

Aalto University
School of Science

Algorithmic methods for mining large graphs

Lecture 4 : Maximization of submodular functions

Aristides Gionis

Aalto University

Bertinoro International Spring School 2016
March 7–11, 2016

submodular set functions

- consider a ground set U
- a function $f : 2^U \rightarrow \mathbb{R}$ is submodular if

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$$

for all $A, B \subseteq U$

- equivalently (“diminishing returns”)

$$f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B)$$

for all $A \subseteq B \subseteq U$ and $x \in U \setminus B$

submodular set functions

may or not satisfy the following properties

- **non-negative** : $f(A) \geq 0$ for all $A \subseteq U$
- **monotone** : $f(A) \leq f(B)$ for all $A \subseteq B \subseteq U$
- **symmetric** : $f(A) = f(U \setminus A)$ for all $A \subseteq U$

examples

- coverage in set systems
 - ⇒ monotone and non-negative
- cut functions in undirected graphs and hypergraphs
 - ⇒ symmetric and non-negative
- cut functions in directed graphs
 - ⇒ non-negative

example: coverage in set systems

- S_1, \dots, S_n subsets of U
- function $f : 2^{\{1, \dots, n\}} \rightarrow \mathbb{R}_+$
- coverage :

$$f(A) = |\cup_{i \in A} S_i|$$

- weighted coverage :

$$w : U \rightarrow \mathbb{R}_+ \text{ and } f(A) = \sum_{x \in \cup_{i \in A} S_i} w(x)$$

example: cut in graphs

- consider undirected graph $G = (V, E)$
- cut function $f : 2^V \rightarrow \mathbb{R}_+$ defined as $f(S) = |E(S, V \setminus S)|$

the maximization problem

- given submodular function $f : 2^U \rightarrow \mathbb{R}$
find $S \subseteq X$ to maximize $f(S)$
subject to constraints
- value-oracle model
- generalizes many interesting problems **NP**-hard problems
- minimization problem is polynomial (e.g., min-cut)

monotone functions

- $f(U)$ trivial maximizer
- more interesting to maximize under cardinality constraints
- find $S \subseteq U$ subject to $|S| \leq k$ that maximizes $f(S)$
- MAX k -COVER is a special case
- greedy gives $(1 - 1/e)$ approximation
[Nemhauser et al., 1978]
- no better approximation unless $P=NP$

the greedy algorithm

1. $S \leftarrow \emptyset$
2. while $|S| < k$
3. $i \leftarrow \arg \max_j f(S \cup \{j\})$
4. $S \leftarrow S \cup \{i\}$
5. return S

analysis of the greedy

S_j : first j elements picked by the greedy

$$f(S) = \delta_1 + \dots + \delta_k$$

$$\delta_j \geq (f(S^*) - f(S_{j-1}))/k \quad (\text{monotonicity and submodularity})$$

$$f(S^*) - f(S_j) \leq (1 - 1/k)^j f(S^*) \quad (\text{by induction})$$

$$f(S^*) - f(S) \leq (1 - 1/k)^k f(S^*) \leq (1 - \frac{1}{e}) f(S^*)$$

$$f(S) \geq (1 - (1 - 1/k)^k) f(S^*)$$

widely applicable in data mining

- example : maximize the **spread of influence** in social networks [Kempe et al., 2003]
- assume that an action is spread in a social network
- assume a spreading model such as **independent cascade**
- find a set of k initial seeds to maximize the spread
- spreading model is randomized, so we want to maximize **expected spread**

non-monotone functions

- unconstrained version becomes interesting
- find $S \subseteq X$ to maximize $f(S)$
- generalizes MAX-CUT
- what do we know about approximation?
- random set gives $1/2$ ($1/4$ for MAX-DICUT)
- SDP gives 0.878 (0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]
- 0.53 by spectral approach [Trevisan, 2012]

unconstrained problem

[Feige et al., 2011]

