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submodular set functions

• consider a ground set U

• a function f : 2U → R is submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

for all A,B ⊆ U

• equivalently (“diminishing returns”)

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B)

for all A ⊆ B ⊆ U and x ∈ U \ B



submodular set functions

may or not satisfy the following properties

• non-negative : f (A) ≥ 0 for all A ⊆ U

• monotone : f (A) ≤ f (B) for all A ⊆ B ⊆ U

• symmetric : f (A) = f (U \ A) for all A ⊆ U



examples

• coverage in set systems

⇒ monotone and non-negative

• cut functions in undirected graphs and hypergraphs

⇒ symmetric and non-negative

• cut functions in directed graphs

⇒ non-negative



example: coverage in set systems

• S1, . . . ,Sn subsets of U

• function f : 2{1,...,n} → R+

• coverage :
f (A) = | ∪i∈A Si |

• weighted coverage :

w : U → R+ and f (A) =
∑

x∈∪i∈ASi

w(x)



example: cut in graphs

• consider undirected graph G = (V ,E)

• cut function f : 2V → R+ defined as f (S) = |E(S,V \ S)|
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G = (V, E)

f : 2V ! R+ f(S) = |E(S, V \ S)|



the maximization problem

• given submodular function f : 2U → R

find S ⊆ X to maximize f (S)

subject to constraints

• value-oracle model

• generalizes many interesting problems NP-hard problems

• minimization problem is polynomial (e.g., min-cut)



monotone functions

• f (U) trivial maximizer

• more interesting to maximize under cardinality constraints

• find S ⊆ U subject to |S| ≤ k that maximizes f (S)

• MAX k -COVER is a special case

• greedy gives (1− 1/e) approximation

[Nemhauser et al., 1978]

• no better approximation unless P=NP



the greedy algorithm

1. S ← ∅
2. while |S| < k

3. i ← arg maxj f (S ∪ {j})
4. S ← S ∪ {i}
5. return S



analysis of the greedy

Sj : first j elements picked by the greedy

f (S) = δ1 + . . .+ δk

δj ≥ (f (S∗)− f (Sj−1))/k (monotonicity and submodularity)

f (S∗)− f (Sj) ≤ (1− 1/k)j f (S∗) (by induction)

f (S∗)− f (S) ≤ (1− 1/k)k f (S∗) ≤ (1− 1
e )f (S

∗)

f (S) ≥ (1− (1− 1/k)k )f (S∗)



widely applicable in data mining

• example : maximize the spread of influence in
social networks [Kempe et al., 2003]

• assume that an action is spread in a social network

• assume a spreading model such as independent cascade

• find a set of k initial seeds to maximize the spread

• spreading model is randomized, so we want to maximize
expected spread
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non-monotone functions

• unconstrainted version becomes interesting

• find S ⊆ X to maximize f (S)

• generalizes MAX-CUT

• what do we know about approximation?

• random set gives 1/2 (1/4 for MAX-DICUT)

• SDP gives 0.878 (0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]

• 0.53 by spectral approach [Trevisan, 2012]



unconstrainted problem

[Feige et al., 2011]

• first constant-factor approximations for non-negative
submodular functions

• simple algorithms: randomized / deterministic,
non-adaptive / adaptive

• 1/2 approx for symmetric functions

• 2/5 = 0.4 approx for the non-negative functions

• lower bound: better than 1/2 approx requires exponential
number of value queries



unconstrainted problem

[Feige et al., 2011]

• pick a random set

1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function



random set analysis

• for A ⊆ U, A(p) is a random set where each element
of A is selected with prob p

• algorithm returns R = U(1/2)

• lemma I
E [f (A(p))] ≥ (1− p) f (∅) + p f (A)

can prove by induction on the size of A
and using the submodularity property

• lemma II

E [f (A(p) ∪ B(q))] ≥ (1− p)(1− q) f (∅) +
p(1− q) f (A) +
(1− p)q f (B) +

pq f (A ∪ B)

to prove use lemma I



random set analysis

• algorithm returns

R = U(1/2) = S∗(1/2) ∪ S∗(1/2)

