Dense Subgraph Discovery (DSD) J

Aristides (Aris) Gionis!
Charalampos (Babis) E. Tsourakakis?

LAalto University, Finland

2Harvard University, USA

KDD 2015

_ Dense Subgraph Discovery (DSD) KDD 2015 1/226



N
Tutorial website

slides and links to relevant papers :

https://densesubgraphdiscovery.wordpress.com/tutorial

can also be found via KDD 2015 website

_ Dense Subgraph Discovery (DSD) KDD 2015 2 /226


https://densesubgraphdiscovery.wordpress.com/tutorial

N
What this tutorial is about ...

given a ( ), static or dynamic
(social network, biological network, information network, .. .)
find a that ...
. has
.is
why | care?

what does dense mean?

review of main problems, and main algorithms

_ Dense Subgraph Discovery (DSD) KDD 2015 3/ 226



N
Outline

e motivating applications

e preliminaries and measures of density
e algorithms for static graphs

e algorithms for dynamic graphs

e problem variants

e conclusions and open problems

_ Dense Subgraph Discovery (DSD) KDD 2015 4 /226



Motivating applications



|
Motivation — correlation mining

. a general framework with many applications

data is converted into a graph

e vertices correspond to entities

an edge between two entities denotes strong correlation

(1) . data represent stock timeseries
(2] : data represent gene expression

dense subsets of vertices correspond to highly correlated entities

applications:

@ analysis of stock market dynamics
® detecting co-expression modules

_ Dense Subgraph Discovery (DSD) KDD 2015 6 /226



Motivation — fraud detection

e dense bipartite subgraphs in page-like data

reveal attempts to inflate page-like counts

[Beutel et al., 2013]
. 9 - 90
Lt S e 80 . - 80
L . I g 70 @ I| . . " 70
" . |-' 60 :% IlI i I T . 60
PSR DA T, |...= e b
] "R I L 1 40E 8 40
' o, 30 g - 30
u, = 20 &4 20
1 L 1 10 10
LT .; |. ¥ 0 111 - 1 0
BCD A E
Pages Reordered Pages

Dense Subgraph Discovery (DSD)

source: [Beutel et al., 2013]

KDD 2015

7/ 226



Motivation — e-commerce

e-commerce
e weighted bipartite graph G(AU Q, E, w)
e set A corresponds to advertisers
e set () corresponds to queries

e each edge (2. g) has weight w(a, q)
equal to the amount of money advertiser
a is willing to spend on query g

large almost bipartite cliques correspond to
sub-markets

_ Dense Subgraph Discovery (DSD) KDD 2015 8 /226



Motivation — bioinformatics

Motif with a

Candidate K-Mer
Dependency

with incorrect

NGTACAT _¥ ggﬁm dependencies

ATGCGTAT TrecenT
ATGGTGAT
ATmT SUBGRAPH

ATTACAT 7(‘0
AT(.'I‘AAT\ OC:I/I»

e DNA motif detection [Fratkin et al., 2006]

e vertices correspond to k-mers

e edges represent nucleotide similarities between k-mers
e gene correlation analysis

e detect complex annotation patterns from gene annotation data

[Saha et al., 2010]

_ Dense Subgraph Discovery (DSD) KDD 2015 9 /226



Motivation — mining twitter data

{ ) “Osama bin Laden killed in
Abbottabad...”

Micro-blog post stream

07
Osama 9/64 Abbottabad

Evolving Entity Graph

g\—f\\
cation of dense subgraphs =

Named
=
Recognition

Osama Abbottabad|
Co-occurring
Entities

\ggregate Association|
Strength Computation

/ Edge —
eight 02

Osama Abbottabad

Coupled Entities

P e] |

Osama Obama _C.LA. Abbottabad|

Dense subgraph / Story

real-time story identification [Angel et al., 2012]

e mining of twitter data

e vertices correspond to entities
e edges correspond to co-occurence of entities

I Dcnse Subgra

dense subgraphs capture news stories

ph Discovery (DSD) KDD 2015

10 / 226



|
Motivation — graph mining

understanding the structure of real-world networks [Sarytice et al., 2015]

nucleus decomposition of a graph

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

SIZE: 10<=O<102<=<:><103<= |:|<104<= / E

. o =@ 0@ccocce

. .
@ - o He @ -

(3,4)-nuclei forest for facebook

S [.cc Subgraph Discovery (DSD)

KDD 2015

11 /226



Motivation — distance queries in graphs

applications :
e driving directions
e indoor/terrain navigation
e routing in comm./sensor networks
e moving agents in game maps
e proximity in social/collab. networks

existing solutions :
e graph searches are too slow
e fast algorithms are often heuristics
e or tailored to specific graph classes

goals :
e fast exact queries
e scalability to large graphs
e wide range of inputs =y I
B Dense Subgraph Discovery (DSD) KDD 2015 12 /226




|
Motivation — distance queries in graphs

o [(u) = set of pairs (v, dist(u, v))
L(u) is the label of u; each v is a hub for u.

figure from [Delling et al., 2014]

_ Dense Subgraph Discovery (DSD) KDD 2015 13 / 226



|
Motivation — distance queries in graphs

o : compute a label set for every vertex
. : for all s, t intersection L(s) M L(t) must hit an

s—t shortest path

figure from [Delling et al., 2014]
_ Dense Subgraph Discovery (DSD) KDD 2015 14 / 226



|
Motivation — distance queries in graphs

e to answer an s—t query :
find hub v in L(s) N L(t) minimizing dist(s, v) + dist(v, t)

figure from [Delling et al., 2014]

_ Dense Subgraph Discovery (DSD) KDD 2015 15 / 226



Motivation — distance queries in graphs

hub label queries are trivial to implement :

e entries sorted by hub id
e linear sweep to find matches

e access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small
e can we find small labels sets?

e 2-hop labeling algorithm relies on dense-subgraph discovery to
find such label sets (!) [Cohen et al., 2003]

o state-of-art 2-hop labeling scheme : [Delling et al., 2014]
e more work on the topic : [Peleg, 2000, Thorup, 2004|

_ Dense Subgraph Discovery (DSD) KDD 2015 16 / 226



Motivation — frequent pattern mining

e given a set of transactions over items

e find item sets that occur together in a ¢ fraction of the
transactions

issue
number

heroes

1

g~ 0N

Iceman, Storm, Wolverine

Aurora, Cyclops, Magneto, Storm
Beast, Cyclops, lceman, Magneto
Cyclops, lIceman, Storm, Wolverine
Beast, Iceman, Magneto, Storm

e.g., {lceman, Storm} appear in 60% of issues
_ Dense Subgraph Discovery (DSD) KDD 2015

17 / 226



|
Motivation — frequent pattern mining

e one of the area in data mining

e many
Apriori, Eclat, FP-growth, Mafia, ABS, ...

e main idea: monotonicity
a subset of a frequent set must be frequent, or
a superset of an infrequent set must be infrequent

e algorithmically:
start with small itemsets

proceed with larger itemset if all subsets are frequent
o all frequent itemsets

_ Dense Subgraph Discovery (DSD) KDD 2015 18 / 226



Motivation — frequent itemsets and dense subgraphs

id heroes ABCIMSW
1 lceman, Storm, Wolverine 1 0001011
2 Aurora, Cyclops, Magneto, Storm PN 2 1011100
3 | Beast, Cyclops, Iceman, Magneto 3 0111100
4 Cyclops, Iceman, Storm, Wolverine 4 0011011
5 Beast, lceman, Magneto, Storm 5 0101110
| Aurora
Beast
2
Cyclops
= 3 Iceman
Magneto
4
Storm
5 Wolverine
° = =4

_ Dense Subgraph Discovery (DSD) KDD 2015 19 / 226



Motivation — frequent itemsets and dense subgraphs

id heroes ABCIMSW
1 lceman, Storm, Wolverine 1 0001011
2 Aurora, Cyclops, Magneto, Storm PN 2 1011100
3 | Beast, Cyclops, Iceman, Magneto 3 0111100
4 Cyclops, Iceman, Storm, Wolverine 4 0011011
5 Beast, lceman, Magneto, Storm 5 0101110
| Aurora
Beast
2
Cyclops
<~ 3 Iceman
Magneto
4
Storm
5 Wolverine

e transaction data < binary data < bipartite graphs
o frequent itemsets < bi-cliques

_ Dense Subgraph Discovery (DSD) KDD 2015 20 / 226



Motivation — finding web communities

[Kumar et al., 1999]

e hypothesis: web communities consist of hub-like pages and
authority-like pages
e.g., luxury cars and luxury-car aficionados

e key observations:

1. let G = (U, V. E) be a dense web community

then G should contain some small core (bi-clique)

2. consider a web graph with no communities

then small cores are unlikely

e both observations motivated from theory of random graphs

_ Dense Subgraph Discovery (DSD) KDD 2015 21 / 226



|
Motivation — finding web communities

a web community

hub authority
pages pages

[Kumar et al., 1999]

_ Dense Subgraph Discovery (DSD) KDD 2015 22 /226



|
Motivation — finding web communities

web communities containts small cores

hub
pages

authority
pages

[Kumar et al., 1999]

_ Dense Subgraph Discovery (DSD) KDD 2015 23 /226



Motivation — social piggybacking

[Gionis et al., 2013]

TUMDLL. S olonomiorse i

Tweets

“TEDTalks Updates

Tim O'Reilly
‘Smart Disclosure Research and Demonstration Design Competition
@innocentive bitly/HaxPdS #sdsummit

facebook

Marco Serafni

e News Feed
' +TED: Marco Tompesttls @ boauful story ofmagi - witn
TEDAS an augmented reality machine: on.ted.com/Tempest3

&) Messages

autode SK/YBEJW

Descarregatt el libre ”

Mark Twain < Tret

‘Social Media Insider

dihin.ge/HIKIB

‘Samuel Wong sar
Text to Sunstein's reference to a rational consumer's choice

(Federalist Paper 1) #sdsumit ow.y/SYLYL ASW
@ Retweets e

st
guanyadors | fnalistes de I'edicié 2011 ow.y/9Yavy #santiordi

“The very ink with which history is written is merely fluid prejucice.

o Think ~Sol” Mears Vi, fove Got t Al Wrong:

Kurt Vonnegut o
Wake up, you clots Whatovr mado you hink na money was 50 <o
valuable?

0 fvems P
e Close Fiends

Autodesi o O Bacelonarea 0+

the L Dwrmstadtacea 208

oy Social Reader

1 Music
@ s Ive Visited
[ Apps andGames 5
@ Photos
ries de bus | metro” amb el relats e
@ famiy 1

@ Vahoo! Research 3 . 20+
@ Darmstadt Univers... 304

5 Update status [3) Add Photo / Video E- Ask Question

s FacloFulin and AlssandraFoneswer aged n Assaio Gl
A S

Jacopo Fabbroni
s eejay v/ deeiay v

alle 17.30 a i onda su DEEJAY il uovo VideoClip dei 2 PIGEONS.
SLACK UMBO

& Universty of Flore_ 264

2 music 0t

[ Cuginect
[ Caprocianidella domenica
[ Create Group.

