
Dense Subgraph Discovery (DSD)

Aristides (Aris) Gionis1

Charalampos (Babis) E. Tsourakakis2

1Aalto University, Finland

2Harvard University, USA

KDD 2015

Dense Subgraph Discovery (DSD) KDD 2015 1 / 226



Tutorial website

slides and links to relevant papers :

https://densesubgraphdiscovery.wordpress.com/tutorial

can also be found via KDD 2015 website
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What this tutorial is about . . .

given a graph (network), static or dynamic

(social network, biological network, information network, . . . )

find a subgraph that . . .

. . . has many edges

. . . is densely connected

why I care?

what does dense mean?

review of main problems, and main algorithms
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Outline

• motivating applications

• preliminaries and measures of density

• algorithms for static graphs

• algorithms for dynamic graphs

• problem variants

• conclusions and open problems
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Motivating applications



Motivation – correlation mining

correlation mining: a general framework with many applications

• data is converted into a graph

• vertices correspond to entities

• an edge between two entities denotes strong correlation

1 stock correlation network: data represent stock timeseries
2 gene correlation networks: data represent gene expression

• dense subsets of vertices correspond to highly correlated entities

• applications:

1 analysis of stock market dynamics
2 detecting co-expression modules
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Motivation – fraud detection

• dense bipartite subgraphs in page-like data

reveal attempts to inflate page-like counts

[Beutel et al., 2013]

source: [Beutel et al., 2013]
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Motivation – e-commerce

e-commerce

• weighted bipartite graph G (A ∪ Q,E ,w)

• set A corresponds to advertisers

• set Q corresponds to queries

• each edge (a, q) has weight w(a, q)
equal to the amount of money advertiser
a is willing to spend on query q

large almost bipartite cliques correspond to
sub-markets
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Motivation – bioinformatics

• DNA motif detection [Fratkin et al., 2006]
• vertices correspond to k-mers
• edges represent nucleotide similarities between k-mers

• gene correlation analysis

• detect complex annotation patterns from gene annotation data

[Saha et al., 2010]
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Motivation – mining twitter data

real-time story identification [Angel et al., 2012]
• mining of twitter data
• vertices correspond to entities
• edges correspond to co-occurence of entities
• dense subgraphs capture news stories
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Motivation – graph mining
understanding the structure of real-world networks [Sarıyüce et al., 2015]

nucleus decomposition of a graph

(3,4)-nuclei forest for facebook
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Motivation – distance queries in graphs
applications :
• driving directions
• indoor/terrain navigation
• routing in comm./sensor networks
• moving agents in game maps
• proximity in social/collab. networks

existing solutions :
• graph searches are too slow
• fast algorithms are often heuristics
• or tailored to specific graph classes

goals :
• fast exact queries
• scalability to large graphs
• wide range of inputs
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Motivation – distance queries in graphs

• L(u) ≡ set of pairs (v , dist(u, v))

L(u) is the label of u; each v is a hub for u.

figure from [Delling et al., 2014]
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Motivation – distance queries in graphs

• preprocessing : compute a label set for every vertex

• cover property : for all s, t intersection L(s) ∩ L(t) must hit an
s–t shortest path

figure from [Delling et al., 2014]
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Motivation – distance queries in graphs

• to answer an s–t query :

find hub v in L(s) ∩ L(t) minimizing dist(s, v) + dist(v , t)

figure from [Delling et al., 2014]
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Motivation – distance queries in graphs

hub label queries are trivial to implement :

• entries sorted by hub id

• linear sweep to find matches

• access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small

• can we find small labels sets?

• 2-hop labeling algorithm relies on dense-subgraph discovery to
find such label sets (!) [Cohen et al., 2003]

• state-of-art 2-hop labeling scheme : [Delling et al., 2014]

• more work on the topic : [Peleg, 2000, Thorup, 2004]
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Motivation – frequent pattern mining

• given a set of transactions over items

• find item sets that occur together in a θ fraction of the
transactions

issue heroes
number

1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

e.g., {Iceman, Storm} appear in 60% of issues
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Motivation – frequent pattern mining

• one of the most well-studied area in data mining

• many efficient algorithms

Apriori, Eclat, FP-growth, Mafia, ABS, . . .

• main idea: monotonicity

a subset of a frequent set must be frequent, or

a superset of an infrequent set must be infrequent

• algorithmically:

start with small itemsets

proceed with larger itemset if all subsets are frequent

• enumerate all frequent itemsets
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Motivation – frequent itemsets and dense subgraphs

id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

• transaction data ⇔ binary data ⇔ bipartite graphs

frequent itemsets ⇔ bi-cliques
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id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

• transaction data ⇔ binary data ⇔ bipartite graphs

• frequent itemsets ⇔ bi-cliques

Dense Subgraph Discovery (DSD) KDD 2015 20 / 226



Motivation – finding web communities

[Kumar et al., 1999]

• hypothesis: web communities consist of hub-like pages and
authority-like pages

e.g., luxury cars and luxury-car aficionados

• key observations:

1. let G = (U ,V ,E ) be a dense web community

then G should contain some small core (bi-clique)

2. consider a web graph with no communities

then small cores are unlikely

• both observations motivated from theory of random graphs
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Motivation – finding web communities

a web community

authority
pages

hub
pages

[Kumar et al., 1999]
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Motivation – finding web communities

web communities containts small cores

authority
pages

hub
pages

[Kumar et al., 1999]
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Motivation – social piggybacking

[Gionis et al., 2013]

✦ majority of activity in social networking

• event feeds

✦ scaling feed generation → scaling social 
networking

• event feeds: majority of activity in social networks
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Motivation – social piggybacking

• system throughput proportional to the data transferred between
data stores

• feed generation important component to optimize

the delivery operations

-   push

-   pull

u

v

• primitive operation: transfer data between two data stores

• can be implemented as push or pull strategy

• optimal strategy depends on production and consumption rates
of nodes
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Motivation – social piggybacking• end of the story?

u

z

v
u

z

v

h l

hub optimization• hub optimization turns out to be a good idea

• depends on finding dense subgraphs

node v. Observe that any node v has to either pull from at
least one other node u, u ⌅ v ⇧ E (and, in the ideal case, all
the other information required by v will be pushed to u), or,
if v does not pull from any u, then all other of v’s informa-
tion producers need to push to v. In the first case, the cost
attributed to the information flow to v is at least rc(v), which
is the rate at which v is pulling information. In the second
case, the attributed cost is at least

⇧
{u:u�v⇥E} rp(u), which

is the (accumulated) rate at which other nodes are pushing
information. This gives us the following lower bound.

Lemma 2 If all throughput costs are w(u ⌅ v) = 1 then no
feasible dissemination schedule can have a cost of less than:

C =
⌥

v⇥V

min

�
⇤rc(v),

⌥

{u:u�v⇥E}
rp(u)

⇥
⌅ (1)

This lower bound can be further strengthened by the ob-
servation that the same argument applies to each of v’s
“groups” of producing nodes separately: if there are sepa-
rate groups between which there is no information flow then
v needs to pull from or have information push to from each of
the groups individually. Details are given in Appendix A.2
and in our experiments we used the refined version. Our ex-
periments will show that this bound is overly optimistic (as
it assumes a single pull can su⇥ce) and we use the bound
to describe trends in the intrinsic problem di⇥culty.

4. ALGORITHMS

4.1 Approximation algorithm
In this section we describe our approximation algorithm

for the Dissemination problem, which we name ChitChat.
Not surprisingly, since the Dissemination problem asks to
find a schedule that covers all the edges in the network, our
solution is based on the SetCover problem.

For completeness we recall the SetCover problem: We
are given a ground set X and a collection C = {A1, . . . , Am}
of subsets of X, such that

⌃
i Ai = X. Each set A in C is

associated with a cost c(A). The goal is to select a sub-
collection S ⇥ C that covers all the elements in the ground
set, i.e.,

⌃
A⇥S A = X, and the total cost

⇧
A⇥S c(A) of the

sets in the collection S is minimized.
For the SetCover problem, the following simple greedy

algorithm is folklore [2]: Initialize S = ⌥ to keep the itera-
tively growing solution, and Z = X to keep the uncovered
elements of X. Then as long as Z is not empty, select the

set A that minimizes the cost per uncovered element c(A)
|A⇤Z| ,

add the set A to the solution (S ⇤ S �{A}) and update the
set of uncovered elements (Z ⇤ Z \ A).

It can be shown [2] that this greedy algorithm achieves
a solution with approximation guarantee O(log�), where
� = max{|A|} is the size of the largest set in the collection C.
At the same time, this logarithmic guarantee is essentially
the best one can hope for, since Feige [3] showed that the
problem is not approximable within (1 � o(1)) ln n, unless
NP has quasi-polynomial time algorithms.

To map the Dissemination problem to SetCover, we
consider as ground set X the set of edges E in the network.
The question is what should be the sets that form the collec-
tion C. Motivated by the elementary optimization operation

X
Y

w

Figure 2: A hub-graph used in the mapping of Dis-
semination to SetCover problem.

that we discussed in Section 2 we consider the covering sets
to be of the form of a hub-graph, as defined below.

Definition 9 (hub-graph) Given a graph G = (V, E) and
a node w ⇧ V we consider a triple (X, w, Y ), with X, Y ⇥ V
such that

(i) w ⌃⇧ X and w ⌃⇧ Y ,

(ii) for all x ⇧ X it is x ⌅ w ⇧ E, and

(iii) for all y ⇧ Y it is w ⌅ y ⇧ E.

