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course agenda

• introduction to graph mining Tue afternoon

• computing basic graph statistics Tue afternoon, Wed morning

• finding dense subgraphs Wed afternoon, Thu morning

• spectral graph analysis Thu afternoon

• additional topics Fri morning

– inferring hierarchies in graphs

– mining dynamic graphs

– graph sparsifiers



spectral graph theory



spectral graph theory

objective :

• view the adjacency (or related) matrix of a graph with a
linear algebra lens

• identify connections between spectral properties of such a
matrix and structural properties of the graph

• connectivity
• bipartiteness
• cuts
• ...

• spectral properties = eigenvalues and eigenvectors

• in other words, what does the eigenvalues and
eigenvectors of the adjacency (or related) matrix
tell us about the graph?



background: eigenvalues and eigenvectors

• consider a real n × n matrix A, i.e., A ∈ Rn×n

• λ ∈ C is an eigenvalue of A

if there exists x ∈ Cn, x 6= 0

such that
A x = λx

• such a vector x is called eigenvector of λ

• alternatively,

(A− λI) x = 0 or det(A− λI) = 0

• it follows that A has n eigenvalues
(possibly complex and possibly with multiplicity > 1)



background: eigenvalues and eigenvectors

• consider a real and symmetric n × n matrix A

(e.g., the adjacency matrix of an undirected graph)

• then

– all eigenvalues of A are real

– eigenvectors of different eigenvalues are orthogonal
i.e., if x1 an eigenvector of λ1

and x2 an eigenvector of λ2

then λ1 6= λ2 implies x1 ⊥ x2 (or xT
1 x2 = 0)

• A is positive semi-definite if xT A x ≥ 0 for all x ∈ Rn

• a symmetric positive semi-definite real matrix has
real and non negative eigenvalues



background: eigenvalues and eigenvectors
• consider a real and symmetric n × n matrix A

• the eigenvalues λ1, . . . , λn of A can be ordered

λ1 ≤ . . . ≤ λn

• theorem [variational characterization of eigenvalues]

λn = max
x 6=0

xT A x
xT x

λ1 = min
x6=0

xT A x
xT x

λ2 = min
x6=0

xT x1=0

xT A x
xT x

and “so on” for the other eigenvalues

• very useful way to think about eigenvalues



background: eigenvalues and eigenvectors

• the inverse holds, i.e.,

λ1 = min
x 6=0

xT A x
xT x

= min
x6=0

∑
ij Aijxixj∑

i x2
i

• and if x is an optimal vector, then x is eigenvector of λ1

• similarly

λ2 = min
x6=0

xT x1=0

xT A x
xT x

= min
x 6=0

xT x1=0

∑
ij Aijxixj∑

i x2
i

• and if x is an optimal vector, then x is eigenvector of λ2



spectral graph analysis

• apply the eigenvalue characterization for graphs
• question : which matrix to consider ?

– the adjacency matrix A of the graph
– some matrix B so that xT B x is related to a structural
– property of the graph

• consider G = (V ,E) an undirected and d-regular graph
(regular graph is used wlog for simplicity of expositions)

• let A be the adjacency matrix of G:
• define the laplacian matrix of G as

L = I − 1
d

A or Lij =


1 if i = j
−1/d if (i , j) ∈ E , i 6= j

0 if (i , j) 6∈ E , i 6= j



spectral graph analysis

• for the laplacian matrix L = I − 1
d A it is

xT L x =
1
d

∑
(u,v)∈E

|xu − xv |2

• here, xu is the coordinate of the eigenvector x
that corresponds to vertex u ∈ V

• eigenvector x is seen as a one-dimensional embedding

• i.e., mapping the vertices of the graph onto the real line

Tuesday, July 23, 13



spectral graph analysis

high-level remark

• many graph problems can be modeled as mapping of
vertices to a discrete space

e.g., a cut is a mapping of vertices to {0,1}

• we aim to find a spectral formulation so that an
eigenvector x is a relaxation of the discrete graph problem

i.e., optimizes the same objective but without the
integrality constraint



the smallest eigenvalue

apply the eigenvalue characterization theorem for L

• what is λ1 ?

