

Aalto University
School of Science

Algorithmic methods for mining large graphs

Lecture 3 : Finding dense subgraphs

Aristides Gionis

Aalto University

Bertinoro International Spring School 2016
March 7–11, 2016

course agenda

- introduction to graph mining Tue afternoon
- computing basic graph statistics Tue afternoon, Wed morning
- finding dense subgraphs Wed afternoon, Thu morning
- spectral graph analysis Thu afternoon
- additional topics Fri morning
 - inferring hierarchies in graphs
 - mining dynamic graphs
 - graph sparsifiers

what this lecture is about ...

given a graph (network), static or dynamic
(social network, biological network, information network, ...)

find a subgraph that ...

... has many edges

... is densely connected

why I care?

what does dense mean?

review of main problems, and main algorithms

outline

- motivating applications
- preliminaries and measures of density
- algorithms for finding dense subgraphs
- problem variants

motivating applications

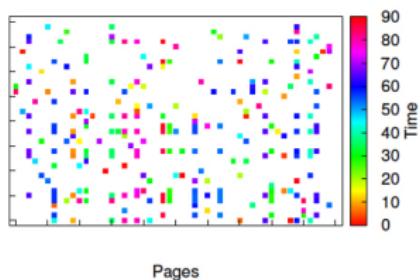
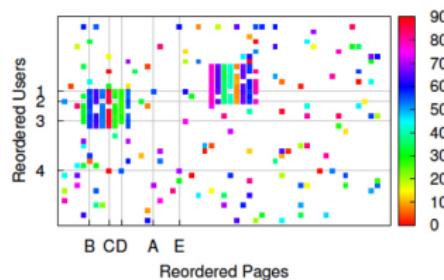
motivation – correlation mining

correlation mining: a general framework with many applications

- data is converted into a graph
- vertices correspond to entities
- an edge between two entities denotes strong correlation
 - ① stock correlation network: data represent stock timeseries
 - ② gene correlation networks: data represent gene expression
- dense subsets of vertices correspond to highly correlated entities
- applications:
 - ① analysis of stock market dynamics
 - ② detecting co-expression modules

motivation – fraud detection

- dense bipartite subgraphs in **page-like data**
reveal attempts to inflate page-like counts
[Beutel et al., 2013]



source: [Beutel et al., 2013]

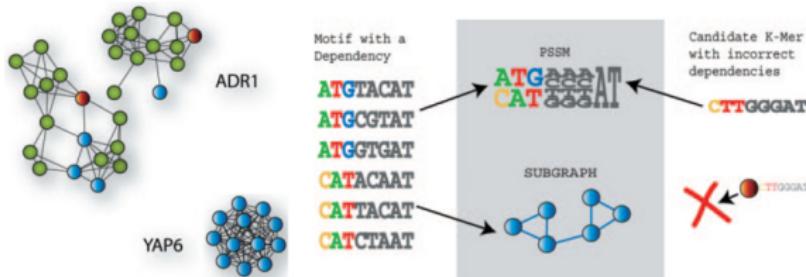
motivation – e-commerce

e-commerce

- weighted bipartite graph $G(A \cup Q, E, w)$
- set A corresponds to **advertisers**
- set Q corresponds to **queries**
- each edge (a, q) has weight $w(a, q)$ equal to the amount of money advertiser a is willing to spend on query q

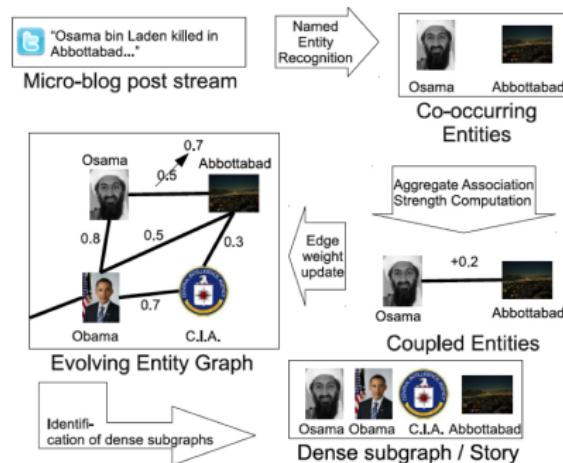
large almost bipartite cliques correspond to **sub-markets**

motivation – bioinformatics



- DNA motif detection [Fratkin et al., 2006]
 - vertices correspond to k -mers
 - edges represent nucleotide similarities between k -mers
- gene correlation analysis
- detect **complex annotation patterns** from gene annotation data [Saha et al., 2010]

motivation – mining twitter data



real-time story identification [Angel et al., 2012]