The subgraph of G induced by the set of nodes X � Y � {w}
is called hub-graph G(X, w, Y ). For notational convenience
we partition the edges of a hub-graph G(X, w, Y ) into three
groups: the edges E(X, w) = {x ⌅ w | x ⇧ X} from X to w,
the edges E(w, Y ) = {w ⌅ y | y ⇧ Y } from w to Y , and the
cross-edges E(X, Y ) = {x ⌅ y | x ⇧ X and y ⇧ Y }  E.

A hub-graph G(X, w, Y ) is shown in Figure 2. The dashed
edges in the figure are the cross-edges.

The intuition behind the definition of a hub-graph
G(X, w, Y ) is that the node w can act as a hub between
nodes in X and Y : by serving all edges in E(X, w) by a
push, and all edges in E(w, Y ) by a pull, we can cover all
cross-edges for free, as follows from Observation 1. To spec-
ify in detail how we are using a hub-graph G(X, w, Y ) in our
SetCover-based solution, we need to discuss how to treat
each hub-graph in terms of coverage, cost, and dissemination
schedule.

Dissemination schedule. Selecting a hub-graph
G(X, w, Y ) implies that we will add in our dissemination
schedule all edges in E(X, w) to be served by a push opera-
tion and all edges in E(w, Y ) to be served by a pull opera-
tion.

Coverage. A hub-graph G(X, w, Y ) covers all the edges
E(X, w) � E(w, Y ) � E(X, Y ) = E(X, w, Y ).

Cost. The cost of a hub-graph G(X, w, Y ) is

c(X, w, Y ) =
⌥

u⇥X

h(u ⌅ w) +
⌥

v⇥Y

l(w ⌅ v).

Assume for a moment that we have at our disposal all pos-
sible hub-graphs G(X, w, Y ), so let C be the set of all pos-
sible such hub-graphs. For each hub-graph G(X, w, Y ) ⇧
C we have access to its coverage E(X, w, Y ) and its
cost c(X, w, Y ). We can then solve the problem Dissemi-
nation by solving the instance of the SetCover problem
on the collection C. For the latter problem, we need to find
the sub-collection S ⇥ C that covers all the edges in E and
minimizes the total cost

⇧
(X,w,Y )⇥S c(X, w, Y ). A dissem-

ination schedule can then be produced by processing each
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Motivation – graph compression

• compress web graphs by finding and compressing bi-cliques
[Karande et al., 2009]

• many graph mining tasks that can be formulated as
matrix-vector multiplication, are more efficient on the
compressed graph [Kang et al., 2009]
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Motivation – more applications

• graph visualization [Alvarez-Hamelin et al., 2005]

• community detection [Chen and Saad, 2012]

• epilepsy prediction [Iasemidis et al., 2003]

• event detection in activity networks [Rozenshtein et al., 2014a]

• many more
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Motivation – big and dynamic graphs

• size of graphs increases

– e.g., in 2012, Facebook reported more than 1 billion users and
140 billion friend connections

• graphs change constantly

– e.g., in Facebook friendships are created and deleted all the time

• need to design efficient algorithms on new computational models
that handle large-scale processing

– map-reduce, streaming models, etc.
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Landscape of related work
• brute force [Johnson and Trick, 1996]
• heuristics [Bomze et al., 1999]

• spectral algorithms
[Alon et al., 1998, McSherry, 2001, Papailiopoulos et al., 2014]

• belief-propagation methods [Kang et al., 2011]

• enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973,

Eppstein et al., 2010, Makino and Uno, 2004]
• NP-hard formulations and various relaxations

• maximum clique problem [Karp, 1972, Hastad, 1999]
• k-densest subgraph problem

[Bhaskara et al., 2010, Feige et al., 2001]
• optimal quasi-cliques [Tsourakakis et al., 2013]

• polynomial-time solvable objectives
• densest subgraph problem [Goldberg, 1984]
– “The densest subgraph problem lies at the core of large scale

data mining” [Bahmani et al., 2012]
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Preliminaries, measures of density



notation

• graph G = (V ,E ) with vertices V and edges E ⊆ V × V

• degree of a node u ∈ V with respect to X ⊆ V is

degX (u) = |{v ∈ X such that (u, v) ∈ E}|

• degree of a node u ∈ V is deg(u) = degV (u)

• edges between S ⊆ V and T ⊆ V are

E (S ,T ) = {(u, v) such that u ∈ S and v ∈ T}

use shorthand E (S) for E (S , S)

• graph cut is defined by a subset of vertices S ⊆ V

• edges of a graph cut S ⊆ V are E (S , S̄)

• induced subgraph by S ⊆ V is G (S) = (S ,E (S))

• triangles: T (S) = {(u, v ,w) | (u, v), (u,w), (v ,w) ∈ E (S)}
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density measures

• undirected graph G = (V ,E )

• subgraph induced by S ⊆ V

• clique: all vertices in S are connected to each other
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density measures

• edge density (average degree):

d(S) =
2 |E (S ,S)|
|S |

=
2 |E (S)|
|S |
(sometimes just drop 2)

• edge ratio:

δ(S) =
|E (S ,S)|(|S|

2

) =
|E (S)|(|S |

2

) =
2 |E (S)|
|S |(|S | − 1)

• triangle density:

t(S) =
|T (S)|
|S |

• triangle ratio:

τ(S) =
|T (S)|(|S |

3

)
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other density measures

• k-core: every vertex in S is connected to

at least k other vertices in S

• α-quasiclique: the set S has at least α
(|S |

2

)
edges

i.e., S is α-quasiclique if E (S) ≥ α
(|S |

2

)
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and more

not considered in this tutorial

• k-cliques: subset of vertices with pairwise distances at most k

– distances defined using intermediaries, outside the set

– not well connected

• k-club: a subgraph of diameter ≤ k

• k-plex: a subgraph S in which each vertex is connected to at
least |S | − k other vertices

– 1-plex is a clique
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reminder: min-cut and max-cut problems

min-cut problem

s t

• source s ∈ V , destination t ∈ V

• find S ⊆ V , s.t.,

• s ∈ S and t ∈ S̄ , and

• minimize e(S , S̄)

polynomially-time solvable

equivalent to max-flow problem

max-cut problem
• find S ⊆ V , s.t.,

• maximize e(S , S̄)

NP-hard

approximation algorithms
(0.868 based on SDP)
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reminder: min-cut and max-cut problems

min-cut problem

s t
S S

• source s ∈ V , destination t ∈ V

• find S ⊆ V , s.t.,

• s ∈ S and t ∈ S̄ , and

• minimize e(S , S̄)

• polynomially-time solvable

• equivalent to max-flow problem

max-cut problem

S
S

• find S ⊆ V , s.t.,

• maximize e(S , S̄)

• NP-hard

• approximation algorithms
(0.868 based on SDP)
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Efficient algorithms for static graphs



Goldberg’s algorithm for densest subgraph

• consider first degree density d

G

• is there a subgraph S with
d(S) ≥ c?

• transform to a min-cut
instance

• on the transformed instance:

• is there a cut smaller
than a certain value?

s t

... ...

G
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Goldberg’s algorithm for densest subgraph

is there S with d(S) ≥ c ?

2 |E (S , S)|
|S |

≥ c

2 |E (S , S)| ≥ c |S |

∑
u∈S

deg(u)− |E (S , S̄)| ≥ c |S |

∑
u∈S

deg(u) +
∑
u∈S̄

deg(u)−
∑
u∈S̄

deg(u)− |E (S , S̄)| ≥ c |S |

∑
u∈S̄

deg(u) + |E (S , S̄)|+ c |S | ≤ 2 |E |
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Goldberg’s algorithm for densest subgraph

• transformation to min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

G

• is there S s.t.
∑

u∈S̄ deg(u) + |e(S , S̄)|+ c |S | ≤ 2 |E | ?

a cut of value 2 |E | always exists, for S = ∅
∑

u∈S̄ |e(S , S̄)|
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Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S , S̄)|+ c |S | ≤ 2 |E | ?

• a cut of value 2 |E | always exists, for S = ∅
∑

u∈S̄ |e(S , S̄)|
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Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S , S̄)|+ c |S | ≤ 2 |E | ?

• S 6= ∅ gives cut of value
∑

u∈S̄ deg(u) + |e(S , S̄)|+ c |S |
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Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S , S̄)|+ c |S | ≤ 2 |E | ?

