
Finding Dense Subgraphs with Size Bounds

Reid Andersen and Kumar Chellapilla

Microsoft Live Labs, Redmond WA 98052, USA
{reidan,kumarc}@microsoft.com

Abstract. We consider the problem of finding dense subgraphs with
specified upper or lower bounds on the number of vertices. We intro-
duce two optimization problems: the densest at-least-k-subgraph prob-
lem (dalks), which is to find an induced subgraph of highest average
degree among all subgraphs with at least k vertices, and the densest
at-most-k-subgraph problem (damks), which is defined similarly. These
problems are relaxed versions of the well-known densest k-subgraph prob-
lem (dks), which is to find the densest subgraph with exactly k vertices.
Our main result is that dalks can be approximated efficiently, even for
web-scale graphs. We give a (1/3)-approximation algorithm for dalks
that is based on the core decomposition of a graph, and that runs in
time O(m + n), where n is the number of nodes and m is the number of
edges. In contrast, we show that damks is nearly as hard to approximate
as the densest k-subgraph problem, for which no good approximation
algorithm is known. In particular, we show that if there exists a polyno-
mial time approximation algorithm for damks with approximation ratio
γ, then there is a polynomial time approximation algorithm for dks with
approximation ratio γ2/8. In the experimental section, we test the algo-
rithm for dalks on large publicly available web graphs. We observe that,
in addition to producing near-optimal solutions for dalks, the algorithm
also produces near-optimal solutions for dks for nearly all values of k.

1 Introduction

The density of an induced subgraph is the number of edges contained in the
subgraph, divided by the number of vertices. Identifying subgraphs with high
density is a useful primitive, which has been applied to find web communities,
produce compressed representations of graphs, and identify link spam [9,14,20,8].

Effective heuristics have been developed to identify various kinds of dense
subgraphs. Kumar et al. gave an algorithm for finding bipartite cliques [20].
Dourisboure et al. gave a scalable heuristic for finding small dense communities in
web graphs [9]. The algorithm of Gibson et al. [14] finds dense communities using
two-level min-hashing, with the goal of identifying link spam. Generally speaking,
these algorithms are designed to find collections of small dense subgraphs that
are isolated from each other, which are often viewed as the dense centers of
communities in the graph. This is quite different from the task of finding a
single large dense subgraph that contains a significant fraction of the graph,
which is often used as a method of preprocessing or subsampling the graph.

K. Avrachenkov, D. Donato, and N. Litvak (Eds.): WAW 2009, LNCS 5427, pp. 25–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 R. Andersen and K. Chellapilla

The complexity of identifying dense subgraphs can vary greatly when addi-
tional constraints on the size of the subgraph are introduced. Finding the densest
subgraph with an arbitrary number of vertices is known as the densest subgraph
problem ds, and can be solved exactly in polynomial time by solving a sequence
of maximum flow problems [15,13]. The algorithm of Kortsarz and Peleg [18]
produces a (1/2)-approximation of the densest subgraph in linear time, which
is useful for graphs where the time required to compute maximum flows is pro-
hibitively large. In contrast, no efficient algorithm is known for the problem of
finding the densest subgraph with exactly k vertices, where k is specified as part
of the input. This is the densest k-subgraph problem, or dks. The dks problem
is NP-complete, and the best polynomial time algorithm known for dks (due to
Feige, Peleg, and Kortsarz) has the approximation ratio n−(1/3)+δ, for a small
constant δ [11].