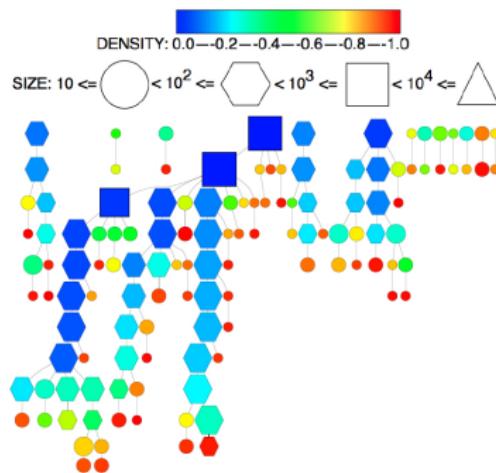
- mining of twitter data
- vertices correspond to **entities**
- edges correspond to **co-occurrence** of entities
- dense subgraphs capture **news stories**

motivation – graph mining

understanding the structure of real-world networks

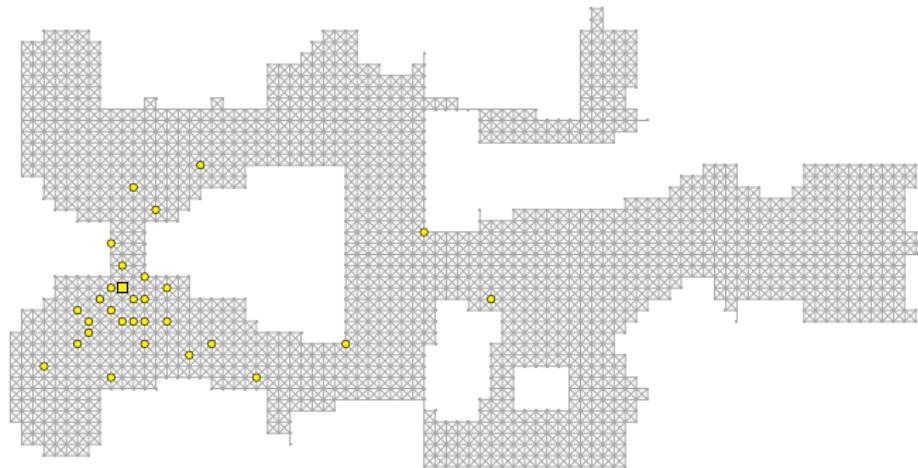
[Sarıyüce et al., 2015]

nucleus decomposition of a graph



(3,4)-nuclei forest for facebook

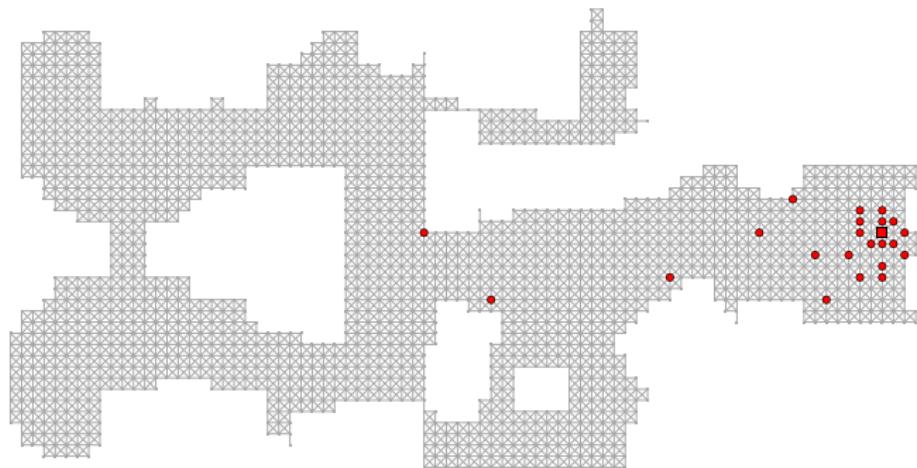
motivation – distance queries in graphs



- $L(u) \equiv \text{set of pairs } (v, \text{dist}(u, v))$
 $L(u)$ is the *label* of u ; each v is a *hub* for u .