• yes, if min cut achieved for S 6= ∅
∑

u∈S̄ |e(S , S̄)|
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Goldberg’s algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph G = (V ,E ), number c
output: S , if d(S) ≥ c
1 transform G into min-cut instance G ′ = (V ∪ {s} ∪ {t},E ′,w ′)
2 find min cut {s} ∪ S on G ′

3 if S 6= ∅ return S
4 else return no

• to find the densest subgraph perform binary search on c

• logarithmic number of min-cut calls

• problem can also be solved with one min-cut call
using the parametric max-flow algorithm
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densest subgraph problem – discussion

• Goldberg’s algorithm polynomial algorithm, but

• O(nm) time for one min-cut computation

• not scalable for large graphs (millions of vertices / edges)

• faster algorithm due to [Charikar, 2000]

• greedy and simple to implement

• approximation algorithm
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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Dense Subgraph Discovery (DSD) KDD 2015 51 / 226



greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V ,E )
output: S , a dense subgraph of G
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the densest subgraph among Gn,Gn−1, . . . ,G1
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proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]

• let S∗ be the vertices of the optimal subgraph

• let d(S∗) = λ be the maximum degree density

• notice that for all v ∈ S∗ we have degS∗(v) ≥ λ

• (why?) by optimality of S∗

|e(S∗)|
|S∗|

≥ |e(S∗)| − degS∗(v)

|S∗| − 1

and thus

degS∗(v) ≥ |e(S∗)|
|S∗|

= d(S∗) = λ
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proof of 2-approximation guarantee (continued)

([Khuller and Saha, 2009])

• consider greedy when the first vertex v ∈ S∗ ⊆ V is removed

• let S be the set of vertices, just before removing v

• total number of edges before removing v is ≥ λ|S |/2

• therefore, greedy returns a solution with degree density at least λ
2

QED
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the greedy algorithm

• factor-2 approximation algorithm

• runs in linear time O(n + m)

• for a polynomial problem . . .

but faster and easier to implement than the exact algorithm

• everything goes through for weighted graphs

using heaps: O(m + n log n)

• things are not as straightforward for directed graphs
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Dense subgraphs on directed graphs – history

• goal: find sets S ,T ⊆ V to maximize

d(S ,T ) =
e[S ,T ]√
|S | |T |

• first introduced in unpublished manuscript
[Kannan and Vinay, 1999]

• they provided a O(log n)-approximation algorithm

• left open the problem complexity

• polynomial-time solution using linear programming (LP)
[Charikar, 2000]
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Dense subgraphs on directed graphs – history

[Charikar, 2000]

• exact LP-based algorithm

• greedy 2-approximation algorithm running in O(n3 + n2m)

[Khuller and Saha, 2009]

• first max-flow based exact algorithm

• improved running time of the 2-approximation greedy algorithm
to O(n + m)!
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Directed graphs – algorithms

• reduced problem to O(n2) LP calls [Charikar, 2000]

• one LP call for each possible ratio |S |
|T | = c

maximize
∑

(i ,j)∈E(G)

xij

such that xij ≤ si , for all (i , j) ∈ E (G )

xij ≤ tj , for all (i , j) ∈ E (G )∑
i

si ≤
√

c and
∑
j

tj ≤
1√
c

xij , si , tj ≥ 0
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Dense subgraphs on directed graphs – greedy

[Charikar, 2000]

input: directed graph G = (V ,E ), ratio c = |S |
|T |

1 S ← V , T ← V
2 while both S ,T non-empty
3 imin ← the vertex i ∈ S that minimizes |E ({i},T )|
4 dS ← |E ({imin},T )|
5 jmin ← the vertex j ∈ T that minimizes |E (S , {j})|
6 dT ← |E (S , {jmin})|
7 if

√
cdS ≤ 1√

c
dT

8 then S ← S\{imin}
9 else ST ← T\{jmin}

• execute O(n2) times; one for each c = |S |
|T |

• report best solution
• factor 2 approximation guarantee
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Dense subgraphs on directed graphs – greedy

• brute force execution of greedy: O(n2(n + m)) = O(n3 + nm))

[Khuller and Saha, 2009]

• showed that only one execution is needed (instead of O(n2))

• total running time O(n + m)
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Dense subgraphs on directed graphs – greedy

linear-time greedy [Khuller and Saha, 2009]

definitions:

• let vi , vo be the vertices with minimum in- and out-degree

• if d−(vi) ≤ d+(vo) we are in category IN

otherwise in category OUT

algorithm:

• greedy deletes the minimum-degree vertex

• if in IN, it deletes all incoming edges

• if in OUT, it deletes all outgoing edges

• if the vertex becomes a singleton, it is deleted.

• return the densest subgraph encountered
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Dense subgraphs on directed graphs – exact

we wish to answer “are there S ,T ⊆ V such that d(S ,T ) ≥ g?”

consider

• consider α = |S |
|T | (O(n2) possible values)

• network G ′ = ({s, t} ∪ V1 ∪ V2,E ), with V1 = V2 = V

min-cut transformation

• add an edge of capacity m from s to each vertex of V1 and V2

• add an edge of capacity 2m + g√
α

from each vertex of V1 to t

• add an edge from each vertex j of V2 to sink t of capacity
2m +

√
αg − 2deg(j)

• for each (i , j) ∈ E (G ), add an edge from j ∈ V2 to i ∈ V1 with
capacity 2
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Dense subgraph problem – summary

• for the degree density measure:

• exact algorithms for undirected and directed graphs

• linear-time 2-approximation achieved by greedy

• how good are these subgraphs?

study other measures and contrast with degree density

• no control on the size of the subgraph

• what about time-evolving and dynamic graphs?
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Edge-surplus framework

introduced by [Tsourakakis et al., 2013]

• for a set of vertices S define edge surplus

f (S) = g(e[S ])− h(|S |)

where g and h are both strictly increasing

• optimal (g , h)-edge-surplus problem:

find S∗ such that

f (S∗) ≥ f (S), for all sets S ⊆ S∗
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Edge-surplus framework

• edge surplus f (S) = g(e[S ])− h(|S |)

• example 1
g(x) = h(x) = log x

find S that maximizes log e[S]
|S |

densest-subgraph problem

• example 2

g(x) = x , h(x) =

{
0 if x = k
+∞ otherwise

k-densest-subgraph problem
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The optimal quasiclique problem

• edge surplus f (S) = g(e[S ])− h(|S |)

• consider

g(x) = x , h(x) = α
x(x − 1)

2

find S that maximizes e[S ]− α
(|S |

2

)
optimal quasiclique problem [Tsourakakis et al., 2013]

• theorem: let g(x) = x and h(x) = αx

we aim to maximize e(S)− α|S |
solving O(log n) such problems, solves densest subgraph problem
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The edge-surplus maximization problem

theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular

−h(x) is supermodular

g(x)− h(x) is supermodular

maximizing supermodular functions is a polynomial problem
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The edge-surplus maximization problem

• poly-time solvable and interesting objectives have linear h

• the optimal quasiclique problem is NP-hard [Tsourakakis, 2014]

• the partitioning version led to a state-of-art streaming balanced
graph-partitioning algorithm: Fennel

– goal: maximize g(P) over all possible k-partitions

– notice:
g(P) =

∑
i

e[S1]︸ ︷︷ ︸
number of
edges cut

− α
∑
i

|Si |γ︸ ︷︷ ︸
minimized for

balanced partition!

– for more details: [Tsourakakis et al., 2014]
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Finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E )
output: a quasiclique S
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the subgraph in Gn, . . . ,G1 that maximizes f (S)

additive approximation guarantee [Tsourakakis et al., 2013]
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Motivating research question

• despite rich landscape of algorithmic tools, until recently,

no polynomial algorithm for finding large near-cliques

• can we combine the best of both worlds, namely

– have poly-time solvable formulation(s) which . . .

– . . . consistently succeeds in finding large near-cliques on
real-world networks?

• yes! the k-clique densest subgraph problem [Tsourakakis, 2015]
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k-clique densest subgraph problem

Definition (k-clique density)

For any S ⊆ V we define its k-clique density ρk(S), k ≥ 2 as

ρk(S) = ck (S)
s

, where ck(S) is the number of k-cliques induced by S
and s = |S |

Problem (k-clique DSP)

Given G (V ,E ), find a subset of vertices S∗ such that
ρk(S∗) = ρ∗k = maxS⊆V ρk(S)

• Notice that the 2-clique DSP is simply the DSP
• We shall refer to the 3-clique DSP as the triangle densest

subgraph problem

max
S⊆V

τ(S) =
t(S)

s
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Triangle densest subgraph problem

• How different can the densest subgraph be from the triangle
densest subgraph?
In principle, they can be radically different!
Consider G = Kn,n ∪ K3

• The interesting question is what happens on real-data

• Can we solve the triangle DSP in polynomial time?

• Can we solve the k-clique DSP in polynomial time?
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Triangle densest subgraph problem

Theorem

There exists an algorithm which solves the TDSP and runs in
O
(
m3/2 + nt + min (n, t)3) time

We will sketch here the idea behind a
O
(

m3/2 +
(
nt + min (n, t)3) log n

)
algorithm Furthermore,

Theorem

We can solve the k-clique DSP in polynomial time for any k = Θ(1)

• Even if our construction solves the DSP, Goldberg’s algorithm is
more efficient
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Triangle densest subgraph problem

• Perform binary searches:

– ∃S ⊆ V such that t(S) > α|S | ?