We want to control the size of the dense subgraphs we find, but we need to
avoid the difficult task of finding dense subgraphs of a specified size. In this paper,
we address this problem by introducing two variations of the densest subgraph
problem: finding the densest subgraph with at least k vertices, and finding the
densest subgraph with at most k vertices. We refer to these as the densest at-
least-k-subgraph problem (dalks), and the densest at-most-k-subgraph problem
(damks). These two relaxed versions of the densest k-subgraph problem roughly
correspond to the two types of applications for dense subgraphs described earlier;
for finding communities one would want an algorithm to solve damks, and for
preprocessing a graph one would want an algorithm for dalks. Our main result
is to show that dalks can be solved efficiently, while damks is nearly as hard to
approximate as dks. In Section 3, we introduce a (1/3)-approximation algorithm
for dalks that runs in time O(m + n) in an unweighted graph. In Section 4, we
prove a reduction that shows any polynomial time γ-approximation algorithm for
damks can be used to design a polynomial time (γ2/8)-approximation algorithm
for dks.

Our algorithm for dalks is based on the core decomposition, and it can be viewed
as a generalizationofKortsarz andPeleg’s (1/2)-approximationalgorithmfordens-
est subgraph problem [18]. The core decomposition was first introduced as a tool
for social network analysis [19]. It has been used in several applications, including
graph drawing [2] and the analysis of biological networks [21].

In Section 6, we present experimental results for dalks on publicly available
webgraphs. We demonstrate that the algorithm finds subgraphs with nearly
optimal density while providing considerable control over the subgraph size.
Surprisingly, we observe that on typical web graphs, the algorithm also produces
a good approximation of the densest subgraph on exactly k vertices, for nearly
all values of k. In Section 5, we describe theoretical results that help to explain
this observation. We introduce two graph parameters based on the density of the
graph’s cores. Given these parameters, we prove bounds on the range of k for
which our algorithm produces a good approximation for the densest k-subgraph
problem.

Finding Dense Subgraphs with Size Bounds 27

1.1 Related Work

Here we survey results on the complexity of the densest k-subgraph problem.
The best approximation algorithm known for the general problem (when k is
specified as part of the input) is the algorithm of Feige, Peleg, and Kortsarz [11],
which has approximation ratio O(n−(1/3)+δ), for a small constant δ > 0. For any
particular value of k, the greedy algorithm of Asahiro et al. [6] gives the ratio
O(k/n). Algorithms based on linear programming and semidefinite programming
have produced approximation ratios better than O(k/n) for certain values of k,
but do not improve the approximation ratio for the general case [12,10].

Feige and Seltser [12] showed that dks is NP-complete when restricted to
bipartite graphs of maximum degree 3, by a reduction from max-clique. This
reduction does not produce a hardness of approximation result for dks. In fact,
they showed that if a graph contains a k-clique, then a subgraph with k vertices
and (1 − ε)

(
k
2

)
edges can be found in subexponential time. Khot [17] proved

there can be no PTAS (polynomial time approximation scheme) for the densest
k-subgraph problem, under a reasonable complexity assumption. Arora, Karger,
and Karpinski [4] gave a PTAS for the special case k = Ω(n) and m = Ω(n2).
Asahiro, Hassin, and Iwama [5] showed that the problem is still NP-complete
for very sparse graphs.

Kannan and Vinay [16] introduced a different objective function for density,
which is defined for a pair of vertex subsets S and T rather than a single sub-
graph. They gave an O(log n)-approximation for this objective function using
spectral techniques. Charikar [7] later gave a linear time (1/2)-approximation al-
gorithm for this objective function, based on the core decomposition, and showed
that the problem can be solved exactly by linear programming. A local algorithm
for finding small subgraphs with high density according to the Kannan-Vinay
objective function was described in [3].

2 Definitions

Let G = (V, E) be an undirected graph with a weight function w : E → R+ that
assigns a positive weight to each edge. The weighted degree w(v, G) is the sum
of the weights of the edges in G incident with v. The total weight W (G) is the
sum of the weights of the edges in G.

Definition 1. For any induced subgraph H of G, the density d(H) of H is

d(H) :=
W (H)
|H | .

Definition 2. For an undirected graph G, we define the following quantities.

Dal(G, k) := the maximum density of any induced subgraph of G with at least
kvertices.

