Bk, where k ≤ |V |.
Moreover, d(Bi, Bi−1) > d(Bi+1, Bi) for 1 ≤ i < k.

The chain of locally-dense subgraphs of a graphG, as spec-
ified by Corollary 4, defines the locally-dense decomposition
of G.

We proceed to characterize the locally-dense subgraphs of
the decomposition with respect to their global density in the
whole graph G. We want to characterize the global density
of subgraph Bi of the decomposition. Bi cannot be denser
than the previous subgraph Bi−1 in the decomposition, how-
ever, we want to measure the density that the additional
vertices Si = Bi \ Bi−1 bring. This density involves edges
among vertices of Si and edges from Si to the previous sub-
graph Bi−1. This is captured precisely by the concept of
outer density d(Bi, Bi−1) defined in the previous section.
As the following proposition shows the outer density of Bi
with respect to Bi−1 is maximized over all subgraphs that
contain Bi−1. In other words, Bi is the densest subgraph
we can choose after Bi−1, given the containment constraint.

Proposition 5. Let {Bi} be the chain of locally-dense
subgraphs. Then B0 = ∅, Bk = V , and Bi is the densest
subgraph properly containing Bi−1,

Bi = arg max
W)Bi−1

d(W,Bi−1) .

To prove the proposition we will use the following two
following lemmas which we state without a proof.

Lemma 6. Let X ⊆ Y be two sets of vertices. Assume
Z ∩ Y = ∅. If d(Z, Y) ≥ d(Y,X), then d(Y ∪ Z,X) ≥
d(Y,X).

Lemma 7. Let X ⊆ Y be two sets of vertices. Assume
Z ⊆ Y \X. If d(Z, Y \ Z) < d(Y,X), then d(Y \ Z,X) >
d(Y,X).

Proof of Proposition 5. Assume inductively that the
proposition holds for all j < i.

Let U = arg maxW)Bi−1 d(W,Bi−1). We will first show
that U is locally dense. We argue that there are no sets
X and Y with X ⊆ U and Y ∩ U = ∅ that can serve as
certificates for U being non locally-dense.

Fix any X ⊆ U . Define Xj = X ∩ (Bj \ Bj−1) for j < i,
and Xi = X ∩ (U \Bi−1). Define also Uj = (U \X) ∪Bj−1

for j ≤ i. Note that Bj ⊆ Uj ∪Xj .
If Xi 6= ∅, we have d(Xi, U \Xi) ≥ d(U,Bi−1), otherwise

Lemma 7 implies that we can delete Xi from U and obtain
a more dense subgraph.

Similarly, for j < i with Xj 6= ∅, we have

d(Xj , Uj \Xj) ≥ d(Xj , Bj \Xj)
≥ d(Bj , Bj−1)

> d(U,Bi−1) ,

where the first inequality follows from Bj \ Xj ⊆ Uj \ Xj ,
the second inequality is implied by Lemma 7 and the induc-
tion assumption on j, and the last inequality is implied by
Lemma 6 and the induction assumption on j + 1, . . . , i− 1.

These inequalities imply

d(X,U \X) =

i∑
j=1,Xj 6=∅

|Xj |
|X| d(Xj , Uj \Xj)

≥
i∑

j=1

|Xj |
|X| d(U,Bi−1)

= d(U,Bi−1) .

Consider also any set Y with Y ∩ U = ∅. Due to the
optimality of U and Lemma 6 we must have d(Y,U) <
d(U,Bi−1).

We conclude that for any X and Y with X ⊆ U and
Y ∩U = ∅ it is d(X,U \X) > d(Y,U), which shows that U
is locally dense.

Assume now U = Bj for j ≥ i. We need to show that
j = i. Assume otherwise. Since Bi is locally dense, we have
d(Bj \Bi, Bi) < d(Bi, Bi−1). With a simple calculation we
can show that d(Bj \Bi, Bi) < d(Bj , Bi−1). Lemma 7 im-
plies that removing Bj \Bi produces a more dense subgraph
which contradicts the optimality of U .

As a consequence of the previous proposition we can char-
acterize the first subgraph in the decomposition.

Corollary 8. Let {Bi} be a locally-dense decomposition
of a graph G. Then B1 is the densest subgraph of G.

The above discussion motivates the problem of locally-
dense graph decomposition, which is the focus of this paper.

Problem 1. Given a graph G = (V,E) find a maximal
sequence of locally-dense subgraphs

∅ = B0 (B1 (· · · (Bk = V.

4. DECOMPOSITION ALGORITHMS
In this section we propose two algorithms for the problem

of locally-dense graph decomposition (Problem 1). The first
algorithm gives an exact solution, and runs in worst-case
timeO(|V |2|E|), but it is significantly faster in practice. The
second algorithm is a linear-time algorithm that provides a
factor-2 approximation guarantee.

Both algorithms are inspired by corresponding algorithms
for the densest-subgraph problem. The first algorithm by
the exact algorithm of Goldberg [15], and the second algo-
rithm by the greedy linear-time algorithm of Charikar [13].

4.1 Exact algorithm
We start our discussion on the exact algorithm for locally-

dense graph decomposition by reviewing Goldberg’s algo-
rithm [15] for the densest-subgraph problem.