• O(log n) queries suffice in order to solve the TDSP

– Any two distinct triangle density values are at least O(1/n2) way
from each other

– The optimal density 0 ≤ t
n
≤ τ ∗ ≤ (n

3)
n

• But what does a binary search correspond to? . . .
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Triangle densest subgraph problem

. . . To a maximum
flow computation
on this network

s 
 

t 
 

A B 

𝑓𝑘 𝑣  

+∞ 

1 

kD 

v 

Construct-Network (G , α, T (G ))

• V (H)← {s} ∪ V (G ) ∪ T (G ) ∪ {t}
• For each vertex v ∈ V (G ) add an arc of

capacity 1 to each triangle ti it
participates in

• For each triangle ∆ = (u, v ,w) ∈ T (G )
add arcs to u, v ,w of capacity 2

• Add directed arc (s, v) ∈ A(H) of
capacity tv for each v ∈ V (G )

• Add weighted directed arc (v , t) ∈ A(H)
of capacity 3α for each v ∈ V (G )

• Return network
H(V (H),A(H),w), s, t ∈ V (H)
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k-clique densest subgraph problem
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Triangle densest subgraph problem

Exact-TDS

• List the set of triangles T (G ), t = |T (G )|
• l ← t

n
, u ← (n−1)(n−2)

6

• S∗ ← ∅
• While(u ≥ l + 1

n(n−1)
)

– α← l+u
2

– Hα ← Construct-Network(G , α, T (G ))
– (S ,T )← minimum st-cut in Hα

– If( S = {s} ), then u ← α
– otherwise set S∗ ←

(
S\{s}

)
∩ V (G ) and l ← α

• Return S∗

1 Run time: O
(

m3/2 +
(
nt + min (n, t)3) log n

)
2 Space complexity: O(n + t). Typically n� t on real networks
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Triangle densest subgraph problem

1 Set Gn ← G

2 for k ← n downto 1
• Let v be the smallest triangle count vertex in Gk

• Gk−1 ← Gk\{v}
3 Output the triangle densest subgraph among Gn,Gn−1, . . . ,G1

• The above peeling algorithm is a 3-approximation algorithm

• The same peeling idea generalizes to the k-clique DSP,

providing a k-approximation algorithm
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Some experimental findings

Method Measure Football

DS |S |
|V |(%) 100

2δ 10.6
fe 0.094
3τ 21.12

1
2
-DS |S |

|V |(%) 100

2δ 10.66
fe 0.094
3τ 21.12

Method Measure Football

TDS |S |
|V |(%) 15.7

2δ 8.22
fe 0.48
3τ 28

1
3
-TDS |S |

|V |(%) 15.7

2δ 8.22
fe 0.48
3τ 28

• Observation 1. Approximate counterparts are close to the
optimal exact methods

• Observation 2. The TDS is closer to being a large near-clique
compared to the DS
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Important remark

• Charikar’s algorithm despite being a 2-approximation algorithm
performs optimally or close to optimally on real data. This
suggests that real-data are “far away” from being adversarial

• Here is one adversarial instance that shows that the
2-approximation is tight

– G = G1 ∪ G2 where G1 = Kd ,D ,G2 is the disjoint union of D
cliques, each of size d + 1

– Let d � D

– How does the Charikar’s algorithm perform?

– Instead of returning the bipartite clique with density
dD/(d + D) ≈ d , it returns a clique of size d + 1 with density
d/2
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Computational issues

• The main issue is the size of the bipartite network

– Both space-wise . . .

– and time-wise, as any max-flow computation depends on its size

• k-clique counting is not the main issue. We can count fast
based on arboricity based ordering heuristics k-cliques efficiently
on large networks

– When the counting part becomes an issue, high-quality
approximation algorithms exist, e.g., [Kolountzakis et al., 2012,
Tsourakakis et al., 2011, Pagh and Tsourakakis, 2012]
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Datasets

Name n m
� Web-Google 875 713 3 852 985
? Epinions 75 877 405 739
� CA-Astro 18 772 198 050
�Pol-blogs 1 222 16 714
� Email-all 234 352 383 111

� LastFm-B 17 644 92 366
? IMDB-B 241 360 530 494
? IMDB-G-B 21 258 42 197
� Bookmarks-B 71 090 437 593

Dense Subgraph Discovery (DSD) KDD 2015 91 / 226



Experimental findings

k-cliques
G k = 2 k = 3 k = 4 k = 5

fe |S | fe |S | fe |S | fe |S |
? 0.12 1 012 0.26 432 0.40 235 0.50 172
� 0.11 18 686 0.80 76 0.96 62 0.96 62
� 0.19 16 714 0.54 102 0.59 92 0.63 84
� 0.13 553 0.38 167 0.48 122 0.53 104

(p,q)-bicliques
G (p, q) = (1, 1) (p, q) = (2, 2) (p, q) = (3, 3)

fe |S | fe |S | fe |S |
? 0.001 9 177 0.06 181 0.30 40
? 0.001 6 437 0.41 18 0.43 17
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Densest subgraph sparsifiers

Abstraction: We shall abstract both the k-clique DSP and the
(p, q)-biclique DSP as a densest subgraph problem in a hypergraph.
Let H be the resulting hypergraph and ε > 0 be an accuracy
parameter

Theorem

• Sample each hyperedge e ∈ EH independently with probability
p = 6

ε2
log n
D

• Then, the following statements hold simultaneously with high
probability:

– For all U ⊆ V such that ρ(U) ≥ D, ρ̃(U) ≥ (1− ε)C log n for
any ε > 0

– For all U ⊆ V such that ρ(U) < (1− 2ε)D,
ρ̃(U) < (1− ε)C log n for any ε > 0
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Densest subgraph sparsifiers

Technical difficulty

• Notice that taking Chernoff bounds and a union bound does not
work since by Chernoff the failure probability is 1/poly(n)
whereas there exists an exponential number of potential bad
events

From the previous theorem, we obtain the following corollaries

• (1 + Θ(ε))-approximation, expected speedup O( 1
p2
D

), expected

space reduction is O( 1
pD

)

• Naturally results in a single pass (1 + Θ(ε))-approximation
semi-streaming algorithm for a dynamic stream of edges. Same
result obtained independently by
[Esfandiari et al., 2015, McGregor et al., 2015]
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Sampling effect, Epinions network
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Densest subgraph sparsifiers

Abstraction: We shall abstract both the k-clique DSP and the
(p, q)-biclique DSP as a densest subgraph problem in a hypergraph.
Let H be the resulting hypergraph and ε > 0 be an accuracy
parameter

Theorem

• Sample each hyperedge e ∈ EH independently with probability
p = 6

ε2
log n
D

• Then, the following statements hold simultaneously with high
probability:

– For all U ⊆ V such that ρ(U) ≥ D, ρ̃(U) ≥ (1− ε)C log n for
any ε > 0

– For all U ⊆ V such that ρ(U) < (1− 2ε)D,
ρ̃(U) < (1− ε)C log n for any ε > 0
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Densest subgraph sparsifiers

Technical difficulty
• Notice that taking Chernoff bounds and a union bound does not

work since by Chernoff the failure probability is 1/poly(n)
whereas there exists an exponential number of potential bad
events

From the previous theorem, we obtain the following corollaries

• (1 + Θ(ε))-approximation, expected speedup O( 1
p2
D

), expected

space reduction is O( 1
pD

)

• We can sample with probability p = Θ
(
n log n
ε2mH

)
, where

mH = |EH|
• Our sampling scheme results in a single pass

(1 + Θ(ε))-approximation semi-streaming algorithm for DSP.
Same result obtained later independently by
[Esfandiari et al., 2015, McGregor et al., 2015]
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Large Near Bicliques
id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

• transaction data ⇔ binary data ⇔ bipartite graphs

• frequent itemsets ⇔ bi-cliques
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Large Near Bicliques

• We generalize the idea of k-cliques by maximizing the average
(p, q)-biclique densities

• For p = q = 1 we obtain the well-known densest subgraph
problem

• We provide general network construction techniques which can
be used to maximize the (p, q)-biclique density for any
p, q = Θ(1)

– Our network construction techniques can be used to maximize
densities of other types of subgraphs as well

• We can justify speedups of the order O(ρ∗2/ log2 n), compared
to the exact maximum flow computation based algorithm
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Datasets

Name n m
� Web-Google 875 713 3 852 985
? Epinions 75 877 405 739
� CA-Astro 18 772 198 050
�Pol-blogs 1 222 16 714
� Email-all 234 352 383 111

� LastFm-B 17 644 92 366
? IMDB-B 241 360 530 494
? IMDB-G-B 21 258 42 197
� Bookmarks-B 71 090 437 593
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k-clique and (p, q)-biclique counts and run times

Name c3 T c4 T c5 T
� Web-Google 11.4M 8.5 32.5M 16.5 82M 36.4
? Epinions 1 6M 1.6 5.8M 4.8 17.5M 13.4
� CA-Astro 1 3M 0.6 9.6M 3.94 65M 27.2
�Pol-blogs 101K 0.05 422K 0.2 1.4M 0.7
� Email-all 383K 0.4 1.1M 0.9 2.7M 1.9

Name c2,2 T c3,3 T
� LastFm-B 18 266 703 27.8 - -
? IMDB-B 691 594 3.6 261 330 3.3
? IMDB-G-B 14 919 0.1 2 288 0.1
� Bookmarks-B 431 996 0.82 14 901 0.53
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Ranging p, k = 2, 3

Sampling Probability p
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Ranging p, k = 4, 5

Sampling Probability p #10-3
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Observations – Ranging p

• Notice that ck
n
≤ ρ∗k ≤

(n
k)
n

– We observe that an efficient strategy is to guess a large value of
ρ∗k , i.e., sample with smallest value for p Then, while
concentration is not deduced, keep doubling p

• The speedups for k = 2 -while valuable- are not impressive as
the graphs are pretty sparse to begin with

• However, for k ≥ 3 the speedups start becoming significant,
reaching the order of 4× 104 for k = 5, which achieving
excellent accuracies
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Sampling effect, Epinions
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Accuracies and speedups

• Runtimes (exact), accuracies and speedups (random sampling)

– Exact: For k = 2 the slowest run time was 33.9 secs

– Sampling: We obtain a speedup of ≈ 3× using sampling
Accuracies greater always than 95%

– Exact: For k = 5, the exact algorithm cannot run on one dataset
Run times for other datasets, 37 939.6, 2 107.2, 24.04, 52.4

– Sampling: Speedups range from 410.3× to 77 288×. Accuracies
close to 100%

• The results for k = 3, 4 interpolate. For the detailed findings,
please look at our paper
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Effect of hierarchy

k-cliques
G k = 2 k = 3 k = 4 k = 5

fe |S | fe |S | fe |S | fe |S |
? 0.12 1 012 0.26 432 0.40 235 0.50 172
� 0.11 18 686 0.80 76 0.96 62 0.96 62
� 0.19 16 714 0.54 102 0.59 92 0.63 84
� 0.13 553 0.38 167 0.48 122 0.53 104

(p,q)-bicliques
G (p, q) = (1, 1) (p, q) = (2, 2) (p, q) = (3, 3)

fe |S | fe |S | fe |S |
? 0.001 9 177 0.06 181 0.30 40
? 0.001 6 437 0.41 18 0.43 17
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Time evolving networks

Patents citation network that spans 37 years, specifically from
January 1, 1963 to December 30, 1999.
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Time evolving networks

• We observe in the left Figure that both ρ∗2 and ρ∗3 exhibit an
increasing trend.