Wired “uirec
How to Review the How-To App Snapguide bit y/HE8YmE

na BOMBA assoluta.. NON perdetevelol
ke - Comment 7 minutes ago near Florence, Tosca

5 2 people ke this.

ari Romanel e o daegre, acoare vedere . and 2 v

e cvent feeds: majority of activity in social networks

Dense Subgraph Discovery (DSD)

KDD 2015 24 / 226



|
Motivation — social piggybacking

e system throughput proportional to the data transferred between
data stores

e feed generation important component to optimize

v

o
UO/
e primitive operation: transfer data between two data stores

e can be implemented as push or pull strategy

e optimal strategy depends on production and consumption rates
of nodes

_ Dense Subgraph Discovery (DSD) KDD 2015 25 / 226



|
Motivation — social piggybacking

o 0
h
LN\, N\,

e hub optimization turns out to be a good idea

e depends on finding dense subgraphs

_ Dense Subgraph Discovery (DSD) KDD 2015 26 / 226



Motivation — graph compression

e compress web graphs by finding and compressing bi-cliques
[Karande et al., 2009]

e many graph mining tasks that can be formulated as
matrix-vector multiplication, are more efficient on the
compressed graph [Kang et al., 2009]

00O

_ Dense Subgraph Discovery (DSD) KDD 2015 27 / 226



|
Motivation — more applications

e graph visualization [Alvarez-Hamelin et al., 2005|

e community detection [Chen and Saad, 2012]

e epilepsy prediction [lasemidis et al., 2003]

e event detection in activity networks [Rozenshtein et al., 2014a]

® many more

_ Dense Subgraph Discovery (DSD) KDD 2015 28 / 226



|
Motivation — big and dynamic graphs

o of graphs increases

— e.g., in 2012, Facebook reported more than 1 billion users and
140 billion friend connections

e graphs constantly
— e.g., in Facebook friendships are created and deleted all the time

e need to design efficient algorithms on new computational models
that handle

— map-reduce, streaming models, etc.

[P oo om0 0—g 0 ¢ ® 00 04 00 o]
graph stream —>

Dense Subgraph Discovery (DSD) KDD 2015 29 / 226



Landscape of related work

brute force [Johnson and Trick, 1996]
heuristics [Bomze et al., 1999]
e spectral algorithms
[Alon et al., 1998, McSherry, 2001, Papailiopoulos et al., 2014]
e belief-propagation methods [Kang et al., 2011]
e enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973,
Eppstein et al., 2010, Makino and Uno, 2004]
NP-hard formulations and various relaxations
e maximum clique problem [Karp, 1972, Hastad, 1999]
e k-densest subgraph problem
[Bhaskara et al., 2010, Feige et al., 2001]
e optimal quasi-cliques [Tsourakakis et al., 2013]
polynomial-time solvable objectives
e densest subgraph problem [Goldberg, 1984]
— “The densest subgraph problem lies at the core of large scale
data mining” [Bahmani et al., 2012]
B Dense Subgraph Discovery (DSD) KDD 2015 30 / 226



Preliminaries, measures of density



N
notation

graph G = (V/, E) with vertices \/ and edges £ C V/ x V/
degree of a node u € V with respect to X C V' is

degy(u) = |{v € X such that (u,v) € E}|

degree of a node v € Vis deg(u) = degy (v)
edges between S C V and 7 C V are

E(S, T)={(u,v)suchthat ue Sandv e T}

use shorthand E(S) for £(S.5)

graph cut is defined by a subset of vertices S C V/
edges of a graph cut S C V/ are £(S.S)

induced subgraph by S C V' is G(S) = (S, E(S))
triangles: T(S) = {(u, v, w) | (u,v), (u,w),(v,w) € E(S)}

_ Dense Subgraph Discovery (DSD) KDD 2015 32 /226



|
density measures

e undirected graph G = (V. E)
e subgraph induced by S C V

° . all vertices in S are connected to each other

_ Dense Subgraph Discovery (DSD) KDD 2015 33 /226



density measures

e edge density (average degree):

20E(S.5) 2|E(S)
=" =5

(sometimes just drop 2)

e edge ratio:

ss)_ ES. S _E©) _ _21E(S),

(S h (5h ~ISI(]S] - 1)
e triangle density: (3)
|T(s
= s
e triangle ratio: (5)
[ 7(5)|
T

S [.cc Subgraph Discovery (DSD) KDD 2015

34 / 226



|
other density measures

e l-core: every vertex in S is connected to

at least k other vertices in S

o a-quasiclique: the set S has at least o (2/) edges

i.e., S is a-quasiclique if £(S5) > o (E‘)

_ Dense Subgraph Discovery (DSD) KDD 2015 35 /226



N
and more

not considered in this tutorial

o . subset of vertices with pairwise distances at most k

distances defined using intermediaries, outside the set

not well connected

° . a subgraph of diameter < k

o : a subgraph S in which each vertex is connected to at
least |S| — k other vertices

— 1-plex is a clique

_ Dense Subgraph Discovery (DSD) KDD 2015 36 / 226



|
reminder: min-cut and max-cut problems

min-cut problem

@

max-cut problem

e source s € V/, destination t € V
find S C V, s.t.,
seSandte S, and

minimize e(S, S)

find S C V, s.t.,

i 5 5 e maximize (S, S)
]

Dense Subgraph Discovery (DSD) KDD 2015 37 /226



|
reminder: min-cut and max-cut problems

min-cut problem

source s € V/, destination t € V
e find S C V, s.t.,
escSandte S, and

e minimize e(S,S)

e polynomially-time solvable

e equivalent to max-flow problem

max-cut problem
e find S C V, s.t,,

e maximize (S, S)

S [.cc Subgraph Discovery (DSD) KDD 2015

38 / 226



|
reminder: min-cut and max-cut problems

min-cut problem

e source s € V/, destination t € V
e find S C V, s.t.,
escSandte S, and

e minimize e(S,S)

e polynomially-time solvable
e equivalent to max-flow problem

max-cut problem

e find S C V, s.t,,
e maximize (S, S)
e NP-hard

e approximation algorithms
(0.868 based on SDP)

Dense Subgraph Discovery (DSD) KDD 2015

39 / 226



Efficient algorithms for static graphs



|
Goldberg's algorithm for densest subgraph

e consider first d
e is there a subgraph S with
d(S) > c?
e transform to a
G

e on the transformed instance:

) smaller
than a certain value?

_ Dense Subgraph Discovery (DSD) KDD 2015 41 / 226



-
Goldberg's algorithm for densest subgraph

is there S with d(S) > ¢ ?

21E(S,S)]
5] N

2|E(S.9)] > S

S des(u) ~ |E(S.3)] > IS
ues
Zdog(u) - Zdog(u) — Zdog(u) —|E(S,5)| > c|S]|
ues ues ues
> deg(u) +|E(S,S)[ +¢|S| < 2|E]|

ues

_ Dense Subgraph Discovery (DSD) KDD 2015 42 / 226



|
Goldberg's algorithm for densest subgraph

e transformation to instance

o isthere Ssit. > _cdeg(u) + [e(S,S)| +c|S| < 2|E|?

_ Dense Subgraph Discovery (DSD) KDD 2015 43 / 226



Goldberg's algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ssit. > _cdeg(u) + [e(S,S)| +c|S| < 2|E|?
e a cut of value 2 |E| always exists, for S = ()

_ Dense Subgraph Discovery (DSD) KDD 2015 44 / 226



-
Goldberg's algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ssit. > _cdeg(u) + [e(S,S)| +c|S| < 2|E|?
o S+ gives cut of value >~ = deg(u) + [e(5.5)| + c[S]|
_ Dense Subgraph Discovery (DSD) KDD 2015 45 / 226



-
Goldberg's algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ssit. > _cdeg(u) + [e(S,S)| +c|S| < 2|E|?
e YES, if min cut achieved for S 4 ()

_ Dense Subgraph Discovery (DSD) KDD 2015 46 / 226



-
Goldberg's algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph G = (V. E), number ¢

output: S, if d(S) > ¢

1 transform G into min-cut instance G’ = (V U {s} U {t}, E',w')
2 find min cut {s} US on G’

3 ifS#0return S

4  clse return NO

e to find the densest subgraph perform binary search on ¢
e logarithmic number of min-cut calls

e problem can also be solved with one min-cut call
using the parametric max-flow algorithm

_ Dense Subgraph Discovery (DSD) KDD 2015 47 / 226



|
densest subgraph problem — discussion

Goldberg's algorithm polynomial algorithm, but

O(nm) time for one min-cut computation

not scalable for large graphs (millions of vertices / edges)

faster algorithm due to [Charikar, 2000]
o and simple to implement

o algorithm

_ Dense Subgraph Discovery (DSD) KDD 2015 48 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 49 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 50 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 51 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 52 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 53 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 54 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 55 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 56 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 57 / 226



|
greedy algorithm for densest subgraph — example

_ Dense Subgraph Discovery (DSD) KDD 2015 58 / 226



|
greedy algorithm for densest subgraph — example

AV

A

_ Dense Subgraph Discovery (DSD) KDD 2015 59 / 226



|
greedy algorithm for densest subgraph — example

AV

_ Dense Subgraph Discovery (DSD) KDD 2015 60 / 226



|
greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V. E)
output: S, a dense subgraph of G

1 setG,« G

2  for k + n downto 1

2.1 let v be the smallest degree vertex in G,
2.2 Gk,;[ < Gk \ {V}
3 output the densest subgraph among G,. G, 1...., G,

_ Dense Subgraph Discovery (DSD) KDD 2015 61 / 226



-
proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]

e let S* be the vertices of the optimal subgraph
o let d(5*) = A be the maximum degree density
e notice that for all v € 5 we have degs.(v) > A

e (why?) by optimality of 5*

e(5%)] - le(S")] — degg. (v)
ST = -1

and thus
degg-(v) > =d(S") =\

_ Dense Subgraph Discovery (DSD) KDD 2015 62 / 226



-
proof of 2-approximation guarantee (continued)

([Khuller and Saha, 2009])

e consider greedy when the vertex v € 5° C Vs
e let S be the set of vertices, just before removing v
e total number of edges before removing v is > A|S|/2

e therefore, greedy returns a solution with degree density at least %

QED

_ Dense Subgraph Discovery (DSD) KDD 2015 63 / 226



|
the greedy algorithm

e factor-2 approximation algorithm
e runs in linear time O(n + m)
e for a polynomial problem . ..
but faster and easier to implement than the exact algorithm

e everything goes through for weighted graphs
using heaps: O(m + nlogn)

e things are not as straightforward for

_ Dense Subgraph Discovery (DSD) KDD 2015 64 / 226



|
Dense subgraphs on directed graphs — history

e goal: find sets S, T C V to maximize

e[S, T]

VISHT]

first introduced in unpublished manuscript
[Kannan and Vinay, 1999]

they provided a O(log n)-approximation algorithm

d(S,T) =

left open the problem complexity

polynomial-time solution using linear programming (LP)
[Charikar, 2000]

_ Dense Subgraph Discovery (DSD) KDD 2015 65 / 226



|
Dense subgraphs on directed graphs — history

[Charikar, 2000]
e exact LP-based algorithm

e greedy 2-approximation algorithm running in O(n® + n’m)

[Khuller and Saha, 2009]
e first max-flow based exact algorithm

e improved running time of the 2-approximation greedy algorithm
to O(n+ m)!