Dam(G, k) := the maximum density of any induced subgraph of G with at most
kvertices.

28 R. Andersen and K. Chellapilla

Deq(G, k) := the maximum density of any induced subgraph of G with exactly
kvertices.

Dmax(G) := the maximum density of any induced subgraph of G.

The densest at-least-k-subgraph problem (dalks) is to find an induced subgraph
with at least k vertices achieving density Dal(G, k). Similarly, the densest at-
most-k-subgraph problem (damks) is to find an induced subgraph with at most
k vertices achieving density Dam(G, k). The densest k-subgraph problem (dks)
is to find an induced subgraph with exactly k vertices achieving Deq(G, k), and
the densest subgraph problem (ds) is to find an induced subgraph of any size
achieving Dmax(G).

We now define what it means to be an approximation algorithm for dalks.
Approximation algorithms for damks, dks, and ds are defined similarly.

Definition 3. We say an algorithm A(G, k) is a γ-approximation algorithm
for the densest at-least-k-subgraph problem if, for any graph G and integer k, it
returns an induced subgraph H ⊆ G with at least k vertices and density d(H) ≥
γDal(G, k).

3 Finding Dense Subgraphs with at Least k Vertices

In this section, we describe an algorithm FindLargeDenseSubgraph that is a
(1/3)-approximation algorithm for the densest at-least-k-subgraph problem and
that runs in time O(m + n) in an unweighted graph. The algorithm is described
in Table 1. The main step of the algorithm computes the core decomposition
of the graph using a well-known greedy procedure (see [18,7,2]). This produces
an ordering (v1, . . . , vn) of the vertices of the graph, after which the algorithm
outputs a subgraphs of the form {v1, . . . , vj}. Kortsarz and Peleg [18] used the
core decomposition to give a (1/2)-approximation algorithm for ds. Theorem 1
extends their result to show that the core decomposition can be used to approx-
imate dalks.

Theorem 1. FindLargeDenseSubgraph(G, k) is a (1/3)-approximation algo-
rithm for the densest at-least-k-subgraph problem.

The proof of Theorem 1 is in Section 3.1.
The core decomposition procedure, which dominates the running time of

FindLargeDenseSubgraph, can be implemented to run in time O(m + n) in
an unweighted graph and O(m + n logn) in a weighted graph. For a proof, we
refer the reader to [18]. This implies the following proposition.

Proposition 1. The running time of FindLargeDenseSubgraph(G, k) is O(m+
n) in an unweighted graph, and O(m + n logn) in a weighted graph.

Finding Dense Subgraphs with Size Bounds 29

FindLargeDenseSubgraph(G, k) :
Input: a graph G with n vertices, and an integer k.
Output: an induced subgraph of G with at least k vertices.

1. Compute the core decomposition of G:
Let Hn = G and repeat the following for i = n, . . . , 1,
(a) Let ri be the minimum weighted degree of any vertex in Hi.
(b) Let vi be a vertex of minimum weighted degree, where w(vi, Hi) = ri.
(c) Remove vi from Hi to form the induced subgraph Hi−1.
(d) Update the values of W (Hi) and d(Hi) as follows,

W (Hi−1) = W (Hi) − 2ri,

d(Hi−1) = W (Hi−1)/(i − 1).

Note that part 1 produces an ordering of the vertices v1, . . . , vn, where v1 is
the last vertex removed and vn is the first. The set Hi consists of the vertices
{v1, . . . , vi}.

2. Output the subgraph Hi with the largest density d(Hi) over all i ≥ k.

Fig. 1. Description of FindLargeDenseSubgraph

3.1 Analysis of the Algorithm

To analyze FindLargeDenseSubgraph, we consider the relationship between in-
duced subgraphs of G with high average degree (dense subgraphs) and induced
subgraphs of G with high minimum degree (w-cores).

Definition 4. Given a graph G and a weight w ∈ R, the w-core Cw(G) is the
unique largest induced subgraph of G with minimum weighted degree at least w.

