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course agenda

e introduction to graph mining Tue afternoon

e computing basic graph statistics  Tue afternoon, Wed morning

e finding dense subgraphs Wed afternoon, Thu morning
e spectral graph analysis Thu afternoon
e additional topics Fri morning

— inferring hierarchies in graphs
— mining dynamic graphs

— graph sparsifiers



spectral graph theory



spectral graph theory

objective :
e view the adjacency (or related) matrix of a graph with a
linear algebra lens
e identify connections between spectral properties of such a
matrix and structural properties of the graph

e connectivity
¢ bipartiteness
e cuts

e spectral properties = eigenvalues and eigenvectors

e in other words, what does the eigenvalues and
eigenvectors of the adjacency (or related) matrix
tell us about the graph?



background: eigenvalues and eigenvectors

e consider areal n x n matrix A, i.e., A € R™"
e \ e Cisan eigenvalue of A
if there exists x € C", x # 0

such that
AX = )\X

e such a vector x is called eigenvector of A
e alternatively,
(A—X)x=0 or det(A-\)=0

e it follows that A has n eigenvalues
(possibly complex and possibly with multiplicity > 1)



background: eigenvalues and eigenvectors

e consider a real and symmetric n x n matrix A
(e.g., the adjacency matrix of an undirected graph)

e then

— all eigenvalues of A are real

— eigenvectors of different eigenvalues are orthogonal
i.e., if x4 an eigenvector of \;
and x, an eigenvector of A\,
then \q # )\ implies x4 L X, (or x/x, = 0)

e Ais positive semi-definite if X" Ax > 0 for all x € R”

e a symmetric positive semi-definite real matrix has
real and non negative eigenvalues



background: eigenvalues and eigenvectors

e consider a real and symmetric n x n matrix A

e the eigenvalues )1, ..., \, of A can be ordered

e theorem [variational characterization of eigenvalues]

xTAx
An = max =
x£0 XTx

xTAx

A1 = min

H x 3 ” H
A2 = min T and “so on” for the other eigenvalues

¢ very useful way to think about eigenvalues



background: eigenvalues and eigenvectors

the inverse holds, i.e.,

T CAXX
x"Ax . Z iiXiX]
Ay =min =——= =min %
x20 XTX  x20 > X

and if x is an optimal vector, then x is eigenvector of \;

similarly

ho— min XAX i 2 A%
27 %20 X'X  x£0 S x?

xTx;=0 xTx;=0

and if x is an optimal vector, then x is eigenvector of A\,



spectral graph analysis

¢ apply the eigenvalue characterization for graphs
e question : which matrix to consider ?
— the adjacency matrix A of the graph
— some matrix B so that x” B x is related to a structural
property of the graph

e consider G = (V. E) an undirected and d-regular graph
(regular graph is used wlog for simplicity of expositions)
¢ let A be the adjacency matrix of G:
o define the laplacian matrix of G as
’ 1 ifi=j
L:I—aA or L,-j{1/d |f( )GE,/:;éj:
0 (i) EEI#]



spectral graph analysis

o for the laplacian matrix L = | — %A it is

’
x'Lx = g > xu—xf?
(u,v)eE

e here, x, is the coordinate of the eigenvector x

that corresponds to vertex v € V
e eigenvector x is seen as a one-dimensional embedding
e i.e., mapping the vertices of the graph onto the real line




spectral graph analysis

high-level remark
e many graph problems can be modeled as mapping of
vertices to a discrete space
e.g., a cut is a mapping of vertices to {0, 1}

e we aim to find a spectral formulation so that an
eigenvector x is a relaxation of the discrete graph problem

i.e., optimizes the same objective but without the
integrality constraint



the smallest eigenvalue

apply the eigenvalue characterization theorem for L
e whatis \{ ?

2
A1 = min XTLx o 2 (uveeXu = Xv

xA0 XTX  x£0  dY X2

e observe that A\ > 0
e canitbe \y =07

e yes: take x to be the constant vector



the second smallest eigenvalue

apply the eigenvalue characterization theorem for L

e whatis \» ?