figure from [Delling et al., 2014]

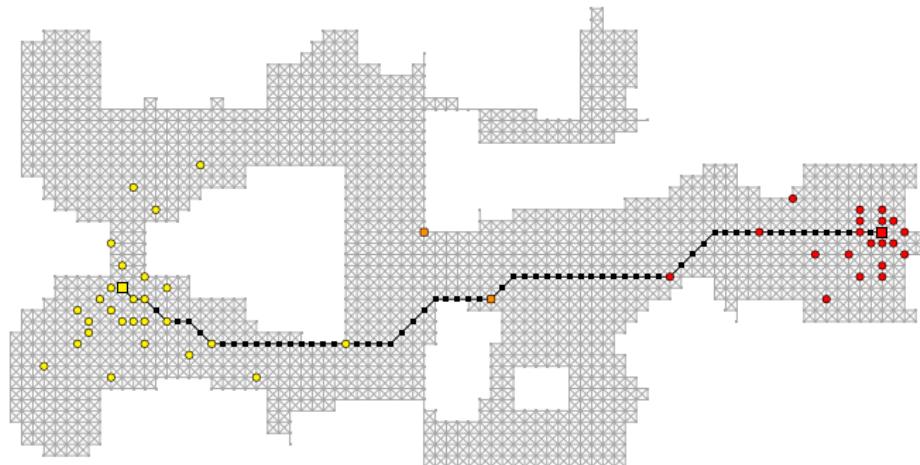
motivation – distance queries in graphs



- **preprocessing** : compute a label set for every vertex
- **cover property** : for all s, t intersection $L(s) \cap L(t)$ must hit an $s-t$ shortest path

figure from [Delling et al., 2014]

motivation – distance queries in graphs



- to answer an $s-t$ query :
find hub v in $L(s) \cap L(t)$ minimizing $\text{dist}(s, v) + \text{dist}(v, t)$

figure from [Delling et al., 2014]

motivation – distance queries in graphs

hub label queries are trivial to implement :

- entries sorted by hub id
- linear sweep to find matches
- access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small

- can we find small labels sets?
- 2-hop labeling algorithm relies on dense-subgraph discovery to find such label sets (!) [Cohen et al., 2003]
- state-of-art 2-hop labeling scheme : [Delling et al., 2014]
- more work on the topic : [Peleg, 2000, Thorup, 2004]

motivation – frequent pattern mining

- given a set of transactions over items
- find item sets that occur together in a θ fraction of the transactions

issue number	heroes
1	Iceman, Storm, Wolverine
2	Aurora, Cyclops, Magneto, Storm
3	Beast, Cyclops, Iceman, Magneto
4	Cyclops, Iceman, Storm, Wolverine
5	Beast, Iceman, Magneto, Storm

e.g., {Iceman, Storm} appear in 60% of issues

motivation – frequent pattern mining

- one of the **most well-studied** area in **data mining**
- many **efficient algorithms**
Apriori, Eclat, FP-growth, Mafia, ABS, ...
- **main idea: monotonicity**
a subset of a frequent set must be frequent, or
a superset of an infrequent set must be infrequent
- **algorithmically:**
start with small itemsets
proceed with larger itemset if all subsets are frequent
- **enumerate all** frequent itemsets

motivation – frequent itemsets and dense subgraphs

id	heroes							
		A	B	C	I	M	S	W
1	Iceman, Storm, Wolverine	1	0	0	0	1	0	1
2	Aurora, Cyclops, Magneto, Storm	2	1	0	1	1	1	0
3	Beast, Cyclops, Iceman, Magneto	3	0	1	1	1	1	0
4	Cyclops, Iceman, Storm, Wolverine	4	0	0	1	1	0	1
5	Beast, Iceman, Magneto, Storm	5	0	1	0	1	1	1