• by applying lemma II

E [f (R)] = E [f (S∗(1/2) ∪ S∗(1/2))]

=
1
4

f (∅) + 1
4

f (S∗) +
1
4

f (S∗) +
1
4

f (U)

• gives 1/4 for non-negative and 1/2 for symmetric function



unconstrainted problem

[Feige et al., 2011]

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function



analysis of local search

• lemma if S is a local optimum then
f (S) ≥ f (T ) for all S ⊆ T and T ⊆ S

• proof
take S ⊆ T and consider S = X0 ⊆ . . .X` = T
by submodularity and local optimality

0 ≥ f (S ∪ {xi})− f (S) ≥ f (Xi)− f (Xi−1)

summing up gives 0 ≥ f (X`)− (X0) or f (S) ≥ (T )

• corollary
for optimum S∗ and local optimum S it is
f (S) ≥ f (S ∪ S∗) and f (S) ≥ f (S ∩ S∗)



analysis of local search (cont)

• it is
f (S) ≥ f (S ∪ S∗) and f (S) ≥ f (S ∩ S∗)

• by submodularity and non-negativity

f (S ∪ S∗) + f (U \ S) ≥ f (S∗ \ S) + f (U) ≥ f (S∗ \ S)

f (S ∩ S∗) + f (S∗ \ S) ≥ f (S∗) + f (∅) ≥ f (S∗)

• combining we get

2f (S) + f (U \ S) ≥ f (S∗)

• and so
max{f (S), f (U \ S)} ≥ 1

3
f (S∗)



unconstrainted problem

[Buchbinder et al., 2015]

• tight 1/2 approximation for general non-negative
submodular function

• randomized algorithm, approximation 1/2

• deterministic algorithm, approximation 1/3



deterministic algorithm

[Buchbinder et al., 2015]
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of unconstrained submodular minimization can be solved in
polynomial time [32].

Another line of work deals with maximizing normalized
monotone submodular functions, again, subject to various
combinatorial constraints. A continuous greedy algorithm
was given by Calinescu et al. [3] for maximizing a nor-
malized monotone submodular function subject to a matroid
constraint. Later, Lee et al. [31] gave a local search algo-
rithm achieving 1/p−ε approximation for maximizing such
functions subject to the intersection of p matroids. Kulik
et al. [28] showed a 1 − 1/e − ε approximation algorithm
for maximizing a normalized monotone submodular function
subject to multiple knapsack constraints. Recently, Chekuri
et al. [5] and Feldman et al. [13] gave non-monotone
counterparts of the continuous greedy algorithm of [3], [38].
These results improve several non-monotone submodular
optimization problems. Some of the above results were
generalized by Chekuri et al. [4], who provide a dependent
rounding technique for various polytopes, including matroid
and matroid-intersection polytops. The advantage of this
rounding technique is that it guarantees strong concentration
bounds for submodular functions. Additionally, Chekuri et
al. [5] define a contention resolution rounding scheme which
allows one to obtain approximations for different combina-
tions of constraints.

II. A DETERMINISTIC (1/3)-APPROXIMATION
ALGORITHM

In this section we present a deterministic linear time
algorithm for USM. The algorithm proceeds in n iterations
that correspond to some arbitrary order u1, . . . , un of the
ground set N . The algorithm maintains two solutions X and
Y . Initially, we set the solutions to X0 = ∅ and Y0 = N .
In the ith iteration the algorithm either adds ui to Xi−1

or removes ui from Yi−1. This decision is done greedily
based on the marginal gain of each of the two options.
Eventually, after n iterations both solutions coincide, and
we get Xn = Yn; this is the output of the algorithm. A
formal description of the algorithm appears as Algorithm 1.

Algorithm 1: DeterministicUSM(f, N )

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 if ai ≥ bi then Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.
6 else Xi ← Xi−1, Yi ← Yi−1 \ {ui}.

7 return Xn (or equivalently Yn).