Recall that the densest-subgraph problem asks to find the
subset of vertices W that maximizes d(W) = |E(W)|/|W |.
Given a graph G = (V,E) and a positive number α ≥ 0
define a function

f (α) = max
W⊆V

{|E(W)| − α|W |} ,

and the maximizer

F (α) = arg max
W⊆V

{|E(W)| − α|W |} ,

where ties are resolved by picking the largest W . Note
that the value of the function f decreases as α increases,
and as α exceeds a certain value the function becomes 0
by taking W = ∅. Goldberg observed that the densest-
subgraph problem is equivalent to the problem of finding
the largest value of α∗ for which f (α∗) ≥ 0 and the maxi-
mizer set F (α∗) = W ∗ is non empty.2 The densest subgraph
is precisely this maximizer set W ∗. Furthermore, Goldberg
showed how to find the vertex set W = F (α), for a given
value of α. This is done by mapping the problem to an
instance of the min-cut problem, which can be solved in
time O(|V ||E|), in a recent breakthrough by Orlin [22]. We
will present an extension of this transformation in the next
section, where we discuss how to speed-up the algorithm.

Thus, Goldberg’s algorithm uses binary search over α and
finds the largest value of α∗ for which f (α∗) ≥ 0 and the
maximizer set W ∗ is non empty. Each iteration of the binary
search involves a call to a min-cut instance for the current
value of α.

Our algorithm for finding the locally-dense decomposition
of a graph builds on Goldberg’s algorithm [15]. We show
that Goldberg’s construction has the following, rather re-
markable, property: there is a sequence of values α∗ = α1 ≥
. . . ≥ αk, for k ≤ n, which gives all the distinct values of the
function f . Furthermore, the corresponding set of subgraphs
{F (α1) , . . . ,F (αk)} is exactly the set of all locally-dense
subgraphs of G, and thus the solution to our decomposition
problem.

Therefore, our algorithm is a simple extension of Gold-
berg’s algorithm: instead of searching only for the optimal
value α1 = α∗, we find the whole sequence of αi’s and the
corresponding subgraphs.

Next we prove the claimed properties and discuss the al-
gorithm in more detail.

We first show that the distinct maximizers of the func-
tion F correspond to the set of locally-dense subgraphs.

Proposition 9. Let {Bi} be the set of locally-dense sub-
graphs. Then

Bi = F (α) , for d(Bi+1, Bi) < α ≤ d(Bi, Bi−1) .

Proof. We first show that U = F (β) is a locally-dense
subgraph, for any β. Note that for any X ⊆ U , we must
have |E∆(X,U \X)| − β|X| ≥ 0, otherwise we can delete
X from U and obtain a better solution which violates the
optimality of U = F (β). This implies that d(X,U \X) =
E∆(X,U \X) /|X| ≥ β. Similarly, for any Y such that Y ∩
U = ∅, we have |E∆(Y,U)| − β|Y | < 0 or, equivalently,
d(Y,U) < β. Thus, U is locally dense.

Fix i and select α s.t. d(Bi+1, Bi) < α ≤ d(Bi, Bi−1). Let
Bj = F (α). If j > i, then, due to Corollary 4, d(Bj , Bj−1) <
α which we can rephrase as

c = |E∆(Bj \Bj−1, Bj−1)| − α|Bj \Bj−1| < 0.

If we delete Bj \ Bj−1 from U , then we increase the cost
exactly by −c, that is, we obtain a better solution which
violates the optimality of U . If j < i, then Corollary 4

2This observation is an instance of fractional program-
ming [14].

Algorithm 1: ExactLD(G,X, Y)

input : Graph G = (V,E)
locally-dense subgraphs X and Y with X (Y

1 α← d(Y,X) + |V |−2;
2 Z ← F (α);
3 if Z 6= X then
4 output Z;
5 ExactLD(G,X,Z);
6 ExactLD(G,Z, Y);

implies that d(Bj+1, Bj) ≥ α, so we can add Bj+1 \ Bj to
obtain a better solution. It follows that Bi = F (α).

Next we need to show that it is possible to search effi-
ciently for the sequence of α’s that give the set of locally-
dense subgraphs. To that end we will show that if we have
obtained two subgraphs Bx (By of the decomposition (cor-
responding to values αx ≥ αy), it is possible to pick a new
value α so that computing F (α) allows us to make progress
in the search process: we either find a new locally-dense sub-
graph Bx (Bz (By or we establish that no such subgraph
exists between Bx and By, in other words, Bx and By are
consecutive subgraphs in our decomposition.

Proposition 10. Let {Bi} be the set of locally-dense sub-
graphs. Let Bx (By be two subgraphs. Set α = d(By, Bx)+
|V |−2 and let Bz = F (α). If x + 1 < y, then x < z < y. If
x+ 1 = y, then z = x.

Proof. A simple calculation shows that α > d(By, Bx) ≥
d(By, By−1). Proposition 9 now implies that z < y.

Assume that x+ 1 < y. This implies that d(By, By−1) <
d(Bx+1, Bx) which implies that d(By, Bx) < d(Bx+1, Bx).
Let us write

a = E∆(By \Bx, Bx) , b = |By| − |Bx|,
c = E∆(Bx+1 \Bx, Bx) , and d = |Bx+1| − |Bx|.

Let us now bound the difference between the densities as

d(Bx+1, Bx)− d(By, Bx) =
a

b
− c

d

=
ad− bc
bd

≥ 1

bd

>
1

|V |2
.

This implies that α < d(Bx+1, Bx). Proposition 9 now im-
plies that z ≥ x+ 1 > x.

Assume that x+1 = y. Since d(By, By−1) < d(Bx, Bx−1),
the same argument as above shows that z ≥ x, which guar-
antees that x = z.

The exact decomposition algorithm uses Proposition 10 to
guide the search process. Starting by the two extreme sub-
graphs of the decomposition, ∅ and V , the algorithm main-
tains a sequence of locally-dense subgraphs. Recursively,
for any two currently-adjacent subgraphs in the sequence,
we use Proposition 10 to check whether the two subgraphs
are consecutive or not in the decomposition. If they are

consecutive, the recurrence at that branch of the search is
terminated. If they are not, a new subgraph between the
two is discovered and it is added in the decomposition. The
algorithm is named ExactLD and it is illustrated as Algo-
rithm 1.