↔



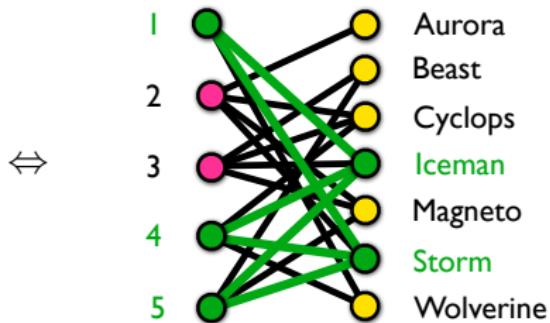
↔

- transaction data ↔ binary data ↔ bipartite graphs

motivation – frequent itemsets and dense subgraphs

id	heroes							
1	Iceman, Storm, Wolverine	1	0	0	0	1	0	1
2	Aurora, Cyclops, Magneto, Storm	2	1	0	1	1	1	0
3	Beast, Cyclops, Iceman, Magneto	3	0	1	1	1	1	0
4	Cyclops, Iceman, Storm, Wolverine	4	0	0	1	1	0	1
5	Beast, Iceman, Magneto, Storm	5	0	1	0	1	1	1

↔



- transaction data ↔ binary data ↔ bipartite graphs
- frequent itemsets ↔ bi-cliques

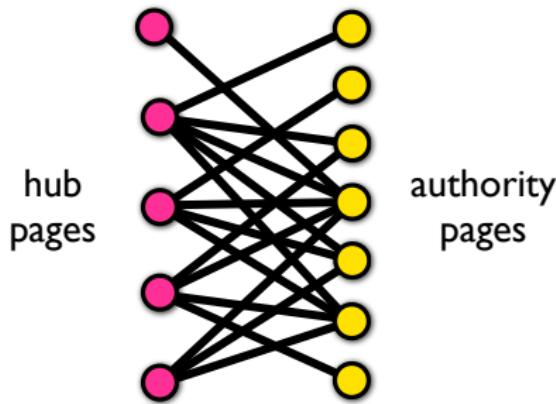
motivation – finding web communities

[Kumar et al., 1999]

- hypothesis: web communities consist of hub-like pages and authority-like pages
e.g., luxury cars and luxury-car aficionados
- key observations:
 1. let $G = (U, V, E)$ be a dense web community
then G should contain some small core (bi-clique)
 2. consider a web graph with no communities
then small cores are unlikely
- both observations motivated from theory of random graphs

motivation – finding web communities

a web community



[Kumar et al., 1999]

motivation – finding web communities

web communities contains small cores



[Kumar et al., 1999]

motivation – social piggybacking

[Gionis et al., 2013]

- **event feeds:** majority of activity in social networks

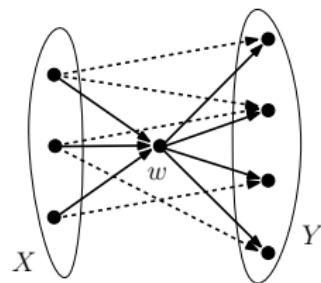
motivation – social piggybacking

- **system throughput** proportional to the data transferred between data stores
- **feed generation** important component to **optimize**

- **primitive operation**: transfer data between two data stores
- can be implemented as **push** or **pull** strategy
- optimal strategy depends on **production** and **consumption** rates of nodes

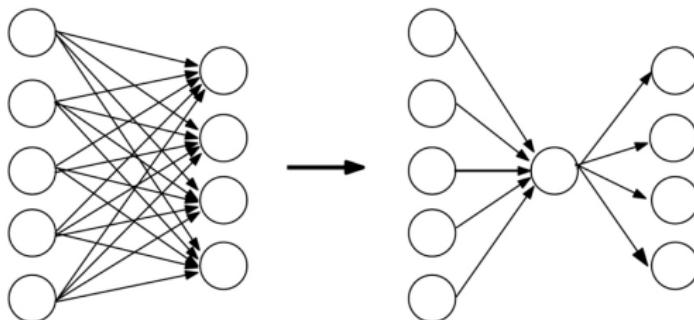
motivation – social piggybacking

- hub optimization turns out to be a good idea
- depends on finding dense subgraphs