The rest of this section is devoted for proving Theo-
rem I.1, i.e., we prove that the approximation guarantee
of Algorithm 1 is 1/3. Denote by ai the change in value

of the first solution if element ui is added to it in the
ith iteration, i.e., f(Xi−1 ∪ {ui}) − f(Xi−1). Similarly,
denote by bi the change in value of the second solution
if element ui is removed from it in the ith iteration, i.e.,
f(Yi−1\{ui})−f(Yi−1). We start with the following useful
lemma.

Lemma II.1. For every 1 ≤ i ≤ n, ai + bi ≥ 0.

Proof: Notice that (Xi−1 ∪ {ui})∪ (Yi \ {ui}) = Yi−1

and (Xi−1∪{ui})∩(Yi\{ui}) = Xi−1. By combining both
observations with submodularity, one gets:

ai + bi = [f(Xi−1 ∪ {ui})− f(Xi−1)] +

[f(Yi−1 \ {ui})− f(Yi−1)]

= [f(Xi−1 ∪ {ui}) + f(Yi−1 \ {ui})]−
[f(Xi−1) + f(Yi−1)] ≥ 0 .

Let OPT denote an optimal solution. Define OPTi !
(OPT ∪Xi)∩Yi. Thus, OPTi coincides with Xi and Yi on
elements 1, . . . , i, and it coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and the output of
the algorithm is OPTn = Xn = Yn. Examine the sequence
f(OPT0), . . . , f(OPTn), which starts with f(OPT ) and
ends with the value of the output of the algorithm. The
main idea of the proof is to bound the total loss of value
along this sequence. This goal is achieved by the following
lemma which upper bounds the loss in value between every
two consecutive steps in the sequence. Formally, the loss
of value, i.e., f(OPTi−1)− f(OPTi), is no more than the
total increase in value of both solutions maintained by the
algorithm, i.e., [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)].

Lemma II.2. For every 1 ≤ i ≤ n,

f(OPTi−1)−f(OPTi) ≤
[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] .

Before proving Lemma II.2, let us show that Theorem I.1
follows from it.

Proof of Theorem I.1: Summing up Lemma II.2 for
every 1 ≤ i ≤ n gives:

n∑

i=1

[f(OPTi−1)− f(OPTi)] ≤

n∑

i=1

[f(Xi)− f(Xi−1)] +

n∑

i=1

[f(Yi)− f(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

f(OPT0)− f(OPTn) ≤
[f(Xn)− f(X0)] + [f(Yn)− f(Y0)] ≤ f(Xn) + f(Yn) .

Recalling the definitions of OPT0 and OPTn, we obtain
that f(Xn) = f(Yn) ≥ f(OPT )/3.

It is left to prove Lemma II.2.



randomized algorithm

[Buchbinder et al., 2015]
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Algorithm 2: RandomizedUSM(f, N )

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 a′

i ← max{ai, 0}, b′
i ← max{bi, 0}.

6 with probability a′
i/(a′

i + b′
i)

* do:
Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.

7 else (with the compliment probability b′
i/(a′

i + b′
i))

do: Xi ← Xi−1, Yi ← Yi−1 \ {ui}.
8 return Xn (or equivalently Yn).

* If a′
i = b′

i = 0, we assume a′
i/(a′

i + b′
i) = 1.

always holds: OPTn = Xn = Yn. The proof idea is similar
to that of the deterministic algorithm in Section II when
considering the sequence E[f(OPT0)], . . . , E[f(OPTn)].
This sequence starts with f(OPT ) and ends with the
expected value of the algorithm’s output. The following
lemma upper bounds the loss of two consecutive elements
in the sequence. Formally, E[f(OPTi−1) − f(OPTi)] is
upper bounded by the average expected change in the
value of the two solutions maintained by the algorithm, i.e.,
1/2 · E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)].

Lemma III.1. For every 1 ≤ i ≤ n,

E [f(OPTi−1)− f(OPTi)] ≤
1

2
· E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (1)

where expectations are taken over the random choices of the
algorithm.