λ1 = min
x 6=0

xT L x
xT x

= min
x 6=0

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

• observe that λ1 ≥ 0

• can it be λ1 = 0 ?

• yes : take x to be the constant vector



the second smallest eigenvalue

apply the eigenvalue characterization theorem for L

• what is λ2 ?

λ2 = min
x6=0

xT x1=0

xT L x
xT x

= min
x6=0

xT x1=0

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

• can it be λ2 = 0 ?

• λ2 = 0 if and only if the graph is disconnected

map the vertices of each connected component to
a different constant



the k -th smallest eigenvalue

• alternative characterization for λk

λk = min
x6=0
x∈S

S:k -dim

max

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

• λk = 0 if and only if the graph has at least k connected
components



the largest eigenvalue

• what about λn ?

λn = max
x6=0

xT L x
xT x

= max
x 6=0

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

• consider a boolean version of this problem

• restrict mapping to {−1,+1}

λn ≥ max
x∈{−1,+1}n

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u



the largest eigenvalue
• mapping of vertices to {−1,+1} corresponds to a cut S

then

λn ≥ max
x∈{−1,+1}n

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

= max
S⊆V

4 E(S,V \ S)

d n

= max
S⊆V

4 E(S,V \ S)

2 |E |

=
2 maxcut(G)

|E |

• it follows that if G bipartite then λn ≥ 2
(because if G bipartite exists S that cuts all edges)



the largest eigenvalue

• on the other hand

λn = max
x6=0

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V x2
u

= max
x6=0

2d
∑

u∈V x2
u −

∑
(u,v)∈E (xu + xv )2

d
∑

u∈V x2
u

= 2−min
x6=0

∑
(u,v)∈E (xu + xv )2

d
∑

u∈V x2
u

• first note that λn ≤ 2

• λn = 2 iff there is x s.t. xu = −xv for all (u, v) ∈ E

• λn = 2 iff G has a bipartite connected component



summary so far

eigenvalues and structural properties of G :

• λ2 = 0 iff G is disconnected

• λk = 0 iff G has at least k connected components

• λn = 2 iff G has a bipartite connected component



robustness

• how robust are these results ?

• for instance, what if λ2 = ε?

is the graph G almost disconnected ?

i.e., does it have small cuts ?

• or, what if λn = 2− ε?

does it have a component that is “close” to bipartite ?



the second eigenvalue

λ2 = min
x6=0

xT x1=0

∑
(u,v)∈E (xu − xv )2

d
∑

u∈V x2
u

= min
x6=0

xT x1=0

∑
(u,v)∈E (xu − xv )2

d
n
∑

(u,v)∈V 2(xu − xv )2

where V 2 is the set of ordered pairs of vertices

why?

∑
(u,v)∈V 2

(xu − xv )2 = n
∑

v

x2
v − 2

∑
u,v

xuxv = n
∑

v

x2
v − 2

(∑
u

xu

)2

and
∑

u

xu = 0 since xT x1 = 0



the second eigenvalue

λ2 = min
x6=0

xT x1=0

∑
(u,v)∈E (xu − xv )2

d
n
∑

(u,v)∈V 2(xu − xv )2
= min

x6=0
xT x1=0

n
d

E(u,v)∈E [(xu − xv )2]

E(u,v)∈V 2 [(xu − xv )2]

consider again discrete version of the problem, xu ∈ {0,1}

min
x6={0,1}n

x non const

n
d

E(u,v)∈E [(xu − xv )2]

E(u,v)∈V 2 [(xu − xv )2]
= min

S⊆V

n
d

E(S,S)

|S| |S|
= usc(G)

usc(G) : uniform sparsest cut of G



uniform sparsest cut

• it can be shown that

λ2 ≤ usc(G) ≤
√

8λ2

• the first inequality holds the by definition of relaxation

• second inequality is constructive :

• if x is an eigenvector of λ2

then there is some t ∈ V such that

the cut (S,V \ S) = ({u ∈ V | xu ≤ xt}, {u ∈ V | xu > xt})

has cost usc(S) ≤
√

8λ2



conductance

• conductance : another measure for cuts
• the conductance of a set S ⊆ V is defined as