motivation – graph compression

- compress web graphs by finding and compressing bi-cliques [Karande et al., 2009]
- many graph mining tasks that can be formulated as matrix-vector multiplication are more efficient on the compressed graph [Kang et al., 2009]



motivation – more applications

- graph visualization [Alvarez-Hamelin et al., 2005]
- community detection [Chen and Saad, 2012]
- epilepsy prediction [Iasemidis et al., 2003]
- event detection in activity networks
[Rozenshtein et al., 2014]
- many more

landscape of related work

- brute force [Johnson and Trick, 1996]
- heuristics [Bomze et al., 1999]
 - spectral algorithms [Alon et al., 1998, McSherry, 2001, Papailiopoulos et al., 2014]
 - belief-propagation methods [Kang et al., 2011]
- enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973, Eppstein et al., 2010, Makino and Uno, 2004]
- NP-hard formulations and various relaxations
 - maximum clique problem [Karp, 1972, Hastad, 1999]
 - k -densest subgraph problem [Bhaskara et al., 2010, Feige et al., 2001]
 - optimal quasi-cliques [Tsourakakis et al., 2013]
- polynomial-time solvable objectives
 - densest subgraph problem [Goldberg, 1984]
 - *“The densest subgraph problem lies at the core of large scale data mining”* [Bahmani et al., 2012]

preliminaries, measures of density

notation

- graph $G = (V, E)$ with vertices V and edges $E \subseteq V \times V$
- degree of a node $u \in V$ with respect to $X \subseteq V$ is

$$\deg_X(u) = |\{v \in X \text{ such that } (u, v) \in E\}|$$

- degree of a node $u \in V$ is $\deg(u) = \deg_V(u)$
- edges between $S \subseteq V$ and $T \subseteq V$ are

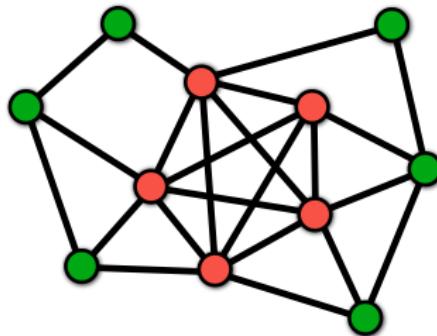
$$E(S, T) = \{(u, v) \text{ such that } u \in S \text{ and } v \in T\}$$

use shorthand $E(S)$ for $E(S, S)$

- graph cut is defined by a subset of vertices $S \subseteq V$
- edges of a graph cut $S \subseteq V$ are $E(S, \bar{S}) = E(S, V \setminus S)$
- induced subgraph by $S \subseteq V$ is $G(S) = (S, E(S))$
- triangles: $T(S) = \{(u, v, w) \mid (u, v), (u, w), (v, w) \in E(S)\}$

density measures

- undirected graph $G = (V, E)$
- subgraph induced by $S \subseteq V$
- **clique**: all vertices in S are connected to each other



density measures

- **edge density** (average degree):

$$d(S) = \frac{2|E(S, S)|}{|S|} = \frac{2|E(S)|}{|S|}$$

(sometimes just drop 2)

- **edge ratio**:

$$\delta(S) = \frac{|E(S, S)|}{\binom{|S|}{2}} = \frac{|E(S)|}{\binom{|S|}{2}} = \frac{2|E(S)|}{|S|(|S| - 1)}$$

- **triangle density**:

$$t(S) = \frac{|T(S)|}{|S|}$$

- **triangle ratio**:

$$\tau(S) = \frac{|T(S)|}{\binom{|S|}{3}}$$

other density measures

- **k -core**: every vertex in S is connected to at least k other vertices in S
- **α -quasiclique**: the set S has at least $\alpha \binom{|S|}{2}$ edges
i.e., S is α -quasiclique if $E(S) \geq \alpha \binom{|S|}{2}$