_ Dense Subgraph Discovery (DSD) KDD 2015 66 / 226



|
Directed graphs — algorithms

e reduced problem to O(n?) LP calls [Charikar, 2000]
5]

e one LP call for each possible ratio 7

=C

maximize E Xjj

(iJ)€E(G)
such that x; <s;, forall (i.)) € E(G)
xj; < t;, forall (i,j) e E(G)

Zs,<ﬁand Zt<L

Xij, Si, t; > 0

_ Dense Subgraph Discovery (DSD) KDD 2015 67 / 226



|
Dense subgraphs on directed graphs — greedy

[Charikar, 2000]
5]

input: directed graph G = (V/, E), ratio ¢ = 7
SV, T+V
while both S, T non-empty
Imin < the vertex / € S that minimizes |E({/}, T)|
dS — ‘E({’.min}v T)‘
Jmin < the vertex j € T that minimizes |E(S. {/})
dT A ‘E(Sv {jmin})‘
if /cds < %dr
then S <+ S\{/nin}
else ST < T\{jmin}

O© 00 NO O WiN R

: s
e execute ()(n?) times; one for each ¢ = H

e report best solution
e factor 2 approximation guarantee
_ Dense Subgraph Discovery (DSD) KDD 2015 68 / 226



|
Dense subgraphs on directed graphs — greedy

e brute force execution of greedy: O(n’(n+ m)) = O(n® + nm))

[Khuller and Saha, 2009]
e showed that only one execution is needed (instead of ((n?))

e total running time O(n + m)

_ Dense Subgraph Discovery (DSD) KDD 2015 69 / 226



|
Dense subgraphs on directed graphs — greedy

linear-time greedy [Khuller and Saha, 2009]

e let v;, v, be the vertices with minimum in- and out-degree
o if d(v;) < d"(v,) we are in category IN

otherwise in category

e greedy deletes the minimum-degree vertex

e if in IN, it deletes all incoming edges

e ifin , it deletes all outgoing edges

e if the vertex becomes a singleton, it is deleted.

e return the densest subgraph encountered

_ Dense Subgraph Discovery (DSD) KDD 2015 70 / 226



Dense subgraphs on directed graphs — exact

we wish to answer “are there S, T C V such that d(S5,T) > g?"
consider

o consider o = 7, (O(n?) possible values)

e network G = ({s, t} U V4 U Vo E), with V; =V, =V
min-cut transformation

e add an edge of capacity m from s to each vertex of V; and V>

e add an edge of capacity 2m -+ % from each vertex of V/; to t

e add an edge from each vertex j of \/, to sink t of capacity

2m + \/ag — 2deg())

e for each (/,/) € E(G), add an edge from j € V, to / € V/; with
capacity 2

_ Dense Subgraph Discovery (DSD) KDD 2015 71 /226



|
Dense subgraph problem — summary

e for the measure:
e exact algorithms for undirected and directed graphs

e linear-time 2-approximation achieved by greedy

e how good are these subgraphs?

study other measures and contrast with degree density
e no control on the size of the subgraph

e what about time-evolving and dynamic graphs?

_ Dense Subgraph Discovery (DSD) KDD 2015 72 / 226



-
Edge-surplus framework

introduced by [Tsourakakis et al., 2013]

e for a set of vertices S define edge surplus

f(S) = g(elS]) — h([S])

where g and h are both strictly increasing

e optimal (g, h)-edge-surplus problem:
find S* such that

f(S7) > f(S), forallsets SC 5"

_ Dense Subgraph Discovery (DSD) KDD 2015 73 / 226



-
Edge-surplus framework

e edge surplus 7(S) = g(e[S]) — h(|S])

e example 1
g(x) = h(x) = log x
e[S]

find S that maximizes log i)

densest-subgraph problem

e example 2

0 if x =k
+00 otherwise

g =x )= {

k-densest-subgraph problem
_ Dense Subgraph Discovery (DSD) KDD 2015 74 / 226



|
The optimal quasiclique problem

e edge surplus 7(S) = g(e[S]) — h(|S])
e consider
g(x) =x, h(x)=« —
find S that maximizes ¢[S] — o (E‘)

optimal quasiclique problem [Tsourakakis et al., 2013]

e theorem: let g(x) = x and h(x) = ax
we aim to maximize e(S) — a|S|
solving O(log n) such problems, solves densest subgraph problem

_ Dense Subgraph Discovery (DSD) KDD 2015 75 / 226



The edge-surplus maximization problem

theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular
—h(x) is supermodular

g(x) — h(x) is supermodular

maximizing supermodular functions is a polynomial problem

_ Dense Subgraph Discovery (DSD) KDD 2015 76 / 226



The edge-surplus maximization problem

e poly-time solvable and interesting objectives have linear h

the optimal quasiclique problem is NP-hard [Tsourakakis, 2014]

the partitioning version led to a state-of-art streaming balanced
graph-partitioning algorithm: FENNEL

— goal: maximize g(P) over all possible k-partitions

g(P)=> e[Si]- (},Z S;

i
—— ——

number of minimized for
edges cut balanced partition!

— notice:

)

for more details: [Tsourakakis et al., 2014]

_ Dense Subgraph Discovery (DSD) KDD 2015 77 / 226



|
Finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V. E)

output: a quasiclique S

1 setG,«+ G

2 for k «+— n downto 1

2.1 let v be the smallest degree vertex in G,

2.2 kal < Gk \ {V}

3 output the subgraphin G, ..., Gy that maximizes 7(S5)

additive approximation guarantee [Tsourakakis et al., 2013]

_ Dense Subgraph Discovery (DSD) KDD 2015 78 / 226



|
Motivating research question

despite rich landscape of algorithmic tools, until recently,

no polynomial algorithm for finding

e can we combine the best of both worlds, namely

have poly-time solvable formulation(s) which . ..

... consistently succeeds in finding large near-cliques on
real-world networks?

yes! the problem [Tsourakakis, 2015]

_ Dense Subgraph Discovery (DSD) KDD 2015 79 / 226



|
k-clique densest subgraph problem

Definition (k-clique density)

For any S C V we define its k-clique density p(S), k > 2 as
pk(S) = @ where ¢, (S) is the number of k-cliques induced by S
and s = |§]

Problem (k-clique DSP)

Given G(V, E), find a subset of vertices S* such that
pi(S7) = pi = maxscy pi(S)

e Notice that the 2-clique DSP is simply the DSP
e We shall refer to the 3-clique DSP as the triangle densest
subgraph problem

max7(5) ==~

_ Dense Subgraph Discovery (DSD) KDD 2015 80 / 226



|
Triangle densest subgraph problem

e How different can the densest subgraph be from the triangle
densest subgraph?
In principle, they can be radically different!
Consider G = K, , U K3

e The interesting question is what happens on real-data
e Can we solve the triangle DSP in polynomial time?

e Can we solve the k-clique DSP in polynomial time?

_ Dense Subgraph Discovery (DSD) KDD 2015 81 / 226



|
Triangle densest subgraph problem

Theorem

There exists an algorithm which solves the TDSP and runs in
O(m*2 + nt + min (n, t)*) time

We will sketch here the idea behind a
O<m3’/2 + (nt + min (n, t)3) log n) algorithm Furthermore,

Theorem

We can solve the k-clique DSP in polynomial time for any k = ©(1)

e Even if our construction solves the DSP, Goldberg's algorithm is
more efficient

_ Dense Subgraph Discovery (DSD) KDD 2015 82 / 226



|
Triangle densest subgraph problem

Perform binary searches:
3S C V such that t(S) > «|S]| 7

O(log n) queries suffice in order to solve the TDSP

Any two distinct triangle density values are at least O(1/n?) way
from each other
()

n

— The optimal density 0 < £ < 7% <

e But what does a binary search correspond to? ...

_ Dense Subgraph Discovery (DSD) KDD 2015 83 / 226



|
Triangle densest subgraph problem

Construct-Network (G, o, T(G))
o V(H) < {s}UV(G)UT(G)U{t}
e For each vertex v € V(G) add an arc of

... To a maximum capacity 1 to each triangle t; it
flow computation participates in
on this network e For each triangle A = (u,v,w) € T(G)

add arcs to u, v, w of capacity 2
Add directed arc (s,v) € A(H) of
capacity t, for each v € V(G)

Add weighted directed arc (v, t) € A(H)
of capacity 3« for each v € V(G)

e Return network
H(V(H), A(H),w),s,t € V(H)

_ Dense Subgraph Discovery (DSD) KDD 2015 84 / 226



k-clique densest subgraph problem

A=V(G) B=C(G)

_ Dense Subgraph Discovery (DSD) KDD 2015 85 / 226



|
Triangle densest subgraph problem

Exact-TDS
List the set of triangles 7(G), t = |T(G)|
o | — Ly« (n=1)(n—2)

6
o S* )
o While(uZI—i—ﬁ)
—a+ Bt

— H, + Construct-Network(G, o, T(G))

(S, T) < minimum st-cut in H,

If( S={s} ), then u <+ «

— otherwise set $* + (S\{s}) N V(G) and | + «

Return S*

@® Run time: O<m3/2 + (nt +min(n, t)°) log n)

® Space complexity: O(n+ t). Typically n < t on real networks
I Dense Subgraph Discovery (DSD) KDD 2015 86/ 226



|
Triangle densest subgraph problem

® Set G, <~ G
® for k < n downto 1

e Let v be the smallest triangle count vertex in G
o Gk,1 <— Gk\{v}

® Output the triangle densest subgraph among G,, G, 1, ..., G;

e The above peeling algorithm is a 3-approximation algorithm

e The same peeling idea generalizes to the k-clique DSP,
providing a k-approximation algorithm

_ Dense Subgraph Discovery (DSD) KDD 2015 87 / 226



Some experimental findings

Method | Measure | Football Method | Measure | Football
DS | H(%) | 100 TDS | Fh(%) | 157
20 10.6 20 8.22
f 0.094 f. 0.48
37 21.12 37 28
3-DS | $h(%) | 100 3-TDS | (%) | 157
20 10.66 20 8.22
fe 0.094 f. 0.48
37 21.12 37 28

e Observation 1. Approximate counterparts are close to the
optimal exact methods

e Observation 2. The TDS is closer to being a large near-clique
compared to the DS

Dense Subgraph Discovery (DSD)

KDD 2015




Important remark

e Charikar's algorithm despite being a 2-approximation algorithm
performs optimally or close to optimally on real data. This
suggests that real-data are “far away” from being adversarial

e Here is one instance that shows that the
2-approximation is tight

G = G; U Gy where G; = Ky p, Gy is the disjoint union of D
cliques, each of size d + 1

How does the Charikar's algorithm perform?

— Instead of returning the bipartite clique with density
dD/(d + D) ~ d, it returns a clique of size d 4+ 1 with density
d/2

_ Dense Subgraph Discovery (DSD) KDD 2015 89 / 226



Computational issues

The main issue is the size of the bipartite network

— Both space-wise . ..
— and time-wise, as any max-flow computation depends on its size

e k-clique counting is not the main issue. We can count fast
based on arboricity based ordering heuristics k-cliques efficiently
on large networks

— When the counting part becomes an issue, high-quality
approximation algorithms exist, e.g., [Kolountzakis et al., 2012,
Tsourakakis et al., 2011, Pagh and Tsourakakis, 2012]

_ Dense Subgraph Discovery (DSD) KDD 2015 90 / 226



Datasets
Name n m
Web-Google | 875713 | 3852985
* Epinions 75877 | 405739
& CA-Astro 18772 198 050
M Pol-blogs 1222 16714
Email-all 234352 | 383111
B LastFm-B 17644 02 366
« IMDB-B 241360 | 530494
IMDB-G-B 21258 42197
= Bookmarks-B | 71090 | 437593

Dense Subgraph Discovery (DSD)

KDD 2015

91 / 226



|
Experimental findings

k-cliques
G k=2 k=3 k= k =
fe | IS | fe [ US| fe | ISI] fo | IS]
%1012 | 1012 | 0.26 | 432 | 0.40 | 235 | 0.50 | 172
© | 0.11| 18686 | 080 | 76 | 096 | 62 | 0.96 | 62
M| 019 |16714 | 054 | 102 | 059 | 92 | 0.63 | 84
0.13 | 553 |0.38| 167 | 0.48 | 122 | 0.53 | 104
(p,q)-bicliques
G[(pg)=(11) | (p.q)=1(22) | (p.q) =(3,3)
fe N fe N fe S|
* 1 0.001 | 9177 | 0.06 181 0.30 40
0.001 | 6437 | 041 18 0.43 17

Dense Subgraph Discovery (DSD)

KDD 2015

92 / 226



|
Densest subgraph sparsifiers

Abstraction: We shall abstract both the k-clique DSP and the

(p, q)-biclique DSP as a densest subgraph problem in a hypergraph.
Let H be the resulting hypergraph and € > 0 be an accuracy
parameter