φ(S) =
E(S,V \ S)

d |S|

• expresses the probability to “move out” of S by following
a random edge from S

• we are interested in sets of small conductance
• the conductance of the graph G is defined as

φ(G) = min
S⊆V

0≤S≤|V |/2

φ(S)



Cheeger’s inequality

• Cheeger’s inequality:

λ2

2
≤ usc(G)

2
≤ φ(G) ≤

√
2λ2

⇒ conductance is small if and only if λ2 is small

• the two leftmost inequalities are “easy” to show

• the first follows by the definition of relaxation

• the second follows by

usc(S)

2
=

n
2d

E(S,V \ S)

|S||V \ S|
≤ E(S,V \ S)

d |S|
= φ(S)

since |V \ S| ≥ n/2



Cheeger’s inequality

λ2

2
≤ usc(G)

2
≤ φ(G) ≤

√
2λ2

• the rightmost inequality is the “difficult” to show

• proof sketch (three steps):
1. consider a vector y ≥ 0
– we can find a set S ⊆ {v ∈ V | yv > 0} such that

φ(S) ≤
∑

(u,v)∈E |yu − yv |
d
∑

u∈V |yu|
(no squares)

– pick random t ∈ [0,maxv yv ] and define S = {v | yv ≥ t}
– then φ(S) ≤ r.h.s on expectation
– thus, there is some t that the property holds



Cheeger’s inequality

λ2

2
≤ usc(G)

2
≤ φ(G) ≤

√
2λ2

• proof sketch (three steps):

2. given a vector x we can find another vector y such that∑
(u,v)∈E |yu − yv |
d
∑

u∈V |yu|
≤

√
2

∑
(u,v)∈E |xu − xv |2

d
∑

u∈V |xu|2

and |{v | yv > 0}| ≤ n
2

– proof of this claim is constructive; uses Cauchy-Schwarz

3. take x to be the eigenvector of λ2



generalization to non-regular graphs

• G = (V ,E) is undirected and non-regular
• let du be the degree of vertex u
• define D to be a diagonal matrix whose u-th diagonal

element is du

• the normalized laplacian matrix of G is defined

L = I − D−1/2 A D−1/2

or

Luv =


1 if u = v

−1/
√

du dv if (u, v) ∈ E ,u 6= v
0 if (u, v) 6∈ E ,u 6= v



generalization to non-regular graphs

• with the normalized laplacian

the eigenvalue expressions become (e.g., λ2)

λ2 = min
x6=0

〈x,x1〉D=0

∑
(u,v)∈E (xu − xv )2∑

u∈V dux2
u

where we use weighted inner product

〈x,y〉D =
∑
u∈V

duxuyu



summary so far

eigenvalues and structural properties of G :

• λ2 = 0 iff G is disconnected

• λk = 0 iff G has at least k connected components

• λn = 2 iff G has a bipartite connected component

• small λ2 iff G is “almost” disconnected (small conductance)



random walks



random walks

• consider random walk on the graph G by following edges

• from vertex i move to vertex j with prob. 1/di if (i , j) ∈ E

• p(t)
i probability of being at vertex i at time t

• process is described by equation p(t+1) = p(t)P,
where P = D−1 A is row-stochastic

• process converges to stationary distribution π = π P
(under certain irreducibility conditions)

• for undirected and connected graphs

πi =
di

2m
(stationary distribution ∼ degree)



random walks — useful concepts

• hitting time H(i , j): expected number of steps before
visiting vertex j , starting from i

• commute time κ(i , j): expected number of steps before
visiting j and i again, starting at i : κ(i , j) = H(i , j) + H(j , i)

• cover time: expected number of steps to reach every node

• mixing time τ(ε): a measure of how fast the random walk
approaches its stationary distribution