2
. xTLx D (uv)eE Xu — Xy
Ao = min - = min
xA0 X'X X0 dzue\/xu
xTx1=0 xTx1=0

e canitbe \o =07

e )\, = 0if and only if the graph is disconnected

map the vertices of each connected component to
a different constant



the k-th smallest eigenvalue

e alternative characterization for \j

2
. Z(u v)eE ‘XU Xv
Ak = min max
20 I ey X8
S:k-dim

e )\ = 0if and only if the graph has at least k connected
components



the largest eigenvalue

e what about )\, ?

2
x"Lx 2 (uv)eE [Xu = Xy
An = max = max '

x£0 XX x20  dY .y XE
e consider a boolean version of this problem
e restrict mappingto {—1,+1}

2
A, > E(U,V)EE ‘XU — Xv
n —
xe{—1,+1}n d> ey X5




the largest eigenvalue

e mapping of vertices to {—1,+1} corresponds to a cut S
then

Z(u,v)eE ‘XU - XV|2
xe{—1,+1}n dZuevXE
max 4E(S,V\S)

SCvV an
_ 4E(S,V\S)
- &2

2 maxcut(G)
|E

e it follows that if G bipartite then )\, > 2
(because if G bipartite exists S that cuts all edges)



the largest eigenvalue

e on the other hand

Z(u,v)eE ’XU - XV‘Z
An = max 5
x7#0 dZueVXu

2dz:uev XE - Z(u,V)EE(XU + Xv)2

= max
x40 d> ey Xe
Xy + Xy)?
— 2_min Z(u,v)eE( u v)

X0 d> ey X2

e first note that \, < 2
e \;=2iffthereis x s.t. x, = —x, forall (u,v) € E

e )\, = 2iff G has a bipartite connected component



summary so far

eigenvalues and structural properties of G :
e \» = 0iff Gis disconnected
e )\, = 0iff G has at least k connected components

e )\, = 2iff G has a bipartite connected component



robustness

e how robust are these results ?

e for instance, what if \o = ¢?
is the graph G almost disconnected ?
i.e., does it have small cuis ?

e or,whatif \, =2 —¢?

does it have a component that is “close” to bipartite ?



the second eigenvalue

A min Z(u,v)eE(XU B XV)2 min Z(U,V)EE(XU - XV)2
2= 2 - d
e I luer X 2o 0 2(umere(Xu = x)°

where V/? is the set of ordered pairs of vertices

why?
2
Z (Xy — xy)? = n2x5 - 2quxv = anE -2 (qu>
(u,v)eve v u,v v u

and > x,=0 since x'x; =0
u



the second eigenvalue

Ao = min Z(U’V)EE(XU - Xv)2 — mi n IE(U,V)GE[(XU — Xv)2]
xTX;in % Z(“’V)EVZ(XU B Xv)2 XTX)Zfio O'IE(MV)EV2 [(xu — Xv)z]

consider again discrete version of the problem, x, € {0,1}

n IE(u v)eE[(Xu - Xv)z] . nE(S §)
min  ——— = min — " — usc(G
x£{0,1}" dE, pyeve[(Xu —Xv)?]  scvd |G| (G)
X non const

usc(@) : uniform sparsest cut of G



uniform sparsest cut

e it can be shown that

Ao < Usc(G) < /8Xs
e the first inequality holds the by definition of relaxation
e second inequality is constructive :
e if x is an eigenvector of )\,
then there is some ¢ € V such that
thecut (S,V\S)=({ue V|xy<x},{ueV|xy,>x})
has cost usc(S) < /8X,



conductance

conductance : another measure for cuts
the conductance of a set S C V is defined as

o(s) = TS

expresses the probability to “move out” of S by following
a random edge from S

we are interested in sets of small conductance

the conductance of the graph G is defined as

¢(G)= min  §(S)
0<S<|V|/2



Cheeger’s inequality

Cheeger’s inequality:

A2 - usc(G)

5 <> <9(G) < V22X

= conductance is small if and only if A, is small

the two leftmost inequalities are “easy” to show

the first follows by the definition of relaxation

the second follows by

usc(S) _ n E(S,V\S)