• This increasing trend becomes is mild for ρ∗3 up to 1995, but
then it takes off

• What makes this finding even more interesting as the number of
edges grows faster than the number of triangles

• We are seeing an outlier - the company Allergan, Inc. This
company tends to cite all their previous patents with each new
patent and creates a dense subregion in the graph
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Time evolving networks

Autonomous systems dataset contains 733 daily instances which
span an interval of 785 days from November 8 1997 to January 2
2000
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• Despite the average degree increases over time, the optimal
density for k = 2 remains roughly the same

• The optimal density for k = 3 exhibits a mild increasing trend
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Time evolving networks

This is how density evolves in stochastic Kronecker graphs with seed
matrix [0.9 0.5;0.5 0.2] as we increase the number of nodes as 2i for
i = 8 up to i = 21
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• This and other popular seed matrices can’t reproduce what we
observe in real-networks with respect to the optimal density
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Peeling in batches

The following algorithm due to Bahmani, Vassilvitski and Kumar
leads to efficient MapReduce and streaming algorithms
[Bahmani et al., 2012]

1 Set S , S̃ ← V

2 while S 6= ∅ do
– A(S)← {i ∈ S : Di(S) ≤ 2(1 + ε)ρ(S)}
– S ← S\A(S)

– if ρ(S) ≥ ρ(S̃) then S̃ ← S

3 Return S̃
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Peeling in batches

• Claim. The previous algorithm achieves a (2 + 2ε)
approximation. Furthermore, it outputs after O(log1+ε(n))
rounds

• Proof .

– Approximation guarantee: Fix any optimal solution S∗. Consider
the first round when a node v ∈ S∗ becomes removed. Let U be
the set of vertices at that point. Then,
ρ∗ ≤ Dv (S∗) ≤ Dv (U) ≤ (2 + 2ε)ρ(U). QED

– Number of rounds is O(log1+ε(n)): The idea is that in each
round, we throw away a constant fraction of the vertices
2e(S) >

∑
v /∈A(S) Dv (S) > (|S | − |A(S)|)2(1 + ε)ρ(S)→

|A(S)| > ε
1+ε
|S | → |S | − |A(S)| < |S |

1+ε
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Peeling in batches

Few more remarks

• The previous claim results directly in a (2 + ε) approximation
algorithm, using Õ(n) space and O(log n/ε)

• Similar claim holds for MapReduce. In each round we need to
compute degrees and remove A(S)

• Many believed that O(log n/ε) passes were likely to be necessary

• However, the densest subgraph sparsifier theorem results directly
in a single pass streaming algorithm that uses Õ(n) space and
provides a (1 + ε) approximation guarantee. See also,
[Esfandiari et al., 2015, McGregor et al., 2015]

Dense Subgraph Discovery (DSD) KDD 2015 114 / 226



Variations of the DSP

k-densest subgraph δ(S) = 2e[S]
|S | , |S | = k NP-hard

DalkS δ(S) = 2e[S]
|S| , |S | ≥ k NP-hard

DamkS δ(S) = 2e[S]
|S| , |S | ≤ k L-reduction to DkS
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Densest k subgraph problem

• Does not admit a PTAS unless P=NP

• Feige, Peleg and Kortsarz gave a O(n
1
3 ) approximation algorithm

[Feige et al., 2001]

• State of the art algorithm due to Bhaskara et al. provides
O(n

1
4

+ε) approximation guarantee for any ε > 0
[Bhaskara et al., 2010]

• Closing the gap between lower and upper bounds is a significant
problem
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DalkS is NP-hard

Proof sketch.

• We reduce the DkS to the DalkS. We are given a graph G and a
value k we wish to know whether ∃S ⊆ V such that
ρ(S) ≥ λ, |S | = k

• Construct H = Kn2 ∪ G and run DalkS with lower bound on the
number of vertices n2 + k

• Turns out that the part of the optimal DalkS solution on H is
the answer to DkS

For the details, see [Khuller and Saha, 2009]
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2-approximation for DalkS [Khuller and Saha, 2009]

• The algorithm starts with G0 ← G ,D0 ← ∅
• In the i -th iteration, we compute the densest subgraph Hi from

Gi−1

• If |V (Di−1)|+ |V (Hi)| ≥ k , terminate

• else

– Di ← Di−1 ∪ Hi

– Remove Hi from Gi−1

– For every v ∈ Gi−1\Hi add a selfloop of weight wv where
wv = |N(v) ∩ Hi |

• When the algorithm stops, each Di is padded with arbitrary
vertices to make their size k , let D ′i be the resulting subgraph

• The algorithm returns the subgraph D ′j with maximum density
among the D ′i s
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2-approximation for DalkS – example

Suppose this is the input to the DalkS

• k = n +
√

2n

• G = H1 ∪ H2 ∪ H3 ∪ H4

– H1 is a clique on
√

2n vertices

– H2 is a tree on n vertices

– H3 is a cycle on n2 vertices

– H4 is a set of n disjoint vertices
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2-approximation for DalkS – example

Let’s run the 2-approximation algorithm on G

• First we find H1 as it is the densest subgraph of G

• In the second iteration it will find H3

• Therefore, the algorithm has two options:

– Return H1 ∪ H3

– Append n arbitrary vertices to H1. These could well be the n
isolated vertices

• In both cases the resulting subgraph has density ≈ 1

• However H1 ∪ H2 has density 2n
n+
√

2n
≈ 2

Dense Subgraph Discovery (DSD) KDD 2015 120 / 226



Some more remarks

• [Andersen and Chellapilla, 2009] proved that an α approximation
for DamkS implies a O(α2) approximation algorithm for the DkS

• [Khuller and Saha, 2009] improved this, by showing that an α
approximation for DamkS implies a 4α approximation algorithm
for the DkS

• The algorithmic ideas we showed for undirected case work for
DalkS as well
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Efficient algorithms for dynamic graphs



Dynamic setting

We say that an algorithm is a fully-dynamic γ-approximation
algorithm for the densest subgraph problem if it can process the
following operations.

– Initialize(n): Initialize the algorithm with an empty n-node
graph.

– Insert(u, v): Insert edge (u, v) to the graph.

– Delete(u, v): Delete edge (u, v) from the graph.

– QueryValue: Output a γ-approximate value of ρ∗(G ) = d∗
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Dynamic setting

The performance of a data structure is measured in term of four
different metrics.

• Space-complexity: This is given by the total space (in terms of
bits) used by the data structure.

• Update-time: This is the time taken to handle an Insert or
Delete operation.

• Query-time: This is the time taken to handle a QueryValue
operation.

• Preprocessing-time: This is the time taken to handle the
Initialize operation. Unless explicitly mentioned otherwise, in
this paper the preprocessing time will always be Õ(n).
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Streaming vs. Dynamic efficiency

• Streaming algorithms’ community cares primarily about the
space efficiency.

• Dynamic algorithms’ community care primarily about the update
and query times.

• [Bhattacharya et al., 2015] provide the first result that
successfully combines both types of efficiencies simultaneously
for the densest subgraph problem

– Research direction: Can we develop similar type of results for
other graph theoretic problems?
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(2 + ε)-approximation 1-pass dynamic

semi-streaming algorithm

Theorem ([Bhattacharya et al., 2015])

We can process a dynamic stream of updates in the graph G in Õ(n)
space, and with high probability return a (2 +O(ε))-approximation of
d∗ = maxS⊆V ρ(S) at the end of the stream.

• Remark: To obtain both results we introduce the
(α, d , L)-decomposition. It generalizes the well-known d-core,
namely the (unique) largest induced subgraph with every node
having degree at least d .
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(α, d , L)-decomposition – Definition

• Fix any α ≥ 1, d ≥ 0, and any positive integer L.

• Consider a family of subsets Z1 ⊇ · · · ⊇ ZL.

• The tuple (Z1, . . . ,ZL) is an (α, d , L)-decomposition of the input
graph G = (V ,E ) iff:

– Z1 = V and,

– for every i ∈ [L− 1], we have

Zi+1 ⊇ {v ∈ Zi : Dv (Zi) > αd}

and
Zi+1 ∩ {v ∈ Zi : Dv (Zi) < d} = ∅.
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(α, d , L)-decomposition – Key property

Theorem

• Fix any α ≥ 1, d ≥ 0, ε ∈ (0, 1), L← 2 + dlog(1+ε) ne.

• Let (Z1, . . . ,ZL) be an (α, d , L)-decomposition of G = (V ,E ).