τ(ε) = min{t | d(t) ≤ ε}

where

d(t) = max
i
||pt (i , ·)− π|| = max

i

∑
j

|pt (i , j)− πj |





random walks vs. spectral analysis

• consider the normalized laplacian L = I − D−1/2A D−1/2

L u = λu
(I − D−1/2A D−1/2) u = λu

(D − A) u = λD u
D u = A u + λD u

(1− λ) u = D−1A u
µu = P u

• (λ,u) is an eigenvalue–eigenvector pair for L if and only if
(1− λ,u) is an eigenvalue–eigenvector pair for P

• the eigenvector with smallest eigenvalue for L is the
eigenvector with largest eigenvalue for P



random walks vs. spectral analysis

• stochastic matrix P, describing the random walk

• eigenvalues: −1 < µn ≤ . . . ≤ µ2 < µ1 = 1

• spectral gap: γ∗ = 1− µ2 = λ2

• relaxation time: τ∗ = 1
γ∗

• theorem: for an aperiodic, irreducible, and reversible
random walk, and any ε

(τ∗ − 1) log
(

1
2ε

)
≤ τ(ε) ≤ τ∗ log

(
1

2ε
√
πmin

)



random walks vs. spectral analysis

• intuition: fast mixing related to graph being an expander

small spectral gap⇔ large mixing time⇔ bottlenecks⇔

⇔ clusters⇔ low conductance⇔ small λ2



graph partitioning



graph partitioning and community detection

motivation

• knowledge discovery

– partition the web into sets of related pages (web graph)

– find groups of scientists who collaborate with each other
(co-authorship graph)

– find groups of related queries submitted in a search engine
(query graph)

• performance

– partition the nodes of a large social network into different
machines so that, to a large extent, friends are in the same
machine (social networks)



graph partitioning

(Zachary’s karate-club network, figure from [Newman and Girvan, 2004])



basic spectral-partition algorithm

1. form normalized Laplacian L′ = I − D−1/2A D−1/2

2. compute eigenvector x2 (Fielder vector)

3. order vertices according their coefficient value on x2

4. consider only sweeping cuts: splits that respect the order

5. take the sweeping cut S that minimizes φ(S)

theorem: the basic spectral-partition algorithm finds
a cut S such that φ(S) ≤ 2

√
φ(G)

proof: by Cheeger inequality

φ(S) ≤
√

2 · λ2 ≤
√

2 · 2 · φ(G)



spectral partitioning rules

1. conductance: find the partition that minimizes φ(G)

2. bisection: split in two equal parts

3. sign: separate positive and negative values

4. gap: separate according to the largest gap

Tuesday, July 23, 13



other common spectral-partitioning algorithms

1. utilize more eigenvectors than just the Fielder vector
use k eigenvectors

2. different versions of the Laplacian matrix



using k eigenvectors

• ideal scenario: the graph consists of k disconnected
components (perfect clusters)

• then: eigenvalue 0 of the Laplacian has multplicity k
the eigenspace of eigenvalue 0 is spanned by indicator
vectors of the graph components



using k eigenvectors
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using k eigenvectors
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using k eigenvectors

1
1
1
1

1
1
1

1
1

1
1
1

1

1
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using k eigenvectors

• robustness under perturbations: if the graph has less
well-separated components the previous structure holds
approximately

• clustering of Euclidean points can be used to separate
the components



using k eigenvectors

Tuesday, July 30, 13



laplacian matrices

• normalized laplacian: L = I − D−1/2A D−1/2

• unormalized laplacian: Lu = D − A

• normalized “random-walk” laplacian: Lrw = I − D−1A



all laplacian matrices are related

• unormalized Laplacian: λ2 = min ||x||=1
xT u1=0

∑
(i,j)∈E (xi − xj)

2

• normalized Laplacian:

λ2 = min
||x||=1
xT u1=0

∑
(i,j)∈E

(
xi√
di
−

xj√
dj

)2

• (λ,u) is an eigenvalue/vector of Lrw if and only if
(λ,D1/2 u) is an eigenvalue/vector of L

• (λ,u) is an eigenvalue/vector of Lrw if and only if
(λ,u) solve the generalized eigen-problem Lu u = λD u



algorithm 1: unormalized spectral clustering

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form unormalized Laplacian L = D − A