Here is an outline of how we will proceed. We first show that the
FindLargeDenseSubgraph algorithm computes all the w-cores of G (Lemma 1).
We then show that for any induced subgraph H of G with density d, the (2d/3)-
core of G has total weight at least W (H)/3 (Lemma 2). We prove Theorem 1
using these two lemmas.

Lemma 1. Let {H1, . . . , Hn}, and {r1, . . . , rn} be the induced subgraphs and
weighted degrees determined by the algorithm FindLargeDenseSubgraph on the
input graph G. For any w ∈ R, let I(w) be the largest index such that rI(w) ≥ w.
Then, HI(w) = Cw(G). In other words, every w-core of G is equal to one of the
subgraphs Hi.

Proof. Fix a value of w. It easy to see (by induction) that none of the vertices
vn . . . vI(w)+1 that were removed before vI(w) can be contained in an induced
subgraph with minimum degree at least w. That implies Cw(G) ⊆ HI(w). On
the other hand, the minimum degree of HI(w) is at least w, so HI(w) ⊆ Cw(G).
Therefore, HI(w) = Cw(G). ��

30 R. Andersen and K. Chellapilla

Lemma 2. For any graph G with n nodes, total weight W , and density d =
W/n, the d-core of G is nonempty. Furthermore, for any α ∈ [0, 1], the total
weight of the (αd)-core of G is strictly greater than (1 − α)W .

Proof. Let {H1, . . . , Hn} be the induced subgraphs determined by
FindLargeDenseSubgraph on the input graph G. Fix a value of w, and let
I(w) be the largest index such that rI(w) ≥ w. Recall that HI(w) = Cw(G)
by Lemma 1. Since each edge in G is removed once during the course of the
algorithm,

W =
n∑

i=1

ri

=
I(w)∑

i=1

ri +
n∑

i=I(w)+1

ri

< W (HI(w)) + w · (n − I(w))
≤ W (Cw(G)) + w · n.

Therefore,

W (Cw(G)) > W − w · n.

Taking w = d = W/n in the equation above, we learn that W (Cd(G)) > 0.
Taking w = αd = αW/n, we learn that W (Cαd(G)) > (1 − α)W . ��

Proof (Theorem 1). Let {H1, . . . , Hn} be the induced subgraphs computed by
FindLargeDenseSubgraph on the input graph G. It suffices to show that for any
k, there is an integer I ∈ [k, n] satisfying d(HI) ≥ Dal(G, k)/3.

Let H∗ be an induced subgraph of G with at least k vertices and with density
d∗ = W (H∗)/|H∗| = Dal(G, k). We apply Lemma 2 to H∗ with α = 2/3 to
show that C(2d∗/3)(H∗) has total weight at least W (H∗)/3. This implies that
C(2d∗/3)(G) has total weight at least W (H∗)/3.

The core C(2d∗/3)(G) has minimum degree at least 2d∗/3, so its density is at
least d∗/3. Lemma 1 shows C(2d∗/3)(G) = HI , for I = |C(2d∗/3)(G)|. If I ≥ k,
then HI satisfies the requirements of the theorem. If I < k, then C(2d∗/3)(G) =
HI is contained in Hk, and the following calculation shows that Hk satisfies the
requirements of the theorem.

d(Hk) =
W (Hk)

k
≥

W (C(2d∗/3)(G))
k

≥ W (H∗)/3
k

= d∗/3. ��

We remark that our analysis of FindLargeDenseSubgraph is a gener-
alization of the result of Kortsarz-Peleg [18]. Their result shows that
FindLargeDenseSubgraph(G, 1) is a (1/2)-approximation algorithm for ds. This
follows from the fact that if w = Dmax(G), then the w-core of G is nonempty,
which is a special case of Lemma 2.