– If d > 2(1 + ε)d∗, then ZL = ∅.
– If d < d∗/α, then ZL 6= ∅ and there is an index j ∈ [L] such that
ρ(Zj) ≥ d/(2(1 + ε)).

Remark 1: A key property of the densest subgraph that prior work
[Charikar, 2000] and our work use throughout our work is that
Dv (S∗) ≥ d∗ for any S∗ ⊆ V such that ρ(S∗) = d∗.
Remark 2: Notice that m

n
≤ d∗ < n − 1.
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(α, d , L)-decomposition – Algorithmic aspect

(Rough) Idea of how to turn the previous theorem into an algorithm.

• Discretize the range of d∗ as dk ← (1 + ε)k−1 · m
n

, k ∈ [K ] where
K = O(log1+ε(n)).

• For every k ∈ [K ], construct an (α, dk , L)-decomposition
(Z1(k), . . . ,ZL(k)), where L = O(log1+ε(n)).

• Let k ′ ← max{k ∈ [K ] : ZL(k) 6= ∅}.

Then we have the following guarantees:

1 d∗/(α(1 + ε)) ≤ dk ′ ≤ 2(1 + ε) · d∗.
2 There exists an index j ′ ∈ [L] such that ρ(Zj ′) ≥ dk ′/(2(1 + ε)).
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(2 + ε)-approximation 1-pass dynamic

semi-streaming algorithm

Our streaming algorithm relies on the fact that if we sample
independently each edge with probability (roughly) Õ( 1

d
), we can

create an (α, d , L)-decomposition whp.

Lemma

Fix a d > 0, and let S be a collection of cm(L− 1) log n/d mutually
independent simple random samples from the edge-set E of the input
graph G = (V ,E ). With high probability we can construct from S an
(α, d , L)-decomposition (Z1, . . . ,ZL) of G , using Õ(n) bits of space.
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(2 + ε)-approximation 1-pass dynamic

semi-streaming algorithm

Emulating Charikar’s peeling paradigm.

The algorithm works by partitioning the samples in S evenly among
(L− 1) groups {Si} , i ∈ [L− 1]

• Set Z1 ← V .

• For i = 1 to (L− 1): Set
Zi+1 ← {v ∈ Zi : Dv (Zi , Si) ≥ (1− ε)αc log n}.

Here, Dv (Zi ,Si ) is the number of neighbors of v in set Zi connected

through the set of edges Si .
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(2 + ε)-approximation 1-pass dynamic

semi-streaming algorithm

• “Guess” the number of edges m.
• For each guess of m, build O(log n/ε)

(α, dk = (1 + ε)k−1 m
n
, L)-decompositions, one for each density

guess dk . Set α = 1+ε
1−ε .

• For each guess of dk maintain a sample S of
cm(L− 1) log n/dk = Õ(n) random edges.

• Perform peeling and find k ′.

Few remarks.

1 The case of dynamic streams is dealt with by using `0 samplers
[Jowhari et al., 2011].

2 For the dynamic case, we wish to find an α large enough to be
lazy enough when we update our data structures, small enough
to achieve a good approximation.
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Fully dynamic (4 + ε)-approximation algorithm

Õ(n) space

Theorem ([Bhattacharya et al., 2015])

• Let ε ∈ (0, 1), λ > 1 constant and T = dnλe.
• There is an algorithm that processes the first T updates in the

dynamic stream such that:

– It uses Õ(n) space (Space efficiency)

– It maintains a value Output(t) at each t ∈ [T ] such that for all
t ∈ [T ] whp

Opt(t)/(4 + Θ(ε)) ≤ Output(t) ≤ Opt(t).

Also, the total amount of computation performed while
processing the first T updates in the dynamic stream is
O(T poly log n). (Time efficiency)
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Fully dynamic (4 + ε)-approximation algorithm

O(n + m) space

• As before, we discretize the range of d∗ in the same way, i.e., in
powers of (1 + ε) by defining the values {dk}, k ∈ [K ].

• For each dk we are able to maintain an (α, dk , L)-decomposition
of G in time O(L/ε) = O(log n/ε2) per edge update.

• The total time for all K decompositions is O(log2 n/ε3) per
update operation.

• Remark: We find an α large enough to be lazy enough, small
enough to achieve a good approximation. It turns out using a
fine tuned potential function analysis, that for α = 2 + Θ(ε) we
achieve good amortized time and a (4 + Θ(ε))-approximation.
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Remark: How to maintain efficiently a random

sample of Õ(n) edges when the graph changes?

Q1 How do we maintain dynamically the random sample(s) of Õ(n)
edges?

– If we naively run an `0 sampler responsible for an edge in the
sample for each update, we need Õ(n) time per update.

Idea: When an update takes place, only one `0 sampler needs to be
invoked. Let E =

(
[n]
2

)
⊇ E (t).

• Let h : E → [sk ] be an `-wise independent hash function

• The i -th “bucket” Q
(t)
i is responsible for all edges such that

h(e) = i , for each i = 1, . . . , sk . We also run an independent
copy of an `0 sampler.

Dense Subgraph Discovery (DSD) KDD 2015 135 / 226



Few more remarks

• To make Chernoff+union bound work we need l = Õ(n). To
construct our hash function we invoke the construction due to
[Pagh and Pagh, 2008].

• The previous theorem [Bhattacharya et al., 2015] opens the
direction towards single-pass semi-streaming algorithms over
dynamic streams with polylogarithmic update and query times.

• [Epasto et al., 2015] provided a (2 + ε)-approximation algorithm,
O(polylog(n)) = Õ(1) amortized time per update, O(n + m)
space under the assumption that deletions are random.
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Problem variants



Problem variants II : top-k dense subgraphs



Top-k dense subgraphs

• in many cases we want to find more than one dense subgraph

• idea: find all dense subgraphs (e.g., denser than a threshold)

• cut enumeration techniques to output all near-optimal dense
subgraphs ([Saha et al., 2010])

• in practice, this method suffers from output degeneracies:
• many subsets of a dense subgraph tend to be near-optimally

dense as well
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Top-k dense subgraphs

• another approach

(i) find a dense subgraph S
(ii) remove all vertices and edges of S
(iii) iterate

• reported subgraphs are disjoint

• certain degree of overlap can be desirable

[Balalau et al., 2015]

Dense Subgraph Discovery (DSD) KDD 2015 140 / 226



Top-k dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

• given graph G = (V ,E ), and parameters k and α

• find k subgraphs S1, . . . , Sk

• in order to maximize
k∑

i=1

d(Si)

subject to

|Si ∩ Sj |
|Si ∪ Sj |

≤ α, for all 1 ≤ i < j ≤ k
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Top-k dense subgraphs with limited overlap

algorithm MinAndRemove ([Balalau et al., 2015])

input: undirected graph G = (V ,E ), parameters k and α
output: k subgraphs G1, . . . ,Gk with overlap at most α
1 while less than k subgraphs found and G non-empty
2 find minimal densest subgraph Gi = (Vi ,Ei)
3 for each v ∈ Vi

4 ∆G (v)← the set of neighbors of v in G
5 remove d(1− α)|Vi |e nodes with minimum |∆G (v) \ Vi |
6 and all their edges from G
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Top-k dense subgraphs with limited overlap

summary of results ([Balalau et al., 2015])

• MinAndRemove finds optimal solution,

if this contains disjoint subgraphs

• MinAndRemove works shown to work well in practice

• faster algorithm, at small loss of accuracy
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Problem variants III : core decomposition



k-core decomposition

widely used technique for partitioning graphs

k-core = largest subgraph with vertex degrees ≥ k

cores form a chain, k-core ⊆ (k − 1)-core; let

k-shell = vertices in k-core but not in (k + 1)-core

algorithm to find shells:

1. while G is not empty
2. v ← vertex with the smallest degree
3. assign v to k-shell
4. remove v from G
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core decomposition and density are not compatible
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density-friendly decomposition

goal:

adapt k-core decomposition for density

obtain a nested sequence of increasingly dense subgraphs

[Tatti and Gionis, 2015]
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locally-dense subgraphs

informally,

subgraph H is locally-dense = any subgraph of H is denser

than any subgraph outside H

formally, define augmented density

d(X ,Y ) =
|E (X )|+ |E (X ,Y )|

|X |
, for X ∩ Y = ∅

subgraph H is locally-dense if

d(X ,H \ X ) > d(Y ,H), for any X ( H ,Y ∩ H = ∅
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example
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example
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d(Y ,H) = 2/2
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properties

locally-dense subgraphs form a chain

∅ = B0 ( B1 ( B2 ( · · · ( Bk = G

Bi is the densest subgraph containing Bi−1

B1 = densest subgraph

B2 = arg max
B)B1

d(B \ B1,B1)

· · ·
Bi = arg max

B)Bi−1

d(B \ Bi−1,Bi−1)
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first approach to compute the subgraphs

a

b c

d e

f g

h i
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first approach to compute the subgraphs
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first approach to compute the subgraphs
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first approach to compute the subgraphs
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first approach to compute the subgraphs
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first approach to compute the subgraphs
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computing the subgraphs

define
F (α) = arg max

X
|E (X )| − α|X |

Goldberg showed that

• F (α) can be solved with a min-cut

• there is α such that F (α) is the densest subgraph

we can show that

• F (α) is locally-dense

• for every Bi there is α such that Bi = F (α)
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computing the subgraphs

find all Bi by varying α (with divide-and-conquer)

algorithm: Exact(X ,Y )
1. select α such that X ⊆ F (α) ( Y
2. Z ← F (α)
2. if (Z 6= X )
3. output Z
3. Exact(X ,Z )
3. Exact(Z ,Y )

• we need only 2k − 3 calls of F (α)

(k is the number of locally-dense subgraphs)

• O(n2m) total running time, in practice much faster

• X ⊂ F (α) ⊂ Y allows optimizations
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approximation with profiles

approximation guarantees are tricky:

• algorithm may return different number of subgraphs

define a profile:

p(i ;B) =


d(B1) if i ≤ |B1|
d(B2 \ B1,B1) if |B1| < i ≤ |B2|
. . .
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core decomposition

let C be the core decomposition

let B be the optimal locally-dense decomposition

then
p(i ; C) ≥ p(i ;B)/2, for every i

for i = 1, this implies

d(C1) ≥ d(B1)/2
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extending Charikar’s algorithm

C1 ← densest subgraph of form v1, . . . v|C1|

C2 ← subgraph maximizing d(v1, . . . v|C2| \ C1,C1)

C3 ← subgraph maximizing d(v1, . . . v|C3| \ C2,C2)

. . .