3. compute the first k eigenvectors u1, . . . ,uk of L

4. form matrix U ∈ Rn×k with columns u1, . . . ,uk

5. consider the i-th row of U as point yi ∈ Rk , i = 1, . . . ,n,

6. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k -means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}



algorithm 2: normalized spectral clustering

[Shi and Malik, 2000]

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form unormalized Laplacian L = D − A

3. compute the first k eigenvectors u1, . . . ,uk of the
generalized eigenproblem L u = λD u (eigvctrs of Lrw)

4. form matrix U ∈ Rn×k with columns u1, . . . ,uk

5. consider the i-th row of U as point yi ∈ Rk , i = 1, . . . ,n,

6. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k -means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}



algorithm 3: normalized spectral clustering

[Ng et al., 2001]

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form normalized Laplacian L′ = I − D−1/2A D−1/2

3. compute the first k eigenvectors u1, . . . ,uk of L′

4. form matrix U ∈ Rn×k with columns u1, . . . ,uk

5. normalize U so that rows have norm 1

6. consider the i-th row of U as point yi ∈ Rk , i = 1, . . . ,n,

7. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k -means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}



notes on the spectral algorithms

• quite similar except for using different Laplacians

• can be used to cluster any type of data, not just graphs
form all-pairs similarity matrix and use as adjacency matrix

• computation of the first eigenvectors of sparse matrices
can be done efficiently using the Lanczos method



Zachary’s karate-club network
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Zachary’s karate-club network

Thursday, August 1, 13
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Zachary’s karate-club network
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which Laplacian to use?

[von Luxburg, 2007]

• when graph vertices have about the same degree all
laplacians are about the same

• for skewed degree distributions normalized laplacians tend
to perform better

• normalized laplacians are associated with conductance,
which is a good objective
(conductance involves vol(S) rather than |S| and captures
better the community structure)



modularity

• cut measures (conductance) useful to find one component

• how to find many components ?

• related question: what is the optimal number of partitions ?

• modularity has been used to answer those questions
[Newman and Girvan, 2004]

• originally developed to find the optimal number of partitions
in hierarchical graph partitioning



modularity
• intuition: compare actual subgraph density with

expected subgraph density, if vertices were attached
regardless of community structure

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci ,Cj)

=
1

2m

∑
ij

(Aij −
didj

2m
)δ(Ci ,Cj)

=
∑

c

[
mc

2m
−
(

dc

2m

)2
]

Pij = 2mpipj = 2m(di/2m)(dj/2m) = (didj/2m)

mc : edges within cluster c
dc : total degree of cluster c



values of modularity

• 0 random structure; 1 strong community structure;
[0.3..0.7]; typical good structure; can be negative, too

• Q measure is not monotone with k
4
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FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books
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FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books

(figures from [Clauset et al., 2004])



optimizing modularity

• problem: find the partitioning that optimizes modularity

• NP-hard problem [Brandes et al., 2006]

• top-down approaches [Newman and Girvan, 2004]

• spectral approaches [Smyth and White, 2005]

• mathematical-programming [Agarwal and Kempe, 2008]



top-down algorithms for optimizing modularity

[Newman and Girvan, 2004]

• a set of algorithms based on removing edges from the
graph, one at a time

• the graph gets progressively disconnected, creating a
hierarchy of communities

3
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FIG. 2: Dendrogram of the communities found by our algo-
rithm in the “karate club” network of Zachary [5, 17]. The
shapes of the vertices represent the two groups into which the
club split as the result of an internal dispute.

not to continue using it—it appears to give the best
results. For systems too large to make use of this ap-
proach, however, our new algorithm gives useful com-
munity structure information with comparatively little
effort.