With the next propositions we prove the correctness of
the algorithm and we bound its running time.

Proposition 11. The algorithm ExactLD initiated with
input (G, ∅, V) visits all locally-dense subgraphs of G.

Proof. Let {Bi} be the set of locally-dense subgraphs.
We will prove the proposition by showing that for i < j,
the algorithm ExactLD(G,Bi, Bj) visits all monotonic sub-
graphs that are between Bi and Bj . We will prove this by
induction over j−i. The first step j = i+1 is trivial. Assume
that j > i+1. Then Proposition 10 implies that Bk = F (α),
where i < k < j. The inductive assumption now guar-
antees that ExactLD(G,Bi, Bk) and ExactLD(G,Bk, Bj)
will visit all monotonic subgraphs between Bi and Bj .

Proposition 12. The worst-case running time of algo-
rithm ExactLD is O

(
|V |2|E|

)
.

Proof. We will show that the algorithm ExactLD, ini-
tiated with input (G, ∅, V) makes 2k−3 calls to the function
F , where k is the number of locally-dense subgraphs.

Let ki be the number of calls of F when the input pa-
rameter Y = Bi. Out of these ki calls one call will result
in F (α) = X. There are k − 1 such calls, since Y = ∅
is never tested. Each of the remaining calls will discover
a new locally-dense subgraph. Since there are k − 2 new
subgraphs to discover, it follows that 2k − 3 calls to F are
needed.

Since a call to F corresponds to a min-cut computation,
which has running timeO(|V ||E|) [22], and since k ∈ O(|V |),
the claimed running-time bound follows.

4.2 Speeding up the exact algorithm
Our next step is to speed-up ExactLD. This speed-up

does not improve to the theoretical bound for the computa-
tional time but, in practice, it improves the performance of
the algorithm dramatically.

The speed-up is based on the following observation. We
know from Proposition 10 that ExactLD(G,X, Y) visits
only subgraphs Z with the property X ⊆ Z ⊆ Y . This gives
us immediately the first speed-up: we can safely ignore any
vertex outside Y , that is, ExactLD(G(Y), X, Y) will yield
the same output.

Our second observation is that any subgraph Z visited
by ExactLD(G,X, Y) must contain vertices X. However,
we cannot simply delete them because we need to take into
account the edges between X and Z. To address this let us
consider the following maximizer

F (α;X) = arg max
X⊆W⊆V

{|E(W)| − α|W |} .

We can replace the original F (α) in Algorithm 1 with F (α;X).
To compute F (α;X) we will use a straightforward extension
of the Goldberg’s algorithm [15] and transform this problem
into a problem of finding a minimum cut.

In order to do this, given a graph G = (V,E), let us define
a weighted graph H that consists of vertices V \X and edges
E(V \ X) with weights of 1. Add two auxiliary vertices s
and t into H and connect these vertices to every vertex in

V \X. Given a vertex y ∈ V \X, assign a weight of 2α to
the edge (y, t) and a weight of

w(y) = deg(y;V \X) + 2deg(y;X)

to the edge (s, y), where deg(y;U) stands for the number of
neighbors of y in U . We claim that solving a minimum cut
such that s and t are in different cuts will solve F (α;X).
This cut can be obtained by constructing a maximum flow
from s to t.

To prove this claim let C (V (H) be a subset of vertices
containing s and not containing t. Let Z = C \ {s} and also
let W = V \ (Z ∪X). There are three types of cross-edges
from C to V (H) \ C: (i) edges from x ∈ Z to t, (ii) edges
from s to x ∈W , and (iii) edges from x ∈ Z to y ∈W . The
total cost of C is then

2|Z|α+
∑
y∈W

w(y) + |E×(Z,W)|.

We claim that the last two terms of the cost are equal to
2|E| − 2|E(X ∪ Z)|. To see this, consider an edge e = (x, y)
in E \ E(X ∪ Z). This implies that one of the end points,
assume it is y, has to be in W . There are three different
cases for x: (i) if x ∈W , then e contributes 2 to the cost: 1
to w(x) and 1 to w(y), (ii) if x ∈ X, then e contributes 2 to
w(y), and (iii) if x ∈ Z, then e contributes 1 to w(y) and 1
to the third term. Thus, we can write the cut as

2|Z|α+ 2|E| − 2|E(X ∪ Z)|
= 2|E| − 2|X|α− 2(|E(X ∪ Z)| − α|Z ∪X|).

The first two terms in the right-hand side are constant which
implies that that finding the minimum cut is equivalent of
maximizing |E(X ∪ Z)| − α|Z ∪X|. Consequently, if Z∗ is
the min-cut solution, then F (α) = X ∪ Z∗.

Note that the graph H does not have vertices included in
X. By combining both speed-ups we are able to reduce the
running time of ExactLD(X,Y) by considering only the
vertices that are in Y \X.

4.3 Linear approximation algorithm
As we saw in the last section, the exact algorithm can be

significantly accelerated, and indeed, our experimental eval-
uation shows that it is possible to run the exact algorithm
for a graph of millions of vertices and edges within 2 minutes.
Nevertheless, the worst-case complexity of the algorithm is
cubic, and thus, it is not truly scalable for massive graphs.

Here we present a more lightweight algorithm for perform-
ing a locally-dense decomposition of a graph. The algorithm
runs in linear time and offers a factor-2 approximation guar-
antee. As the exact algorithm builds on Goldberg’s algo-
rithm for the densest-subgraph problem, the linear-time al-
gorithm builds on Charikar’s approximation algorithm for
the same problem [13]. As already explained in Section 2,
Charikar’s approximation algorithm iteratively removes the
vertex with the lowest degree, until left with an empty graph,
and returns the densest graph among all subgraphs consid-
ered during this process.