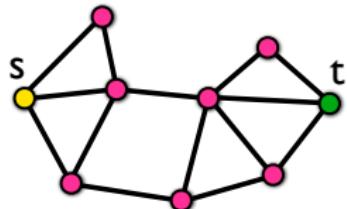
and more

not considered here

- **k -cliques**: subset of vertices with pairwise distances at most k
 - distances defined using intermediaries, outside the set
 - not well connected
- **k -club**: a subgraph of diameter $\leq k$
- **k -plex**: a subgraph S in which each vertex is connected to at least $|S| - k$ other vertices
 - 1-plex is a clique

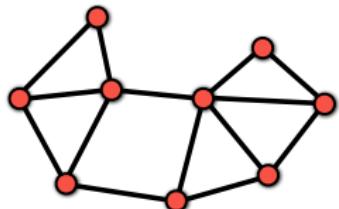
reminder: min-cut and max-cut problems

min-cut problem



- source $s \in V$, destination $t \in V$
- find $S \subseteq V$, s.t.,
- $s \in S$ and $t \in \bar{S}$, and
- minimize $e(S, \bar{S})$

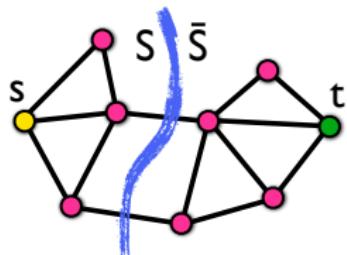
max-cut problem



- find $S \subseteq V$, s.t.,
- maximize $e(S, \bar{S})$

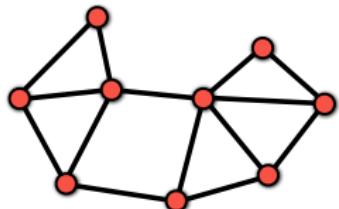
reminder: min-cut and max-cut problems

min-cut problem



- source $s \in V$, destination $t \in V$
- find $S \subseteq V$, s.t.,
- $s \in S$ and $t \in \bar{S}$, and
- minimize $e(S, \bar{S})$
- polynomially-time solvable
- equivalent to **max-flow** problem

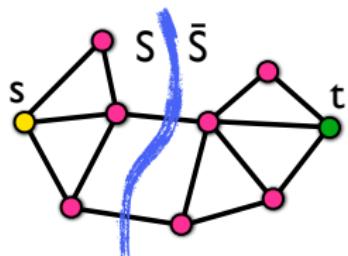
max-cut problem



- find $S \subseteq V$, s.t.,
- maximize $e(S, \bar{S})$

reminder: min-cut and max-cut problems

min-cut problem



- source $s \in V$, destination $t \in V$
- find $S \subseteq V$, s.t.,
- $s \in S$ and $t \in \bar{S}$, and
- minimize $e(S, \bar{S})$
- polynomially-time solvable
- equivalent to **max-flow** problem

max-cut problem

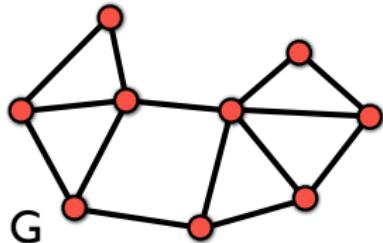


- find $S \subseteq V$, s.t.,
- maximize $e(S, \bar{S})$
- **NP-hard**
- approximation algorithms
(0.868 based on SDP)

basic algorithms

Goldberg's algorithm for densest subgraph

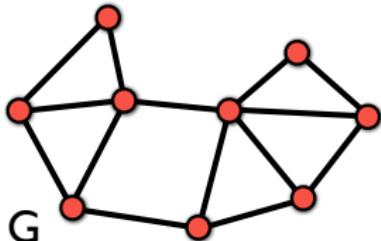
- consider first degree density d



- is there a subgraph S with $d(S) \geq c$?