We have applied our algorithm to a variety of real-
world networks also. We have looked, for example, at
the “karate club” network studied in [5], which represents
friendships between 34 members of a club at a US univer-
sity, as recorded over a two-year period by Zachary [17].
During the course of the study, the club split into two
groups as a result of a dispute within the organization,
and the members of one group left to start their own
club. In Fig. 2 we show the dendrogram derived by feed-
ing the friendship network into our algorithm. The peak
modularity is Q = 0.381 and corresponds to a split into
two groups of 17, as shown in the figure. The shapes of
the vertices represent the alignments of the club mem-
bers following the split and, as we can see, the division
found by the algorithm corresponds almost perfectly to
these alignments; only one vertex, number 10, is classified
wrongly. The GN algorithm performs similarly on this
task, but not better—it also finds the split but classifies
one vertex wrongly (although a different one, vertex 3).
In other tests, we find that our algorithm also success-
fully detects the main two-way division of the dolphin
social network of Lusseau [6, 18], and the division be-
tween black and white musicians in the jazz network of
Gleiser and Danon [11].

As a demonstration of how our algorithm can some-
times miss some of the structure in a network, we take
another example from Ref. 5, a network representing
the schedule of games between American college foot-
ball teams in a single season. Because the teams are di-
vided into groups or “conferences,” with intra-conference
games being more frequent than inter-conference games,
we have a reasonable idea ahead of time about what com-
munities our algorithm should find. The dendrogram
generated by the algorithm is shown in Fig. 3, and has
an optimal modularity of Q = 0.546, which is a little shy

of the value 0.601 for the best split reported in [5]. As
the dendrogram reveals, the algorithm finds six commu-
nities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm,
by contrast, finds all eleven conferences, as well as accu-
rately identifying independent teams that belong to no
conference. Nonetheless, it is clear that the new algo-
rithm is quite capable of picking out useful community
structure from the network, and of course it is much the
faster algorithm. On the author’s personal computer the
algorithm ran to completion in an unmeasureably small
time—less than a hundredth of a second. The algorithm
of Girvan and Newman took a little over a second.

A time difference of this magnitude will not present
a big problem in most practical situations, but perfor-
mance rapidly becomes an issue when we look at larger
networks; we expect the ratio of running times to in-
crease with the number of vertices. Thus, for example,
in applying our algorithm to the 1275-node network of
jazz musician collaborations mentioned above, we found
that it runs to completion in about one second of CPU
time. The GN algorithm by contrast takes more than
three hours to reach very similar results.

As an example of an analysis made possible by the
speed of the new algorithm, we have looked at a network
of collaborations between physicists as documented by
papers posted on the widely-used Physics E-print Archive
at arxiv.org. The network is an updated version of the
one described in Ref. 13, in which scientists are consid-
ered connected if they have coauthored one or more pa-
pers posted on the archive. We analyze only the largest
component of the network, which contains n = 56 276 sci-
entists in all branches of physics covered by the archive.
Since two vertices that are unconnected by any path are
never put in the same community by our algorithm, the
small fraction of vertices that are not part of the largest
component can safely be assumed to be in separate com-
munities in the sense of our algorithm. Our algorithm
takes 42 minutes to find the full community structure.
Our best estimates indicate that the GN algorithm would
take somewhere between three and five years to complete
its version of the same calculation.

The analysis reveals that the network in question con-
sists of about 600 communities, with a high peak modu-
larity of Q = 0.713, indicating strong community struc-
ture in the physics world. Four of the communities found
are large, containing between them 77% of all the ver-
tices, while the others are small—see Fig. 4, left panel.
The four large communities correspond closely to subject
subareas: one to astrophysics, one to high-energy physics,
and two to condensed matter physics. Thus there ap-
pears to be a strong correlation between the structure
found by our algorithm and the community divisions per-
ceived by human observers. It is precisely correlation
of this kind that makes community structure analysis a
useful tool in understanding the behavior of networked
systems.

We can repeat the analysis with any of the subcom-

(figure from [Newman, 2004])



top-down algorithms

• select edge to remove based on “betweenness”

three definitions
• shortest-path betweenness: number of shortest paths that

the edge belongs to
• random-walk betweenness: expected number of paths for

a random walk from u to v
• current-flow betweenness: resistance derived from

considering the graph as an electric circuit



top-down algorithms

general scheme

1. TOP-DOWN

2. compute betweenness value of all edges

3. remove the edge with the highest betweenness

4. recompute betweenness value of all remaining edges

5. repeat until no edges left



shortest-path betweenness

• how to compute shortest-path betweenness?
• BFS from each vertex
• leads to O(mn) for all edge betweenness
• OK if there are single paths to all vertices
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random-walk betweenness