2 2d |S|V\ S

< EEIAS) _ ys)

since |[V\ S| > n/2



Cheeger’s inequality

< ¢(G) < V2X2
¢ the rightmost inequality is the “difficult” to show

e proof sketch (three steps):
1. consider a vectory > 0
— wecanfindaset SC {ve V |y, >0} such that

> (uv)ee [Yu — Wl
a2 ev Iyl

pick random t € [0, max, y,| and define S = {v | y, > {}
then ¢(S) < r.h.s on expectation
thus, there is some f that the property holds

P(S) <

(no squares)



Cheeger’s inequality

A2 - usc(QG)
2 - 2

< 9(G) < V2

e proof sketch (three steps):

2. given a vector x we can find another vector y such that

Z(u,v)eE Yu =Wl < \/ZZ(U,V)GE Xy — xv|?
> peviVul  — d> ey [Xul?

and  [{v |y, >0} <3

— proof of this claim is constructive; uses Cauchy-Schwarz

3. take x to be the eigenvector of Ao



generalization to non-regular graphs

G = (V, E) is undirected and non-regular

let d, be the degree of vertex u

define D to be a diagonal matrix whose u-th diagonal
elementis d,

the normalized laplacian matrix of G is defined

L=/-D12ApD /2
or

1 fu=v
Ly = —-1/v/aydy, if(u,v)e E;u#v
0 if (u,v) g E,u#v



generalization to non-regular graphs

e with the normalized laplacian

the eigenvalue expressions become (e.g., \o)

Ao = min > (uy)ee(Xu — xv)?

x#0 Zue 4 dUXE

<X,X1 >D:O

where we use weighted inner product

(X,¥)p = Z duXuYu

ueV



summary so far

eigenvalues and structural properties of G :
e )\» = 0 iff G is disconnected
e )\ = 0iff G has at least k connected components
e )\, = 2iff G has a bipartite connected component

e small \, iff G is “almost” disconnected (small conductance)



random walks



random walks

consider random walk on the graph G by following edges

from vertex / move to vertex j with prob. 1/d;if (i.j) € E

pgt) probability of being at vertex / at time ¢

process is described by equation p{*1) = p(O P,
where P = D' Ais row-stochastic

e process converges to stationary distribution 7 = = P
(under certain irreducibility conditions)

e for undirected and connected graphs

o , .
= (stationary distribution ~ degree)



random walks — useful concepts

e hitting time H(i,j): expected number of steps before
visiting vertex j, starting from /

e commute time x(/,)): expected number of steps before
visiting j and / again, starting at / : «(/,j) = H(i,j) + H(j, /)

e cover time: expected number of steps to reach every node

e mixing time 7(¢): a measure of how fast the random walk
approaches its stationary distribution

7(e) = min{t| d(t) < ¢}

where

a(t) = max |[p'(i,") ~ /| = max {Z PI(i.]) - m}
i



random walks vs. spectral analysis

e consider the normalized laplacian L = | — D~ '"/2AD~1/2
Lu = Au

(I-D'2AD""2)u = Au
(D—Au = XDu

Du = Au+ADu
(1-\Nu = D 'Au
pu = Pu

e (A, u) is an eigenvalue—eigenvector pair for L if and only if
(1 — A\, u) is an eigenvalue—eigenvector pair for P

¢ the eigenvector with smallest eigenvalue for L is the
eigenvector with largest eigenvalue for P



random walks vs. spectral analysis

stochastic matrix P, describing the random walk

eigenvalues: —1 < pup<...<po <py =1

spectral gap: v« =1— s = Ao

relaxation time: 7. = %

theorem: for an aperiodic, irreducible, and reversible
random walk, and any ¢

(r. — 1) log (21) s 7(e) = mlog (26\/1W>



random walks vs. spectral analysis

e intuition: fast mixing related to graph being an expander

small spectral gap < large mixing time < bottlenecks <

& clusters < low conductance < small Mo



graph partitioning



graph partitioning and community detection
motivation

e knowledge discovery

— partition the web into sets of related pages (web graph)

— find groups of scientists who collaborate with each other
(co-authorship graph)