Theorem

e Sample each hyperedge e € E4 independently with probability

__ 6 logn
P=2"D
e Then, the following statements hold simultaneously with high
probability:
— For all U C V such that p(U) > D, p(U) > (1 —€)Clogn for
anye >0

— For all U C V such that p(U) < (1 — 2¢)D,
p(U) < (1 —¢€)Clogn for any e > 0
_ Dense Subgraph Discovery (DSD) KDD 2015 93 / 2;6




Densest subgraph sparsifiers

Technical difficulty
¢ Notice that taking Chernoff bounds and a union bound does not
work since by Chernoff the failure probability is 1/poly(n)
whereas there exists an exponential number of potential bad
events
From the previous theorem, we obtain the following corollaries

e (1+ ©(€))-approximation, expected speedup O(p%), expected
D
space reduction is O(plD)

e Naturally results in a single pass (1 + ©(¢))-approximation
semi-streaming algorithm for a dynamic stream of edges. Same

result obtained independently by
[Esfandiari et al., 2015, McGregor et al., 2015]

S [.cc Subgraph Discovery (DSD) KDD 2015

94 / 226



-
Sampling effect, Epinions network

0.6

1500
0.5 s
o s\
z 04 3 2 1000
2 2
3 0.3 7
© -
5, ' z
g Y 3 500 )
0.11¢ )
[
0 0
2 3 4 5 2 3 4 5
k k
2200 o
1 2000 ¢
; A g
e 38
;O 975 8 o « 1500
2 s o g
> 095[Y e
5 0. £ 1000
g &
8
< 0.925 500 Py
v
0.9 467 4
2 3 4 5 2 3 4 5
k
* Dense Subgraph Discovery (DSD) KDD 2015 95 / 226



|
Densest subgraph sparsifiers

Abstraction: We shall abstract both the k-clique DSP and the

(p, q)-biclique DSP as a densest subgraph problem in a hypergraph.
Let H be the resulting hypergraph and € > 0 be an accuracy
parameter

Theorem

e Sample each hyperedge e € E4 independently with probability

__ 6 logn
P=2"D
e Then, the following statements hold simultaneously with high
probability:
— For all U C V such that p(U) > D, p(U) > (1 —€)Clogn for
anye >0

— For all U C V such that p(U) < (1 — 2¢)D,
p(U) < (1 —¢€)Clogn for any e > 0
_ Dense Subgraph Discovery (DSD) KDD 2015 96 / 2;6




|
Densest subgraph sparsifiers

Technical difficulty
e Notice that taking Chernoff bounds and a union bound does not
work since by Chernoff the failure probability is 1/poly(n)
whereas there exists an exponential number of potential bad
events

From the previous theorem, we obtain the following corollaries
e (14 ©(e))-approximation, expected speedup (9(%), expected
space reduction is (’)(l)
e We can sample with probability p = @("'°g") where
my = |Ey|
e Our sampling scheme results in a single pass

(1 + ©(e))-approximation semi-streaming algorithm for DSP.
Same result obtained later independently by

|Esfandiari et aI.| 2015, McGregor et al., 2015]
Dense Subgraph Discovery (DSD) KDD 2015 97 / 226



|
Large Near Bicliques

id heroes ABCIMSW
1 lceman, Storm, Wolverine 1 0001011
2 Aurora, Cyclops, Magneto, Storm PN 2 1011100
3 | Beast, Cyclops, Iceman, Magneto 3 0111100
4 Cyclops, Iceman, Storm, Wolverine 4 0011011
5 Beast, lceman, Magneto, Storm 5 0101110
| Aurora
Beast
2
Cyclops
<~ 3 Iceman
Magneto
4
Storm
5 Wolverine
° = =4

o frequent itemsets < bi-cliques
_ Dense Subgraph Discovery (DSD) KDD 2015

98 / 226



|
Large Near Bicliques

e We generalize the idea of k-cliques by maximizing the average
(p, g)-biclique densities

e For p = g = 1 we obtain the well-known densest subgraph
problem

e We provide general network construction techniques which can
be used to maximize the (p, g)-biclique density for any
p,q=0(1)

— QOur network construction techniques can be used to maximize
densities of other types of subgraphs as well

e We can justify speedups of the order O(p*?/log” n), compared
to the exact maximum flow computation based algorithm

_ Dense Subgraph Discovery (DSD) KDD 2015 99 / 226



Datasets
Name n m
Web-Google | 875713 | 3852985
* Epinions 75877 | 405739
& CA-Astro 18772 198 050
M Pol-blogs 1222 16714
Email-all 234352 | 383111
B LastFm-B 17644 02 366
« IMDB-B 241360 | 530494
IMDB-G-B 21258 42197
= Bookmarks-B | 71090 | 437593

Dense Subgraph Discovery (DSD)

KDD 2015

100 / 226



-
k-clique and (p, g)-biclique counts and run times

Name C3 T Ca T Cs T
Web-Google | 11.4M | 85 | 325M | 16.5 | 82M | 36.4

* Epinions 16M | 16 | 5.8M | 48 | 17.5M | 13.4

© CA-Astro 13M | 06 | 9.6M | 3.94 | 65M | 27.2

M Pol-blogs 101K | 0.05 | 422K | 0.2 | 1.4M | 0.7
Email-all 383K | 0.4 | 1.IM | 0.9 | 27M | 1.9

Name G2 T a3 T

B LastFm-B 18266703 | 27.8 - -

= IMDB-B 691 594 3.6 | 261330 | 3.3
IMDB-G-B 14919 0.1 2288 0.1

- Bookmarks-B | 431996 | 0.82 | 14901 | 0.53

_ Dense Subgraph Discovery (DSD) KDD 2015 101 / 226



|
Ranging p, k = 2,3

’ 1

a ©0.95F 1 :
= x« °
g 5 g )
E] g E 09 |
3 2 38 *
< :E' < “
4 4 0.85 .\’-
‘% ». é . ‘."'o“

0 Seese. 000000000900 00000 08 ©00000000000004 i

0 0.2 0.4 0.6 0.8 1 ) 0.02 0.04 0.06 0.08 0.1
Sampling Probability p Sampling Probability p

Accuracy pi(S)/pi and speedup as functions of the sampling
probability p for the CA-Astro collaboration network

_ Dense Subgraph Discovery (DSD) KDD 2015 102 / 226



|
Ranging p, k = 4,5

1 a o
3 . L < -~
508 S 025 s
S ». 9] 3] 8
] ‘.‘ :% 3 o
@ e o wn
b b 5D
B .8 i
jé ‘0‘...’_. od E
0.6 - - 0 0.7 . . . .
0 1 2 3 0.5 1 15 2
Sampling Probability p 103 Sampling Probability p 104
k=4 k=5

Accuracy pi(S)/p; and speedup as functions of the sampling
probability p for the CA-Astro collaboration network

_ Dense Subgraph Discovery (DSD) KDD 2015 103 / 226



-
Observations — Ranging p

(2)

n

Notice that % < pj <
— We observe that an efficient strategy is to guess a large value of
Pk, i.e., sample with smallest value for p Then, while
concentration is not deduced, keep doubling p

The speedups for k = 2 -while valuable- are not impressive as
the graphs are pretty sparse to begin with

However, for k > 3 the speedups start becoming significant,
reaching the order of 4 x 10* for k = 5, which achieving
accuracies

_ Dense Subgraph Discovery (DSD) KDD 2015 104 / 226



-
Sampling effect, Epinions

0.6
0.5 s
$
o
> 04 X
2 ]
c
g 03
> $
S 0.2
w
0.17¢
0
2 3 4 5
k
1
$ . R
e ¢
§0.975 4 o
T 8 ‘
- 0951Y
g
g
< 0.925
0.9
2 3 4 5

|

Dense Subgraph Discovery (DSD)

1500

1000

Output size |S|

500

2200
2000

1500

1000

Speedup x

500

4.67
2

<

4-
3

KDD 2015

105 / 226



Accuracies and speedups

e Runtimes (exact), accuracies and speedups (random sampling)

— Exact: For k = 2 the slowest run time was

— Sampling: We obtain a speedup of = 3x using sampling
Accuracies greater always than 95%

— Exact: For k =5, the exact algorithm cannot run on one dataset
Run times for other datasets, 37939.6, 2107.2, 24.04, 52.4

— Sampling: Speedups range from 410.3x to 77288 x. Accuracies
close to 100%

e The results for k = 3,4 interpolate. For the detailed findings,
please look at our paper

_ Dense Subgraph Discovery (DSD) KDD 2015 106 / 226



|
Effect of hierarchy

k-cliques
G k=2 k=3 k= k =
fe | IS | fe [ US| fe | ISI] fo | IS]
%1012 | 1012 | 0.26 | 432 | 0.40 | 235 | 0.50 | 172
© | 0.11| 18686 | 080 | 76 | 096 | 62 | 0.96 | 62
M| 019 |16714 | 054 | 102 | 059 | 92 | 0.63 | 84
0.13 | 553 |0.38| 167 | 0.48 | 122 | 0.53 | 104
(p,q)-bicliques
G[(pg)=(11) | (p.q)=1(22) | (p.q) =(3,3)
fe N fe N fe S|
* 1 0.001 | 9177 | 0.06 181 0.30 40
0.001 | 6437 | 041 18 0.43 17

Dense Subgraph Discovery (DSD)

KDD 2015

107 / 226



Time evolving networks

Patents citation network that spans 37 years, specifically from
January 1, 1963 to December 30, 1999.

6
700 " 15 10— ‘ ‘ ‘
* k=2 o Nodes *
6007| ¢ k=3 * Edges *
¢ Triangles *
5001 ¢ 107 o~
400 5 *
g o S) *-* o
300+ © * N
5 L
2001 ***‘ o
L ¢ 2% $800
100 00 ** 90
N 9900wk . 00929888
1975 1980 1985 1990 1995 2000 1975 1980 1985 1990 1995 2000
Year Year

_ Dense Subgraph Discovery (DSD) KDD 2015 108 / 226



|
Time evolving networks

e We observe in the left Figure that both p3 and p3 exhibit an
increasing trend.

e This increasing trend becomes is mild for p5 up to 1995, but
then it takes off

e What makes this finding even more interesting as the number of
edges grows faster than the number of triangles

e We are seeing an outlier - the company Allergan, Inc. This
company tends to cite all their previous patents with each new
patent and creates a dense subregion in the graph

_ Dense Subgraph Discovery (DSD) KDD 2015 109 / 226



|
Time evolving networks

Autonomous systems dataset contains 733 daily instances which
span an interval of 785 days from November 8 1997 to January 2

2000
50

sl 6 ks 2 #

20 & pe ;? & 10000
* Q_Y o
20* ¢ °°§

15000

O Nodes
* Edges
¢ Triangles

Count

(4

10 ~ M
*
0
0 200 400 600 800 0
Snapshot index

200 400 600 800
Snapshot index

e Despite the average degree increases over time, the optimal
density for k = 2 remains roughly the same

e The optimal density for k = 3 exhibits a mild increasing trend

_ Dense Subgraph Discovery (DSD) KDD 2015 110 / 226



Time evolving networks

This is how density evolves in stochastic Kronecker graphs with seed
matrix [0.9 0.5;0.5 0.2] as we increase the number of nodes as 2’ for
I=8uptoi=21

6
x10
15 6 T - %
* k=2 © Nodes
¢ k=3 * 51| * Edges
* ¢ Triangles
10 * 47
* c
5 * ¥ 2 o
* % *
wx ¥ 1t °
0000000060000 00 50
0 oLeesesevev8, 00
0 5 10 15 0 5 10 15
Snapshot index Snapshot index

e This and other popular seed matrices can't reproduce what we
observe in real-networks with respect to the optimal density

_ Dense Subgraph Discovery (DSD) KDD 2015 111 / 226



|
Peeling in batches

The following algorithm due to Bahmani, Vassilvitski and Kumar
leads to efficient MapReduce and streaming algorithms
[Bahmani et al., 2012]