Finding Dense Subgraphs with Size Bounds 31

4 Finding Dense Subgraphs with at Most k Vertices

The densest at-most-k-subgraph problem is NP-complete by a reduction to the
max-clique problem, since a subgraph of size at most k has density at least
(k − 1)/2 if and only if it is a k-clique. Feige and Seltser [12] proved that the
densest k-subgraph problem is NP-complete even when restricted to graphs with
maximum degree 3, and their proof implies that the densest at-most-k-subgraph
problem is NP-complete when restricted to the same class of graphs.

In this section, we show that damks is nearly as hard to approximate as dks.
We show that if there exists a polynomial time pseudo-approximation algorithm
for damks, which outputs a set of at most βk vertices with density at least γ times
the density of the densest subgraph with at most k vertices, then there exists
a polynomial time approximation algorithm for dks with ratio γ min(γ, β−1)/8.
As an immediate consequence, a polynomial time γ-approximation algorithm for
damks would imply a polynomial time (γ2/8)-approximation algorithm for dks.

Definition 5. An algorithm A(G, k) is a (β, γ)-algorithm for the densest at-
most-k-subgraph problem if for any input graph G and integer k, it returns an
induced subgraph of G with at most βk vertices and density at least γDam(G, k).

Theorem 2. If there is a polynomial time (β, γ)-algorithm for the densest at-
most-k-subgraph problem (where β ≥ 1 and γ ≤ 1), then there is a polyno-
mial time (γ min(γ, β−1)/8)-approximation algorithm for the densest k-subgraph
problem.

Proof. Assume there exists a polynomial time algorithm A(G, k) that is (β, γ)-
algorithm for damks. We will now describe a polynomial time approximation
algorithm for dks.

Given as input a graph G and integer k, let G1 = G, let i = 1, and repeat the
following procedure. Let Hi = A(Gi, k) be an induced subgraph of Gi with at
most βk vertices and with density at least γDam(Gi, k). Remove all the edges
in Hi from Gi to form a new graph Gi+1 on the same vertex set as G. Repeat
this procedure until all edges have been removed from G.

Let ni be the number of vertices in Hi, let Wi = W (Hi), and let di = d(Hi) =
Wi/ni. Let H∗ be an induced subgraph of G with exactly k vertices and density
d∗ = Deq(G, k). Notice that if (W1 + · · · + Wt−1) ≤ W (H∗)/2, then dt ≥ γd∗/2.
This is true because dt is at least γ times the density of the induced subgraph
of Gt on the vertex set of H∗, which is at least

W (H∗) − (W1 + · · · + Wt−1)
k

≥ W (H∗)
2k

=
d∗
2

.

Let T be the smallest integer such that (W1 + · · · + WT) ≥ W (H∗)/2, and let
UT be the induced subgraph on the union of the vertex sets of H1, . . . , HT . The
total weight W (UT) is at least W (H∗)/2. The density of UT is

d(UT) =
W (UT)
|UT | ≥ W1 + · · · + WT

n1 + · · · + nT
≥ min

1≤t≤T

Wt

nt
≥ γ

d∗
2

.

32 R. Andersen and K. Chellapilla

To bound the number of vertices in UT , notice that (n1 + · · · + nT−1) ≤ γ−1k,
because

d∗k
2

=
W (H∗)

2
≥

T−1∑

i=1

Wi =
T−1∑

i=1

nidi ≥ γ
d∗
2

T−1∑

i=1

ni.

Since nT is at most βk, we have |UT | ≤ (n1 + · · · + nT) ≤ (γ−1 + β)k.
There are now two cases to consider. If |UT | ≤ k, then we pad UT with

arbitrary vertices to form a set U ′
T of size exactly k. The set U ′

T is still sufficiently
dense:

d(U ′
T) ≥ W (H∗)/2

k
=

d∗
2

.