Our extension to this algorithm, called GreedyLD, is
illustrated in Algorithm 2, and it operates in two phases.
The first phase is identical to the one in Charikar’s algo-
rithm: all vertices of the graph are iteratively removed, in
increasing order of their degree in the current graph. In
the second phase, the algorithm proceeds to discover ap-
proximate locally-dense subgraphs, in an iterative manner,

Algorithm 2: GreedyLD(G)

input : Graph G = (V,E)
output: Collection C of approximate locally-dense

subgraphs
1 for i = |V |, . . . , 1 do
2 wi ← the vertex with the smallest degree;
3 delete wi from V ;

4 C ← {∅};
5 j ← 0;
6 while j < |V | do
7 i← arg maxi>j d({w1, . . . , wi} , {w1, . . . , wj});
8 add {w1, . . . , wj} to C;
9 j ← i;

10 return C;

from B1 to Bk. The first subgraph B1 is the approximate
densest subgraph, the same one returned by Charikar’s algo-
rithm. In the j-th step of the iteration, having discover sub-
graphs B1, . . . , Bj−1 the algorithm selects the subgraph Bj
that maximizes the density d(Bj , Bj−1). To select Bj the
algorithm considers subsets of vertices only in the degree-
based order that was produced in the first phase.

Discovering C from the ordered vertices takes O
(
n2
)

time,
if done naively. However, it is possible to implement this step
in O(n) time. In order to do this, sort vertices in the reverse
visit order, and define in(v) to be the number of edges of v
from the earlier neighbors. Then, we can we express the
density as an average,

d({w1, . . . , wi} , {w1, . . . , wj}) =
1

i− j

i∑
k=j+1

in(vk) .

Consequently, we can see that recovering C is an instance of
the following problem,

Problem 2. Given a sequence y1, . . . , yn, compute the
maximal interval

m(j) = arg max
j≤i≤n

1

i− j + 1

i∑
k=j

yk,

for every 1 ≤ j ≤ n.

Luckily, Calders et al. [11] demonstrated that we can use
the classic PAVA algorithm [5] to solve this problem for every
value of j in total O(n) time.

To quantify the approximation guarantee of GreedyLD,
note that the sequence of approximate locally-dense sub-
graphs produced by the algorithm are not necessarily aligned
with the locally-dense subgraphs of the optimal decomposi-
tion. In other words, to assess the quality of the density
of an approximate locally-dense subgraph Bj produced by
GreedyLD, there is no direct counterpart in the optimal
decomposition to compare. To overcome this difficulty we
develop a scheme of “vertex-wise” comparison, where for any
1 ≤ i ≤ n, the density of a the smallest approximate locally-
dense subgraph of size at least i is compared with the density
of a the smallest optimal locally-dense subgraph of size at
least i. This is defined below via the concept of profile.

Definition 13. Let B = (∅ = B0 (B1 (· · · (Bk = V)
be a nested chain of subgraphs, the first subgraph being the

empty graph and the last subgraph being the full graph. For
an integer i, 1 ≤ i ≤ n define

j = min {x | |Bx| ≥ i}

to be the index of the smallest subgraph in B whose size is
at least i. We define a profile function p : {1, . . . , n} → R
to be

p(i; B) = d(Bj , Bj−1) .

Our approximation guarantee is now expressed as a guar-
antee of the profile function of the approximate decomposi-
tion with respect to the optimal decomposition.

Proposition 14. Let B = {Bi} be the set of optimal
locally-dense subgraphs. Let C = {Ci} be the subgraphs ob-
tained by GreedyLD. Then

p(i; C) ≥ p(i; B) /2.

Proof. Sort the set of vertices V according to the reverse
visiting order of GreedyLD and let in(v) be the number of
edges of v from earlier neighbors.

Fix k to be an integer, 1 ≤ k ≤ n and let Bi be the
smallest subgraph such that |Bi| ≥ k. Let vj be the last
vertex occurring in Bi. We must have in(vj) ≥ d(vj , Bi),
and d(vj , Bi) ≥ d(Bi, Bi−1) as otherwise we can remove vj
from Bi and improve the density due to Lemma 7. We have

p(k; B) = d(Bi, Bi−1) ≤ in(vj) .

Let Cx be the smallest subgraph such that |Cx| ≥ k. Let
vz be the vertex with the smallest index that is still in Cx \
Cx−1. Let gy be the degree of vy right before vj is removed
during GreedyLD. Note that in(vj) ≤ gy, and we can easily

show that
∑j
y=z gy ≤ 2

∑j
y=z in(vy). We now have

p(k; C) = d(Cx, Cx−1)

≥ 1

j − z + 1

j∑
y=z

in(vy)

≥ 1

2(j − z + 1)

j∑
y=z

gy

≥ in(vj)

2
,

where the optimality of Cx implies the first inequality.

We should point out that p(1,B) is equal to the density
of the densest subgraph, while p(1, C) is equal to the den-
sity of the subgraph discovered by the Charikar’s algorithm.
Consequently, Proposition 14 provides automatically the 2-
approximation guarantee of the Charikar’s algorithm.

We should also point out that p(i, C) can be larger than
p(i,B) but for the first index, say j, for which p(j, C) 6=
p(j,B), Proposition 5 guarantees that p(j, C) < p(j,B).

