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submodular set functions

e consider a ground set U
o afunction 7 : 2Y — R is submodular if
f(A)+f(B) > f(AUB) + f(AN B)
forall AABC U
e equivalently (“diminishing returns”)
F(AU{x}) - f(A) = f(BU{x}) — (B)

foral ACBC Uandx e U\ B



submodular set functions

may or not satisfy the following properties
e non-negative : f(A) > 0forall AC U
e monotone : f(A) < f(B)foral AC BC U

e symmetric : f(A) = f(U\ A)forall AC U



examples

e coverage in set systems

= monotone and non-negative

e cut functions in undirected graphs and hypergraphs

= symmetric and non-negative

e cut functions in directed graphs

= non-negative



example: coverage in set systems

e Sy,..., S, subsets of U

function f: 2117 L R,

coverage .

weighted coverage :

w:U—Ry and f(A)= ) w(x)

XEU,’GAS,'



example: cut in graphs

e consider undirected graph G = (V. E)

o cut function 7 : 2¥ — R, defined as f(S) = |E(S, V' \ S)|




the maximization problem

given submodular function 7 : 2Y — R
find S C X to maximize f(S)

subject to constraints

value-oracle model

generalizes many interesting problems NP-hard problems

minimization problem is polynomial (e.g., min-cut)



monotone functions

f(U) trivial maximizer

more interesting to maximize under cardinality constraints

find S C U subject to |S| < k that maximizes f(S)

MAX k-COVER is a special case

greedy gives (1 — 1/e) approximation
[Nemhauser et al., 1978]

¢ no better approximation unless P=NP



the greedy algorithm

.S«
. while [S| < k

S+ Su{i}

1
2
3. i< argmax;f(SU{j})
4
5. return S



analysis of the greedy

S; . first j elements picked by the greedy

f(S) =61 +...+ bk

0; > (f(S*) — 1(S;-1))/k (monotonicity and submodularity)
f(S*) - 1(S) < (1 —1/kY{(S*) (by induction)
f(87) — £(S) < (1 = 1/k)¥f(S") < (1 - D(S")

f(S) = (1 - (1 = 1/K))(S")



widely applicable in data mining

e example : maximize the spread of influence in
social networks [Kempe et al., 2003]

e assume that an action is spread in a social network
e assume a spreading model such as independent cascade
¢ find a set of k initial seeds to maximize the spread

e spreading model is randomized, so we want to maximize
expected spread



non-monotone functions

unconstrainted version becomes interesting
find S C X to maximize f(S)

generalizes MAX-CUT

what do we know about approximation?

e random set gives 1/2 (1/4 for MAX-DICUT)
e SDP gives 0.878 (0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]

0.53 by spectral approach [Trevisan, 2012]



unconstrainted problem

[Feige et al., 2011]

first constant-factor approximations for non-negative
submodular functions

simple algorithms: randomized / deterministic,
non-adaptive / adaptive

1/2 approx for symmetric functions
2/5 = 0.4 approx for the non-negative functions

lower bound: better than 1/2 approx requires exponential
number of value queries



unconstrainted problem
[Feige et al., 2011]

e pick a random set
1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

e |ocal search
— initialize S to best singleton
— S =local optimum (add or delete elements)
— returnthe bestof Sand U\ S
1/3 approx for non-negative function

1/2 for non-negative symmetric function



random set analysis

o for AC U, A(p) is a random set where each element
of A is selected with prob p
e algorithm returns R = U(1/2)

e lemma |
E[f(A(p))] = (1 — p) f(0) + pf(A)

can prove by induction on the size of A
and using the submodularity property

e lemma ll
E[f(A(p) U B(q))] = (1—-p)(1—q)f(0)+
p(1—q)f(A) +

(1-p)qf(B)+
pq f(AU B)

to prove use lemma |



random set analysis

e algorithm returns

R=U(1/2) = S*(1/2) U S*(1/2)

e by applying lemma Il

E[f(R)] = EIf(S*(1/2)L S*(1/2))]
1

[PPURS [PPSR
= 210+ 21(S") + 21(5°) + 7f(U)

e gives 1/4 for non-negative and 1/2 for symmetric function



unconstrainted problem

[Feige et al., 2011]

¢ local search
— initialize S to best singleton
— S =local optimum (add or delete elements)
— returnthe bestof Sand U\ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function



analysis of local search

e lemma if Sis a local optimum then
f(S)=f(T)foral SC Tand TC S

e proof
take SC TandconsiderS=X, C ... X, =T
by submodularity and local optimality
0> f(Su{xi}) — £(S) = (X;) — f(Xi—1)

summing up gives 0 > 7(X;) — (Xp) or f(S) > (T)
e corollary

for optimum S* and local optimum S it is
f(S) > f(SuS*)and f(S) > f(SN S*)



analysis of local search (cont)

e itis
f(S)>f(SUS*) and f(S) > f(SNSY)

e by submodularity and non-negativity

F(SUS*) + f(U\ S) > (S*\ S) + f(U) > f(S*\ S)
(SN S*) +£(S*\ S) = f(S*) + f(0) > £(S*)

e combining we get

2f(S) + f(U\ S) > £(S*)

e and so ]
max{f(S),f(U\ S)} > éf(S*)



unconstrainted problem

[Buchbinder et al., 2015]

e tight 1/2 approximation for general non-negative
submodular function

e randomized algorithm, approximation 1/2

e deterministic algorithm, approximation 1/3



deterministic algorithm

[Buchbinder et al., 2015]

Algorithm 1: DeterministicUSM( f, V)

1 Xo+ 0, Yy N.

2 fori =11t ndo

3 ai < f(Xi—1U{ui}) — f(Xio1).

bi + f(Yi1 \{wi}) — f(Yi-1).

if a; > bz then Xl — Xi—l U {UZ}, Y; — Y;'_l.
else XZ — X@‘_l, Y; — Yvi_l \ {u,}

7 return X, (or equivalently Y,,).

S A




randomized algorithm

[Buchbinder et al., 2015]

Algorithm 2: RandomizedUSM( f, )

1 Xg @, Yy N.

2 for i =11t ndo

3 a; < f(Xifl @) {u,}) — f(Xz'fl)-

4 | b f(Yier \{ui}) = f(Yiz1).

5 a; < max{a;, 0}, b} < max{b;,0}.

6 | with probability a//(a} + b,)" do:

Xi — XioiU{w}, Vs < Y.

7 else (with the compliment probability b} /(a + b}))
| do: Xz «— Xi,1, Y; — }/i,1 \ {’U,z}

8 return X,, (or equivalently Y,,).

“1If @) = b, =0, we assume a/(a; + ) = 1.




max-sum diversification

[Borodin et al., 2012]

Uis a ground set

d: U x U — Ris ametric distance function on U

f-2V 5 Ris asubmodular function

we want to find S C U such that
(S) = 1(S) + A >_, ves d(u, v) is maximized and
S| < k



max-sum diversification

[Borodin et al., 2012]

e consider SC Uand x € U\ S

e define the following types of marginal gain
d(S) = 2_ves d(x, V)
(S) =f(SU{x})—£(S)
$x(S) = 31(S) + Ad(S)

e greedy algorithm on marginal gain ¢,(S) gives
factor 2 approximation



max-sum diversification — the greedy

[Borodin et al., 2012]

1. S« 0

2. while |S| < k

3. i< argmaxgey sy 9j(S)
4. S Sufi

5

. return S



conclusions

e maximization of submodular functions

e monotone, constraints, symmetric, ...

¢ recent developments in theory community
e simple algorithms

e neat analysis

e many applications in data mining
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