If |UT | > k, then we employ a simple greedy procedure to reduce the number
of vertices. We begin with the induced subgraph UT , greedily remove the vertex
with smallest degree to obtain a smaller subgraph, and repeat until exactly k
vertices remain. The resulting subgraph U ′′

T has density at least d(UT)(k/2|UT |)
by the method of conditional expectations (this technique was also used in [11]).
The set U ′′

T is sufficiently dense:

d(U ′′
T) ≥ d(UT)

k

2|UT | ≥ γ
d∗
2

(
k

2(γ−1 + β)k

)
= d∗

γ

4(γ−1 + β)

≥ d∗
γ

8 max(γ−1, β)
= d∗

γ min(γ, β−1)
8

. ��

5 Finding Dense Subgraphs of Specified Size

The previous section shows that the densest at-least-k subgraph problem is easy
to approximate within a constant factor for any graph and any value of k. The
densest k-subgraph problem seems hard to approximate well in the worst case,
but we may still be able to find near-optimal solutions for specific instances. In
this section we describe a method for identifying a range of k-values for which
we can obtain a good approximation of the densest k-subgraph.

Here is an outline of our approach. We first define a graph parameter k∗(G) ∈
[1, n]. We then prove that for all k ≥ k∗, the algorithm FindLargeDenseSubgraph
can be used to find a (1/3)-approximation of the densest subgraph with exactly
k vertices. In Section 6, we observe empirically that for several example web
graphs, the value of k∗ is only a small fraction of n.

Definition 6. For a given graph G, let w∗ be the smallest value such that the
average degree of the core C(w∗) is less than 2w∗. Let k∗(G) = |C(w∗)| be the
number of vertices in that core.

Roughly speaking, k∗ describes how small a core of the graph must be before it
can be nearly degree-regular. The following theorem shows that for every k ≥ k∗,
the set Hk produced by FindLargeDenseSubgraph has density at least 1/3 of
the densest k-subgraph.

Finding Dense Subgraphs with Size Bounds 33

Theorem 3. Let {v1, . . . , vn} be the ordering of the vertices produced by
FindLargeDenseSubgraph, and let Hk = {v1, . . . , vk}. Then, for any k ≥ k∗
we have d(Hk) ≥ (1/3)Deq(G, k).

Proof. We will first show the following:

d(Hk+1) ≤ d(Hk) for all k ≥ k∗. (1)

Once we show this, then for any k ≥ k∗ we have

d(Hk) = max
j≥k

Hj ≥ 1
3
Dal(k) ≥ 1

3
Deq(k).

The middle step follows from the approximation guarantee proved in Theorem 1.
To prove (1), it suffices to take an arbitrary value of w for which |Cw| > k∗, and

show that d(Hj−1) ≥ d(Hj) for all j in the interval (|Cw+1|, |Cw|]. We prove this
by induction, first assuming d(Hj) ≥ d(Cw) and then proving d(Hj−1) ≥ d(Cw).
Recall that r(j) is the degree of vj in Hj . Then,

d(Hj−1) =
j · d(Hj) − 2r(j)

j − 1
≥ j · d(Hj) − d(Hj)

j − 1
= d(Hj).

Here we used the fact that 2r(j) ≤ d(Hj). This is true because r(j) ≤ w, our
assumption that |Cw| ≥ k∗ implies w ≤ d(Cw)/2, and our induction assumption
implies d(Cw)/2 ≤ d(Hj)/2. ��

When k < k∗ the previous theorem doesn’t apply, but we can still bound the
ratio between d(Hk) and the optimal density Deq(k). The following bound holds
for any k ∈ [1, n], and can be computed easily by observing the densities of the
sets H1, . . . , Hn.

Lemma 3. Let Rk = maxj≥k
d(Hj)
d(Hk) . For any value of k, we have d(Hk) ≥

Rk

3 Deq(G, k).

Proof. For any value of k, we have

d(Hk) = Rk max
j≥k

d(Hj) ≥ Rk

3
Dal(k) ≥ Rk

3
Deq(k).

The middle step follows from the approximation guarantee proved in
Theorem 1. ��

We remark that to prove Theorem 3, we showed that Rk = 1 for all k ≥ k∗. In
the next section we will compute the values of k∗ and Rk for several example
graphs.