5. LOCALLY-DENSE SUBGRAPHS AND
CORE DECOMPOSITION

Here we study the connection of graph cores, obtained
with the well-known k-core decomposition algorithms, with
local-density, studied in this paper. We are able to show
that from the theory point-of-view, graph cores are as good

Algorithm 3: Core(G)

input : Graph G = (V,E)
output: Collection C of k-cores

1 C ← {V };
2 k ← minw deg(w);
3 for i = |V |, . . . , 1 do
4 wi ← the vertex with the smallest degree;
5 if deg(w) > k then
6 add V to C;
7 k ← deg(w);

8 delete wi from V ;

9 return C;

approximation to the optimal locally-dense graph decom-
position as the subgraphs obtained by the GreedyLD al-
gorithm. In particular we show a similar result to Propo-
sition 14, namely, a factor-2 approximation on the profile
function of the core decomposition.

However, as we will see in our empirical evaluation, the
behavior of the two algorithms, GreedyLD and k-core de-
composition are different in practice, with GreedyLD giv-
ing in general more dense subgraphs and closer to the ones
given by exact locally-dense decomposition.

Before stating and proving the result regarding k-cores,
recall that a set of vertices X ⊆ V is a k-core if every vertex
in the subgraph induced by X has degree at least k, and X
is maximal with respect to this property. A linear-time algo-
rithm for obtaining all k-cores is illustrated in Algorithm 3.

It is a well-known fact that the set of all k-cores of a
graph forms a nested chain of subgraphs, in the same way
that locally-dense subgraphs do.

Proposition 15. Let {Ci} be the set of all k-cores of a
graph G = (V,E). Then {Ci} forms a nested chain,

∅ = C0 (C1 (· · · (Cl = V.

Similar to Proposition 14, k-cores provide a factor-2 ap-
proximation with respect to the optimal locally-dense sub-
graphs. The proof is in fact quite similar to that of Propo-
sition 14.

Proposition 16. Let B = {Bi} be the set of optimal
locally-dense subgraphs. Let C = {Ci} be the set of k-cores.
Then

p(i; C) ≥ p(i; B) /2.

Proof. Sort V according to the reverse visiting order of
Core and let in(v) be the number of edges of v from earlier
neighbors.

Fix k to be an integer, 1 ≤ k ≤ n and let Bi be the
smallest subgraph such that |Bi| ≥ k. Let vj be the last
vertex occurring in Bi. We must have in(vj) ≥ d(vj , Bi),
and d(vj , Bi) ≥ d(Bi, Bi−1) as otherwise we can remove vj
from Bi and improve the density due to Lemma 7. We have

p(k; B) = d(Bi, Bi−1) ≤ in(vj) .

Let Cx be the smallest smallest core such that |Cx| ≥ k.
Let vs be the vertex with the smallest index that is still in
Cx \ Cx−1. Let vl be the vertex with the largest index that
is still in Cx \ Cx−1.

If j > l, then in(vj) < in(vl) otherwise Cx is not a core.
If j < l, then in(vj) ≤ in(vl), otherwise Cx would is not the
smallest core as j ≥ k. Hence, in(vj) ≤ in(vl).

Let gy be the degree of vy right before vl is removed during
Core. We now have

p(k; C) = d(Cx, Cx−1)

=
1

l − s+ 1

l∑
y=s

in(vy)

≥ 1

2(l − s+ 1)

l∑
y=s

gy

≥ in(vl)

2

≥ in(vj)

2
,

which proves the proposition.

6. RELATED WORK
Our paper is related to previous work on discovering dense

subgraphs, clique-like structures, and hierarchical communi-
ties. We review some representative work on these topics.

Clique relaxations. The densest possible subgraph is a
clique. Unfortunately finding large cliques is computation-
ally intractable [17]. Additionally, the notion of clique does
not provide a robust definition for practical situations, as
a few absent edges may completely destroy the clique. To
address these issues, researchers have come up with relaxed
clique definitions. A relaxation, k-plex was suggested by
Seidman and Foster [24]. In a k-plex a vertex can have at
most k − 1 absent edges. Unfortunately, discovering maxi-
mal k-plexes is also an NP-hard problem [7]. An alternative
relaxation for a clique is the one of an n-clique, a maximal
subgraph where each vertex is connected to every vertex
with a path, possibly outside of the subgraph, of at most
n-length [10]. So, according to this definition a clique is an
1-clique. As maximal n-cliques may produce sparse graphs,
the concept of n-clans was also proposed by limiting the di-
ameter of the subgraph to be at most n [21]. Since 1-clan
corresponds to a maximal clique, discovering n-clans is a
computationally intractable problem.

Quasi-cliques. For the definition of graph density we have
chosen to work with d(X), the average degree of the sub-
graph induced by X. While this is a popular density def-
inition, there are other alternatives. One such alternative
would be to divide the number of edges present in the sub-
graph with the total number of possible edges, that is, divide
by
(
n
2

)
. This would give us a normalized density score that is

between 0 and 1. Subgraphs that maximize this density defi-
nition are called quasi-cliques, and algorithms for enumerat-
ing all quasi-cliques, which can be exponentially many, have
been proposed by Abello et al. [1] and Uno [29]. However,
the definition of quasi-cliques is problematic. Note that a
single edge already provides maximal density. Consequently
additional objectives are needed. One natural objective is to
maximize the size of a graph with density of 1, however, this
makes the problem equivalent to finding a maximal clique
which, as mentioned above, is a computationally-intractable
problem [17].

Alternative definitions for density. Other definitions of
graph density have been proposed. Recently, Tsourakakis

proposed to measure density by counting triangles, instead
of counting edges [26]. Interestingly enough, it is possible
to find an approximate densest subgraph under this defi-
nition. An interesting future direction for our work is to
study if the decomposition proposed in this paper can be
extended for the triangle-density definition. Density defini-
tions of the form g(|E|)− αh(|V |), where g and h are some
increasing functions were studied by Tsourakakis et al. [27],
with specific focus on h(x) =

(
x
2

)
. It not known whether

the densest-subgraph problem according to this definition is
polynomially-time solvable or NP-hard. Finally, a variant
for d(X) adopted for directed graph, along with polynomial-
time discovery algorithm, was suggested by Khuller and
Saha [18]. Such a definition could serve for defining de-
compositions of directed graphs, which is also left for future
work.