®Set 5.5V

® while S # () do

- A(S)«{ieS:Di(S)<2(1+¢€)p(S)}

- S+ S\A(S)

— if p(S) > p(S) then S « S

©® Return S

_ Dense Subgraph Discovery (DSD) KDD 2015 112 / 226



|
Peeling in batches

e Claim. The previous algorithm achieves a (2 + 2¢)
approximation. Furthermore, it outputs after O(log;, .(n))
rounds

— Approximation guarantee: Fix any optimal solution S*. Consider
the first round when a node v € §* becomes removed. Let U be
the set of vertices at that point. Then,

p* < D,(5*) < D,(U) < (2+2¢)p(U). QED

— Number of rounds is O(log;,.(n)): The idea is that in each
round, we throw away a constant fraction of the vertices
26(5) > > -ueais) Du(S) > (IS] = [A(S)))2(1 + €)p(S) —
AGS)| > £1S| = |S] = A(S)| < £

_ Dense Subgraph Discovery (DSD) KDD 2015 113 / 226



|
Peeling in batches

Few more remarks
e The previous claim results directly in a (2 + ¢) approximation
algorithm, using O(n) space and O(log n/e)
e Similar claim holds for MapReduce. In each round we need to
compute degrees and remove A(S)

e Many believed that O(log n/e) passes were likely to be necessary

e However, the densest subgraph sparsifier theorem results directly
in a single pass streaming algorithm that uses O(n) space and
provides a (1 + €) approximation guarantee. See also,
[Esfandiari et al., 2015, McGregor et al., 2015]

_ Dense Subgraph Discovery (DSD) KDD 2015 114 / 226



N
Variations of the DSP

k-densest subgraph §(S) = 2B1 S| — k NP-hard

DalkS 6(S) = 2L IS >k NP-hard

DamkS 6(S) = 281 |S| <k L-reduction to DKS

_ Dense Subgraph Discovery (DSD) KDD 2015 115 / 226



|
Densest k subgraph problem

Does not admit a PTAS unless P=NP

Feige, Peleg and Kortsarz gave a (’)(n%) approximation algorithm
[Feige et al., 2001]

State of the art algorithm due to Bhaskara et al. provides
1 . .

O(n+*€) approximation guarantee for any € > 0

[Bhaskara et al., 2010]

Closing the gap between lower and upper bounds is a significant
problem

_ Dense Subgraph Discovery (DSD) KDD 2015 116 / 226



N
DalkS is NP-hard

Proof sketch.

e We reduce the DkS to the DalkS. We are given a graph G and a
value k we wish to know whether 3S C V such that
p(8) > A\ IS| =k

e Construct H = K, U G and run DalkS with lower bound on the
number of vertices n? + k

e Turns out that the part of the optimal DalkS solution on H is
the answer to DkS

For the details, see [Khuller and Saha, 2009]

_ Dense Subgraph Discovery (DSD) KDD 2015 117 / 226



|
2-approximation for DalkS [Khuller and Saha, 2009]

e The algorithm starts with Gy < G, Dy < ()
e In the /-th iteration, we compute the densest subgraph H; from

Gi_1
o If |[V(Di_1)|+ |V(H;)| > k, terminate
e else
- D,' — D,',l U H,'

— Remove H; from G;_;

— For every v € G;_1\H; add a selfloop of weight w, where
w, = |[N(v) N H|

e When the algorithm stops, each D; is padded with arbitrary
vertices to make their size k, let D! be the resulting subgraph

e The algorithm returns the subgraph D} with maximum density
among the Dis

_ Dense Subgraph Discovery (DSD) KDD 2015 118 / 226



|
2-approximation for DalkS — example

Suppose this is the input to the DalkS

e k=n-++2n

G=H UH,UH3UH,

H, is a clique on v/2n vertices

H, is a tree on n vertices

Hs is a cycle on n? vertices

— H, is a set of n disjoint vertices

_ Dense Subgraph Discovery (DSD) KDD 2015 119 / 226



|
2-approximation for DalkS — example

Let's run the 2-approximation algorithm on G

First we find H; as it is the densest subgraph of G
In the second iteration it will find Hs

Therefore, the algorithm has two options:

Return H; U H3

Append n arbitrary vertices to H;. These could well be the n

isolated vertices

In both cases the resulting subgraph has density ~

However H; U H, has density ~ 2

+\ﬁ

S [.cc Subgraph Discovery (DSD)

1

KDD 2015

120 / 226



I
Some more remarks

e [Andersen and Chellapilla, 2009] proved that an o approximation
for DamkS implies a O(a?) approximation algorithm for the DkS

e [Khuller and Saha, 2009] improved this, by showing that an «
approximation for DamkS implies a 4 approximation algorithm
for the DkS

e The algorithmic ideas we showed for undirected case work for
DalkS as well

_ Dense Subgraph Discovery (DSD) KDD 2015 121 / 226



Efficient algorithms for dynamic graphs



|
Dynamic setting

We say that an algorithm is a fully-dynamic ~-approximation
algorithm for the densest subgraph problem if it can process the
following operations.

INITIALIZE(n): Initialize the algorithm with an empty n-node
graph.

INSERT(u, v): Insert edge (u, v) to the graph.

DELETE(u, v): Delete edge (u, v) from the graph.

QUERYVALUE: Output a ~y-approximate value of p*(G) = d*

_ Dense Subgraph Discovery (DSD) KDD 2015 123 / 226



|
Dynamic setting

The performance of a data structure is measured in term of four
different metrics.

e Space-complexity: This is given by the total space (in terms of
bits) used by the data structure.

e Update-time: This is the time taken to handle an INSERT or
DELETE operation.

e Query-time: This is the time taken to handle a QUERY VALUE
operation.

e Preprocessing-time: This is the time taken to handle the
INITIALIZE operation. Unless explicitly mentioned otherwise, in
this paper the preprocessing time will always be O(n).

_ Dense Subgraph Discovery (DSD) KDD 2015 124 / 226



|
Streaming vs. Dynamic efficiency

Streaming algorithms’ community cares primarily about the
efficiency.

Dynamic algorithms’ community care primarily about the
and times.

[Bhattacharya et al., 2015] provide the first result that
successfully combines both types of efficiencies simultaneously
for the densest subgraph problem

Research direction: Can we develop similar type of results for
other graph theoretic problems?

_ Dense Subgraph Discovery (DSD) KDD 2015 125 / 226



-
(2 + €)-approximation 1-pass dynamic
semi-streaming algorithm

Theorem ([Bhattacharya et al., 2015])

We can process a dynamic stream of updates in the graph G in @(n)
space, and with high probability return a (2 + O(¢))-approximation of
d* = maxscy p(S) at the end of the stream.

e Remark: To obtain both results we introduce the
(c, d, L)-decomposition. It generalizes the well-known d-core,
namely the (unique) largest induced subgraph with every node
having degree at least d.

_ Dense Subgraph Discovery (DSD) KDD 2015 126 / 226



|
(e, d, L)-decomposition — Definition

e Fix any a > 1, d > 0, and any positive integer L.

Consider a family of subsets Z; O --- D Z].

The tuple (Zy,...,2Z,) is an («, d, L)-decomposition of the input
graph G = (V,E) iff:

Z; =V and,

for every i € [L — 1], we have

Z,‘+1 D) {V € Z: DV(Z,) > ad}

and
Z,‘+1 N {V € Z,' : DV(Z,) < d} = @

_ Dense Subgraph Discovery (DSD) KDD 2015 127 / 226



-
(cv, d, L)-decomposition — Key property

Theorem
e Fixanya>1,d>0,e€(0,1), L+ 2+ ﬂog(1+€) nj.

o Let (Z4,...,2;) be an («a, d, L)-decomposition of G = (V, E).

— Ifd > 2(1+ €)d*, then Z, = 0.
— Ifd < d*/a, then Z;, # () and there is an index j € [L] such that
p(Z) = d/(2(1 +¢)).

A key property of the densest subgraph that prior work
[Charikar, 2000] and our work use throughout our work is that
D,(5*) > d* for any S* C V such that p(S§*) = d*.

Notice that = < d* <n— 1.

v

_ Dense Subgraph Discovery (DSD) KDD 2015 128 / 226



-
(e, d, L)-decomposition — Algorithmic aspect

(Rough) Idea of how to turn the previous theorem into an algorithm.

e Discretize the range of d* as di < (1 +¢€)* -2, k € [K] where
K = O(log,...(n)).

e For every k € [K], construct an («, di, L)-decomposition
(Z1(k), ..., Zi(k)), where L = O(log,(n)).

o Let k' + max{k € [K] : Z.(k) # 0}.

Then we have the following guarantees:
@ d/(a(l+e) <dw <2(1+¢)-d"
® There exists an index j* € [L] such that p(Zj) > di /(2(1 + €)).

_ Dense Subgraph Discovery (DSD) KDD 2015 129 / 226



-
(2 + €)-approximation 1-pass dynamic
semi-streaming algorithm

Our streaming algorithm relies on the fact that if we sample
independently each edge with probability (roughly) O(3), we can
create an (a, d, L)-decomposition whp.

Lemma

Fix ad >0, and let S be a collection of cm(L — 1) log n/d mutually
independent simple random samples from the edge-set E of the input
graph G = (V, E). With high probability we can construct from S an
(v, d, L)-decomposition (Zy,. .., Z;) of G, using O(n) bits of space.

_ Dense Subgraph Discovery (DSD) KDD 2015 130 / 226



-
(2 + €)-approximation 1-pass dynamic
semi-streaming algorithm

Emulating Charikar's peeling paradigm.
The algorithm works by partitioning the samples in S evenly among
(L—1) groups {S;},i € [L—1]

e Set Zl +— V.

e FOrRi=1to (L—1): Set

Zi+1 — {V €z : DV(Z;, S,) > (]. — e)ac |Og n}.

Here, D,(Z;, S;) is the number of neighbors of v in set Z; connected
through the set of edges S;.

_ Dense Subgraph Discovery (DSD) KDD 2015 131 / 226



-
(2 + €)-approximation 1-pass dynamic
semi-streaming algorithm

e “Guess” the number of edges m.
e For each guess of m, build O(log n/e¢)
(o, dk = (1 + €)*12 [ )-decompositions, one for each density
guess dy. Set o = 1<,
e For each guess of dx maintain a sample S of
cm(L — 1) log n/d, = O(n) random edges.
e Perform peeling and find k.
Few remarks.
® The case of dynamic streams is dealt with by using /o samplers
[Jowhari et al., 2011].
® For the dynamic case, we wish to find an « large enough to be
lazy enough when we update our data structures, small enough

to achieve a good approximation.
_ Dense Subgraph Discovery (DSD) KDD 2015 132 / 226



|
Fully dynamic (4 + €)-approximation algorithm
O(n) space
Theorem ([Bhattacharya et al., 2015])

o Lete € (0,1), A\ > 1 constant and T = [n].

e There is an algorithm that processes the first T updates in the
dynamic stream such that:

—~ It uses O(n) space (Space efficiency)

— It maintains a value OuTPUT") at each t € [T] such that for all
te[T] whp

Opr1® /(4 + O(€)) < OutpuT® < OPT®.

Also, the total amount of computation performed while
processing the first T updates in the dynamic stream is

O(Tpolylog n). (Time efficiency)
_ Dense Subgraph Discovery (DSD) KDD 2015 133 / 2;6




-
Fully dynamic (4 + €)-approximation algorithm
O(n + m) space

e As before, we discretize the range of d* in the same way, i.e., in
powers of (1 + €) by defining the values {di}, k € [K].

e For each dj we are able to maintain an («, dk, L)-decomposition
of G in time O(L/e) = O(log n/€?) per edge update.

o The total time for all K decompositions is O(log® n/e®) per
update operation.

e Remark: We find an « large enough to be lazy enough, small
enough to achieve a good approximation. It turns out using a
fine tuned potential function analysis, that for « = 2 4+ ©(e) we
achieve good amortized time and a (4 + ©(¢))-approximation.