• stochastic matrix of random walk is P = D−1 A
• s is the vector with 1 at position s and 0 elsewhere
• probability distribution over vertices at time n is s Pn

• expected number of visits at each vertex given by∑
n

s Pn = s (1− P)−1

cu = E[# times passing from u to v ] =
[
s (1− P)−1

]
u

1
du

c = s (1− P)−1 D−1 = s (D − A)−1

• define random-walk betweenness at (u, v) as |cu − cv |



random-walk betweenness

• random-walk betweenness at (u, v) is |cu − cv |
with c = s (D − A)−1

• one matrix inversion O(n3)

• in total O(n3m) time with recalculation
• not scalable

• current-flow betweenness is equivalent!

[Newman and Girvan, 2004] recommend shortest-path
betweenness



other modularity-based algorithms

spectral approach [Smyth and White, 2005]

Q =
k∑

c=1

[
mc

2m
−
(

dc

2m

)2
]
∝

k∑
c=1

[
(2m) mc − d2

c

]

=
k∑

c=1

(2m)
n∑

i,j=1

wijxicxjc −

(
n∑

i=1

dixic

)2


=
k∑

c=1

[
(2m) xT

c W xc − xT
c D xc

]
= tr(X T (W ′ − D) X )

where X = [x1 . . . xk ] = [xic] point-cluster assignment matrix



spectral-based modularity optimization

maximize tr(X T (W ′ − D) X )

such that X is an assignment matrix

solution:
LQ X = XΛ

where LQ = W ′ − D, Q-Laplacian

• standard eigenvalue problem
• but solution is fractional, we want integral
• treat rows of X as vectors and cluster graph vertices using

k -means
• [Smyth and White, 2005] propose two algorithms, based

on this idea



spectral-based modularity optimization

spectral algorithms perform almost as good as the
agglomerative, but they are more efficient
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Figure 2: Clusters for WordNet data, k = 12 (best viewed in color).
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Figure 3: Q versus k for the WordNet data.
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[Smyth and White, 2005]



other modularity-based algorithms

mathematical programming [Agarwal and Kempe, 2008]

Q ∝
n∑

i,j=1

Bij(1− xij)

where

xij =

{
0 if i and j get assigned to the same cluster
1 otherwise

it should be

xik ≤ xij + xjk for all vertices i , j , k

solve the integer program with triangle inequality constraints



mathematical-programming approach
for modularity optimization

[Agarwal and Kempe, 2008]

• integer program is NP-hard
• relax integrality constraints

replace xij ∈ {0,1} with 0 ≤ xij ≤ 1
• corresponding linear program can be solved in polynomial

time
• solve linear program and round the fractional solution
• place in the same cluster vertices i and j if xij is small

(pivot algorithm [Ailon et al., 2008])



Results
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Network size n GN DA EIG VP LP UB
KARATE 34 0.401 0.419 0.419 0.420 0.420 0.420
DOLPH 62 0.520 - - 0.526 0.529 0.531
MIS 76 0.540 - - 0.560 0.560 0.561
BOOKS 105 - - 0.526 0.527 0.527 0.528
BALL 115 0.601 - - 0.605 0.605 0.606
JAZZ 198 0.405 0.445 0.442 0.445 0.445 0.446
COLL 235 0.720 - - 0.803 0.803 0.805
META 453 0.403 0.434 0.435 0.450 - -
EMAIL 1133 0.532 0.574 0.572 0.579 - -

Table 2. The modularity obtained by many of the previously
published methods and by the methods introduced in this pa-
per, along with the upper bound.

any clustering; it seems quite plausible that the clustering
produced by our algorithms is in fact optimal.

