



Aalto University  
School of Science

# Algorithmic methods for mining large graphs

## Lecture 3 : Finding dense subgraphs

Aristides Gionis

Aalto University

Bertinoro International Spring School 2016  
March 7–11, 2016

# course agenda

- introduction to graph mining Tue afternoon
- computing basic graph statistics Tue afternoon, Wed morning
- finding dense subgraphs Wed afternoon, Thu morning
- spectral graph analysis Thu afternoon
- additional topics Fri morning
  - inferring hierarchies in graphs
  - mining dynamic graphs
  - graph sparsifiers

# what this lecture is about ...

given a graph (network), static or dynamic  
(social network, biological network, information network, ...)

find a subgraph that ...

... has many edges

... is densely connected

why I care?

what does dense mean?

review of main problems, and main algorithms

# outline

- motivating applications
- preliminaries and measures of density
- algorithms for finding dense subgraphs
- problem variants

motivating applications

## motivation – correlation mining

correlation mining: a general framework with many applications

- data is converted into a graph
- vertices correspond to entities
- an edge between two entities denotes strong correlation
  - ① stock correlation network: data represent stock timeseries
  - ② gene correlation networks: data represent gene expression
- dense subsets of vertices correspond to highly correlated entities
- applications:
  - ① analysis of stock market dynamics
  - ② detecting co-expression modules

# motivation – fraud detection

- dense bipartite subgraphs in **page-like data**  
reveal attempts to inflate page-like counts  
[Beutel et al., 2013]



source: [Beutel et al., 2013]

# motivation – e-commerce



## e-commerce

- weighted bipartite graph  $G(A \cup Q, E, w)$
- set  $A$  corresponds to **advertisers**
- set  $Q$  corresponds to **queries**
- each edge  $(a, q)$  has weight  $w(a, q)$  equal to the amount of money advertiser  $a$  is willing to spend on query  $q$

large almost bipartite cliques correspond to **sub-markets**

# motivation – bioinformatics



- DNA motif detection [Fratkin et al., 2006]
  - vertices correspond to  $k$ -mers
  - edges represent nucleotide similarities between  $k$ -mers
- gene correlation analysis
- detect **complex annotation patterns** from gene annotation data [Saha et al., 2010]

# motivation – mining twitter data



real-time story identification [Angel et al., 2012]

- mining of twitter data
- vertices correspond to **entities**
- edges correspond to **co-occurrence** of entities
- dense subgraphs capture **news stories**

# motivation – graph mining

understanding the structure of real-world networks

[Sarıyüce et al., 2015]

nucleus decomposition of a graph



(3,4)-nuclei forest for facebook

# motivation – distance queries in graphs



- $L(u) \equiv \text{set of pairs } (v, \text{dist}(u, v))$   
 $L(u)$  is the *label* of  $u$ ; each  $v$  is a *hub* for  $u$ .

figure from [Delling et al., 2014]

## motivation – distance queries in graphs



- **preprocessing** : compute a label set for every vertex
- **cover property** : for all  $s, t$  intersection  $L(s) \cap L(t)$  must hit an  $s-t$  shortest path

figure from [Delling et al., 2014]

# motivation – distance queries in graphs



- to answer an  $s-t$  query :  
find hub  $v$  in  $L(s) \cap L(t)$  minimizing  $\text{dist}(s, v) + \text{dist}(v, t)$

figure from [Delling et al., 2014]

## motivation – distance queries in graphs

hub label queries are trivial to implement :

- entries sorted by hub id
- linear sweep to find matches
- access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small

- can we find small labels sets?
- 2-hop labeling algorithm relies on dense-subgraph discovery to find such label sets (!) [Cohen et al., 2003]
- state-of-art 2-hop labeling scheme : [Delling et al., 2014]
- more work on the topic : [Peleg, 2000, Thorup, 2004]

# motivation – frequent pattern mining

- given a set of transactions over items
- find item sets that occur together in a  $\theta$  fraction of the transactions



| issue number | heroes                            |
|--------------|-----------------------------------|
| 1            | Iceman, Storm, Wolverine          |
| 2            | Aurora, Cyclops, Magneto, Storm   |
| 3            | Beast, Cyclops, Iceman, Magneto   |
| 4            | Cyclops, Iceman, Storm, Wolverine |
| 5            | Beast, Iceman, Magneto, Storm     |

e.g., {Iceman, Storm} appear in 60% of issues

## motivation – frequent pattern mining

- one of the **most well-studied** area in **data mining**
- many **efficient algorithms**  
Apriori, Eclat, FP-growth, Mafia, ABS, ...
- **main idea: monotonicity**  
a subset of a frequent set must be frequent, or  
a superset of an infrequent set must be infrequent
- **algorithmically:**  
start with small itemsets  
proceed with larger itemset if all subsets are frequent
- **enumerate all** frequent itemsets

## motivation – frequent itemsets and dense subgraphs

| id | heroes                            |   |   |   |   |   |   |   |
|----|-----------------------------------|---|---|---|---|---|---|---|
|    |                                   | A | B | C | I | M | S | W |
| 1  | Iceman, Storm, Wolverine          | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 2  | Aurora, Cyclops, Magneto, Storm   | 2 | 1 | 0 | 1 | 1 | 1 | 0 |
| 3  | Beast, Cyclops, Iceman, Magneto   | 3 | 0 | 1 | 1 | 1 | 1 | 0 |
| 4  | Cyclops, Iceman, Storm, Wolverine | 4 | 0 | 0 | 1 | 1 | 0 | 1 |
| 5  | Beast, Iceman, Magneto, Storm     | 5 | 0 | 1 | 0 | 1 | 1 | 1 |

↔



↔

- transaction data ↔ binary data ↔ bipartite graphs

## motivation – frequent itemsets and dense subgraphs

| id | heroes                            |   |   |   |   |   |   |   |
|----|-----------------------------------|---|---|---|---|---|---|---|
| 1  | Iceman, Storm, Wolverine          | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 2  | Aurora, Cyclops, Magneto, Storm   | 2 | 1 | 0 | 1 | 1 | 1 | 0 |
| 3  | Beast, Cyclops, Iceman, Magneto   | 3 | 0 | 1 | 1 | 1 | 1 | 0 |
| 4  | Cyclops, Iceman, Storm, Wolverine | 4 | 0 | 0 | 1 | 1 | 0 | 1 |
| 5  | Beast, Iceman, Magneto, Storm     | 5 | 0 | 1 | 0 | 1 | 1 | 1 |

↔



- transaction data ↔ binary data ↔ bipartite graphs
- frequent itemsets ↔ bi-cliques

## motivation – finding web communities

[Kumar et al., 1999]

- hypothesis: web communities consist of hub-like pages and authority-like pages  
e.g., luxury cars and luxury-car aficionados
- key observations:
  1. let  $G = (U, V, E)$  be a dense web community  
then  $G$  should contain some small core (bi-clique)
  2. consider a web graph with no communities  
then small cores are unlikely
- both observations motivated from theory of random graphs

# motivation – finding web communities

a web community



[Kumar et al., 1999]

## motivation – finding web communities

web communities contains small cores



[Kumar et al., 1999]

# motivation – social piggybacking

[Gionis et al., 2013]

- **event feeds:** majority of activity in social networks

## motivation – social piggybacking

- **system throughput** proportional to the data transferred between data stores
- **feed generation** important component to **optimize**



- **primitive operation**: transfer data between two data stores
- can be implemented as **push** or **pull** strategy
- optimal strategy depends on **production** and **consumption** rates of nodes

# motivation – social piggybacking



- hub optimization turns out to be a good idea
- depends on finding dense subgraphs



## motivation – graph compression

- compress web graphs by finding and compressing bi-cliques [Karande et al., 2009]
- many graph mining tasks that can be formulated as matrix-vector multiplication are more efficient on the compressed graph [Kang et al., 2009]



## motivation – more applications

- graph visualization [Alvarez-Hamelin et al., 2005]
- community detection [Chen and Saad, 2012]
- epilepsy prediction [Iasemidis et al., 2003]
- event detection in activity networks  
[Rozenshtein et al., 2014]
- many more

