Algorithmic methods for mining large graphs
 Lecure 4 : Maximization of submodular functions

Aristides Gionis
Aalto University

Bertinoro International Spring School 2016
March 7-11, 2016

submodular set functions

- consider a ground set U
- a function $f: 2^{U} \rightarrow \mathbb{R}$ is submodular if

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

for all $A, B \subseteq U$

- equivalently ("diminishing returns")

$$
f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)
$$

for all $A \subseteq B \subseteq U$ and $x \in U \backslash B$

submodular set functions

may or not satisfy the following properties

- non-negative : $f(A) \geq 0$ for all $A \subseteq U$
- monotone : $f(A) \leq f(B)$ for all $A \subseteq B \subseteq U$
- symmetric : $f(A)=f(U \backslash A)$ for all $A \subseteq U$

examples

- coverage in set systems
\Rightarrow monotone and non-negative
- cut functions in undirected graphs and hypergraphs
\Rightarrow symmetric and non-negative
- cut functions in directed graphs
\Rightarrow non-negative

example: coverage in set systems

- S_{1}, \ldots, S_{n} subsets of U
- function $f: 2^{\{1, \ldots, n\}} \rightarrow \mathbb{R}_{+}$
- coverage :

$$
f(A)=\left|\cup_{i \in A} S_{i}\right|
$$

- weighted coverage :

$$
w: U \rightarrow \mathbb{R}_{+} \text {and } f(A)=\sum_{x \in \cup_{i \in A} S_{i}} w(x)
$$

example: cut in graphs

- consider undirected graph $G=(V, E)$
- cut function $f: 2^{V} \rightarrow R_{+}$defined as $f(S)=|E(S, V \backslash S)|$

the maximization problem

- given submodular function $f: 2^{U} \rightarrow \mathbb{R}$
find $S \subseteq X$ to maximize $f(S)$
subject to constraints
- value-oracle model
- generalizes many interesting problems NP-hard problems
- minimization problem is polynomial (e.g., min-cut)

monotone functions

- $f(U)$ trivial maximizer
- more interesting to maximize under cardinality constraints
- find $S \subseteq U$ subject to $|S| \leq k$ that maximizes $f(S)$
- MAX k-COVER is a special case
- greedy gives (1-1/e) approximation
[Nemhauser et al., 1978]
- no better approximation unless $\mathbf{P}=\mathbf{N P}$

the greedy algorithm

1. $S \leftarrow \emptyset$
2. while $|S|<k$
3. $i \leftarrow \arg \max _{j} f(S \cup\{j\})$
4. $S \leftarrow S \cup\{i\}$
5. return S

analysis of the greedy

S_{j} : first j elements picked by the greedy

$$
f(S)=\delta_{1}+\ldots+\delta_{k}
$$

$\delta_{j} \geq\left(f\left(S^{*}\right)-f\left(S_{j-1}\right)\right) / k$ (monotonicity and submodularity)

$$
\begin{aligned}
& f\left(S^{*}\right)-f\left(S_{j}\right) \leq(1-1 / k)^{j} f\left(S^{*}\right) \\
& f\left(S^{*}\right)-f(S) \leq(1-1 / k)^{k} f\left(S^{*}\right) \leq\left(1-\frac{1}{e}\right) f\left(S^{*}\right) \\
& f(S) \geq\left(1-(1-1 / k)^{k}\right) f\left(S^{*}\right)
\end{aligned}
$$

(by induction)

widely applicable in data mining

- example : maximize the spread of influence in social networks [Kempe et al., 2003]
- assume that an action is spread in a social network
- assume a spreading model such as independent cascade
- find a set of k initial seeds to maximize the spread
- spreading model is randomized, so we want to maximize expected spread

00

non-monotone functions

- unconstrainted version becomes interesting
- find $S \subseteq X$ to maximize $f(S)$
- generalizes MAX-CUT
- what do we know about approximation?
- random set gives 1/2
(1/4 for MAX-DICUT)
- SDP gives 0.878
(0.796 for MAX-DICUT) major breakthrough [Goemans and Williamson, 1995]
- 0.53 by spectral approach
[Trevisan, 2012]

unconstrainted problem

[Feige et al., 2011]

- first constant-factor approximations for non-negative submodular functions
- simple algorithms: randomized / deterministic, non-adaptive / adaptive
- $1 / 2$ approx for symmetric functions
- $2 / 5=0.4$ approx for the non-negative functions
- lower bound: better than $1 / 2$ approx requires exponential number of value queries

unconstrainted problem

[Feige et al., 2011]