— find groups of related queries submitted in a search engine
(query graph)

e performance

— partition the nodes of a large social network into different
machines so that, to a large extent, friends are in the same
machine (social networks)



graph partitioning

(Zachary’s karate-club network, figure from [Newman and Girvan, 2004])



basic spectral-partition algorithm

o o h =

form normalized Laplacian L' = | — D~'2AD~1/2
compute eigenvector x» (Fielder vector)

order vertices according their coefficient value on x,
consider only sweeping cuts: splits that respect the order

take the sweeping cut S that minimizes ¢(S)

theorem: the basic spectral- partition algorithm finds
a cut S such that ¢(S) < 2.,/¢(

proof: by Cheeger inequality
S)<vV2- A< V2-2-4(G)




spectral partitioning rules

conductance: find the partition that minimizes ¢(G)
bisection: split in two equal parts

sign: separate positive and negative values

b=

gap: separate according to the largest gap



other common spectral-partitioning algorithms

1. utilize more eigenvectors than just the Fielder vector
use k eigenvectors

2. different versions of the Laplacian matrix



using k eigenvectors

¢ ideal scenario: the graph consists of k disconnected
components (perfect clusters)

e then: eigenvalue 0 of the Laplacian has muliplicity k
the eigenspace of eigenvalue 0 is spanned by indicator
vectors of the graph components



using k eigenvectors




using k eigenvectors

(T T T T TH=I=I=]-]




using k eigenvectors

=== LTI

s [0
e D@0

- L[]




using k eigenvectors

e robustness under perturbations: if the graph has less
well-separated components the previous structure holds
approximately

e clustering of Euclidean points can be used to separate
the components



using k eigenvectors

E — - B0
=1 B=PNEl 1=
= % e OOW




laplacian matrices

e normalized laplacian: L =/ — D~1/2AD~1/2
e unormalized laplacian: L, =D — A

 normalized “random-walk” laplacian: Ly =/ — D~ 'A



all laplacian matrices are related

e unormalized Laplacian: Az = minx =1 > ; yee(Xi — Xj)

x"u;=0
e normalized Laplacian:

Xj X
Ao = min Z( ,_71)2
T NCARNG

) is an eigenvalue/vector of L, if and only if

c c

) solve the generalized eigen-problem Ly,u = A Du

2



algorithm 1: unormalized spectral clustering

input graph adjacency matrix A, number k

1.

o g~ WD

form diagonal matrix D

form unormalized Laplacian L= D — A

compute the first k eigenvectors uy, ..., ux of L

form matrix U € R™K with columns vy, . .., Uy
consider the i-th row of U as point y; ¢ R, i =1,...,n,

cluster the points {y;},—1_. ,into clusters Cy, ..., Cx

e.g., with k-means clustering

[RRRE}

output clusters Ay, ... Acwith A; = {j | y; € Ci}



algorithm 2: normalized spectral clustering

[Shi and Malik, 2000]

input graph adjacency matrix A, number k

1.
2.
3.

form diagonal matrix D

form unormalized Laplacian L = D — A

compute the first k eigenvectors vy, .. ., uyx of the
generalized eigenproblem Lu = A Du (eigvctrs of Lyy)
form matrix U € R7*¥ with columns vy, . .., Uy
consider the i-th row of U as point y; ¢ R, i =1,....n,

cluster the points {y;},—1_. ,into clusters Cy,..., Cx

[RRRE}

e.g., with k-means clustering

output clusters Ay, ... Acwith A; = {j | y; € C;}



algorithm 3: normalized spectral clustering

[Ng et al., 2001]

input graph adjacency matrix A, number k

1. form diagonal matrix D
form normalized Laplacian ' = | — D-1/2AD~1/2
compute the first k eigenvectors vy, ..., uy of L’
form matrix U € R"*¥ with columns vy, . .., Uy
normalize U so that rows have norm 1

consider the i-th row of U as point y; ¢ R, i =1,...,n,

N o o s~ 0D

cluster the points {y;};—1__,into clusters Cy. ..., C
e.g., with k-means clustering

output clusters Ay,... A with A; = {j | y; € Ci}



notes on the spectral algorithms

e quite similar except for using different Laplacians

e can be used to cluster any type of data, not just graphs
form all-pairs similarity matrix and use as adjacency matrix

e computation of the first eigenvectors of sparse matrices
can be done efficiently using the Lanczos method



Zachary’s karate-club network




Zachary’s karate-club network

unormalized normalized normalized
Laplacian symmetric random walk
Laplacian Laplacian



Zachary’s karate-club network

unormalized normalized normalized
Laplacian symmetric random walk
Laplacian Laplacian



which Laplacian to use?