## landscape of related work

- brute force [Johnson and Trick, 1996]
- heuristics [Bomze et al., 1999]
  - spectral algorithms [Alon et al., 1998, McSherry, 2001, Papailiopoulos et al., 2014]
  - belief-propagation methods [Kang et al., 2011]
- enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973, Eppstein et al., 2010, Makino and Uno, 2004]
- NP-hard formulations and various relaxations
  - maximum clique problem [Karp, 1972, Hastad, 1999]
  - $k$ -densest subgraph problem [Bhaskara et al., 2010, Feige et al., 2001]
  - optimal quasi-cliques [Tsourakakis et al., 2013]
- polynomial-time solvable objectives
  - densest subgraph problem [Goldberg, 1984]
  - *“The densest subgraph problem lies at the core of large scale data mining”* [Bahmani et al., 2012]

preliminaries, measures of density

## notation

- graph  $G = (V, E)$  with vertices  $V$  and edges  $E \subseteq V \times V$
- degree of a node  $u \in V$  with respect to  $X \subseteq V$  is

$$\deg_X(u) = |\{v \in X \text{ such that } (u, v) \in E\}|$$

- degree of a node  $u \in V$  is  $\deg(u) = \deg_V(u)$
- edges between  $S \subseteq V$  and  $T \subseteq V$  are

$$E(S, T) = \{(u, v) \text{ such that } u \in S \text{ and } v \in T\}$$

use shorthand  $E(S)$  for  $E(S, S)$

- graph cut is defined by a subset of vertices  $S \subseteq V$
- edges of a graph cut  $S \subseteq V$  are  $E(S, \bar{S}) = E(S, V \setminus S)$
- induced subgraph by  $S \subseteq V$  is  $G(S) = (S, E(S))$
- triangles:  $T(S) = \{(u, v, w) \mid (u, v), (u, w), (v, w) \in E(S)\}$

## density measures

- undirected graph  $G = (V, E)$
- subgraph induced by  $S \subseteq V$
- **clique**: all vertices in  $S$  are connected to each other



## density measures

- **edge density** (average degree):

$$d(S) = \frac{2|E(S, S)|}{|S|} = \frac{2|E(S)|}{|S|}$$

(sometimes just drop 2)

- **edge ratio**:

$$\delta(S) = \frac{|E(S, S)|}{\binom{|S|}{2}} = \frac{|E(S)|}{\binom{|S|}{2}} = \frac{2|E(S)|}{|S|(|S| - 1)}$$

- **triangle density**:

$$t(S) = \frac{|T(S)|}{|S|}$$

- **triangle ratio**:

$$\tau(S) = \frac{|T(S)|}{\binom{|S|}{3}}$$

## other density measures

- **$k$ -core**: every vertex in  $S$  is connected to at least  $k$  other vertices in  $S$
- **$\alpha$ -quasiclique**: the set  $S$  has at least  $\alpha \binom{|S|}{2}$  edges  
i.e.,  $S$  is  $\alpha$ -quasiclique if  $E(S) \geq \alpha \binom{|S|}{2}$

## and more

not considered here

- **$k$ -cliques**: subset of vertices with pairwise distances at most  $k$ 
  - distances defined using intermediaries, outside the set
  - not well connected
- **$k$ -club**: a subgraph of diameter  $\leq k$
- **$k$ -plex**: a subgraph  $S$  in which each vertex is connected to at least  $|S| - k$  other vertices
  - 1-plex is a clique

# reminder: min-cut and max-cut problems

## min-cut problem



- source  $s \in V$ , destination  $t \in V$
- find  $S \subseteq V$ , s.t.,
- $s \in S$  and  $t \in \bar{S}$ , and
- minimize  $e(S, \bar{S})$

## max-cut problem



- find  $S \subseteq V$ , s.t.,
- maximize  $e(S, \bar{S})$

# reminder: min-cut and max-cut problems

## min-cut problem



- source  $s \in V$ , destination  $t \in V$
- find  $S \subseteq V$ , s.t.,
- $s \in S$  and  $t \in \bar{S}$ , and
- minimize  $e(S, \bar{S})$
- polynomially-time solvable
- equivalent to **max-flow** problem

## max-cut problem



- find  $S \subseteq V$ , s.t.,
- maximize  $e(S, \bar{S})$

# reminder: min-cut and max-cut problems

## min-cut problem



- source  $s \in V$ , destination  $t \in V$
- find  $S \subseteq V$ , s.t.,
- $s \in S$  and  $t \in \bar{S}$ , and
- minimize  $e(S, \bar{S})$
- polynomially-time solvable
- equivalent to **max-flow** problem

## max-cut problem



- find  $S \subseteq V$ , s.t.,
- maximize  $e(S, \bar{S})$
- **NP-hard**
- approximation algorithms  
(0.868 based on SDP)

basic algorithms

# Goldberg's algorithm for densest subgraph

- consider first degree density  $d$



- is there a subgraph  $S$  with  $d(S) \geq c$ ?

# Goldberg's algorithm for densest subgraph

- consider first degree density  $d$



- is there a subgraph  $S$  with  $d(S) \geq c$ ?
- transform to a min-cut instance

# Goldberg's algorithm for densest subgraph

- consider first **degree density  $d$**



- is there a subgraph  $S$  with  $d(S) \geq c$ ?
- transform to a **min-cut** instance

- on the transformed instance:
- **is there a cut smaller than a certain value?**



## Goldberg's algorithm for densest subgraph

is there  $S$  with  $d(S) \geq c$  ?

$$\frac{2|E(S, S)|}{|S|} \geq c$$

$$2|E(S, S)| \geq c|S|$$

$$\sum_{u \in S} \deg(u) - |E(S, \bar{S})| \geq c|S|$$

$$\sum_{u \in S} \deg(u) + \sum_{u \in \bar{S}} \deg(u) - \sum_{u \in \bar{S}} \deg(u) - |E(S, \bar{S})| \geq c|S|$$

$$\sum_{u \in \bar{S}} \deg(u) + |E(S, \bar{S})| + c|S| \leq 2|E|$$

# Goldberg's algorithm for densest subgraph

- transformation to **min-cut** instance



- is there  $S$  s.t.  $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$  ?

# Goldberg's algorithm for densest subgraph

- transform to a **min-cut** instance



- is there  $S$  s.t.  $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$  ?
- a cut of value  $2|E|$  always exists, for  $S = \emptyset$

# Goldberg's algorithm for densest subgraph

- transform to a **min-cut** instance



- is there  $S$  s.t.  $\sum_{u \in \bar{S}} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$  ?
- $S \neq \emptyset$  gives cut of value  $\sum_{u \in \bar{S}} \deg(u) + |e(S, \bar{S})| + c|S|$

# Goldberg's algorithm for densest subgraph

- transform to a **min-cut** instance



- is there  $S$  s.t.  $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$  ?
- YES**, if min cut achieved for  $S \neq \emptyset$

# Goldberg's algorithm for densest subgraph

[Goldberg, 1984]

**input:** undirected graph  $G = (V, E)$ , number  $c$

**output:**  $S$ , if  $d(S) \geq c$

- 1 transform  $G$  into min-cut instance  $G' = (V \cup \{s\} \cup \{t\}, E', w')$
- 2 find min cut  $\{s\} \cup S$  on  $G'$
- 3 if  $S \neq \emptyset$  return  $S$
- 4 else return NO

- to find the **densest subgraph** perform **binary search** on  $c$
- **logarithmic** number of min-cut calls
- problem can also be solved with **one** min-cut call using the **parametric max-flow** algorithm

## densest subgraph problem – discussion

- Goldberg's algorithm polynomial algorithm, but
- $\mathcal{O}(nm)$  time for one min-cut computation
- not scalable for large graphs (millions of vertices / edges)

## densest subgraph problem – discussion

- Goldberg's algorithm polynomial algorithm, but
- $\mathcal{O}(nm)$  time for one min-cut computation
- not scalable for large graphs (millions of vertices / edges)
- faster algorithm due to [Charikar, 2000]
- **greedy** and simple to implement
- **approximation** algorithm

## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



## greedy algorithm for densest subgraph — example



# greedy algorithm for densest subgraph — example



# greedy algorithm for densest subgraph — example



# greedy algorithm for densest subgraph

[Charikar, 2000]

**input:** undirected graph  $G = (V, E)$

**output:**  $S$ , a dense subgraph of  $G$

- 1 set  $G_n \leftarrow G$
- 2 for  $k \leftarrow n$  downto 1
  - 2.1 let  $v$  be the smallest degree vertex in  $G_k$
  - 2.2  $G_{k-1} \leftarrow G_k \setminus \{v\}$
- 3 output the densest subgraph among  $G_n, G_{n-1}, \dots, G_1$

## proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]

- let  $S^*$  be the vertices of the optimal subgraph
- let  $d(S^*) = \lambda$  be the maximum degree density
- notice that for all  $v \in S^*$  we have  $\deg_{S^*}(v) \geq \lambda$
- (why?) by optimality of  $S^*$

$$\frac{|e(S^*)|}{|S^*|} \geq \frac{|e(S^*)| - \deg_{S^*}(v)}{|S^*| - 1}$$

and thus

$$\deg_{S^*}(v) \geq \frac{|e(S^*)|}{|S^*|} = d(S^*) = \lambda$$

## proof of 2-approximation guarantee (continued)

[Khuller and Saha, 2009]