- pick a random set

1/4 for non-negative function (on expectation)
$1 / 2$ for symmetric function (on expectation)

- local search
- initialize S to best singleton
- $S=$ local optimum (add or delete elements)
- return the best of S and $U \backslash S$

1/3 approx for non-negative function
$1 / 2$ for non-negative symmetric function

random set analysis

- for $A \subseteq U, A(p)$ is a random set where each element of A is selected with prob p
- algorithm returns $R=U(1 / 2)$
- lemma I

$$
E[f(A(p))] \geq(1-p) f(\emptyset)+p f(A)
$$

can prove by induction on the size of A and using the submodularity property

- lemma II

$$
\begin{aligned}
E[f(A(p) \cup B(q))] \geq & (1-p)(1-q) f(\emptyset)+ \\
& p(1-q) f(A)+ \\
& (1-p) q f(B)+ \\
& p q f(A \cup B)
\end{aligned}
$$

to prove use lemma I

random set analysis

- algorithm returns

$$
R=U(1 / 2)=S^{*}(1 / 2) \cup \overline{S^{*}}(1 / 2)
$$

- by applying lemma II

$$
\begin{aligned}
E[f(R)] & =E\left[f\left(S^{*}(1 / 2) \cup \overline{S^{*}}(1 / 2)\right)\right] \\
& =\frac{1}{4} f(\emptyset)+\frac{1}{4} f\left(S^{*}\right)+\frac{1}{4} f\left(\overline{S^{*}}\right)+\frac{1}{4} f(U)
\end{aligned}
$$

- gives $1 / 4$ for non-negative and 1/2 for symmetric function

unconstrainted problem

[Feige et al., 2011]

- local search
- initialize S to best singleton
- $S=$ local optimum (add or delete elements)
- return the best of S and $U \backslash S$

1/3 approx for non-negative function
$1 / 2$ for non-negative symmetric function

analysis of local search

- lemma if S is a local optimum then
$f(S) \geq f(T)$ for all $S \subseteq T$ and $T \subseteq S$
- proof
take $S \subseteq T$ and consider $S=X_{0} \subseteq \ldots X_{\ell}=T$
by submodularity and local optimality

$$
0 \geq f\left(S \cup\left\{x_{i}\right\}\right)-f(S) \geq f\left(X_{i}\right)-f\left(X_{i-1}\right)
$$

summing up gives $0 \geq f\left(X_{\ell}\right)-\left(X_{0}\right)$ or $f(S) \geq(T)$

- corollary
for optimum S^{*} and local optimum S it is
$f(S) \geq f\left(S \cup S^{*}\right)$ and $f(S) \geq f\left(S \cap S^{*}\right)$

analysis of local search (cont)

- it is

$$
f(S) \geq f\left(S \cup S^{*}\right) \text { and } f(S) \geq f\left(S \cap S^{*}\right)
$$

- by submodularity and non-negativity

$$
\begin{gathered}
f\left(S \cup S^{*}\right)+f(U \backslash S) \geq f\left(S^{*} \backslash S\right)+f(U) \geq f\left(S^{*} \backslash S\right) \\
f\left(S \cap S^{*}\right)+f\left(S^{*} \backslash S\right) \geq f\left(S^{*}\right)+f(\emptyset) \geq f\left(S^{*}\right)
\end{gathered}
$$

- combining we get

$$
2 f(S)+f(U \backslash S) \geq f\left(S^{*}\right)
$$

- and so

$$
\max \{f(S), f(U \backslash S)\} \geq \frac{1}{3} f\left(S^{*}\right)
$$

unconstrainted problem

[Buchbinder et al., 2015]

- tight $1 / 2$ approximation for general non-negative submodular function
- randomized algorithm, approximation 1/2
- deterministic algorithm, approximation $1 / 3$

deterministic algorithm

[Buchbinder et al., 2015]

Algorithm 1: DeterministicUSM (f, \mathcal{N})
$1 X_{0} \leftarrow \emptyset, Y_{0} \leftarrow \mathcal{N}$.
2 for $i=1$ to n do

$\mathbf{3}$	$a_{i} \leftarrow f\left(X_{i-1} \cup\left\{u_{i}\right\}\right)-f\left(X_{i-1}\right)$.
$\mathbf{4}$	$b_{i} \leftarrow f\left(Y_{i-1} \backslash\left\{u_{i}\right\}\right)-f\left(Y_{i-1}\right)$.
$\mathbf{5}$	if $a_{i} \geq b_{i}$ then $X_{i} \leftarrow X_{i-1} \cup\left\{u_{i}\right\}, Y_{i} \leftarrow Y_{i-1}$.