Hierarchical communities. Discovering hierarchy of k
nested communities with as homogeneous shells as possible
with the constraint that inner communities are denser was
studied by the authors of this paper [25]. Here, |E|/

(|V |
2

)
was

used as density definition, and a heuristic algorithm was pro-
posed. Unfortunately, no exact polynomial-time algorithm
is known for this problem. As a potential future work it
would be interesting to see whether the ideas presented in
this paper can be merged with the idea of discovering k-
homogeneous communities.

7. EXPERIMENTAL EVALUATION
We will now present our experimental evaluation. We test

the two proposed algorithms, ExactLD and GreedyLD,
for decomposing a graph into locally-dense subgraphs, and
we contrast the resulting decompositions against k-cores, ob-
tained with the Core algorithm. We compare the three al-
gorithms in terms of running time, decomposition size (num-
ber of subgraphs they provide), and relative density of the
subgraphs they return. We also use the Kendall-τ to mea-
sure how similar are the decompositions in terms of the order
they induce on the graph vertices.

7.1 Experimental setup
We perform our evaluation on 11 graphs of different sizes

and densities. A short description of the graphs is given be-
low, and their basic characteristics can be found in Table 1.

• dolphins: an undirected social network of frequent
associations between dolphins in a community living
off Doubtful Sound in New Zealand.

• karate: the social network of friendships between mem-
bers of a karate club at a US university in the 1970.

• lesmis: co-appearance of characters in Les Miserables
novel by Victor Hugo.

• astro: a co-authorship network among arXiv Astro
Physics publications.

• enron: an e-mail communication network by Enron
employees.

• fb1912: an ego-network obtained from Facebook.

• hepph: a co-authorship network among arXiv High En-
ergy Physics publications.

• dblp: a co-authorship network among computer sci-
ence researchers.

• gowalla: a friendship network of gowalla.com.

Table 1: Basic characteristics of the datasets and
the running times of the algorithms. E stands for
ExactLD, G for GreedyLD, and C for Core.

running time

Name |V | |E| c g e

dolphins 62 159 1ms 1ms 2ms
karate 34 78 1ms 1ms 2ms
lesmis 77 254 2ms 2ms 3ms

astro 18 772 396 160 0.4s 0.4s 2s
enron 36 692 183 831 0.3s 0.3s 2s
fb1912 747 30 025 44ms 44ms 0.2s
hepph 12 008 237 010 0.2s 0.2s 0.9s

dblp 317 080 1 049 866 2s 2s 14s
gowalla 196 591 950 327 2s 2s 9s
roadnet 1 965 206 5 533 214 7s 8s 1m6s
skitter 1 696 415 11 095 298 21s 21s 1m46s

• roadnet: a road network of California, where vertices
represent intersections and edges represent road seg-
ments.

• skitter: an internet topology graph, obtained from
traceroutes run daily in 2005.

The first three datasets are obtained from UCIrvine Net-
work Data Repository,3 and the remaining datasets are ob-
tained from Stanford SNAP Repository.4

We apply Core, GreedyLD, and ExactLD to every
dataset. We use a computer equipped with 3GHz Intel Core
i7 and 8GB of RAM.5

7.2 Results
We begin by reporting the running times of the three algo-

rithms for all of our datasets. They are shown in Table 1. As
expected, the linear-time algorithms Core and GreedyLD
are both very fast; the largest graph with 11 million edges
and 1.7 million vertices is processed in 21 seconds. How-
ever, we are also able to run the exact decomposition for
all the graphs in reasonable time, despite its running-time
complexity of O

(
|V |2|E|

)
. It takes less than 2 minutes for

ExactLD to process the largest graph. There are three rea-
sons that contribute to achieving this performance. First, we
need to compute the minimum cut only O(k) times, where
k is the number of locally-dense graphs. In practice, k is
much smaller than the number of vertices. Second, comput-
ing minimum cut in practice is faster than the theoretical
O(|V ||E|) bound. Third, as described in Section 4, most of
the minimum cuts are computed using subgraphs. While in
theory these subgraphs can be as large as the original graph,
in practice these subgraphs are significantly smaller.

Next, we compare how well Core and GreedyLD ap-
proximate the exact locally-dense decomposition. In order
to do that we compute the ratio

r(C,B) = min
i

p(i; C)
p(i;B)

, (1)

3http://networkdata.ics.uci.edu/index.php
4http://snap.stanford.edu/data
5The implementation is available at
http://research.ics.aalto.fi/dmg/software.shtml

Table 2: Smallest ratio of the profile function, and
the profile function of the exact solution as defined
in Equation (1), and the ratio of the most inner
discovered subgraph versus the actual densest sub-
graph.

r(C,B) d(C1) /d(B1)

Name Core GreedyLD Core GreedyLD

dolphins 0.94 0.83 0.98 0.98
karate 0.95 0.99 0.95 0.99
lesmis 0.86 0.87 0.96 1.00

astro 0.85 0.85 0.87 0.92
enron 0.83 0.82 0.94 1.00
fb1912 0.69 0.74 0.91 1.00
hepph 0.74 0.75 1.00 1.00
dblp 0.80 0.86 1.00 1.00
gowalla 0.89 0.92 0.87 1.00
roadnet 0.81 0.87 0.84 0.87
skitter 0.73 0.84 0.84 1.00

Table 3: Sizes of the discovered decompositions
and Kendall-τ statistics between the decomposi-
tions. E stands for ExactLD, G for GreedyLD, and
C for Core.