- consider greedy when the **first** vertex  $v \in S^* \subseteq V$  is **removed**
- let  $S$  be the set of vertices, just before removing  $v$
- total number of edges before removing  $v$  is  $\geq \lambda|S|/2$
- therefore, greedy returns a solution with degree density at least  $\lambda/2$

QED

## the greedy algorithm

- factor-2 approximation algorithm
- runs in linear time  $\mathcal{O}(n + m)$
- for a polynomial problem ...  
but faster and easier to implement than the exact algorithm
- everything works for weighted graphs  
using heaps:  $\mathcal{O}(m + n \log n)$
- things are not as straightforward for **directed graphs**

finding dense subgraphs on directed graphs

## dense subgraphs on directed graphs – history

- **goal**: find sets  $S, T \subseteq V$  to maximize

$$d(S, T) = \frac{e[S, T]}{\sqrt{|S| |T|}}$$

- first introduced in unpublished manuscript  
[Kannan and Vinay, 1999]
- they provided a  $\mathcal{O}(\log n)$ -approximation algorithm
- left **open** the problem complexity
- polynomial-time solution using linear programming (LP)  
[Charikar, 2000]

## dense subgraphs on directed graphs – history

[Charikar, 2000]

- exact LP-based algorithm
- greedy 2-approximation algorithm running in  $\mathcal{O}(n^3 + n^2m)$

[Khuller and Saha, 2009]

- first max-flow based exact algorithm
- improved running time of the 2-approximation greedy algorithm to  $\mathcal{O}(n + m)$  (!)

## directed graphs – algorithms

- reduced problem to  $O(n^2)$  LP calls [Charikar, 2000]
- one LP call for each possible ratio  $\frac{|S|}{|T|} = c$

$$\begin{aligned} & \text{maximize} && \sum_{(i,j) \in E(G)} x_{ij} \\ & \text{such that} && x_{ij} \leq s_i, \quad \text{for all } (i,j) \in E(G) \\ & && x_{ij} \leq t_j, \quad \text{for all } (i,j) \in E(G) \\ & && \sum_i s_i \leq \sqrt{c} \text{ and } \sum_j t_j \leq \frac{1}{\sqrt{c}} \\ & && x_{ij}, s_i, t_j \geq 0 \end{aligned}$$

## directed graphs – algorithms

[Charikar, 2000]

- for a given value of  $\frac{|S|}{|T|} = c$  the  $\text{LP}(c)$  has an **integral** solution
- it can be shown that

$$\max_{S, T \subseteq V} d(S, T) = \max_c \text{OPT}(\text{LP}(c))$$

[proof sketch]

1. for  $S, T \subseteq V$ , with  $\frac{|S|}{|T|} = c$  the optimal value of  $\text{LP}(c)$  is at least  $d(S, T)$
2. given a feasible solution of  $\text{LP}(c)$  with value  $v$  we can construct  $S, T \subseteq V$  such that  $d(S, T) \geq v$

## dense subgraphs on directed graphs – greedy

[Charikar, 2000]

**input:** directed graph  $G = (V, E)$ , ratio  $c = \frac{|S|}{|T|}$

```
1    $S \leftarrow V, T \leftarrow V$ 
2   while both  $S, T$  non-empty
3        $i_{\min} \leftarrow$  the vertex  $i \in S$  that minimizes  $|E(\{i\}, T)|$ 
4        $d_S \leftarrow |E(\{i_{\min}\}, T)|$ 
5        $j_{\min} \leftarrow$  the vertex  $j \in T$  that minimizes  $|E(S, \{j\})|$ 
6        $d_T \leftarrow |E(S, \{j_{\min}\})|$ 
7       if  $\sqrt{c}d_S \leq \frac{1}{\sqrt{c}}d_T$ 
8           then  $S \leftarrow S \setminus \{i_{\min}\}$ 
9           else  $T \leftarrow T \setminus \{j_{\min}\}$ 
```

- execute  $\mathcal{O}(n^2)$  times; one for each  $c = \frac{|S|}{|T|}$
- report best solution
- factor 2 approximation guarantee

## dense subgraphs on directed graphs – greedy

- brute force execution of greedy:

$$\mathcal{O}(n^2(n + m)) = \mathcal{O}(n^3 + nm)$$

[Khuller and Saha, 2009]

- showed that **only one** execution is needed  
(instead of  $\mathcal{O}(n^2)$ )
- total running time  $\mathcal{O}(n + m)$

## dense subgraphs on directed graphs – greedy

linear-time greedy [Khuller and Saha, 2009]

definitions:

- let  $v_i, v_o$  be the vertices with minimum in- and out-degree
- if  $d^-(v_i) \leq d^+(v_o)$  we are in category IN  
otherwise in category OUT

algorithm:

- greedy deletes the minimum-degree vertex
- if in IN, it deletes all incoming edges
- if in OUT, it deletes all outgoing edges
- if the vertex becomes a singleton, it is deleted.
- return the densest subgraph encountered

## dense subgraphs on directed graphs – exact

we wish to answer “are there  $S, T \subseteq V$  such that  $d(S, T) \geq g$ ?”  
consider

- consider  $\alpha = \frac{|S|}{|T|}$  ( $\mathcal{O}(n^2)$  possible values)
- network  $G' = (\{s, t\} \cup V_1 \cup V_2, E)$ , with  $V_1 = V_2 = V$

min-cut transformation

- add edge of capacity  $m$  from  $s$  to each vertex of  $V_1$  and  $V_2$
- add edge of capacity  $2m + \frac{g}{\sqrt{\alpha}}$  from each vertex of  $V_1$  to  $t$
- add edge from each vertex  $j$  of  $V_2$  to sink  $t$  of capacity

$$2m + \sqrt{\alpha}g - 2\deg(j)$$

- for each  $(i, j) \in E(G)$ , add an edge from  $j \in V_2$  to  $i \in V_1$  with capacity 2

## dense subgraphs on directed graphs – exact

- proof of correctness of min-cut algorithm of transformed graph  $G'$  follows the argument of Goldberg
- the cut  $(\{s\}, \{t, V_1, V_2\})$  has weight  $m(|V_1| + |V_2|)$
- thus, min cut has weight at most  $m(|V_1| + |V_2|)$
- it can be shown that solution to the min-cut with value smaller than  $m(|V_1| + |V_2|)$  corresponds to sets  $S \subseteq V_1$ ,  $T \subseteq V_2$  with density  $d(S, T)$  greater than  $g$
- densest subgraph can be found with binary search on  $g$
- one min-cut computation suffices  
(using parametric max-flow algorithm)

## dense subgraph problem – summary

- for the **degree density** measure:
- exact algorithms for undirected and directed graphs
- linear-time 2-approximation achieved by greedy
- how good are these subgraphs?
- study other measures and contrast with degree density
- no control on the **size** of the subgraph

$k$ -clique densest subgraphs

## motivating question

- how to go beyond **edge density**?
- how to search for **large near-cliques**
  
- can we combine the best of both worlds, namely
  - have poly-time solvable formulation(s) which
  - . . . succeeds in finding large near-cliques?
  
- yes: the ***k*-clique densest subgraph** problem  
[Tsourakakis, 2015]

# $k$ -clique densest subgraph problem

## Definition ( $k$ -clique density)

for any  $S \subseteq V$  we define its  $k$ -clique density  $\rho_k(S)$ ,  $k \geq 2$  as  $\rho_k(S) = \frac{c_k(S)}{s}$ , where  $c_k(S)$  is the number of  $k$ -cliques induced by  $S$  and  $s = |S|$

## Problem ( $k$ -clique DSP)

given  $G(V, E)$ , find a subset of vertices  $S^*$

such that  $\rho_k(S^*) = \rho_k^* = \max_{S \subseteq V} \rho_k(S)$

- notice that the 2-clique DSP is simply the DSP
- we shall refer to the 3-clique DSP as the triangle densest subgraph problem

$$\max_{S \subseteq V} \tau(S) = \frac{t(S)}{s}$$

## triangle densest subgraph problem

- how **different** can the densest subgraph be from the triangle densest subgraph?
- in principle, they can be radically different!  
consider  $G = K_{n,n} \cup K_3$



- the interesting question is what happens on real-data
- can we solve the triangle DSP in polynomial time?
- can we solve the  $k$ -clique DSP in polynomial time?