6 Experiments

In this section we present experimental results on four example graphs. The
graphs and their sizes are listed in Table 1. Three of these graphs are publicly

34 R. Andersen and K. Chellapilla

Table 1. Graph size, running time, and the observed value of k∗

graph num nodes (n) total degree (2m) running time (sec) k∗
domain-2006 55,554,153 1,067,392,106 263.81 9,445
webbase-2001 118,142,156 1,985,689,782 204.573 48,190

uk-2005 39,459,926 1,842,690,156 92.271 368,741
cnr-2000 325,558 6,257,420 0.359 13,237

Table 2. Attributes of the densest core, highest core, and w∗ core in the four test
graphs

graph core number nodes in core density worst Rk

w |Cw| d(Cw) maxk≥|Cw| Rk

domain-2006
w∗ core 1099 9445 2196.32 1

densest core 1203 4737 2275.96 .9694
highest core 1298 2502 2072.42 .9104

webbase-2001
w∗ core 548 48190 1089.42 1

densest core 2281 1219 2436 .8547
highest core 2281 1219 2436 .8547

uk-2005
w∗ core 258 368741 515.851 1

densest core 1002 587 1171.98 .8871
highest core 1002 587 1171.98 .8871

cnr-2000
w∗ core 38 13237 75.1145 1

densest core 116 82 161.976 .9138
highest core 116 82 161.976 .9138

available webgraphs from the Laboratory for Web Algorithmics1 at the Univerita
Degli Studi Di Milano. The graph webbase-2001 was obtained from the 2001
crawl performed by the WebBase crawler. The graph uk-2005 was obtained from
a 2005 crawl of the .uk domain, performed by UbiCrawler. The graph cnr-2000
was obtained from a small crawl of the Italian CNR domain. These graphs were
chosen because they are fairly large, easy to obtain, and have been used in
previous research papers. The remaining graph domain-2006 is a snapshot of
the domain graph in September 2006, from Microsoft.

These were originally directed graphs, but we have treated them as undirected
graphs in the following way. We consider a directed link from a vertex u to a
vertex v as an undirected link between u and v. We remark that there will be a
link with multiplicity 2 between u and v in this undirected graph if both (u, v)
and (v, u) appeared in the original directed graph. For this reason, the average
degree of a subgraph on k vertices may be as large as 2(k − 1). In addition, we

1 http://law.dsi.unimi.it/

Finding Dense Subgraphs with Size Bounds 35

10
0

10
5

10
10

10
0

10
1

10
2

10
3

10
4

Number of vertices in core

webbase−2001

Core number
Average Degree x (1/2)

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

Number of vertices in core

cnr−2000

Core number
Average Degree x (1/2)

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

Number of vertices in core

domaingraph−2006

Core number
Average Degree x (1/2)

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

Number of vertices in core

uk−2005

Core number
Average Degree x (1/2)

Fig. 2. Plots of core size versus core number and core density in four webgraphs

removed all self-loops from the graphs. The total degrees reported in Table 1
were computed after these modifications were made.

In Table 1, we report running times for our implementation of FindLarge
DenseSubgraph. We implemented the algorithm in C++, and ran our exper-
iments on a single machine with 64GB of RAM and a 3.0Ghz quad-core Intel
Xeon processor. Only one of the processor cores was used by the algorithm. The
time we report is the time required to compute the core decomposition, which
produces an ordering of all vertices in the graph. The running time does not
include the time required to load the graph from disk into memory.