Since the running time of the LP and VP rounding
algorithms is significantly larger than for past heuristics,
we also compare them with Simulated Annealing [49], a
slower and more exhaustive algorithm. For this compari-
son, we report both the modularity values obtained and
the running time of the different algorithms. For Simulated
Annealing, we chose three cooling schedules, 0.999, 0.99
and 0.95. As mentioned above, all the running times were
measured on a Linux-based Intel PC with two 3.2GHz pro-
cessors and 2GB of RAM. For readability, we omit from
the table below the modularity obtained by the LP algo-
rithm, which is given in Table 2 and identical to the one
for the VP algorithm, except for the DOLPH network.
We also omit the results for the cooling schedule of 0.99.
Both the modularity obtained and the running time were
between the ones for 0.999 and 0.95.

Network SA (0.999) SA (0.95) VP LP
KARATE 0.420 [0:12] 0.420 [0:02] 0.420 [0:06] [0:02]
DOLPH 0.528 [2:55] 0.527 [0:05] 0.526 [0:09] [0:04]
MIS 0.560 [4:22] 0.556 [0:10] 0.560 [0:11] [0:04]
BOOKS 0.527 [13:02] 0.527 [0:26] 0.527 [0:12] [0:28]
BALL 0.605 [4:10] 0.604 [0:06] 0.605 [0:23] [0:18]
JAZZ 0.445 [58:05] 0.445 [2:50] 0.445 [0:24] [29:22]
COLL 0.799 [25] 0.799 [0:32] 0.803 [1:45] [32:21]
META 0.450 [146] 0.445 [9:02] 0.450 [1:30] -
EMAIL 0.579 [1143] 0.575 [40:12] 0.579 [15:08] -

Table 3. The modularity and running times (in minutes and
seconds) of our algorithms as well as Simulated Annealing with
different cooling schedules.

Notice that the results obtained by our algorithm are
only inferior for one data set to Simulated Annealing with
the slowest cooling schedule. For all other data sets and
schedules, our algorithms match or outperform Simulated
Annealing, even while taking comparable or less time than
the faster cooling schedules.

5 Conclusion

We have shown that the technique of rounding solutions
to fractional mathematical programs yields high-quality
modularity maximizing communities, while also providing
a useful upper bound on the best possible modularity. The
drawback of our algorithms is their resource requirement.
Due to Θ(n3) constraints in the LP, and Θ(n2) variables
in the VP, the algorithms currently do not scale beyond
about 300 resp. 4000 nodes. Thus, a central goal for fu-
ture work would be to improve the running time without
sacrificing solution quality. An ideal outcome would be a
purely combinatorial algorithm avoiding the explicit solu-
tion to the mathematical programs, but yielding the same
performance.

Secondly, while our algorithms perform very well on all
networks we considered, they do not come with a priori
guarantees on their performance. Heuristics with such per-
formance guarantees are called approximation algorithms
[29], and are desirable because they give the user a hard
guarantee on the solution quality, even for pathological
networks. Since the algorithms of Charikar et al. and Goe-
mans and Williamson on which our approaches are based
do have provable approximation guarantees, one would
hope that similar guarantees could be attained for modu-
larity maximization. However, this does not hold for the
particular algorithms we use, due to the shift of the ob-
jective function by a constant. Obtaining approximation
algorithms for modularity maximization thus remains a
challenging direction for future work.
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need for scalable algorithms

• spectral, agglomerative, LP-based algorithms

• not scalable to very large graphs

• handle datasets with billions of vertices and edges
• facebook: ∼ 1 billion users with avg degree 130
• twitter: ≥ 1.5 billion social relations
• google: web graph more than a trillion edges (2011)

• design algorithms for streaming scenarios
• real-time story identification using twitter posts
• election trends, twitter as election barometer



graph partitioning

• graph partitioning is a way to split the graph vertices
in multiple machines

• graph partitioning objectives guarantee low communication
overhead among different machines

• additionally balanced partitioning is desirable

G = (V, E)

Sunday, August 4, 13

• each partition contains ≈ n/k vertices



off-line k -way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

• popular family of algorithms and software

• multilevel algorithm

• coarsening phase in which the size of the graph is
successively decreased

• followed by bisection (based on spectral)

• followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs



summary

• spectral analysis reveals structural properties of a graph

• used for graph partitioning, but also for other problems

• well-studied area, many results and techniques

• for graph partitioning and community detection many
other methods are available
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