# triangle densest subgraph problem

## Theorem

*there exists an algorithm which solves the TDSP and runs in time  $\mathcal{O}(m^{3/2} + nt + \min(n, t)^3)$  where  $t$  is the number of triangles in the graph*

## Theorem

*the  $k$ -clique DSP can be solved in polynomial time for any  $k = \Theta(1)$*

- although this construction solves also the (2-clique) DSP Goldberg's algorithm is more efficient

# triangle densest subgraph problem

## exact algorithm

- once again, follow Goldberg's idea
- perform binary searches:
  - is there a set  $S \subseteq V$  such that  $t(S) > \alpha|S|$  ?
- $\mathcal{O}(\log n)$  queries suffice to solve TDSP (why?)
  - any two distinct triangle density values are at least  $\mathcal{O}(1/n^2)$  away from each other
  - for the optimal density  $0 \leq \frac{t}{n} \leq \tau^* \leq \frac{\binom{n}{3}}{n}$
- but what does a binary search correspond to ? ...

## triangle densest subgraph problem

construct-network  $(G, \alpha, \mathcal{T}(G))$

- $V(H) \leftarrow \{s\} \cup V(G) \cup \mathcal{T}(G) \cup \{t\}$
- for each vertex  $v \in V(G)$  add an arc of capacity 1 to each triangle  $t_i$  it participates
- for each triangle  $\Delta = (u, v, w) \in \mathcal{T}(G)$  add arcs to  $u, v, w$  of capacity 2
- add directed arc  $(s, v) \in A(H)$  of capacity  $t_v$  for each  $v \in V(G)$
- add weighted directed arc  $(v, t) \in A(H)$  of capacity  $3\alpha$  for each  $v \in V(G)$
- return network  $H(V(H), A(H), w), s, t \in V(H)$

# $k$ -clique densest subgraph problem

construction for  $k = \Theta(1)$



# triangle densest subgraph problem

exact algorithm for TDSP

1. list the set of triangles  $\mathcal{T}(G)$ ,  $t = |\mathcal{T}(G)|$
2.  $l \leftarrow \frac{t}{n}$ ,  $u \leftarrow \frac{(n-1)(n-2)}{6}$
3.  $S^* \leftarrow \emptyset$
4. while( $u \geq l + \frac{1}{n(n-1)}$ )
  - $\alpha \leftarrow \frac{l+u}{2}$
  - $H_\alpha \leftarrow \text{Construct-Network}(G, \alpha, \mathcal{T}(G))$
  - $(S, T) \leftarrow \text{minimum } st\text{-cut in } H_\alpha$
  - if  $(S = \{s\})$ , then  $u \leftarrow \alpha$
  - otherwise set  $S^* \leftarrow (S \setminus \{s\}) \cap V(G)$  and  $l \leftarrow \alpha$
5. return  $S^*$

- run time:  $\mathcal{O}\left(m^{3/2} + (nt + \min(n, t)^3) \log n\right)$
- space complexity:  $\mathcal{O}(n + t)$  (typically  $n \ll t$ )

# triangle densest subgraph problem

greedy works too

1. set  $G_n \leftarrow G$
2. for  $k \leftarrow n$  down to 1
  - let  $v$  be the **smallest triangle count** vertex in  $G_k$
  - $G_{k-1} \leftarrow G_k \setminus \{v\}$
3. output the **triangle**-densest subgraph among  $G_n, G_{n-1}, \dots, G_1$

- the above peeling algorithm is a 3-approximation algorithm
- the same peeling idea generalizes to the  $k$ -clique DSP providing a  $k$ -approximation algorithm

## some experimental findings

| method            | measure               | football |
|-------------------|-----------------------|----------|
| DS                | $\frac{ S }{ V }(\%)$ | 100      |
|                   | $2\delta$             | 10.66    |
|                   | $f_e$                 | 0.094    |
|                   | $3\tau$               | 21.12    |
| $\frac{1}{2}$ -DS | $\frac{ S }{ V }(\%)$ | 100      |
|                   | $2\delta$             | 10.66    |
|                   | $f_e$                 | 0.094    |
|                   | $3\tau$               | 21.12    |

| method             | measure               | football |
|--------------------|-----------------------|----------|
| TDS                | $\frac{ S }{ V }(\%)$ | 15.7     |
|                    | $2\delta$             | 8.22     |
|                    | $f_e$                 | 0.48     |
|                    | $3\tau$               | 28       |
| $\frac{1}{3}$ -TDS | $\frac{ S }{ V }(\%)$ | 15.7     |
|                    | $2\delta$             | 8.22     |
|                    | $f_e$                 | 0.48     |
|                    | $3\tau$               | 28       |

- **observation 1** : approximate algorithms find the same solution as optimal exact methods
- **observation 2** : the TDS is closer to being a large near-clique compared to the DS

## remark

- in many cases, despite being a 2-approximation, the greedy performs optimally or close to optimally
- evidence that real-data are “far away” from adversarial

  

- however, 2-approximation bound is tight
  - consider  $G = G_1 \cup G_2$  where  $G_1 = K_{d,D}$  and  $G_2$  is the disjoint union of  $D$  cliques, each of size  $d + 1$
  - let  $d \ll D$
- how does the greedy algorithm perform?
  - optimal is bipartite clique with density  $dD/(d + D) \approx d$
  - greedy returns a clique of size  $d + 1$  with density  $d/2$

# datasets

## non-bipartite

| dataset      | <i>n</i> | <i>m</i>  |
|--------------|----------|-----------|
| ■ Web-Google | 875 713  | 3 852 985 |
| ☆ Epinions   | 75 877   | 405 739   |
| ○ CA-Astro   | 18 772   | 198 050   |
| ■ Pol-blogs  | 1 222    | 16 714    |
| ○ Email-all  | 234 352  | 383 111   |

## bipartite

| dataset    | <i>n</i> | <i>m</i> |
|------------|----------|----------|
| ★ IMDB-B   | 241 360  | 530 494  |
| ★ IMDB-G-B | 21 258   | 42 197   |

# experimental findings

## $k$ -cliques

| $G$ | $k = 2$ |        | $k = 3$ |       | $k = 4$ |       | $k = 5$ |       |
|-----|---------|--------|---------|-------|---------|-------|---------|-------|
|     | $f_e$   | $ S $  | $f_e$   | $ S $ | $f_e$   | $ S $ | $f_e$   | $ S $ |
| ★   | 0.12    | 1 012  | 0.26    | 432   | 0.40    | 235   | 0.50    | 172   |
| ○   | 0.11    | 18 686 | 0.80    | 76    | 0.96    | 62    | 0.96    | 62    |
| ■   | 0.19    | 16 714 | 0.54    | 102   | 0.59    | 92    | 0.63    | 84    |
| ●   | 0.13    | 553    | 0.38    | 167   | 0.48    | 122   | 0.53    | 104   |

## $(p,q)$ -bicliques

| $G$ | $(p, q) = (1, 1)$ |       | $(p, q) = (2, 2)$ |       | $(p, q) = (3, 3)$ |       |
|-----|-------------------|-------|-------------------|-------|-------------------|-------|
|     | $f_e$             | $ S $ | $f_e$             | $ S $ | $f_e$             | $ S $ |
| ★   | 0.001             | 9 177 | 0.06              | 181   | 0.30              | 40    |
| ●   | 0.001             | 6 437 | 0.41              | 18    | 0.43              | 17    |

finding densest subgraphs with map-reduce

## peeling in batches

the following algorithm due to Bahmani, Kumar and Vassilvitski leads to efficient MapReduce and streaming algorithms  
[Bahmani et al., 2012]

1. set  $S, \tilde{S} \leftarrow V$
2. **while**  $S \neq \emptyset$  **do**
  - $A(S) \leftarrow \{i \in S : D_i(S) \leq 2(1 + \epsilon)\rho(S)\}$
  - $S \leftarrow S \setminus A(S)$
  - **if**  $\rho(S) \geq \rho(\tilde{S})$  **then**  $\tilde{S} \leftarrow S$
3. return  $\tilde{S}$