The graphs Ci

• can be found in O(n2)-time naively

• can be found in O(n)-time with PAV algorithm

[Ayer et al., 1955]
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greedy decomposition

let C be the greedy decomposition

(found by the extension of Charikar’s algorithm)

let B be the optimal locally-dense decomposition

then
p(i ; C) ≥ p(i ;B)/2, for every i

for i = 1, this implies

d(C1) ≥ d(B1)/2
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experiments

how well these algorithm perform?
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summary (density-friendly decomposition)

• decomposition based on average density

• can be computed exactly in O(n2m) time, faster in practice

• can be 1/2-approximated in linear time by
• k-core decomposition
• greedy algorithm

future work:

• consider different density functions

• control the size of the decomposition
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Problem variants IV : community search



community detection problems

• typical problem formulations require non-overlapping

and complete partition of the set of vertices

• quite restrictive

• inherently ambiguous: research group vs. bicycling club

• additional information can resolve ambiquity

• community defined by two or more people
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the community-search problem

• given graph G = (V ,E ), and

• given a subset of vertices Q ⊆ V (the query vertices)

• find a community H that contains Q

applications

• find the community of a given set of users (cocktail party)

• recommend tags for an image (tag recommendation)

• form a team to solve a problem (team formation)
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center-piece subgraph

[Tong and Faloutsos, 2006]

• given: graph G = (V ,E ) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

• main concepts:

• k softAND: a node in H should be well connected to at least k
vertices of Q

• r(i , j) goodness score of j wrt qi ∈ Q

• r(Q, j) goodness score of j wrt Q

• g(H) goodness score of a candidate subgraph H

• H∗ = arg maxH g(H)
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center-piece subgraph

[Tong and Faloutsos, 2006]

• r(i , j) goodness score of j wrt qi ∈ Q

probability to meet j in a random walk with restart to qi

• r(Q, j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k vertices
of Q

• proposed algorithm:

1. greedy: find a good destination vertex j ito add in H

2. add a path from each of top-k vertices of Q path to j

3. stop when H becomes large enough
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center-piece subgraph — example results

(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source
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[Tong and Faloutsos, 2006]
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the community-search problem

• given: graph G = (V ,E ) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q

(b) optimizes a density function d(H)

(c) possibly other constraints

• density function (b):

average degree, minimum degree, quasiclique, etc.

measured on the induced subgraph H
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free riders

• remedy 1: use min degree as density function

• remedy 2: use distance constraint

d(Q, j) =
∑
q∈Q

d2(qi , j) ≤ B
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the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E ), query vertices Q ⊆ V
output: connected, dense subgraph H
1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gk

among all vertices not in Q
2.3 Gk−1 ← Gk \ {v}
2.4 if left only with vertices in Q or disconnected graph, stop
3 output the subgraph in Gn, . . . ,G1 that maximizes f (H)
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properties of the greedy algorithm

• returns optimal solution if no size constraints

• upper-bound constraints make the problem NP-hard

(heuristic solution, also adaptation of the greedy)

• generalization for monotone constraints and

monotone objective functions
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experimental evaluation (qualitative summary)

baseline: increamental addition of vertices

• start with a Steiner tree on the query vertices

• greedily add vertices

• return best solution among all solutions constructed

example result in dblp

• proposed algorithm: min degree = 3, avg degree = 6

• baseline algorithm: min degree = 1.5, avg degree = 2.5
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the community-search problem — example results
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Figure 4: Different communities of Christos Papadimitriou. Rectangular nodes indicate the query nodes, and elliptical

nodes indicate nodes discover by our algorithm.
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monotone functions

function f is monotone non-increasing if

for every graph G and

for every subgraph H of G it is

f (H) ≤ f (G )

the following functions are monotone non-increasing:

• the query nodes are connected in H (0/1)

• are the nodes in H able to perform a set of tasks?

• upper-bound distance constraint

• lower-bound constraint on the size of H
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generalization to monotone functions

generalized community-search problem

given

• a graph G = (V ,E )

• a node-monotone non-increasing function f

• f1, . . . , fk non-increasing boolean functions

find

• a subgraph H of G

• satisfying f1, . . . , fk and

• maximizing f
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generalized greedy

1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating any constraint f1, . . . , fk
2.2 let v minimizing f (Gk , v)
2.3 Gk−1 ← Gk \ {v}
3 output the subgraph H in Gn, . . . ,G1 that maximizes f (H , v)
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generalized greedy

theorem

generalized greedy computes an optimum solution

for the generalized community-search problem

running time

• depends on the time to evaluate the functions f1, . . . , fk

• formally O(m +
∑

i nTi)

• where Ti is the time to evaluate fi
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Problem variants V : heavy subgraphs



discovering heavy subgraphs

• given a graph G = (V ,E , d ,w)

with a distance function d : E → R on edges

and weights on vertices w : V → R

• find a subset of vertices S ⊆ V

so that

1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014a]
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discovering heavy subgraphs

• what does total weight and close to each other mean?

• total weight

W (S) =
∑
v∈S

w(v)

• close to each other

D(S) =
∑
u∈S

∑
v∈S

d(u, v)

• want to maximize W (S) and minimize D(S)

• maximize
Q(S) = λW (S)− D(S)
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applications of discovering heavy subgraphs

• finding events in networks

• vertices correspond to locations

• weights model activity recorded in locations

• distances between locations

• find compact regions (neighborhoods) with high activity
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event detection

• sensor networks and traffic measurements

City events 

Dataset – fixed spatially scattered sources of time series 
 
Our dataset: city-movements sensor – public transport 
stations and statistics on its activity 
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event detection

15.11.2012
ordinary day, no events

General problem formulation 

Find an event – a subset of spatially and/or temporally close 
time sub-series with anomalous behavior 
 

← Normal day 
 
15.11.12: no events 

Event  day  → 
 
11.09.12:  
• National day of 

Catalonia 
• FC Barcelona - 

Igualada HC 

11.09.2012
Catalunya national dayGeneral problem formulation 

Find an event – a subset of spatially and/or temporally close 
time sub-series with anomalous behavior 
 

← Normal day 
 
15.11.12: no events 

Event  day  → 
 
11.09.12:  
• National day of 

Catalonia 
• FC Barcelona - 

Igualada HC 
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event detection

• location-based social networks

event detection

• input data: recordings of a certain 
measurement in space and time

(a) Barcelona bicycle-share:
11.09.12 National Day of
Catalonia

(b) Minneapolis bicycle-share:
4.07.12 Independence Day in
the USA

(c) Washington,DC
bicycle-share: 27.05.13
Memorial Day in the USA

(d) Los Angeles Twitter
messages: 31.05.10 Memorial
Day in the USA

(e) New York Twitter messages:
6.09.10 Labor Day in the USA

Figure 8: Public holiday city-events

score C(S) for an event S is defined as follows,

C(S) =
1

|S|
X

v2S

|Nk(v) \ S|
k

,

where k is a nearest-neighbors parameter and Nk(v) denotes
the set of the k-nearest neighbors of v in the graph. From
the panels (g) and (h) of Figures 6 and 7, we see that
small values of � give low compactness. This is because
of the small sizes of detected events for those values of
�. When � increases, the accuracy increases and so
does compactness. However, when � becomes very large,
the algorithms downweight the distance objective and the
detected events include noisy nodes. The fact that the
compactness measure “flattens out” gives us some guidance
in selecting an appropriate value of �. In our experiments,
using the Pareto curves and the notion of compactness we
processed real-world datasets to discover meaningful events.

Case studies. In Figure 8 we show events discovered
by our algorithms on the bike-share and twitter data.
These are events found by our algorithms on problem
instances whose solution exhibits high value with respect to
other instances. We are able to a posteriori characterize
those events and associate them with state holidays in
the corresponding cities: National day of Catalonia (for
Barcelona), Independence day, Memorial day and Labor
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Figure 9: Scalability of the GreedyAP algorithm

day for the USA. All those days are characterized by high
activity levels, clustered in the center of the cities.

Scalability. The proposed greedy algorithms are e�cient
and can scale to large networks. We report on the scalability
behavior of the GreedyAP algorithm. We use the twitter
dataset, with tweets from the whole US, to compile activity
networks with increased number of nodes. We use k-means
with k up to 10 000 centroids and we apply the GreedyAP
algorithm to detect events in the resulting graph. The
results, shown in Figure 9, are obtained by executing the
algorithm on an Intel Core i7 (4 cores) machine, with 8 GB
RAM and processor running at 2.30GHz. We see that the
algorithm is e�cient and scales linearly with the size of the
graph.