_ Dense Subgraph Discovery (DSD) KDD 2015 134 / 226



Remark: How to maintain efficiently a random
sample of O(n) edges when the graph changes?

Q1 How do we maintain dynamically the random sample(s) of O(n)
edges?
— If we naively run an ¢y sampler responsible for an edge in the
sample for each update, we need @(n) time per update.

Idea: When an update takes place, only one ¢y sampler needs to be
invoked. Let E = (['2’]) D EW®,

e Let h: E — [s] be an (-wise independent hash function

e The j-th “bucket” Q,.(t) is responsible for all edges such that
h(e) =i, foreach i =1,...,s,. We also run an independent

copy of an ¢y sampler.

_ Dense Subgraph Discovery (DSD) KDD 2015 135 / 226



N
Few more remarks

e To make Chernoff+union bound work we need / = O(n). To
construct our hash function we invoke the construction due to
[Pagh and Pagh, 2008].

e The previous theorem [Bhattacharya et al., 2015] opens the
direction towards single-pass semi-streaming algorithms over
dynamic streams with polylogarithmic update and query times.

o [Epasto et al., 2015] provided a (2 + ¢)-approximation algorithm,
O(polylog(n)) = O(1) amortized time per update, O(n + m)
space under the assumption that deletions are random.

_ Dense Subgraph Discovery (DSD) KDD 2015 136 / 226



Problem variants



Problem variants Il : top-k dense subgraphs



|
Top-k dense subgraphs

e in many cases we want to find more than one dense subgraph

: find all dense subgraphs (e.g., denser than a threshold)

e cut enumeration techniques to output all near-optimal dense
subgraphs ([Saha et al., 2010])
e in practice, this method suffers from output degeneracies:

e many subsets of a dense subgraph tend to be near-optimally
dense as well

_ Dense Subgraph Discovery (DSD) KDD 2015 139 / 226



|
Top-k dense subgraphs

e another approach
(/) find a dense subgraph S
(i) remove all vertices and edges of S
(iii) iterate
e reported subgraphs are disjoint
e certain degree of overlap can be desirable
[Balalau et al., 2015]

_ Dense Subgraph Discovery (DSD) KDD 2015 140 / 226



|
Top-k dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

e given graph G = (V/, E), and parameters k and o
e find k subgraphs S;,..., 5,

e in order to maximize

subject to

1Si N S|
5i U 5

<a, forall 1 </ <)<k

_ Dense Subgraph Discovery (DSD) KDD 2015 141 / 226



|
Top-k dense subgraphs with limited overlap

algorithm MINANDREMOVE ([Balalau et al., 2015])

input: undirected graph G = (V/, E), parameters k and o

output: k subgraphs Gi, ..., G, with overlap at most o

1 while less than k subgraphs found and G non-empty

find densest subgraph G, = (V. )

for each v ¢ V;
A¢(v) < the set of neighbors of v in G

remove [ (1 — a)|Vi|| nodes with minimum |Ag(v)\ V|
and all their edges from G

[o) NG, I~ OV N )

_ Dense Subgraph Discovery (DSD) KDD 2015 142 / 226



|
Top-k dense subgraphs with limited overlap

summary of results ([Balalau et al., 2015])

e MINANDREMOVE finds optimal solution,
if this contains subgraphs
e MINANDREMOVE works shown to work well in practice

e faster algorithm, at small loss of accuracy

_ Dense Subgraph Discovery (DSD) KDD 2015 143 / 226



Problem variants Il : core decomposition



|
k-core decomposition

widely used technique for partitioning graphs

k- = largest subgraph with vertex degrees > k
cores form a , k-core C (k — 1)-core; let
k- = vertices in k-core but not in (k + 1)-core

algorithm to find shells:

1. while G is not empty

2. v <— vertex with the smallest degree
3. assign v to k-shell

4. remove v from G

_ Dense Subgraph Discovery (DSD) KDD 2015 145 / 226



|
core decomposition and density are not compatible

----------- only one core but

_ Dense Subgraph Discovery (DSD) KDD 2015 146 / 226



|
density-friendly decomposition

goal:
adapt k-core decomposition for density
obtain a nested sequence of increasingly dense subgraphs

[Tatti and Gionis, 2015]

_ Dense Subgraph Discovery (DSD) KDD 2015 147 / 226



|
locally-dense subgraphs

informally,

subgraph H is locally-dense = any subgraph of H is denser
than any subgraph outside H

formally, define augmented density

d(X,Y):’E(X)‘T)‘(f(X’Y)’, for XY =0

subgraph H is locally-dense if

d(X,H\ X) >d(Y,H), forany XCH,YNH=0

_ Dense Subgraph Discovery (DSD) KDD 2015 148 / 226



|
example

___________

_ Dense Subgraph Discovery (DSD) KDD 2015 149 / 226



IIIIIIIIIIIIII

150 / 226

KDD 2015

Dense Subgraph Discovery (DSD)



IIIIIIIIIIIIII

151 / 226

KDD 2015

Dense Subgraph Discovery (DSD)



IIIIIIIIIIIIII

152 / 226

KDD 2015

Dense Subgraph Discovery (DSD)



|
properties

locally-dense subgraphs form a chain
@ZBOgB]_gBQQQBk:G
B; is the densest subgraph containing B; 4

B, = densest subgraph
B, = arg max d(B\ By, By)

B; = arg max d(B\ Bi_1,B;_1)

=Pi—1

_ Dense Subgraph Discovery (DSD) KDD 2015 153 / 226



|
first approach to compute the subgraphs

_ Dense Subgraph Discovery (DSD) KDD 2015 154 / 226



|
first approach to compute the subgraphs

find B;

_ Dense Subgraph Discovery (DSD) KDD 2015 155 / 226



|
first approach to compute the subgraphs

find B;
delete B;

—0—©0

\

—0—0

_ Dense Subgraph Discovery (DSD) KDD 2015 156 / 226



|
first approach to compute the subgraphs

find B;
delete B;

—0—0

_ Dense Subgraph Discovery (DSD) KDD 2015 157 / 226



|
first approach to compute the subgraphs

find B;

delete B;
Ao find B,

delete B,

_ Dense Subgraph Discovery (DSD) KDD 2015 158 / 226



|
first approach to compute the subgraphs

find B;
delete B;

S find B,
0 delete B,

find Bs

_ Dense Subgraph Discovery (DSD) KDD 2015 159 / 226



|
computing the subgraphs

define
F(a) = arg max |E(X)| — o X]

Goldberg showed that

e F(«) can be solved with a min-cut

e there is o such that F(«) is the densest subgraph
we can show that

e () is locally-dense

e for every B; there is «v such that B; = F(«a)

_ Dense Subgraph Discovery (DSD) KDD 2015 160 / 226



|
computing the subgraphs
find all B; by varying o (with divide-and-conquer)

algorithm: Exact(X,Y)
select v such that X C F(a) C Y
Z + F(a)
if (Z # X)
output /
Exact(X, Z)
Exacr(Z,Y)

wWwwh o=

e we need only 2k — 3 calls of F(«)

(k is the number of locally-dense subgraphs)
e O(n’m) total running time, in practice much faster
e X C F(a) C Y allows optimizations

_ Dense Subgraph Discovery (DSD) KDD 2015 161 / 226



|
approximation with profiles

approximation guarantees are tricky:

e algorithm may return different number of subgraphs

define a profile:

p(i; B) = ¢ d(B,\ By, By) if |By| <i < |B

_ Dense Subgraph Discovery (DSD) KDD 2015 162 / 226



core decomposition

let C be the core decomposition
let B be the optimal locally-dense decomposition

then
p(i;C) > p(i; B)/2, for every i

for / = 1, this implies

d(G) = d(By)/2

_ Dense Subgraph Discovery (DSD) KDD 2015 163 / 226



|
extending Charikar's algorithm

C; < densest subgraph of form v;, ... v
C, < subgraph maximizing d(vi,...vic, \ Gi. Gi)
(5 < subgraph maximizing d(vi,... v, \ G. &)

The graphs C;
e can be found in O(n?)-time naively
e can be found in O(n)-time with PAV algorithm
[Ayer et al., 1955]

_ Dense Subgraph Discovery (DSD) KDD 2015 164 / 226



greedy decomposition

let C be the greedy decomposition
(found by the extension of Charikar's algorithm)

let 5 be the optimal locally-dense decomposition

then
p(i;C) > p(i; B)/2, forevery i

for / = 1, this implies

d(G) > d(By)/2

_ Dense Subgraph Discovery (DSD) KDD 2015 165 / 226



experiments

how well these algorithm perform?

p(i)

lesmis fb1912
100
50
0
40 60 400
index i index
astro hepph
40 — CORE
100 ~— GREEDYLD
— EXAcTLD
20 50
0
5000 10000 15000 0 5000 10000

index

Dense Subgraph Discovery (DSD)

index

KDD 2015

166 / 226



-
summary (density-friendly decomposition)

e decomposition based on average density
e can be computed exactly in O(n”’m) time, faster in practice

e can be 1/2-approximated in linear time by

e k-core decomposition
e greedy algorithm

future work:
e consider different density functions

e control the size of the decomposition

_ Dense Subgraph Discovery (DSD) KDD 2015 167 / 226



Problem variants IV : community search



|
community detection problems

e typical problem formulations require

and partition of the set of vertices
e quite restrictive

o . research group vs. bicycling club

e additional information can resolve ambiquity

e community defined by two or more people

_ Dense Subgraph Discovery (DSD) KDD 2015 169 / 226



|
the community-search problem

e given graph G = (V/, E), and
e given a subset of vertices Q@ C V/ (the query vertices)

e find a community H that contains @

applications

e find the community of a given set of users ( )
e recommend tags for an image ( )

e form a team to solve a problem ( )

_ Dense Subgraph Discovery (DSD) KDD 2015 170 / 226



|
center-piece subgraph

[Tong and Faloutsos, 2006]
e given: graph G = (V/, E) and set of query vertices Q C V
e find: a connected subgraph H that

(a) contains @
(b) optimizes a goodness function g(H)

® main concepts:

e k _softAND: a node in H should be well connected to at least k
vertices of @

e r(/,/) goodness score of j wrt g, € @
e r(Q,/) goodness score of j wrt @
e g(H) goodness score of a candidate subgraph H
o H* =argmaxy g(H)
B Dense Subgraph Discovery (DSD) KDD 2015 171 / 226



center-piece subgraph

[Tong and Faloutsos, 2006]

e r(i,]) goodness score of j wrt g; € @Q

probability to meet j in a random walk with restart to g;

e r(Q.)) goodness score of j wrt @

probability to meet j in a random walk with restart to k vertices

of @

e proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of ) path to |
3. stop when H becomes large enough

_ Dense Subgraph Discovery (DSD) KDD 2015 172 / 226



|
center-piece subgraph — example results

Rakesh Agmwal

P Bernhard N »
7 Scholkopl -
— \ /

“K_softANunery k=2

Rake‘;ll Agrawal

3

_ Dense Subgraph Discovery (DSD) KDD 2015 173 / 226




|
the community-search problem

e given: graph G = (V/, E) and set of query vertices Q C V
e find: a connected subgraph H that

(a) contains @
(b) optimizes a d(H)

(c) possibly other constraints

average degree, minimum degree, quasiclique, etc.

measured on the induced subgraph H

_ Dense Subgraph Discovery (DSD) KDD 2015 174 / 226



N
free riders

e remedy 1: use as density function

e remedy 2: use

d(Q.j) =) d*(g.j) < B

qe@

_ Dense Subgraph Discovery (DSD) KDD 2015 175 / 226



|
the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V. E), query vertices Q C V
output: connected, dense subgraph H
1 setG,+ G
2  for k < n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in G,
among all vertices not in @
2.3 Gk,1 < Gk \ {V}
2.4 if left only with vertices in @ or disconnected graph, stop
3 output the subgraphin G, ..., Gy that maximizes 7 (H)