Name c g e c-vs-e g-vs-e c-vs-g

dolphins 4 6 7 0.76 0.77 0.99
karate 4 3 4 0.80 0.95 0.78
lesmis 8 8 9 0.94 0.99 0.95

astro 52 83 435 0.93 0.93 0.99
enron 43 162 357 0.92 0.92 0.99
fb1912 87 55 75 0.95 0.98 0.97
hepph 64 63 283 0.93 0.93 0.98

dblp 47 97 1087 0.88 0.89 0.97
gowalla 51 161 899 0.97 0.96 0.98
roadnet 3 43 2710 0.57 0.80 0.68
skitter 111 266 3501 0.98 0.97 0.99

where B is the locally-dense decomposition and C is obtained
by either from GreedyLD or Core. These ratios are shown
in Table 2. We also compare p(1; C) /p(1;B), that is, the ra-
tio of density for the inner most subgraph in C against the
density of B1, the densest subgraph. Propositions 14 and 15
guarantee that there ratios are at least 1/2. In practice,
the ratios are larger, typically over 0.8. In most cases, but
not always, GreedyLD obtains better ratios than Core.
When comparing the ratio for the inner most subgraph,
GreedyLD, by design, will always be better or equal than
Core. We see that only in three datasets Core is able to
find the same subgraph as GreedyLD.

Let us now compare the different solutions found by the
three algorithms. In Table 3 we report the sizes of discovered
communities and their Kendall-τ statistics, which compares
the ordering of the vertices induced by the decompositions.
In particular, the Kendall-τ statistic is computed by assign-
ing each vertex an index based on which subgraph the vertex
belongs. To handle ties, we use the b-version of Kendall-τ , as
given by Agresti [2]. If the statistic is 1, the decompositions
are equal.

20 40 60

0

2

4

index i

p
(i

)
lesmis

200 400 600

0

50

100

index i

fb1912

0 5 000 10 000 15 000

0

20

40

index i

astro

0 5 000 10 000

0

50

100

index i

hepph

Core

GreedyLD

ExactLD

Figure 2: Profile functions for lesmis, fb1912, astro, and hepph.

Our first observation is that typically the locally-dense
decomposition algorithms return more subgraphs than the
k-core decomposition. As an extreme example, roadnet con-
tains only 3 k-cores while GreedyLD finds 43 subgraphs
and ExactLD finds 2710. This can be explained by the
fact that the vertices in the graph have low degrees, which
results in a very coarse k-core decomposition. On the other
hand, ExactLD and GreedyLD exploit density to discover
more fine-grained decompositions. This result is similar to
what we presented in the Example 1 in the introduction.

The Kendall-τ statistics are typically close to 1, especially
for large datasets suggesting that all 3 methods result in
similar decompositions. The statistic between Core and
GreedyLD is typically larger than to the exact solution.
This is expected since Core and GreedyLD use the exact
same order for vertices—the only difference between these
two methods is how they partition the vertex order. In ad-
dition, decompositions produced by GreedyLD are closer
to the exact solution than the decompositions produced by
Core, which is also a natural result.

Let us now compare the solutions in terms of profile func-
tions as defined in Definition 13. We illustrate several pro-
totypical examples of such profile functions in Figure 2.
From the figure we see that GreedyLD produces similar
profiles as the exact locally-dense decomposition. We also
see that Core does not respect the local density constraint.
In fb1912, astro, and hepph there exist k-shells that are
denser than their inner shells, that is, joining these shells
would increase the density of the inner shell. GreedyLD
does not have this problem since by definition it will have a
monotonically decreasing profile.

Finally, in Table 4 we present the decompositions obtained
by the three algorithms for the lesmis graph. We see that
GreedyLD obtains very similar result to the exact solution,
the only difference is the second subgraph and the third sub-
graph is merged and the 3rd last subgraph lends vertices to
the 2nd last subgraph. While GreedyLD has the same
first subgraph as the exact solution, which is the densest
subgraph, Core breaks this subgraph into 3 subgraphs. In-
terestingly enough, the main character of the book, Jean
Valjean, is not placed into the first shell by Core.

8. CONCLUSIONS
Inspired by k-core analysis and density-based graph min-

ing, we propose density-friendly graph decomposition, a new
tool for analyzing graphs. Like k-core decomposition, our
approach decomposes a given graph into a nested sequence of

Table 4: Decompositions of the lesmis dataset. The
numbers represent the greedy peeling and the k-core
decomposition, respectively. The names are ordered
according to locally dense decomposition, the groups
are marked with chanding color.

Valjean 1 2 Fameuil 2 3 Pontmercy 6 7
MmeThenardier 1 3 Blacheville 2 3 MotherInnocent 7 7
Thenardier 1 2 Favourite 2 3 Magnon 7 7
Javert 1 2 Dahlia 2 3 MmePontmercy 7 7
Eponine 1 2 Zephine 2 3 BaronessT 6 7
Gavroche 1 1 Fantine 2 3 Child1 7 7
Marius 1 1 Bamatabois 3 4 Child2 7 7
Mabeuf 1 1 Judge 3 4 Napoleon 8 8
Enjolras 1 1 Champmathieu 3 4 CountessDeLo 8 8
Combeferre 1 1 Brevet 3 4 Geborand 8 8
Prouvaire 1 1 Chenildieu 3 4 Champtercier 8 8
Feuilly 1 1 Cochepaille 3 4 Cravatte 8 8
Courfeyrac 1 1 Gillenormand 4 5 Count 8 8
Bahorel 1 1 MlleGillenormand 4 5 OldMan 8 8
Bossuet 1 1 LtGillenormand 4 5 Labarre 8 8
Joly 1 1 Simplice 5 6 MmeDeR 8 8
Grantaire 1 1 Anzelma 5 6 Isabeau 8 8
Gueulemer 1 2 Woman2 5 6 Gervais 8 8
Babet 1 2 Toussaint 5 6 Scaufflaire 8 8
Claquesous 1 2 Myriel 6 6 Boulatruelle 8 8
Montparnasse 1 2 MlleBaptistine 6 6 Gribier 8 8
Brujon 1 3 MmeMagloire 6 6 Jondrette 8 8
MmeHucheloup 1 3 Marguerite 7 7 MmeBurgon 8 8
Cosette 2 4 Fauchelevent 6 7 MlleVaubois 8 8
Tholomyes 2 3 Perpetue 7 7 MotherPlutarch 8 8
Listolier 2 3 Woman1 7 7