6. CONCLUSION
We formalize the problem of detecting events in

activity networks, as a problem of finding compact
subgraphs in graphs with vertex weights. Depending
on the notion of compactness used—sum of all pairs
of distances or Steiner-tree distance—we formulate two
di↵erent optimization problems. By using ideas from
semidefinite programming and the primal-dual scheme, we
provide approximation algorithms for the two problems
we consider. We also provide simpler and faster greedy
algorithms, for which we are also able to show approximation
guarantees that rely on the submodularity property of the
objective function. Our experiments show that the greedy
approaches are more light-weight and perform as good as
the more sophisticated approximation algorithms.

The event-detection setting we consider has many
applications. In this paper we are experimenting with
real-world datasets from city sensors and social media
applications, and we show that our methods are able to
discover successfully real events.

Our work opens many interesting directions for future
work. One challenge is to incorporate the temporal
dimension of the activity network in the graph-theoretic
framework and be able to discover events of varying
temporal support.

7. REFERENCES
[1] L. Akoglu and C. Faloutsos. What is strange in large

networks? graph-based irregularity and fraud
detection. Available at
http://www.cs.stonybrook.edu/~leman/icdm12,
2012. Tutorial presented at IEEE ICDM 2012.

[2] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karlo↵.
Improved approximation algorithms for

Dense Subgraph Discovery (DSD) KDD 2015 190 / 226



discovering heavy subgraphs

• maximize Q(S) = λW (S)− D(S)

• objective can by negative

• add a constant term to ensure non-negativity

• maximize Q(S) = λW (S)− D(S) + D(V )
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discovering heavy subgraphs

• maximize Q(S) = λW (S)− D(S) + D(V )

• objective is submodular (but not monotone)
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events discovered with bicing and 4square data
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(c) Washington, DC:
27.05.13 Memorial Day

(d) Los Angeles: 31.05.10
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(e) New York: 6.09.10
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Figure 4: Public holiday city-events discovered using the SDP algorithm.
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Problem variants VI :

dense subgraphs in interaction networks



dense subgraphs in interaction networks

• interaction networks : networks with temporal information

- phonecall networks

- SMS networks

- email networks

- conversation in social-media platforms

• hypothesis : analysis of temporal information

can reveal hidden structure

[Rozenshtein et al., 2014b]
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problem formulation

• given interaction network G = (V ,E )

• where edges E = {(u, v , t)} have time-stamps

• find

subset of vertices S ⊆ V , and

set T of k time intervals of bounded length

• so that the subgraph induced by S and projected in T

is as dense as possible
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iterative approach

• decompose the problem in two subproblems

1 given fixed set of intervals find densest subgraph

2 given fixed set of vertices find optimal set of intervals

• iterate until convergence

Dense Subgraph Discovery (DSD) KDD 2015 197 / 226



the two subproblems

• subproblem 1 : find optimal vertices given intervals
• standard densest subgraph problem
• use the algorithms of Goldberg, or Charikar, etc.

• subproblem 2 : find optimal intervals given vertices
• NP-hard problem
• develop greedy heuristic based on

the generalized maximum coverage problem
• iteratively add k intervals
• select a new interval to maximize density per unit of time

• due to concavity property
searching the next interval can be done in linear time
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sample experimental results — enron email network

dataset

Name |V | |π(E )| |E | |T | d(π(G )) d(H)

Enron 1143 2019 6245 8080 3.53 14.38

dynamic dense subgraphs

Community density Community size

Dataset B K ga ba Base ga ba Base

Enron 1 1 6.18 6.18 6.18 11 11 11
5 10 10.37 6.18 17 16 11
10 12.2 12.38 6.18 20 21 11

7 1 6.36 6.36 6.36 11 11 11
5 11.26 11.23 6.36 19 26 11
10 13.07 13.07 6.36 28 28 11
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sample experimental results — twitter network

Method Size Density Hashtags

ga 9 4.9 aaltoes, startup, vc, summerofstartups, web,
startups, entrepreneur, slush10, skype, funrank,
africa, mobile, demoday, design, linkedin, aalto
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sample experimental results — facebook network

duration duration duration duration
4h 8min 2 days, 2h 32min 13h 53min 5h 30min

duration duration duration density
17h 56min 21h 39min 21h 4min 4.24
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Open problems



Open problems I

• can we improve the (4 + ε) approximation guarantee?

• what about weighted graphs?

• polylogarithmic worst-case update time?

• space- and time-efficient fully dynamic algorithm for other graph
problems, e.g., single-source shortest paths?

– remark: for the connectivity problem, one can combine the
space-efficient streaming algorithm of [Ahn et al., 2012] with
the fully-dynamic algorithm of [Kapron et al., 2013]
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Open problems II

• improve lower bounds for dynamic case [Henzinger et al., 2015]

• for which graph problems does uniform sampling result in
high-quality approximation?

– triangle sparsifiers [Tsourakakis et al., 2011]

– densest subgraphs [Bhattacharya et al., 2015],
[Mitzenmacher et al., 2015]

– d-max cut, d-sum max clustering [Esfandiari et al., 2015]

– main difficulty: Chernoff + union bound does not work because
of exponential number of bad events
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Open problems III

• further study of top-k densest subgraph problem, and

develop approximation guarantees

• incorporate temporal and/or spatial information

application: finding local events in social networks

• dense subgraphs with query nodes in graph streams

preprocessing vs. query-time processing trade-off

• incorporate developed techniques into real-time analytics systems

• deploy existing tools on more real-world applications

(for code see https://github.com/tsourolampis)

Dense Subgraph Discovery (DSD) KDD 2015 205 / 226

https://github.com/tsourolampis


Acknowledgements

Shamir Khuller Renato Werneck Nikolaj Tatti

Dense Subgraph Discovery (DSD) KDD 2015 206 / 226



references I

Ahn, K. J., Guha, S., and McGregor, A. (2012).

Graph sketches: sparsification, spanners, and subgraphs.

In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May
20-24, 2012, pages 5–14.

Alon, N., Krivelevich, M., and Sudakov, B. (1998).

Finding a large hidden clique in a random graph.

Random Structures and Algorithms, 13(3-4):457–466.

Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., and Vespignani, A. (2005).

Large scale networks fingerprinting and visualization using the k-core
decomposition.

In NIPS.

Dense Subgraph Discovery (DSD) KDD 2015 207 / 226

http://doi.acm.org/10.1145/2213556.2213560


references II

Andersen, R. and Chellapilla, K. (2009).

Finding dense subgraphs with size bounds.

In Algorithms and Models for the Web-Graph, pages 25–37. Springer.

Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. (2012).

Dense subgraph maintenance under streaming edge weight updates for
real-time story identification.

Proceedings of the VLDB Endowment, 5(6):574–585.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.
(1955).

An empirical distribution function for sampling with incomplete information.

The Annals of Mathematical Statistics, 26(4):641–647.

Dense Subgraph Discovery (DSD) KDD 2015 208 / 226



references III

Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).

Densest subgraph in streaming and mapreduce.

Proceedings of the VLDB Endowment, 5(5):454–465.

Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., and Sozio, M. (2015).

Finding subgraphs with maximum total density and limited overlap.

In International Conference on Web Search and Data Mining (WSDM),
pages 379–388.

Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013).

Copycatch: stopping group attacks by spotting lockstep behavior in social
networks.

In Proceedings of the 22nd international conference on World Wide Web,
pages 119–130.

Dense Subgraph Discovery (DSD) KDD 2015 209 / 226



references IV

Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan, A.
(2010).

Detecting high log-densities: an o (n1/4) approximation for densest
k-subgraph.

In Proceedings of the 42nd ACM symposium on Theory of computing, pages
201–210. ACM.

Bhattacharya, S., Henzinger, M., Nanongkai, D., and Tsourakakis, C. E.
(2015).

Space-and time-efficient algorithm for maintaining dense subgraphs on
one-pass dynamic streams.

arXiv preprint arXiv:1504.02268.

Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999).

The maximum clique problem.

In Handbook of combinatorial optimization, pages 1–74. Springer.

Dense Subgraph Discovery (DSD) KDD 2015 210 / 226



references V

Bron, C. and Kerbosch, J. (1973).

Algorithm 457: finding all cliques of an undirected graph.

CACM, 16(9).

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012).

A tight linear time (1/2)-approximation for unconstrained submodular
maximization.

In IEEE Annual Symposium on Foundations of Computer Science (FOCS).

Charikar, M. (2000).

Greedy approximation algorithms for finding dense components in a graph.

In APPROX.

Dense Subgraph Discovery (DSD) KDD 2015 211 / 226



references VI

Chen, J. and Saad, Y. (2012).

Dense subgraph extraction with application to community detection.

Knowledge and Data Engineering, IEEE Transactions on, 24(7):1216–1230.

Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003).

Reachability and distance queries via 2-hop labels.

SIAM Journal on Computing, 32(5):1338–1355.

Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. (2014).

Robust distance queries on massive networks.

In Algorithms-ESA 2014, pages 321–333. Springer.

Dense Subgraph Discovery (DSD) KDD 2015 212 / 226



references VII

Epasto, A., Lattanzi, S., and Sozio, M. (2015).

Efficient densest subgraph computation in evolving graphs.

In Proceedings of the 24th International Conference on World Wide Web,
pages 300–310. International World Wide Web Conferences Steering
Committee.
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