_ Dense Subgraph Discovery (DSD) KDD 2015 176 / 226



|
properties of the greedy algorithm

e returns optimal solution if no size constraints

e upper-bound constraints make the problem NP-hard

(heuristic solution, also adaptation of the greedy)

e generalization for monotone constraints and

monotone objective functions

_ Dense Subgraph Discovery (DSD) KDD 2015 177 / 226



-
experimental evaluation (qualitative summary)

baseline: increamental addition of vertices
e start with a Steiner tree on the query vertices
e greedily add vertices

e return best solution among all solutions constructed

example result in DBLP
e proposed algorithm: min degree = 3, avg degree = 6

e baseline algorithm: min degree = 1.5, avg degree = 2.5

_ Dense Subgraph Discovery (DSD) KDD 2015 178 / 226



the community-search problem — example results

AN ’
v 17 >

A \“‘”l Hull
@;‘\””

(a) Database theory (b) Complexity theory

(from [Sozio and Gionis, 2010])

Dense Subgraph Discovery (DSD) KDD 2015 179 / 226



monotone functions

function f is if
for every graph G and
for every subgraph H of G it is

F(H) < £(G)

the following functions are monotone non-increasing:
e the query nodes are connected in H (0/1)
e are the nodes in H able to perform a set of tasks?
e upper-bound distance constraint

e |lower-bound constraint on the size of H

_ Dense Subgraph Discovery (DSD) KDD 2015 180 / 226



|
generalization to monotone functions

generalized community-search problem

given
e agraph G = (V E)
e a node-monotone non-increasing function f

e fi,..., f, non-increasing boolean functions

e a subgraph H of G
e satisfying f1,....f, and

e maximizing f

S [.cc Subgraph Discovery (DSD) KDD 2015

181 / 226



generalized greedy

1 setG,«+ G

2 for k <~ n downto 1

2.1 remove all vertices violating any constraint f;, ..., f,

2.2 let v minimizing (G, v)

2.3 kal — Gk \ {V}

3 output the subgraph H in G, ..., G; that maximizes f(H, v)

_ Dense Subgraph Discovery (DSD) KDD 2015 182 / 226



|
generalized greedy

theorem
generalized greedy computes an

for the generalized community-search problem

running time
e depends on the time to evaluate the functions i, ..., f,
o formally O(m+ > nT;)
e where T; is the time to evaluate f;

_ Dense Subgraph Discovery (DSD) KDD 2015 183 / 226



Problem variants V : heavy subgraphs



|
discovering heavy subgraphs

e given a graph G = (V. E.d, w)
with a distance function d : £ — R on edges

and weights on vertices w : V — R

e find a subset of vertices S C V
so that
1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014a]

_ Dense Subgraph Discovery (DSD) KDD 2015 185 / 226



|
discovering heavy subgraphs

e what does total weight and close to each other mean?

total weight

close to each other

D(S)=> > d(u,v)

ueS ves

e want to maximize W(S) and minimize D(S)

e maximize

Q(S) = AW(S) — D(S)

_ Dense Subgraph Discovery (DSD) KDD 2015 186 / 226



|
applications of discovering heavy subgraphs

finding events in networks

e vertices correspond to locations

weights model activity recorded in locations

distances between locations

find compact regions (neighborhoods) with high activity

_ Dense Subgraph Discovery (DSD) KDD 2015 187 / 226



N
event detection

e sensor networks and traffic measurements

Dense Subgraph Discovery (DSD) KDD 2015 188 / 226



event detection

15.11.2012

ordinary day, no events

Nou Batris o Sdnta Colomz
@2 Gramenet

o
O

'o
OSBn? lﬂreu e
$ Sant
de B

La Gumeueta.

Horta-Guinardd

e
|
Laneda
:IGumardSs ° daPQJ
O. .0% O 0 @
Parc Giell &  Guiffar
S H % g >
. OO
'dsmmes :. s '% '\%&QC)D
Sayg a2 ,‘itbq'wasw 8 Po@eé’p
a;alvan{ -_- os‘!;'
O+ | al o ©
ot °o'rs an‘ o £ %%
es Corts, > 1% B

O
'O é%)a Eﬁ) a%E(%’);O
(o3
0

La Teixonera

El Carmel

3-Sant

v ®
‘vasl

fdes o
°Q

’o

el
Dense Subgraph Dlscovery (DSD)

11.09.2012

Nou Barris < Santa Color
[ ]

s dEGramene
LaGumeueteb © L
e
%ntArﬁdreu =n
0-

Horta-Guinardd

2 Sar
. e 0% La®meda  de
La Teixonera EIGU|na=dBO ® erQy
Elcamel @ .'C% o )
Parc Giiell & Gui r@' Og *
@ * %
a-Sant 3 gt 2 @
vasi®\ . e
9 e ©
Say?é .‘* N
g % & o ¥
Pes o %"
' o fea(‘oo
es Cons, by ®
@ ot .‘aabs

KDD 2015

189 / 226



N
event detection

e |ocation-based social networks

_ 5B CIS e
T S k)
North o ='=e .Qre.m
Bergen /// T °
v
us a hatten

4 ? b
.Unlon (‘.gy //

.-
Weehéwk‘n‘?

foursquare’

7 feine ® neodsic
HoB@®en ECe E, ° :

. g b, Tieens, E
Negueort, ) Zdto,
g T

5 0.0 Nl \ F
w +-.~\Nf Zve .2 Ridgew
. oM ge. Williamsburgg
VLN Ep = o
e 0. ... = Bushwick
| Bl > Al ﬂ Pegfo@-Stugesant
| Redglogk o .
Bay, 7 Jf“wd S @0 !
2k by T Hagh:?

_ Dense Subgraph Discovery (DSD) KDD 2015 190 / 226



|
discovering heavy subgraphs

maximize Q(S) =\ W(S) — D(S)

objective can by negative

add a constant term to ensure non-negativity

e maximize Q(S) = AW(S) — D(S) + D(V)

_ Dense Subgraph Discovery (DSD) KDD 2015 191 / 226



|
discovering heavy subgraphs

e maximize Q(S) = AW(S) — D(S) + D(V)

e objective is submodular (but not monotone)

e can obtain J-approximation guarantee

[Buchbinder et al., 2012]

e problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee
[Rozenshtein et al., 2014a]

_ Dense Subgraph Discovery (DSD) KDD 2015 192 / 226



|
events discovered with bicing and 4square data

" Ve NorhValley.

dong'sesch

( - S oo
= A P P ey < Beady T
(a) Barcelona: 11.09.12  (b) Minneapolis: 4.07.12 (c) Washington, DC: (d) Los Angeles: 31.05.10 (e) New York: 6.09.10
National Day of Catalonia Independence Day 27.05.13 Memorial Day Memorial Day Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

Som - o
*
"o lo s Bk
( e
. A ~ 2 N
(a) 01.06.12 Primavera  (b) 18.09.12 festival of the =
sound music festival Poblenou neighborhood

_ Dense Subgraph Discovery (DSD) KDD 2015 193 / 226



Problem variants VI :

dense subgraphs in interaction networks



dense subgraphs in interaction networks

o : networks with temporal information

phonecall networks
SMS networks

email networks

conversation in social-media platforms

o : analysis of temporal information
can reveal hidden structure

[Rozenshtein et al., 2014b]

_ Dense Subgraph Discovery (DSD) KDD 2015 195 / 226



|
problem formulation

. interaction network G = (V. E)

where edges £ = {(u, v, t)} have time-stamps

subset of vertices S C V/, and
set T of k time intervals of bounded length

so that the subgraph induced by S and projected in T

is as dense as possible

_ Dense Subgraph Discovery (DSD) KDD 2015 196 / 226



|
iterative approach

e decompose the problem in two subproblems

@ given fixed set of intervals find densest subgraph

@® given fixed set of vertices find optimal set of intervals

e iterate until convergence

_ Dense Subgraph Discovery (DSD) KDD 2015 197 / 226



|
the two subproblems

e subproblem 1 : find optimal vertices given intervals

e standard densest subgraph problem
e use the algorithms of Goldberg, or Charikar, etc.

e subproblem 2 : find optimal intervals given vertices

e NP-hard problem

e develop based on
the generalized maximum coverage problem

e iteratively add k intervals
e select a new interval to maximize density per unit of time

e due to
searching the next interval can be done in

_ Dense Subgraph Discovery (DSD) KDD 2015 198 / 226



|
sample experimental results — enron email network

dataset
Name V| [r(E)] [E] |T| d(x(G)) d(H)
Enron 1143 2019 6245 8080 3.53 14.38

dynamic dense subgraphs

Community density Community size

Dataset B K GaA BA BASE GA BA BASE
Enron 1 1 6.18 6.18 6.18 11 11 11
5 10 10.37 6.18 17 16 11

10 12.2 12.38 6.18 20 21 11

7 1 6.36 6.36 6.36 11 11 11

5 11.26 11.23 6.36 19 26 11

10 13.07 13.07 6.36 28 28 11

_ Dense Subgraph Discovery (DSD) KDD 2015 199 / 226



sample experimental results — twitter network

Method Size Density Hashtags

GA 9 4.9 aaltoes, startup, vc, summerofstartups, web,
startups, entrepreneur, slushl0, skype, funrank,
africa, mobile, demoday, design, linkedin, aalto

_ Dense Subgraph Discovery (DSD) KDD 2015 200 / 226



sample experimental results — facebook network

duration duration duration
4h 8min 2 days, 2h 32min 13h 53min
@) o @)
o® e, ) . e,
@) @)
e o
@]
o @) @) @)
(@)
oo © @]
duration duration duration
21h 39min 21h 4min

17h 56min

0) o 0] ° 0) ON'S) o
(@) o (@)
(@) o o
OO o (@) OO

°d o ® 0 ©0©

S [.cc Subgraph Discovery (DSD)

duration

5h 30min

0® e

@ o
Q

(@)

(@)
oo

density
4.24

KDD 2015 201 / 226



Open problems



-
Open problems |

e can we improve the (4 + €) approximation guarantee?
e what about weighted graphs?
e polylogarithmic worst-case update time?

e space- and time-efficient fully dynamic algorithm for other graph
problems, e.g., single-source shortest paths?

— remark: for the connectivity problem, one can combine the
space-efficient streaming algorithm of [Ahn et al., 2012] with
the fully-dynamic algorithm of [Kapron et al., 2013]

_ Dense Subgraph Discovery (DSD) KDD 2015 203 / 226



-
Open problems |l

e improve lower bounds for dynamic case [Henzinger et al., 2015]

e for which graph problems does uniform sampling result in
high-quality approximation?

triangle sparsifiers [Tsourakakis et al., 2011]

densest subgraphs [Bhattacharya et al., 2015],
[Mitzenmacher et al., 2015]

— d-max cut, d-sum max clustering [Esfandiari et al., 2015]

— main difficulty: Chernoff 4+ union bound does not work because
of exponential number of bad events

_ Dense Subgraph Discovery (DSD) KDD 2015 204 / 226



-
Open problems Il

e further study of problem, and
develop
e incorporate and/or information

application: finding local events in social networks

e dense subgraphs with in

preprocessing vs. query-time processing trade-off
e incorporate developed techniques into systems

e deploy existing tools on more real-world applications
(for code see https://github.com/tsourolampis)

_ Dense Subgraph Discovery (DSD) KDD 2015 205 / 226


https://github.com/tsourolampis

|
Acknowledgements

L 4

Shamir Khuller Renato Werneck Nikolaj Tatti

S [.cc Subgraph Discovery (DSD) KDD 2015

206 / 226



I
references |

[§ Ahn, K. J., Guha, S., and McGregor, A. (2012).
Graph sketches: sparsification, spanners, and subgraphs.