- first constant-factor approximations for non-negative submodular functions
- simple algorithms: randomized / deterministic, non-adaptive / adaptive
- $1/2$ approx for symmetric functions
- $2/5 = 0.4$ approx for the non-negative functions
- lower bound: better than $1/2$ approx requires exponential number of value queries

unconstrained problem

[Feige et al., 2011]

- pick a **random** set

$1/4$ for **non-negative** function (on expectation)

$1/2$ for **symmetric** function (on expectation)

- **local search**

- initialize S to best singleton

- S = local optimum (add or delete elements)

- return the best of S and $U \setminus S$

$1/3$ approx for **non-negative** function

$1/2$ for **non-negative symmetric** function

random set analysis

- for $A \subseteq U$, $A(p)$ is a random set where each element of A is selected with prob p
- algorithm returns $R = U(1/2)$
- lemma I

$$E[f(A(p))] \geq (1 - p) f(\emptyset) + p f(A)$$

can prove by induction on the size of A
and using the submodularity property

- lemma II

$$\begin{aligned} E[f(A(p) \cup B(q))] &\geq (1 - p)(1 - q) f(\emptyset) + \\ &\quad p(1 - q) f(A) + \\ &\quad (1 - p)q f(B) + \\ &\quad pq f(A \cup B) \end{aligned}$$

to prove use lemma I

random set analysis

- algorithm returns

$$R = U(1/2) = S^*(1/2) \cup \overline{S^*}(1/2)$$

- by applying lemma II

$$\begin{aligned} E[f(R)] &= E[f(S^*(1/2) \cup \overline{S^*}(1/2))] \\ &= \frac{1}{4}f(\emptyset) + \frac{1}{4}f(S^*) + \frac{1}{4}f(\overline{S^*}) + \frac{1}{4}f(U) \end{aligned}$$

- gives $1/4$ for non-negative and $1/2$ for symmetric function

unconstrained problem

[Feige et al., 2011]

- local search
 - initialize S to best singleton
 - S = local optimum (add or delete elements)
 - return the best of S and $U \setminus S$

$1/3$ approx for non-negative function

$1/2$ for non-negative symmetric function

analysis of local search

- lemma if S is a local optimum then
 $f(S) \geq f(T)$ for all $S \subseteq T$ and $T \subseteq S$

- proof
take $S \subseteq T$ and consider $S = X_0 \subseteq \dots \subseteq X_\ell = T$
by submodularity and local optimality

$$0 \geq f(S \cup \{x_i\}) - f(S) \geq f(X_i) - f(X_{i-1})$$

summing up gives $0 \geq f(X_\ell) - f(X_0)$ or $f(S) \geq f(T)$

- corollary
for optimum S^* and local optimum S it is
 $f(S) \geq f(S \cup S^*)$ and $f(S) \geq f(S \cap S^*)$

analysis of local search (cont)

- it is

$$f(S) \geq f(S \cup S^*) \text{ and } f(S) \geq f(S \cap S^*)$$

- by submodularity and non-negativity

$$f(S \cup S^*) + f(U \setminus S) \geq f(S^* \setminus S) + f(U) \geq f(S^* \setminus S)$$

$$f(S \cap S^*) + f(S^* \setminus S) \geq f(S^*) + f(\emptyset) \geq f(S^*)$$

- combining we get

$$2f(S) + f(U \setminus S) \geq f(S^*)$$

- and so

$$\max\{f(S), f(U \setminus S)\} \geq \frac{1}{3}f(S^*)$$

unconstrained problem

[Buchbinder et al., 2015]

- tight $1/2$ approximation for **general** non-negative submodular function
- **randomized** algorithm, approximation $1/2$
- **deterministic** algorithm, approximation $1/3$

deterministic algorithm

[Buchbinder et al., 2015]

Algorithm 1: DeterministicUSM(f, \mathcal{N})