subgraphs These subgraphs have the property that the inner
subgraphs are always denser than the outer ones; addition-
ally the most inner subgraph is the densest one—properties
that the k-cores do not satisfy.

We provide two efficient algorithms to discover such a
decomposition. The first algorithm is based on minimum
cut and it extends the exact algorithm of Goldberg for the
densest-subgraph problem. The second algorithm extends
a linear-time algorithm by Charikar for approximating the
same problem. The second algorithm runs in linear time,
and thus, in addition to finding subgraphs that respect bet-
ter the density structure of the graph, it is as efficient as the
k-core decomposition algorithm.

In addition to offering a new alternative for decomposing
a graph into dense subgraphs, we significantly extend the
analysis, the understanding, and the applicability of previ-
ous well-known graph algorithms: Goldberg’s exact algo-
rithm and Charikar’s approximation algorithm for finding
the densest subgraph, as well as the k-core decomposition
algorithm itself.

9. REFERENCES

[1] J. Abello, M. Resende, and S. Sudarsky. Massive
quasi-clique detection. In LATIN 2002: Theoretical
Informatics, pages 598–612, 2002.

[2] A. Agresti. Analysis of Ordinal Categorical Data. John
Wiley & Sons, 2nd edition, 2010.

[3] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and
A. Vespignani. k-core decomposition: a tool for the
visualization of large scale networks. CoRR,
abs/cs/0504107, 2005.

[4] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama.
Greedily finding a dense subgraph. SWAT, pages
136–148, 1996.

[5] M. Ayer, H. Brunk, G. Ewing, and W. Reid. An
empirical distribution function for sampling with
incomplete information. The Annals of Mathematical
Statistics, 26(4):641–647, 1955.

[6] G. Bader and C. Hogue. An automated method for
finding molecular complexes in large protein
interaction networks. BMC Bioinformatics, 4(1), 2003.

[7] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique
relaxations in social network analysis: The maximum
k-plex problem. Operations Research, 59(1):133–142,
2011.

[8] B. Bollobás. The evolution of random graphs.
Transactions of the American Mathematical Society,
286(1):257–274, 1984.

[9] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD), pages
1316–1325, 2014.

[10] C. Bron and J. Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph. Communications of the
ACM, 16(9):575–577, 1973.

[11] T. Calders, N. Dexters, J. J. M. Gillis, and
B. Goethals. Mining frequent itemsets in a stream.
Information Systems, 39:233–255, 2014.

[12] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and
E. Shir. A model of internet topology using k-shell
decomposition. Proceedings of the National Academy
of Sciences, 104(27):11150–11154, 2007.

[13] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. APPROX, 2000.

[14] W. Dinkelbach. On nonlinear fractional programming.
Management Science, 13(7):492–498, 1967.

[15] A. V. Goldberg. Finding a maximum density
subgraph. University of California Berkeley Technical
report, 1984.

[16] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli,
C. J. Honey, V. J. Wedeen, and O. Sporns. Mapping
the structural core of human cerebral cortex. PLoS,
Biology, 6(7):888–893, 2008.

[17] J. H̊astad. Clique is hard to approximate within n1−ε.
In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), pages
627–636, 1996.

[18] S. Khuller and B. Saha. On finding dense subgraphs.
In Automata, Languages and Programming, volume
5555, pages 597–608, 2009.

[19] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros,
L. Muchnik, H. E. Stanley, and H. A. Makse.
Identification of influential spreaders in complex
networks. Nature physics, 6(11):888–893, 2010.

[20] D. Matula and L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of
the ACM, 30(3):417–427, 1983.

[21] R. J. Mokken. Cliques, clubs and clans. Quality and
Quantity, 13(2):161–173, 1979.

[22] J. Orlin. Max flows in O(nm) time, or better. In
Proceedings of the Annual ACM Symposium on
Theory of Computing (STOC), pages 765–774, 2013.

[23] S. Seidman. Network structure and minimum degree.
Social Networks, 5(3):269–287, 1983.

[24] S. B. Seidman and B. L. Foster. A graph-theoretic
generalization of the clique concept. Journal of
Mathematical sociology, 6(1):139–154, 2010.

[25] N. Tatti and A. Gionis. Discovering nested
communities. In Machine Learning and Knowledge
Discovery in Databases—European Conference, ECML
PKDD 2013, pages 32–47, 2013.

[26] C. E. Tsourakakis. A novel approach to finding
near-cliques: The triangle-densest subgraph problem.
CoRR, 2014.

[27] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. A. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD 2013, pages 104–112, 2013.

[28] J. Ugander, L. Backstrom, C. Marlow, and
J. Kleinberg. Structural diversity in social contagion.
Proceedings of the National Academy of Sciences,
109(16):5962–5966, 2012.

[29] T. Uno. An efficient algorithm for solving pseudo
clique enumeration problem. Algorithmica, 56(1):3–16,
2010.