Before proving Lemma III.1, let us show that Theorem I.2
follows from it.

Proof of Theorem I.2: Summing up Lemma III.1 for
every 1 ≤ i ≤ n yields:

n∑

i=1

E [f(OPTi−1)− f(OPTi)] ≤

1

2
·

n∑

i=1

E [f(Xi)− F (Xi−1) + f(Yi)− F (Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E [f(OPT0)− f(OPTn)] ≤
1

2
· E [f(Xn)− f(X0) + f(Yn)− f(Y0)] ≤

E[f(Xn) + f(Yn)]

2
.

Recalling the definitions of OPT0 and OPTn, we obtain
that E[f(Xn)] = E[f(Yn)] ≥ f(OPT )/2.

It is left to prove Lemma III.1.

Proof of Lemma III.1: Notice that it suffices to prove
Inequality (1) conditioned on any event of the form Xi−1 =
Si−1, when Si−1 ⊆ {u1, . . . , ui−1} and the probability
that Xi−1 = Si−1 is non-zero. Hence, fix such an event
for a given Si−1. The rest of the proof implicitly assumes
everything is conditioned on this event. Notice that due to
the conditioning, the following quantities become constants:

• Yi−1 = Si−1 ∪ {ui, . . . , un}.

• OPTi−1 ! (OPT ∪Xi−1) ∩ Yi−1 =

Si−1 ∪ (OPT ∩ {ui, . . . , un}).

• ai and bi.

Moreover, by Lemma II.1, ai + bi ≥ 0. Thus, it cannot be
that both ai, bi are strictly less than zero. Hence, we only
need to consider the following 3 cases:

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′
i/(a′

i +
b′
i) = 1, and so the following always happen: Yi = Yi−1 =

Si−1∪{ui, . . . , un} and Xi ← Si−1∪{ui}. Hence, f(Yi)−
f(Yi−1) = 0. Also, by our definition OPTi = (OPT∪Xi)∩
Yi = OPTi−1 ∪ {ui}. Thus, we are left to prove that:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
1

2
· [f(Xi)− f(Xi−1)] =

ai

2
.

If ui ∈ OPT , then the left hand side of the last expression
is 0, which is clearly no larger than the non-negative ai/2.
If ui ̸∈ OPT , then:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
f(Yi−1 \ {ui})− f(Yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since
OPTi−1 ! (OPT ∪ Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {ui} (note
that ui ∈ Yi−1 and ui ̸∈ OPTi−1).

Case 2 (ai < 0 and bi ≥ 0): This case is analogous
to the previous one, and therefore, we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′
i = ai, b

′
i =

bi. Therefore, with probability ai/(ai + bi) the following
events happen: Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1, and
with probability bi/(ai + bi) the following events happen:
Xi ← Xi−1 and Yi ← Yi−1 \ {ui}. Thus,

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
· [f(Xi−1 ∪ {ui})− f(Xi−1)] +

bi

ai + bi
· [f(Yi−1 \ {ui})− f(Yi−1)]

=
a2

i + b2
i

ai + bi
. (2)



max-sum diversification

[Borodin et al., 2012]

• U is a ground set

• d : U × U → R is a metric distance function on U

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

φ(S) = f (S) + λ
∑

u,v∈S d(u, v) is maximized and

|S| ≤ k



max-sum diversification

[Borodin et al., 2012]

• consider S ⊆ U and x ∈ U \ S

• define the following types of marginal gain

dx(S) =
∑

v∈S d(x , v)

fx(S) = f (S ∪ {x})− f (S)

φx(S) = 1
2 fx(S) + λdx(S)

• greedy algorithm on marginal gain φx(S) gives
factor 2 approximation



max-sum diversification – the greedy

[Borodin et al., 2012]

1. S ← ∅
2. while |S| < k

3. i ← arg max{j∈U\S} φj(S)

4. S ← S ∪ {i}
5. return S



conclusions

• maximization of submodular functions

• monotone, constraints, symmetric, . . .

• recent developments in theory community

• simple algorithms

• neat analysis

• many applications in data mining
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