## peeling in batches

- **claim:** previous algorithm is a  $2(1 + \epsilon)$  approximation  
furthermore, it returns after  $\mathcal{O}(\log_{1+\epsilon}(n))$  rounds
- **Proof**
- **approximation guarantee**
  - fix an optimal solution  $S^*$
  - consider the first round when a node  $v \in S^*$  is removed
  - let  $U$  be the set of vertices at that point
  - then,  $\rho^* \leq d_{S^*}(v) \leq d_U(v) \leq (2 + 2\epsilon)\rho(U)$
- **number of rounds is  $\mathcal{O}(\log_{1+\epsilon}(n))$** 
  - in each round we throw a constant fraction of the vertices

$$2E(S) > \sum_{v \notin A(S)} d_S(v) > (|S| - |A(S)|)2(1 + \epsilon)\rho(S)$$

$$\text{and thus } |A(S)| > \frac{\epsilon}{1+\epsilon} |S|$$

## variations of the DSP

**$k$ -densest subgraph**  $\delta(S) = \frac{2e[S]}{|S|}, |S| = k$  **NP-hard**

---

**DalkS**  $\delta(S) = \frac{2e[S]}{|S|}, |S| \geq k$  **NP-hard**

---

**DamkS**  $\delta(S) = \frac{2e[S]}{|S|}, |S| \leq k$  *L-reduction to DkS*

## densest $k$ -subgraph problem

- does not admit a PTAS unless  $\mathbf{P} = \mathbf{NP}$
- Feige et al. gave a  $\mathcal{O}(n^{\frac{1}{3}})$  approximation algorithm  
[Feige et al., 2001]
- state-of-the-art algorithm due to Bhaskara et al. provides a  $\mathcal{O}(n^{\frac{1}{4}+\epsilon})$  approximation guarantee for any  $\epsilon > 0$   
[Bhaskara et al., 2010]
- closing the gap between lower and upper bounds is a significant open problem

## remarks

- [Andersen and Chellapilla, 2009] proved that an  $\alpha$ -approximation for DamkS implies a  $\mathcal{O}(\alpha^2)$  approximation algorithm for the DkS
- [Khuller and Saha, 2009] improved this, by showing that an  $\alpha$  approximation for DamkS implies a  $4\alpha$  approximation algorithm for the DkS
- the algorithmic ideas we showed for undirected case work for DalkS as well

an alternative density definition

## edge-surplus framework

[Tsourakakis et al., 2013]

- for a set of vertices  $S$  define **edge surplus**

$$f(S) = g(e[S]) - h(|S|)$$

where  $g$  and  $h$  are both **strictly increasing**

- optimal  $(g, h)$ -edge-surplus problem:

find  $S^*$  such that

$$f(S^*) \geq f(S), \quad \text{for all sets } S \subseteq S^*$$

## edge-surplus framework

- edge surplus  $f(S) = g(e[S]) - h(|S|)$
- example 1

$$g(x) = h(x) = \log x$$

find  $S$  that maximizes  $\log \frac{e[S]}{|S|}$

densest-subgraph problem

- example 2

$$g(x) = x, \quad h(x) = \begin{cases} 0 & \text{if } x = k \\ +\infty & \text{otherwise} \end{cases}$$

$k$ -densest-subgraph problem

## the optimal quasiclique problem

- edge surplus  $f(S) = g(e[S]) - h(|S|)$
- consider

$$g(x) = x, \quad h(x) = \alpha \frac{x(x-1)}{2}$$

find  $S$  that maximizes  $e[S] - \alpha \binom{|S|}{2}$

optimal quasiclique problem [Tsourakakis et al., 2013]

- theorem: let  $g(x) = x$  and  $h(x) = \alpha x$ 
  - we aim to maximize  $e(S) - \alpha|S|$
  - solving  $\mathcal{O}(\log n)$  such problems, solves densest subgraph problem

## the edge-surplus maximization problem

theorem: let  $g(x) = x$  and  $h(x)$  concave

then the optimal  $(g, h)$ -edge-surplus problem is  
polynomially-time solvable

proof

$g(x) = x$  is supermodular

if  $h(x)$  concave  $h(x)$  is submodular

$-h(x)$  is supermodular

$g(x) - h(x)$  is supermodular

maximizing supermodular functions is a polynomial  
problem

## the edge-surplus maximization problem

- poly-time solvable and interesting objectives have linear  $h$
- the optimal quasiclique problem is **NP-hard**
- the partitioning version led to a **streaming balanced graph-partitioning** algorithm: **FENNEL**
- **goal**: maximize  $g(\mathcal{P})$  over all possible  $k$ -partitions where

$$g(\mathcal{P}) = \underbrace{\sum_i e[S_i, S_i]}_{\text{number of edges cut}} - \alpha \underbrace{\sum_i |S_i|^\gamma}_{\text{minimized for balanced partition}}$$

- for more details: [Tsourakakis et al., 2014]

## finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

**input:** undirected graph  $G = (V, E)$

**output:** a quasiclique  $S$

- 1 set  $G_n \leftarrow G$
- 2 for  $k \leftarrow n$  downto 1
  - 2.1 let  $v$  be the smallest degree vertex in  $G_k$
  - 2.2  $G_{k-1} \leftarrow G_k \setminus \{v\}$
- 3 output the subgraph in  $G_n, \dots, G_1$  that maximizes  $f(S)$

additive approximation guarantee [Tsourakakis et al., 2013]

top- $k$  dense subgraphs

## top- $k$ dense subgraphs

- in many cases we want to find more than one dense subgraph
- **idea**: find all dense subgraphs  
e.g., denser than a threshold
- cut enumeration techniques to output all near-optimal dense subgraphs [Saha et al., 2010]
- in practice, this method suffers from output degeneracies:
- many subsets of a dense subgraph tend to be near-optimally dense as well

## top- $k$ dense subgraphs

- another approach
  - (i) find a dense subgraph  $S$
  - (ii) remove all vertices and edges of  $S$
  - (iii) iterate
- reported subgraphs are disjoint
- certain degree of overlap can be desirable  
[Balalau et al., 2015]

## top- $k$ dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

- given graph  $G = (V, E)$ , and parameters  $k$  and  $\alpha$
- find  $k$  subgraphs  $S_1, \dots, S_k$
- in order to maximize

$$\sum_{i=1}^k d(S_i)$$

subject to

$$\frac{|S_i \cap S_j|}{|S_i \cup S_j|} \leq \alpha, \text{ for all } 1 \leq i < j \leq k$$

## top- $k$ dense subgraphs with limited overlap

algorithm MINANDREMOVE ([Balalau et al., 2015])

**input:** undirected graph  $G = (V, E)$ , parameters  $k$  and  $\alpha$

**output:**  $k$  subgraphs  $G_1, \dots, G_k$  with overlap at most  $\alpha$

1 **while** less than  $k$  subgraphs found and  $G$  non-empty

2 find **minimal** densest subgraph  $G_i = (V_i, E_i)$

3 **for each**  $v \in V_i$

4  $\Delta_G(v) \leftarrow$  the set of neighbors of  $v$  in  $G$

5 remove  $\lceil (1 - \alpha) |V_i| \rceil$  nodes with minimum  $|\Delta_G(v) \setminus V_i|$

6 and all their edges from  $G$

## top- $k$ dense subgraphs with limited overlap

summary of results ([\[Balalau et al., 2015\]](#))

- MINANDREMOVE finds optimal solution, if this contains **disjoint** subgraphs
- MINANDREMOVE works shown to work well in practice
- faster algorithm, at small loss of accuracy

## top- $k$ dense subgraphs with limited overlap

alternative problem formulation

- given graph  $G = (V, E)$ , and parameters  $k$  and  $\alpha$
- find  $k$  subgraphs  $S_1, \dots, S_k$
- in order to **maximize** a reward function

$$r(S_1, \dots, S_k) = \sum_{i=1}^k d(S_i) + \lambda \sum_{i,j} \text{dist}(S_i, S_j)$$

- fits the **max-sum diversification** framework  
[Borodin et al., 2012]
- possible to obtain an approximation guarantee (1/10)

## top- $k$ dense subgraphs with limited overlap

- want to maximize

$$r(S_1, \dots, S_k) = \sum_{i=1}^k d(S_i) + \lambda \sum_{i,j} \text{dist}(S_i, S_j)$$

- need to define a **distance** between subgraphs
- define

$$\text{dist}(S_i, S_j) = \begin{cases} 2 - \frac{|S_i \cap S_j|^2}{|S_i||S_j|} & \text{if } S_i \neq S_j \\ 0 & \text{otherwise} \end{cases}$$

- distance  $\text{dist}(S_i, S_j)$  is a **metric function**
- we can obtain an approximation guarantee (1/10)

# top- $k$ dense subgraphs with limited overlap

adapting the max-sum diversification framework

---

**Algorithm 1:** DOS; Algorithm for finding top- $k$  overlapping densest subgraphs (problem DENSE-OVERLAPPING-SUBGRAPHS)

---

**Input:**  $G = (V, E), \lambda, k$

**Output:** set of subgraphs  $\mathcal{W}$  s.t.  $|\mathcal{W}| = k$  and maximizing  $r(\mathcal{W})$

```
1  $\mathcal{W} \leftarrow \emptyset$ ;  
2 foreach  $i = 1, \dots, k$  do  $\mathcal{W} \leftarrow \mathcal{W} \cup \text{Peel}(G, \mathcal{W}, \lambda)$  ;  
3 return  $\mathcal{W}$ ;
```

---

# top- $k$ dense subgraphs with limited overlap

adapting the max-sum diversification framework

---

**Algorithm 2:** Peel; finds a dense subgraph  $U$  of the graph  $G$ , overlapping with a collection of previously discovered subgraphs  $\mathcal{W}$ .