$6 \quad$ else $X_{i} \leftarrow X_{i-1}, Y_{i} \leftarrow Y_{i-1} \backslash\left\{u_{i}\right\}$.
7 return X_{n} (or equivalently Y_{n}).

randomized algorithm

[Buchbinder et al., 2015]

Algorithm 2: RandomizedUSM (f, \mathcal{N})
$\mathbf{1} X_{0} \leftarrow \emptyset, Y_{0} \leftarrow \mathcal{N}$.
2 for $i=1$ to n do
$3 \quad a_{i} \leftarrow f\left(X_{i-1} \cup\left\{u_{i}\right\}\right)-f\left(X_{i-1}\right)$.
$4 \quad b_{i} \leftarrow f\left(Y_{i-1} \backslash\left\{u_{i}\right\}\right)-f\left(Y_{i-1}\right)$.
$5 \quad a_{i}^{\prime} \leftarrow \max \left\{a_{i}, 0\right\}, b_{i}^{\prime} \leftarrow \max \left\{b_{i}, 0\right\}$.
$6 \quad$ with probability $a_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)^{*}$ do: $X_{i} \leftarrow X_{i-1} \cup\left\{u_{i}\right\}, Y_{i} \leftarrow Y_{i-1}$.
7 else (with the compliment probability $b_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)$) do: $X_{i} \leftarrow X_{i-1}, Y_{i} \leftarrow Y_{i-1} \backslash\left\{u_{i}\right\}$.
8 return X_{n} (or equivalently Y_{n}).

$$
{ }^{*} \text { If } a_{i}^{\prime}=b_{i}^{\prime}=0, \text { we assume } a_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)=1
$$

max-sum diversification

[Borodin et al., 2012]

- U is a ground set
- $d: U \times U \rightarrow \mathbb{R}$ is a metric distance function on U
- $f: 2^{U} \rightarrow \mathbb{R}$ is a submodular function
- we want to find $S \subseteq U$ such that
$\phi(S)=f(S)+\lambda \sum_{u, v \in S} d(u, v)$ is maximized and
$|S| \leq k$

max-sum diversification

[Borodin et al., 2012]

- consider $S \subseteq U$ and $x \in U \backslash S$
- define the following types of marginal gain

$$
\begin{aligned}
& d_{x}(S)=\sum_{v \in S} d(x, v) \\
& f_{x}(S)=f(S \cup\{x\})-f(S) \\
& \phi_{x}(S)=\frac{1}{2} f_{x}(S)+\lambda d_{x}(S)
\end{aligned}
$$

- greedy algorithm on marginal gain $\phi_{x}(S)$ gives factor 2 approximation

max-sum diversification - the greedy

[Borodin et al., 2012]

1. $S \leftarrow \emptyset$
2. while $|S|<k$
3. $i \leftarrow \arg \max _{\{j \in U \backslash S\}} \phi_{j}(S)$
4. $S \leftarrow S \cup\{i\}$
5. return S

conclusions

- maximization of submodular functions
- monotone, constraints, symmetric, ...
- recent developments in theory community
- simple algorithms
- neat analysis
- many applications in data mining

references

Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions and dynamic updates.
In Proceedings of the 31st symposium on Principles of Database Systems, pages 155-166. ACM.
围 Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. (2015). A tight linear time (1/2)-approximation for unconstrained submodular maximization.
SIAM Journal on Computing, 44(5):1384-1402.
Feige, U., Mirrokni, V. S., and Vondrak, J. (2011).
Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133-1153.
圊 Goemans, M. X. and Williamson, D. P. (1995).
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115-1145.

references（cont．）

雷
Kempe，D．，Kleinberg，J．，and Tardos，E．（2003）．
Maximizing the spread of influence through a social network．
In KDD＇03：Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining，pages 137－146．
ACM Press．
圂
Nemhauser，G．L．，Wolsey，L．A．，and Fisher，M．L．（1978）．
An analysis of approximations for maximizing submodular set functions I．
Mathematical Programming，14（1）：265－294．
嗇 Trevisan，L．（2012）．
Max cut and the smallest eigenvalue．
SIAM Journal on Computing，41（6）：1769－1786．