In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May
20-24, 2012, pages 5-14.

[§ Alon, N., Krivelevich, M., and Sudakov, B. (1998).
Finding a large hidden clique in a random graph.
Random Structures and Algorithms, 13(3-4):457-466.

@ Alvarez-Hamelin, J. |., Dall'Asta, L., Barrat, A., and Vespignani, A. (2005).

Large scale networks fingerprinting and visualization using the k-core
decomposition.

In NIPS.

_ Dense Subgraph Discovery (DSD) KDD 2015 207 / 226


http://doi.acm.org/10.1145/2213556.2213560

I
references |l

@ Andersen, R. and Chellapilla, K. (2009).
Finding dense subgraphs with size bounds.
In Algorithms and Models for the Web-Graph, pages 25-37. Springer.

@ Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. (2012).

Dense subgraph maintenance under streaming edge weight updates for
real-time story identification.

Proceedings of the VLDB Endowment, 5(6):574-585.

@ Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.
(1955).
An empirical distribution function for sampling with incomplete information.
The Annals of Mathematical Statistics, 26(4):641-647.

_ Dense Subgraph Discovery (DSD) KDD 2015 208 / 226



I
references ||

ﬁ Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).
Densest subgraph in streaming and mapreduce.
Proceedings of the VLDB Endowment, 5(5):454—465.

[§ Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., and Sozio, M. (2015).
Finding subgraphs with maximum total density and limited overlap.

In International Conference on Web Search and Data Mining (WSDM),
pages 379-388.

@ Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013).

Copycatch: stopping group attacks by spotting lockstep behavior in social
networks.

In Proceedings of the 22nd international conference on World Wide Web,
pages 119-130.

_ Dense Subgraph Discovery (DSD) KDD 2015 209 / 226



I
references |1V

@ Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan, A.
(2010).

Detecting high log-densities: an o (n'/*) approximation for densest
k-subgraph.
In Proceedings of the 42nd ACM symposium on Theory of computing, pages
201-210. ACM.

@ Bhattacharya, S., Henzinger, M., Nanongkai, D., and Tsourakakis, C. E.
(2015).

Space-and time-efficient algorithm for maintaining dense subgraphs on
one-pass dynamic streams.

arXiv preprint arXiv:1504.02268.

[ Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999).
The maximum clique problem.

In Handbook of combinatorial optimization, pages 1-74. Springer.

_ Dense Subgraph Discovery (DSD) KDD 2015 210 / 226



I
references V

[§ Bron, C. and Kerbosch, J. (1973).
Algorithm 457: finding all cliques of an undirected graph.
CACM, 16(9).

[§ Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012).

A tight linear time (1/2)-approximation for unconstrained submodular
maximization.

In IEEE Annual Symposium on Foundations of Computer Science (FOCS).

8 Charikar, M. (2000).
Greedy approximation algorithms for finding dense components in a graph.
In APPROX.

_ Dense Subgraph Discovery (DSD) KDD 2015 211 / 226



I
references VI

[§ Chen, J. and Saad, Y. (2012).
Dense subgraph extraction with application to community detection.
Knowledge and Data Engineering, IEEE Transactions on, 24(7):1216-1230.

@ Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003).
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338-1355.

@ Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. (2014).
Robust distance queries on massive networks.
In Algorithms-ESA 2014, pages 321-333. Springer.

_ Dense Subgraph Discovery (DSD) KDD 2015 212 / 226



I
references VII

@ Epasto, A., Lattanzi, S., and Sozio, M. (2015).
Efficient densest subgraph computation in evolving graphs.
In Proceedings of the 24th International Conference on World Wide Web,
pages 300-310. International World Wide Web Conferences Steering
Committee.

ﬁ Eppstein, D., Loffler, M., and Strash, D. (2010).
Listing all maximal cliques in sparse graphs in near-optimal time.
In ISAAC.

@ Esfandiari, H., Hajiaghayi, M., and Woodruff, D. P. (2015).
Applications of uniform sampling: Densest subgraph and beyond.
arXiv preprint arXiv:1506.04505.

_ Dense Subgraph Discovery (DSD) KDD 2015 213 / 226



I
references VIII

[§ Feige, U., Kortsarz, G., and Peleg, D. (2001).
The dense k-subgraph problem.
Algorithmica, 29(3).

[§ Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S. (2006).
Motifcut: regulatory motifs finding with maximum density subgraphs.
Bioinformatics, 22(14):e150-e157.

@ Gionis, A., Junqueira, F., Leroy, V., Serafini, M., and Weber, |. (2013).
Piggybacking on social networks.
Proceedings of the VLDB Endowment, 6(6):409-420.

[§ Goldberg, A. V. (1984).
Finding a maximum density subgraph.

Technical report, University of California at Berkeley.

_ Dense Subgraph Discovery (DSD) KDD 2015 214 / 226



I
references IX

[§ Hastad, J. (1999).
Clique is hard to approximate within n'—¢.
Acta Mathematica, 182(1).

E Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T. (2015).

Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture.

[@ lasemidis, L. D., Shiau, D.-S., Chaovalitwongse, W. A., Sackellares, J. C.,
Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A., Veeramani, B.,
and Tsakalis, K. (2003).

Adaptive epileptic seizure prediction system.

IEEE Transactions on Biomedical Engineering, 50(5).

_ Dense Subgraph Discovery (DSD) KDD 2015 215 / 226



I
references X

[§ Johnson, D. S. and Trick, M. A. (1996).

Cliques, coloring, and satisfiability: second DIMACS implementation
challenge, October 11-13, 1993, volume 26.

American Mathematical Soc.

[§ Jowhari, H., Saglam, M., and Tardos, G. (2011).

Tight bounds for Ip samplers, finding duplicates in streams, and related
problems.

In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens,
Greece, pages 49-58.

ﬁ Kang, U., Chau, D. H., and Faloutsos, C. (2011).
Mining large graphs: Algorithms, inference, and discoveries.
In International Conference on Data Engineering (ICDE), pages 243-254.

_ Dense Subgraph Discovery (DSD) KDD 2015 216 / 226



I
references Xl

ﬁ Kang, U., Tsourakakis, C. E., and Faloutsos, C. (2009).

Pegasus: A peta-scale graph mining system implementation and
observations.

In Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on,
pages 229-238. IEEE.

ﬁ Kannan, R. and Vinay, V. (1999).

Analyzing the structure of large graphs.
Rheinische Friedrich-Wilhelms-Universitat Bonn.

ﬁ Kapron, B. M., King, V., and Mountjoy, B. (2013).
Dynamic graph connectivity in polylogarithmic worst case time.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131-1142.

_ Dense Subgraph Discovery (DSD) KDD 2015 217 / 226


http://dx.doi.org/10.1137/1.9781611973105.81

I
references Xl|

[ Karande, C., Chellapilla, K., and Andersen, R. (2009).
Speeding up algorithms on compressed web graphs.
Internet Mathematics, 6(3):373-398.

[H Karp, R. M. (1972).
Reducibility among combinatorial problems.
In Miller, R. and Thatcher, J., editors, Complexity of Computer
Computations.
[§ Khuller, S. and Saha, B. (2009).
On finding dense subgraphs.
In ICALP.

_ Dense Subgraph Discovery (DSD) KDD 2015 218 / 226



I
references XlI|

@ Kolountzakis, M. N., Miller, G. L., Peng, R., and Tsourakakis, C. E. (2012).

Efficient triangle counting in large graphs via degree-based vertex
partitioning.
Internet Mathematics, 8(1-2):161-185.

[ Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).
Trawling the Web for emerging cyber-communities.
Computer Networks, 31(11-16):1481-1493.

@ Makino, K. and Uno, T. (2004).
New algorithms for enumerating all maximal cliques.
In Algorithm Theory-SWAT 2004, pages 260—-272. Springer.

_ Dense Subgraph Discovery (DSD) KDD 2015 219 / 226



I
references XIV

@ McGregor, A., Tench, D., Vorotnikova, S., and Vu, H. T. (2015).
Densest subgraph in dynamic graph streams.
arXiv preprint arXiv:1506.04417.

[§ McSherry, F. (2001).
Spectral partitioning of random graphs.
In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 529-537. IEEE.

@ Mitzenmacher, M., Pachocki, J., Peng, R., Charalampos, E., and Xu, S. C.
(2015).
Scalable large near-clique detection in large-scale networks via sampling.
21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

_ Dense Subgraph Discovery (DSD) KDD 2015 220 / 226



I
references XV

[§ Pagh, A. and Pagh, R. (2008).
Uniform hashing in constant time and optimal space.
SIAM J. Comput., 38(1):85-96.

@ Pagh, R. and Tsourakakis, C. E. (2012).
Colorful triangle counting and a mapreduce implementation.
Information Processing Letters, 112(7):277-281.

[§ Papailiopoulos, D., Mitliagkas, I., Dimakis, A., and Caramanis, C. (2014).
Finding dense subgraphs via low-rank bilinear optimization.

In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1890-1898.

_ Dense Subgraph Discovery (DSD) KDD 2015 221 / 226



I
references XVI

[§ Peleg, D. (2000).
Informative labeling schemes for graphs.
In Mathematical Foundations of Computer Science 2000, pages 579-588.
Springer.

ﬁ Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014a).
Event detection in activity networks.

In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining.

ﬁ Rozenshtein, P., Tatti, N., and Gionis, A. (2014b).
Discovering dynamic communities in interaction networks.

In Machine Learning and Knowledge Discovery in Databases.

_ Dense Subgraph Discovery (DSD) KDD 2015 222 / 226



I
references XVII

@ Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X.-N. (2010).

Dense subgraphs with restrictions and applications to gene annotation
graphs.

In Research in Computational Molecular Biology, pages 456—472. Springer.

@ Sariyiice, A. E., Seshadhri, C., Pinar, A., and Catalyurek, U. V. (2015).
Finding the hierarchy of dense subgraphs using nucleus decompositions.
In Proceedings of the 24th International Conference on World Wide Web,
pages 927-937.

8 Sozio, M. and Gionis, A. (2010).
The community-search problem and how to plan a successful cocktail party.

In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining.

_ Dense Subgraph Discovery (DSD) KDD 2015 223 / 226



I
references XVIII

[§ Tatti, N. and Gionis, A. (2015).
Density-friendly graph decomposition.
In Proceedings of the 24th International Conference on World Wide Web.

8 Thorup, M. (2004).

Compact oracles for reachability and approximate distances in planar
digraphs.

Journal of the ACM (JACM), 51(6):993-1024.

@ Tong, H. and Faloutsos, C. (2006).
Center-piece subgraphs: problem definition and fast solutions.

In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining.

_ Dense Subgraph Discovery (DSD) KDD 2015 224 / 226



I
references XIX

[§ Tsourakakis, C. (2015).
The k-clique densest subgraph problem.
In Proceedings of the 24th International Conference on World Wide Web,
pages 1122-1132. International World Wide Web Conferences Steering
Committee.

ﬁ Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013).

Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees.

In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 104-112. ACM.

ﬁ Tsourakakis, C., Gkantsidis, C., Radunovic, B., and Vojnovic, M. (2014).
Fennel: Streaming graph partitioning for massive scale graphs.

In Proceedings of the 7th ACM international conference on Web search and
data mining, pages 333-342. ACM.

_ Dense Subgraph Discovery (DSD) KDD 2015 225 / 226



I
references XX

[§ Tsourakakis, C. E. (2014).
Mathematical and algorithmic analysis of network and biological data.
arXiv preprint arXiv:1407.0375.

@ Tsourakakis, C. E., Kolountzakis, M. N., and Miller, G. L. (2011).
Triangle sparsifiers.
J. Graph Algorithms Appl., 15(6):703-726.

_ Dense Subgraph Discovery (DSD) KDD 2015 226 / 226