[von Luxburg, 2007]

e when graph vertices have about the same degree all
laplacians are about the same

o for skewed degree distributions normalized laplacians tend
to perform better

e normalized laplacians are associated with conductance,
which is a good objective
(conductance involves vol(S) rather than |S| and captures
better the community structure)



modularity

e cut measures (conductance) useful to find one component
e how to find many components ?
e related question: what is the optimal number of partitions ?

e modularity has been used to answer those questions
[Newman and Girvan, 2004]

e originally developed to find the optimal number of partitions
in hierarchical graph partitioning



modularity

e intuition: compare actual subgraph density with
expected subgraph density, if vertices were attached
regardless of community structure

1

Q = %Z(AU—PU)(?(C,',C/)

i

1 did
= 5 2 (A= 5,(Ci.C)

Ul

- s[z-(2)]

c

Pjj = 2mpip; = 2m(d;/2m)(d;/2m) = (d;d;/2m)
me: edges within cluster ¢
dc: total degree of cluster ¢



values of modularity

¢ 0 random structure; 1 strong community structure;
[0.3..0.7]; typical good structure; can be negative, too

e () measure is not monotone with k

0.
07,
06
05
<}
2 04
s
s
g 03
E
02
01
0
o5 1 15 2 25 3 35 4 45
: : Xth join 1 FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satelli communities connected only
. . to them (top, lower left, lower right). Also, some pairs of ma-
FIG. 1: The modularity Q over the course of the algorithm jor communities have sets of smaller communities that act
(the  axis shows the number of joins). Its maximum value is as “bridges” between them (e.g., between the lower left and
Q = 0.745, where the partition consists of 1684 communities. lower right, near the center).

(figures from [Clauset et al., 2004])



optimizing modularity

problem: find the partitioning that optimizes modularity

NP-hard problem [Brandes et al., 2006]

top-down approaches [Newman and Girvan, 2004]

spectral approaches [Smyth and White, 2005]

mathematical-programming [Agarwal and Kempe, 2008]



top-down algorithms for optimizing modularity

[Newman and Girvan, 2004]

e aset of algorithms based on removing edges from the
graph, one at a time

e the graph gets progressively disconnected, creating a
hierarchy of communities

16177 51112202 1822144 138 3 10 2319161521 9 3133292526322427303428

(figure from [Newman, 2004])



top-down algorithms

¢ select edge to remove based on “betweenness”

three definitions
e shortest-path betweenness: number of shortest paths that
the edge belongs to
e random-walk betweenness: expected number of paths for
a random walk from v to v
e current-flow betweenness: resistance derived from
considering the graph as an electric circuit



top-down algorithms

general scheme

1. Tor-DowN

2.  compute betweenness value of all edges

3. remove the edge with the highest betweenness

4. recompute betweenness value of all remaining edges
5.  repeat until no edges left



shortest-path betweenness

how to compute shortest-path betweenness?
BFS from each vertex

leads to O(mn) for all edge betweenness
OK if there are single paths to all vertices




shortest-path betweenness



shortest-path betweenness



shortest-path betweenness

overall time of TOPDOWN is O(m?n)



random-walk betweenness

stochastic matrix of random walk is P = D' A

s is the vector with 1 at position s and 0 elsewhere
probability distribution over vertices at time nis s P"
expected number of visits at each vertex given by

Y sP"=s(1-P)"

cy = E[# times passing from u to v] = {5(1 - P)‘q a9
u Uy

c=s(1-P) "D '=s(D- A"

e define random-walk betweenness at (u, v) as |c, — ¢y



random-walk betweenness

e random-walk betweenness at (u, v) is |c, — ¢
withc =s (D — A)~'

e one matrix inversion O(n°)

e in total O(n®m) time with recalculation

e not scalable

e current-flow betweenness is equivalent!