---

**Input:**  $G = (V, E), \mathcal{W}, \lambda$

**Output:**  $U$  maximizing  $\chi(U; \mathcal{W})$

```
1  $V_n \leftarrow V;$ 
2 foreach  $i = n, \dots, 2$  do
3    $v \leftarrow \arg \min_v \left\{ \deg(v; V_i) - 4\lambda \sum_{W_j \ni v} \frac{|V_i \cap W_j|}{|W_j|} \right\};$ 
4    $V_{i-1} \leftarrow V_i \setminus \{v\};$ 
5 foreach  $i = 1, \dots, n$  do
6   if  $V_i \in \mathcal{W}$  then  $V_i \leftarrow \text{Modify}(V_i, G, \mathcal{W}, \lambda);$ 
7 return  $\arg \max_{V_j} \{\chi(V_j; \mathcal{W})\};$ 
```

---

# top- $k$ dense subgraphs with limited overlap

adapting the **max-sum diversification** framework

---

**Algorithm 3:** `Modify`; modifies  $U$  if  $U \in \mathcal{W}$

---

**Input:**  $U, G, \mathcal{W}, \lambda$

**Output:** modified  $U$

```
1  $X \leftarrow \{U \cup \{x\} \mid x \notin U, U \cup \{x\} \notin \mathcal{W}\};$ 
2  $Y \leftarrow \{U \setminus \{y\} \mid y \in U, U \setminus \{y\} \notin \mathcal{W}\};$ 
3 if  $X = \emptyset$  and  $\text{dens}(U) \leq 5/3$  then
4    $U \leftarrow \{\text{a wedge of size 3 not in } \mathcal{W}\};$ 
5 else
6    $U \leftarrow \arg \max_{C \in X \cup Y} \{\chi(C; \mathcal{W})\};$ 
7 return  $U;$ 
```

---

# top- $k$ dense subgraphs with limited overlap

adapting the max-sum diversification framework  
example



# top- $k$ dense subgraphs with limited overlap

## DOS vs. MAR

DBLP.E2 Papadimitriou  
 $|E| = 2616$   
 $\text{dens}(G) = 3.62$



DBLP.C KDD  
 $|E| = 2891$   
 $\text{dens}(G) = 3.88$



core decomposition

## $k$ -core

- (recall)  $S$  is a  $k$ -core if every vertex in  $S$  is connected to at least  $k$  other vertices in  $S$
- can be found with the following algorithm:
  1. while ( $k$ -core property is satisfied)
  2. remove all vertices with degree less than  $k$
- can also obtain all  $k$ -cores (for all  $k$ )
- all  $k$ -cores form a nested sequence of subgraphs ( $k$ -core shell decomposition)
- popular technique in social network analysis
- inner cores : more dense, more central vertices
- note resemblance with Charikar's algorithm

## $k$ -core decomposition

widely used technique for partitioning graphs

$k$ -core = largest subgraph with vertex degrees  $\geq k$

cores form a chain,  $k$ -core  $\subseteq (k - 1)$ -core; let

$k$ -shell = vertices in  $k$ -core but not in  $(k + 1)$ -core

## $k$ -core decomposition

widely used technique for partitioning graphs

$k$ -core = largest subgraph with vertex degrees  $\geq k$

cores form a chain,  $k$ -core  $\subseteq (k-1)$ -core; let

$k$ -shell = vertices in  $k$ -core but not in  $(k+1)$ -core

algorithm to find shells:

1. **while**  $G$  is not empty
2.      $v \leftarrow$  vertex with the smallest degree
3.     assign  $v$  to  $k$ -shell
4.     remove  $v$  from  $G$

## core decomposition and density are not compatible



$$d(C_1) = \frac{6}{4} < \frac{8}{5} = d(C_2)$$

## core decomposition and density are not compatible



$$d(C_1) = \frac{6}{4} < \frac{8}{5} = d(C_2)$$



only one core but  
 $d(B) = \frac{7}{5} > \frac{11}{8} = d(G)$

# density-friendly decomposition

goal:

- adapt  $k$ -core decomposition for density
- obtain a nested sequence of increasingly dense subgraphs

[Tatti and Gionis, 2015]

## locally-dense subgraphs

informally,

subgraph  $H$  is **locally-dense** = any subgraph of  $H$  is **denser** than any subgraph outside  $H$

formally, define **augmented density**

$$d(X, Y) = \frac{|E(X)| + |E(X, Y)|}{|X|}, \quad \text{for } X \cap Y = \emptyset$$

subgraph  $H$  is **locally-dense** if

$$d(X, H \setminus X) > d(Y, H), \quad \text{for any } X \subsetneq H, Y \cap H = \emptyset$$

## example



## example



## example



## example



$$\begin{aligned}d(X, H \setminus X) &= 6/3 \\d(Y, H) &= 2/2\end{aligned}$$

# properties

locally-dense subgraphs form a **chain**

$$\emptyset = B_0 \subsetneq B_1 \subsetneq B_2 \subsetneq \cdots \subsetneq B_K = G$$

$B_i$  is the **densest** subgraph **containing**  $B_{i-1}$

$B_1$  = densest subgraph

$$B_2 = \arg \max_{B \supsetneq B_1} d(B \setminus B_1, B_1)$$

...

$$B_i = \arg \max_{B \supsetneq B_{i-1}} d(B \setminus B_{i-1}, B_{i-1})$$

## first approach to compute the subgraphs



## first approach to compute the subgraphs



find  $B_1$

## first approach to compute the subgraphs



find  $B_1$   
delete  $B_1$

## first approach to compute the subgraphs



find  $B_1$   
delete  $B_1$   
find  $B_2$

## first approach to compute the subgraphs



find  $B_1$   
delete  $B_1$   
find  $B_2$   
delete  $B_2$

## first approach to compute the subgraphs



find  $B_1$   
delete  $B_1$   
find  $B_2$   
delete  $B_2$   
find  $B_3$

## computing the subgraphs

define

$$F(\alpha) = \arg \max_X |E(X)| - \alpha|X|$$

Goldberg showed that

- $F(\alpha)$  can be solved with a min-cut
- there is  $\alpha$  such that  $F(\alpha)$  is the densest subgraph

## computing the subgraphs

define

$$F(\alpha) = \arg \max_X |E(X)| - \alpha|X|$$

Goldberg showed that

- $F(\alpha)$  can be solved with a min-cut
- there is  $\alpha$  such that  $F(\alpha)$  is the densest subgraph

we can show that

- $F(\alpha)$  is locally-dense
- for every  $B_i$  there is  $\alpha$  such that  $B_i = F(\alpha)$

## computing the subgraphs

find all  $B_i$  by varying  $\alpha$  (with divide-and-conquer)

algorithm: EXACT( $X, Y$ )

1. select  $\alpha$  such that  $X \subseteq F(\alpha) \subsetneq Y$
2.  $Z \leftarrow F(\alpha)$
2. **if** ( $Z \neq X$ )
3. **output**  $Z$
3. EXACT( $X, Z$ )
3. EXACT( $Z, Y$ )

- we need only  $2k - 3$  calls of  $F(\alpha)$   
( $k$  is the number of locally-dense subgraphs)
- $O(n^2m)$  total running time, in practice much faster
- $X \subset F(\alpha) \subset Y$  allows optimizations

## approximation with profiles

approximation guarantees are tricky:

- algorithm may return **different** number of subgraphs

define a **profile**:

$$p(i; \mathcal{B}) = \begin{cases} d(B_1) & \text{if } i \leq |B_1| \\ d(B_2 \setminus B_1, B_1) & \text{if } |B_1| < i \leq |B_2| \\ \dots & \end{cases}$$

## core decomposition

let  $\mathcal{C}$  be the core decomposition

let  $\mathcal{B}$  be the optimal locally-dense decomposition

then

$$p(i; \mathcal{C}) \geq p(i; \mathcal{B})/2, \text{ for every } i$$

for  $i = 1$ , this implies

$$d(C_1) \geq d(B_1)/2$$

## extending Charikar's algorithm

$C_1 \leftarrow$  densest subgraph of form  $v_1, \dots, v_{|C_1|}$

$C_2 \leftarrow$  subgraph maximizing  $d(v_1, \dots, v_{|C_2|} \setminus C_1, C_1)$

$C_3 \leftarrow$  subgraph maximizing  $d(v_1, \dots, v_{|C_3|} \setminus C_2, C_2)$

...