- 1 $X_0 \leftarrow \emptyset, Y_0 \leftarrow \mathcal{N}.$
- 2 **for** $i = 1$ to n **do**
- 3 $a_i \leftarrow f(X_{i-1} \cup \{u_i\}) - f(X_{i-1}).$
- 4 $b_i \leftarrow f(Y_{i-1} \setminus \{u_i\}) - f(Y_{i-1}).$
- 5 **if** $a_i \geq b_i$ **then** $X_i \leftarrow X_{i-1} \cup \{u_i\}, Y_i \leftarrow Y_{i-1}.$
- 6 **else** $X_i \leftarrow X_{i-1}, Y_i \leftarrow Y_{i-1} \setminus \{u_i\}.$
- 7 **return** X_n (or equivalently Y_n).

randomized algorithm

[Buchbinder et al., 2015]

Algorithm 2: RandomizedUSM(f, \mathcal{N})

- 1 $X_0 \leftarrow \emptyset, Y_0 \leftarrow \mathcal{N}.$
- 2 **for** $i = 1$ to n **do**
- 3 $a_i \leftarrow f(X_{i-1} \cup \{u_i\}) - f(X_{i-1}).$
- 4 $b_i \leftarrow f(Y_{i-1} \setminus \{u_i\}) - f(Y_{i-1}).$
- 5 $a'_i \leftarrow \max\{a_i, 0\}, b'_i \leftarrow \max\{b_i, 0\}.$
- 6 **with probability** $a'_i/(a'_i + b'_i)^*$ **do:**
 $X_i \leftarrow X_{i-1} \cup \{u_i\}, Y_i \leftarrow Y_{i-1}.$
- 7 **else** (with the compliment probability $b'_i/(a'_i + b'_i)$)
 do: $X_i \leftarrow X_{i-1}, Y_i \leftarrow Y_{i-1} \setminus \{u_i\}.$
- 8 **return** X_n (or equivalently Y_n).

* If $a'_i = b'_i = 0$, we assume $a'_i/(a'_i + b'_i) = 1$.

max-sum diversification

[Borodin et al., 2012]

- U is a ground set
- $d : U \times U \rightarrow \mathbb{R}$ is a metric distance function on U
- $f : 2^U \rightarrow \mathbb{R}$ is a submodular function
- we want to find $S \subseteq U$ such that
$$\phi(S) = f(S) + \lambda \sum_{u,v \in S} d(u,v)$$
 is maximized and
 $|S| \leq k$

max-sum diversification

[Borodin et al., 2012]

- consider $S \subseteq U$ and $x \in U \setminus S$
- define the following types of marginal gain

$$d_x(S) = \sum_{v \in S} d(x, v)$$

$$f_x(S) = f(S \cup \{x\}) - f(S)$$

$$\phi_x(S) = \frac{1}{2}f_x(S) + \lambda d_x(S)$$

- greedy algorithm on marginal gain $\phi_x(S)$ gives factor 2 approximation

max-sum diversification – the greedy

[Borodin et al., 2012]

1. $S \leftarrow \emptyset$
2. while $|S| < k$
3. $i \leftarrow \arg \max_{\{j \in U \setminus S\}} \phi_j(S)$
4. $S \leftarrow S \cup \{i\}$
5. return S

conclusions

- maximization of submodular functions
- monotone, constraints, symmetric, ...
- recent developments in theory community
- simple algorithms
- neat analysis
- many applications in data mining

references

- Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions and dynamic updates.
In *Proceedings of the 31st symposium on Principles of Database Systems*, pages 155–166. ACM.
- Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. (2015).
A tight linear time $(1/2)$ -approximation for unconstrained submodular maximization.
SIAM Journal on Computing, 44(5):1384–1402.
- Feige, U., Mirrokni, V. S., and Vondrak, J. (2011).
Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153.
- Goemans, M. X. and Williamson, D. P. (1995).
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115–1145.

references (cont.)

- Kempe, D., Kleinberg, J., and Tardos, E. (2003).
Maximizing the spread of influence through a social network.
In *KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 137–146. ACM Press.
- Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978).
An analysis of approximations for maximizing submodular set functions I.
Mathematical Programming, 14(1):265–294.
- Trevisan, L. (2012).
Max cut and the smallest eigenvalue.
SIAM Journal on Computing, 41(6):1769–1786.