We also report in Table 1 the values of k∗ for each of these graphs. We observe
that k∗ is small compared to the number of vertices in the graph, which is good
because our algorithm produces a good approximation of the densest k-subgraph
for all k larger than k∗. In Table 2 we report statistics for three special cores in
each of the example graphs. We report the w∗-core (see Definition 6), which is

36 R. Andersen and K. Chellapilla

the core that determines the value of k∗. We report the core that has the highest
density (densest core), and we also report the highest value of w for which the
w-core is nonempty (highest core). Note that these last two are not the same
in general, but they end up being the same for three of our example graphs.
For each of these special cores we report the w-value of the core, the number of
vertices in the core, and the density of the core.

For each of the cores in Table 2 we also report a statistic regarding the quantity
Rk described in Lemma 3. For each core Cw we report “worst Rk”, which we
define to be the smallest value of Rk over all values of k ≥ |Cw|. The table
indicates that “worst Rk” is close to 1 for the highest core, which means we can
approximate dks well for all values of k above the size of the highest core. For
example, in the graph domain-2006, the highest core contains 2502 nodes and
has a value of .9104 for worst Rk. That means for all values of k ≥ 2502, the set
Hk produced by FindLargeDenseSubgraph on domain-2006 is within a factor of
.9104 ∗ 1/3 of the densest subgraph on exactly k vertices, by Lemma 3.

Figure 2 contains a plot for each of the four webgraphs that shows the size,
core number, and density of all of the graph’s cores. Each of the plots in the
figure has two curves. Each point on the curve represents a w-core. One curve
shows the core number, the other shows the density of the core, and both are
plotted against the number of vertices in the core. The value of k∗ can be seen
from these plots; it is the x-coordinate of the first point (from right to left) at
which these two curves intersect.

References

1. Abello, J., Resende, M.G.C., Sudarsky, R.: Massive quasi-clique detection. In: Ra-
jsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002)

2. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale net-
works fingerprinting and visualization using the k-core decomposition. Advances
in Neural Information Processing Systems 18, 41–50 (2006)

3. Andersen, R.: A local algorithm for finding dense subgraphs. In: Proc. 19th ACM-
SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1003–1009 (2008)

4. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for
dense instances of NP-hard problems. In: Proc. 27th ACM Symposium on Theory
of Computing (STOC 1995), pp. 284–293 (1995)

5. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Appl. Math. 121(1-3), 15–26 (2002)

6. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. J. Algorithms 34(2), 203–221 (2000)

7. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

8. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM 2008: Proceedings of the international
conference on web search and web data mining, pp. 95–106 (2008)

9. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense
communities in the web. In: WWW 2007: Proceedings of the 16th international
conference on World Wide Web, pp. 461–470 (2007)

Finding Dense Subgraphs with Size Bounds 37

10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

11. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

12. Feige, U., Seltser, M.: On the densest k-subgraph problem, Technical report, De-
partment of Applied Mathematics and Computer Science, The Weizmann Institute,
Rehobot (1997)

13. Gallo, G., Grigoriadis, M., Tarjan, R.: A fast parametric maximum flow algorithm
and applications. SIAM J. Comput. 18(1), 30–55 (1989)

14. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: Proc. 31st VLDB Conference (2005)

15. Goldberg, A.: Finding a maximum density subgraph, Technical Report UCB/CSB
84/171, Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA (1984)

16. Kannan, R., Vinay, V.: Analyzing the structure of large graphs (manuscript) (1999)
17. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-

tite clique. SIAM Journal on Computing 36(4), 1025–1071 (2006)
18. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–

236 (1994)
19. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–

287 (1983)
20. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for

emerging cyber-communities. In: Proc. 8th WWW Conference (WWW 1999)
(1999)

21. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5, 444 (2005)

	Finding Dense Subgraphs with Size Bounds
	Introduction
	Related Work

	Definitions
	Finding Dense Subgraphs with at Least k Vertices
	Analysis of the Algorithm

	Finding Dense Subgraphs with at Most k Vertices
	Finding Dense Subgraphs of Specified Size
	Experiments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