The graphs  $C_i$

- can be found in  $O(n^2)$ -time **naively**
- can be found in  $O(n)$ -time with **PAV** algorithm  
[Ayer et al., 1955]

## greedy decomposition

let  $\mathcal{C}$  be the greedy decomposition

(found by the extension of Charikar's algorithm)

let  $\mathcal{B}$  be the optimal locally-dense decomposition

then

$$p(i; \mathcal{C}) \geq p(i; \mathcal{B})/2, \text{ for every } i$$

for  $i = 1$ , this implies

$$d(C_1) \geq d(B_1)/2$$

# experiments

how well these algorithm perform?



## summary (density-friendly decomposition)

- decomposition based on average density
- can be computed exactly in  $\mathcal{O}(n^2m)$  time, faster in practice
- can be  $1/2$ -approximated in linear time by
  - $k$ -core decomposition
  - greedy algorithm

future work:

- consider different density functions
- control the size of the decomposition

community search

## community detection problems

- typical problem formulations require **non-overlapping** and **complete** partition of the set of vertices
- quite **restrictive**
- **inherently ambiguous**: research group vs. bicycling club
  
- additional information can resolve ambiguity
- community defined by two or more people

## the community-search problem

- given graph  $G = (V, E)$ , and
- given a subset of vertices  $Q \subseteq V$  (the query vertices)
- find a community  $H$  that contains  $Q$

### applications

- find the community of a given set of users (cocktail party)
- recommend tags for an image (tag recommendation)
- form a team to solve a problem (team formation)

## center-piece subgraph

[Tong and Faloutsos, 2006]

- **given**: graph  $G = (V, E)$  and set of query vertices  $Q \subseteq V$
- **find**: a connected subgraph  $H$  that
  - (a) contains  $Q$
  - (b) optimizes a goodness function  $g(H)$
- **main concepts**:
- **$k$ \_softAND**: a node in  $H$  should be well connected to at least  $k$  vertices of  $Q$
- $r(i, j)$  goodness score of  $j$  wrt  $q_i \in Q$
- $r(Q, j)$  goodness score of  $j$  wrt  $Q$
- $g(H)$  goodness score of a candidate subgraph  $H$
- $H^* = \arg \max_H g(H)$

## center-piece subgraph

[Tong and Faloutsos, 2006]

- $r(i, j)$  goodness score of  $j$  wrt  $q_i \in Q$   
probability to meet  $j$  in a **random walk with restart** to  $q_i$
- $r(Q, j)$  goodness score of  $j$  wrt  $Q$   
probability to meet  $j$  in a **random walk with restart** to  $k$  vertices of  $Q$
- **proposed algorithm:**
  1. **greedy**: find a good destination vertex  $j$  to add in  $H$
  2. add a path from each of top- $k$  vertices of  $Q$  path to  $j$
  3. stop when  $H$  becomes large enough

# center-piece subgraph — example results



(a) "K-soft AND query":  $k = 2$



(b) "AND query"

## the community-search problem

- **given**: graph  $G = (V, E)$  and set of query vertices  $Q \subseteq V$
- **find**: a connected subgraph  $H$  that
  - (a) contains  $Q$
  - (b) optimizes a **density function**  $d(H)$
  - (c) possibly other constraints
- **density function (b)**:  
average degree, minimum degree, quasiclique, etc.  
measured on the induced subgraph  $H$

## free riders



- remedy 1: use min degree as density function
- remedy 2: use distance constraint

$$d(Q, j) = \sum_{q \in Q} d^2(q_i, j) \leq B$$

# the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

**input:** undirected graph  $G = (V, E)$ , query vertices  $Q \subseteq V$

**output:** connected, dense subgraph  $H$

- 1 set  $G_n \leftarrow G$
- 2 for  $k \leftarrow n$  downto 1
  - 2.1 remove all vertices violating distance constraints
  - 2.2 let  $v$  be the smallest degree vertex in  $G_k$  among all vertices not in  $Q$
  - 2.3  $G_{k-1} \leftarrow G_k \setminus \{v\}$
  - 2.4 if left only with vertices in  $Q$  or disconnected graph, stop
- 3 output the subgraph in  $G_n, \dots, G_1$  that maximizes  $f(H)$

## properties of the greedy algorithm

- returns optimal solution if no size constraints
- upper-bound constraints make the problem **NP-hard** (heuristic solution, also adaptation of the greedy)
- generalization for monotone constraints and monotone objective functions

## experimental evaluation (qualitative summary)

**baseline**: incremental addition of vertices

- start with a Steiner tree on the query vertices
- greedily add vertices
- return best solution among all solutions constructed

**example result in DBLP**

- **proposed algorithm**: min degree = 3, avg degree = 6
- **baseline algorithm**: min degree = 1.5, avg degree = 2.5

# the community-search problem — example results



(a) Database theory



(b) Complexity theory

(from [Sozio and Gionis, 2010])

## monotone functions

function  $f$  is monotone non-increasing if

for every graph  $G$  and

for every subgraph  $H$  of  $G$  it is

$$f(H) \leq f(G)$$

the following functions are monotone non-increasing:

- the query nodes are connected in  $H$  (0/1)
- are the nodes in  $H$  able to perform a set of tasks?
- upper-bound distance constraint
- lower-bound constraint on the size of  $H$

# generalization to monotone functions

generalized community-search problem

given

- a graph  $G = (V, E)$
- a node-monotone non-increasing function  $f$
- $f_1, \dots, f_k$  non-increasing boolean functions

find

- a subgraph  $H$  of  $G$
- satisfying  $f_1, \dots, f_k$  and
- maximizing  $f$

## generalized greedy

```
1  set  $G_n \leftarrow G$ 
2  for  $k \leftarrow n$  downto 1
2.1    remove all vertices violating any constraint  $f_1, \dots, f_k$ 
2.2    let  $v$  minimizing  $f(G_k, v)$ 
2.3     $G_{k-1} \leftarrow G_k \setminus \{v\}$ 
3  output the subgraph  $H$  in  $G_n, \dots, G_1$  that maximizes  $f(H, v)$ 
```

# generalized greedy

## theorem

generalized greedy computes an optimum solution  
for the generalized community-search problem

## running time

- depends on the time to evaluate the functions  $f_1, \dots, f_k$
- formally  $\mathcal{O}(m + \sum_i nT_i)$
- where  $T_i$  is the time to evaluate  $f_i$

heavy subgraphs

# discovering heavy subgraphs

- given a graph  $G = (V, E, d, w)$   
with a distance function  $d : E \rightarrow \mathbb{R}$  on edges  
and weights on vertices  $w : V \rightarrow \mathbb{R}$
- find a subset of vertices  $S \subseteq V$   
so that
  1. total weight in  $S$  is high
  2. vertices in  $S$  are close to each other

[Rozenshtein et al., 2014]

# discovering heavy subgraphs

- what does **total weight** and **close to each other** mean?
- **total weight**

$$W(S) = \sum_{v \in S} w(v)$$

- **close to each other**

$$D(S) = \sum_{u \in S} \sum_{v \in S} d(u, v)$$

- want to **maximize**  $W(S)$  and **minimize**  $D(S)$
- **maximize**

$$Q(S) = \lambda W(S) - D(S)$$

# applications of discovering heavy subgraphs

- finding **events** in networks
- vertices correspond to **locations**
- weights model **activity** recorded in locations
- distances between locations
- find **compact regions** (**neighborhoods**) with **high activity**

# event detection

- sensor networks and traffic measurements



# event detection

15.11.2012

ordinary day, no events



11.09.2012

Catalunya national day



# event detection

- location-based social networks



## discovering heavy subgraphs

- maximize  $Q(S) = \lambda W(S) - D(S)$
- objective can be negative
- add a constant term to ensure non-negativity
- maximize  $Q(S) = \lambda W(S) - D(S) + D(V)$

## discovering heavy subgraphs

- maximize  $Q(S) = \lambda W(S) - D(S) + D(V)$
- objective is submodular (but not monotone)
- can obtain  $\frac{1}{2}$ -approximation guarantee  
[Buchbinder et al., 2012]
- problem can be mapped to the max-cut problem  
which gives 0.868-approximation guarantee  
[Rozenshtein et al., 2014]

# events discovered with bicing and 4square data



Figure 4: Public holiday city-events discovered using the SDP algorithm.