[Newman and Girvan, 2004] recommend shortest-path
betweenness



other modularity-based algorithms

spectral approach [Smyth and White, 2005]

Q

o o
= |l = | =
-

D

c=1

1 L

_ o
2 - (;;) ] <3 [em)yme - ]
L c=1

n n 2
(2m) Z WijXicXjc — (Z diXic> ]
i=1

pj=1

[(2m) xIWx; — xZDxC}

tr(XT(W' — D) X)

where X = [X1...X,] = [xjc] point-cluster assignment matrix



spectral-based modularity optimization

maximize  tr(XT (W' — D) X)
such that X is an assignment matrix

solution:
Lo X = XA

where Lo = W' — D, Q-Laplacian

e standard eigenvalue problem
e but solution is fractional, we want integral

e treat rows of X as vectors and cluster graph vertices using
k-means

e [Smyth and White, 2005] propose two algorithms, based
on this idea



spectral-based modularity optimization

spectral algorithms perform almost as good as the
agglomerative, but they are more efficient

1

o8 LT
o6rps [ - Spectral-1
(e] ---- Spectral-2
0.4 — Newman
0.2 — normalized Q 0.2
01 w standard Q
===+ transition matrix 0
00 10 20 , 30 20 50 0 20 40 K 60 80 100
Figure 3: @ versus k for the WordNet data. Figure 7: @ versus k for NIPS coauthorship data.

[Smyth and White, 2005]



other modularity-based algorithms

mathematical programming [Agarwal and Kempe, 2008]

Q ZBU — Xjj)

ij=1
where

o 0 if fand j get assigned to the same cluster
/ 1 otherwise

it should be
Xk < Xxj+ Xy for all vertices /,/, k

solve the integer program with triangle inequality constraints



mathematical-programming approach
for modularity optimization

[Agarwal and Kempe, 2008]

integer program is NP-hard

relax integrality constraints

replace x; € {0,1} with 0 < x; <1

corresponding linear program can be solved in polynomial
time

solve linear program and round the fractional solution
place in the same cluster vertices / and J if x;; is smalll
(pivot algorithm [Ailon et al., 2008])



Results

Network |size n| GN | DA | EIG| VP | LP | UB
KARATE 3410.40110.419]0.419]0.420{0.420{0.420

DOLPH 6210.520| - - 10.526|0.529|0.531
MIS 76(0.540| - - 10.560|0.560|0.561
BOOKS 105| - - 10.526|0.527(0.527{0.528
BALL 115|0.601| - - 10.605|0.605|0.606
JAZZ 19810.405|0.445|0.442|0.445|0.445 | 0.446
COLL 235]0.720| - - 10.803|0.803{0.805
META 45310.403|0.434|0.435]0.450| - -

EMAIL 1133]0.532|0.574]0.572|0.579| - -

Table 2. The modularity obtained by many of the previously
published methods and by the methods introduced in this pa-
per, along with the upper bound.

(table from [Agarwal and Kempe, 2008])



need for scalable algorithms

spectral, agglomerative, LP-based algorithms

not scalable to very large graphs

handle datasets with billions of vertices and edges
e facebook: ~ 1 billion users with avg degree 130
e twitter: > 1.5 billion social relations
e google: web graph more than a trillion edges (2011)

design algorithms for streaming scenarios

o real-time story identification using twitter posts
e election trends, twitter as election barometer



graph partitioning

e graph partitioning is a way to split the graph vertices
in multiple machines

e graph partitioning objectives guarantee low communication
overhead among different machines

e additionally balanced partitioning is desirable

G = (V,E)

e each partition contains ~ n/k vertices



off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

popular family of algorithms and software
multilevel algorithm

coarsening phase in which the size of the graph is
successively decreased

followed by bisection (based on spectral)

followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs



summary

spectral analysis reveals structural properties of a graph

used for graph partitioning, but also for other problems

well-studied area, many results and techniques

for graph partitioning and community detection many
other methods are available
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