## summary

- the problem of finding dense subgraphs has many different real-world applications
- a number of density measures have been studied
- problem complexity depends on adopted measure
- for some problem formulations there are exact polynomial and faster approximate solution
- a number of different techniques has been used  
min-cut, greedy, submodularity optimization
- many directions and open problems for future work

# acknowledgements



Shamir Khuller



Renato Werneck



Nikolaj Tatti



Charalampos  
Tsourakakis

## references

-  Alon, N., Krivelevich, M., and Sudakov, B. (1998).  
 Finding a large hidden clique in a random graph.  
*Random Structures and Algorithms*, 13(3-4):457–466.
-  Alvarez-Hamelin, J. I., Dall'Asta, L., Barrat, A., and Vespignani, A. (2005).  
 Large scale networks fingerprinting and visualization using the  $k$ -core decomposition.  
 In *NIPS*.
-  Andersen, R. and Chellapilla, K. (2009).  
 Finding dense subgraphs with size bounds.  
 In *Algorithms and Models for the Web-Graph*, pages 25–37. Springer.
-  Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. (2012).  
 Dense subgraph maintenance under streaming edge weight updates for real-time story identification.  
*Proceedings of the VLDB Endowment*, 5(6):574–585.

## references (cont.)

-  Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955).  
An empirical distribution function for sampling with incomplete information.  
*The Annals of Mathematical Statistics*, 26(4):641–647.
-  Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).  
Densest subgraph in streaming and mapreduce.  
*Proceedings of the VLDB Endowment*, 5(5):454–465.
-  Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., and Sozio, M. (2015).  
Finding subgraphs with maximum total density and limited overlap.  
*In International Conference on Web Search and Data Mining (WSDM)*, pages 379–388.
-  Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013).  
Copycatch: stopping group attacks by spotting lockstep behavior in social networks.  
*In Proceedings of the 22nd international conference on World Wide Web*, pages 119–130.

## references (cont.)

-  Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan, A. (2010).  
Detecting high log-densities: an  $\text{O}(n^{1/4})$  approximation for densest  $k$ -subgraph.  
In *Proceedings of the 42nd ACM symposium on Theory of computing*, pages 201–210. ACM.
-  Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999).  
The maximum clique problem.  
In *Handbook of combinatorial optimization*, pages 1–74. Springer.
-  Borodin, A., Lee, H. C., and Ye, Y. (2012).  
Max-sum diversification, monotone submodular functions and dynamic updates.  
In *Proceedings of the 31st symposium on Principles of Database Systems*, pages 155–166. ACM.
-  Bron, C. and Kerbosch, J. (1973).  
Algorithm 457: finding all cliques of an undirected graph.  
*CACM*, 16(9).

## references (cont.)

-  Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012).  
A tight linear time  $(1/2)$ -approximation for unconstrained submodular maximization.  
In *IEEE Annual Symposium on Foundations of Computer Science (FOCS)*.
-  Charikar, M. (2000).  
Greedy approximation algorithms for finding dense components in a graph.  
In *APPROX*.
-  Chen, J. and Saad, Y. (2012).  
Dense subgraph extraction with application to community detection.  
*Knowledge and Data Engineering, IEEE Transactions on*,  
24(7):1216–1230.
-  Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003).  
Reachability and distance queries via 2-hop labels.  
*SIAM Journal on Computing*, 32(5):1338–1355.

## references (cont.)

-  Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. (2014).  
Robust distance queries on massive networks.  
In *Algorithms-ESA 2014*, pages 321–333. Springer.
-  Eppstein, D., Löffler, M., and Strash, D. (2010).  
Listing all maximal cliques in sparse graphs in near-optimal time.  
In *ISAAC*.
-  Feige, U., Kortsarz, G., and Peleg, D. (2001).  
The dense  $k$ -subgraph problem.  
*Algorithmica*, 29(3).
-  Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S. (2006).  
Motifcut: regulatory motifs finding with maximum density subgraphs.  
*Bioinformatics*, 22(14):e150–e157.
-  Gionis, A., Junqueira, F., Leroy, V., Serafini, M., and Weber, I. (2013).  
Piggybacking on social networks.  
*Proceedings of the VLDB Endowment*, 6(6):409–420.

## references (cont.)

-  Goldberg, A. V. (1984).  
Finding a maximum density subgraph.  
Technical report, University of California at Berkeley.
-  Hastad, J. (1999).  
Clique is hard to approximate within  $n^{1-\epsilon}$ .  
*Acta Mathematica*, 182(1).
-  Iasemidis, L. D., Shiau, D.-S., Chaovalltwongse, W. A., Sackellares, J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A., Veeramani, B., and Tsakalis, K. (2003).  
Adaptive epileptic seizure prediction system.  
*IEEE Transactions on Biomedical Engineering*, 50(5).
-  Johnson, D. S. and Trick, M. A. (1996).  
*Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11-13, 1993*, volume 26.  
American Mathematical Soc.

## references (cont.)

-  Kang, U., Chau, D. H., and Faloutsos, C. (2011).  
Mining large graphs: Algorithms, inference, and discoveries.  
In *International Conference on Data Engineering (ICDE)*, pages 243–254.
-  Kang, U., Tsourakakis, C. E., and Faloutsos, C. (2009).  
Pegasus: A peta-scale graph mining system implementation and observations.  
In *Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on*, pages 229–238. IEEE.
-  Kannan, R. and Vinay, V. (1999).  
*Analyzing the structure of large graphs*.  
Rheinische Friedrich-Wilhelms-Universität Bonn.
-  Karande, C., Chellapilla, K., and Andersen, R. (2009).  
Speeding up algorithms on compressed web graphs.  
*Internet Mathematics*, 6(3):373–398.

## references (cont.)

-  Karp, R. M. (1972).  
Reducibility among combinatorial problems.  
In Miller, R. and Thatcher, J., editors, *Complexity of Computer Computations*.
-  Khuller, S. and Saha, B. (2009).  
On finding dense subgraphs.  
In *ICALP*.
-  Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).  
Trawling the Web for emerging cyber-communities.  
*Computer Networks*, 31(11–16):1481–1493.
-  Makino, K. and Uno, T. (2004).  
New algorithms for enumerating all maximal cliques.  
In *Algorithm Theory-SWAT 2004*, pages 260–272. Springer.
-  McSherry, F. (2001).  
Spectral partitioning of random graphs.  
In *Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on*, pages 529–537. IEEE.

## references (cont.)

-  Papailiopoulos, D., Mitliagkas, I., Dimakis, A., and Caramanis, C. (2014).

Finding dense subgraphs via low-rank bilinear optimization.  
In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1890–1898.
-  Peleg, D. (2000).

Informative labeling schemes for graphs.  
In *Mathematical Foundations of Computer Science 2000*, pages 579–588. Springer.
-  Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014).

Event detection in activity networks.  
In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*.
-  Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X.-N. (2010).

Dense subgraphs with restrictions and applications to gene annotation graphs.  
In *Research in Computational Molecular Biology*, pages 456–472. Springer.

## references (cont.)

-  Sarıyüce, A. E., Seshadhri, C., Pinar, A., and Catalyurek, U. V. (2015). Finding the hierarchy of dense subgraphs using nucleus decompositions.  
In *Proceedings of the 24th International Conference on World Wide Web*, pages 927–937.
-  Sozio, M. and Gionis, A. (2010). The community-search problem and how to plan a successful cocktail party.  
In *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*.
-  Tatti, N. and Gionis, A. (2015). Density-friendly graph decomposition.  
In *Proceedings of the 24th International Conference on World Wide Web*.
-  Thorup, M. (2004). Compact oracles for reachability and approximate distances in planar digraphs.  
*Journal of the ACM (JACM)*, 51(6):993–1024.

## references (cont.)

-  Tong, H. and Faloutsos, C. (2006).  
Center-piece subgraphs: problem definition and fast solutions.  
In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*.
-  Tsurakakis, C. (2015).  
The k-clique densest subgraph problem.  
In *Proceedings of the 24th International Conference on World Wide Web*, pages 1122–1132. International World Wide Web Conferences Steering Committee.
-  Tsurakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013).  
Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees.  
In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 104–112. ACM.
-  Tsurakakis, C., Gkantsidis, C., Radunovic, B., and Vojnovic, M. (2014).  
Fennel: Streaming graph partitioning for massive scale graphs.  
In *Proceedings of the 7th ACM international conference on Web search and data mining*, pages 333–342. ACM.