Goldberg's algorithm for densest subgraph

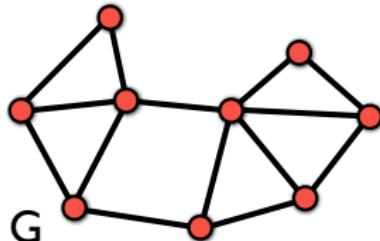
- consider first degree density d



- is there a subgraph S with $d(S) \geq c$?
- transform to a min-cut instance

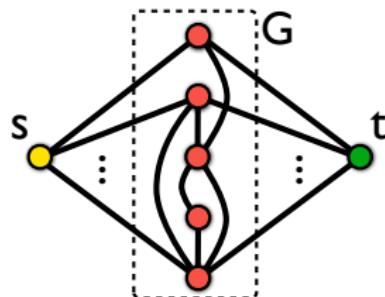
Goldberg's algorithm for densest subgraph

- consider first **degree density d**



- is there a subgraph S with $d(S) \geq c$?
- transform to a **min-cut** instance

- on the transformed instance:
- **is there a cut smaller than a certain value?**



Goldberg's algorithm for densest subgraph

is there S with $d(S) \geq c$?

$$\frac{2|E(S, S)|}{|S|} \geq c$$

$$2|E(S, S)| \geq c|S|$$

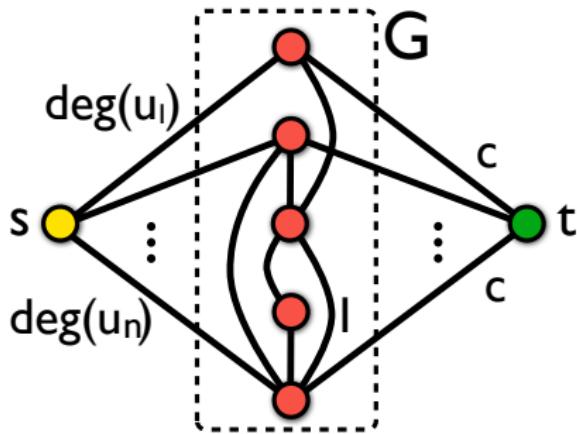
$$\sum_{u \in S} \deg(u) - |E(S, \bar{S})| \geq c|S|$$

$$\sum_{u \in S} \deg(u) + \sum_{u \in \bar{S}} \deg(u) - \sum_{u \in \bar{S}} \deg(u) - |E(S, \bar{S})| \geq c|S|$$

$$\sum_{u \in \bar{S}} \deg(u) + |E(S, \bar{S})| + c|S| \leq 2|E|$$

Goldberg's algorithm for densest subgraph

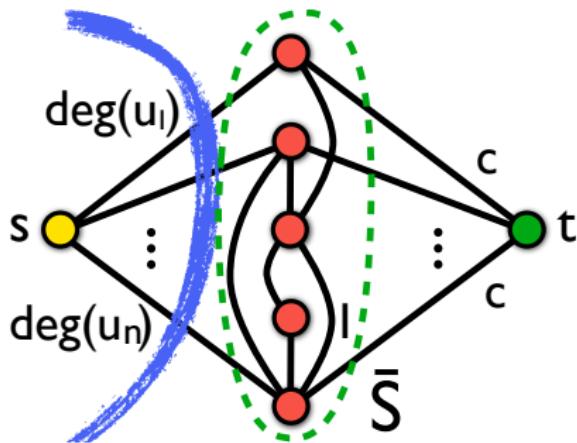
- transformation to **min-cut** instance



- is there S s.t. $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$?

Goldberg's algorithm for densest subgraph

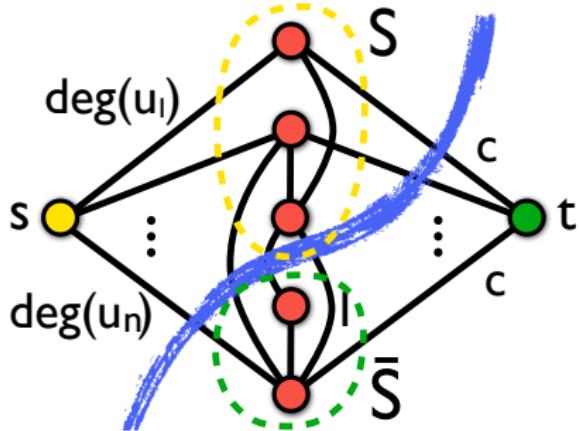
- transform to a **min-cut** instance



- is there S s.t. $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$?
- a cut of value $2|E|$ always exists, for $S = \emptyset$

Goldberg's algorithm for densest subgraph

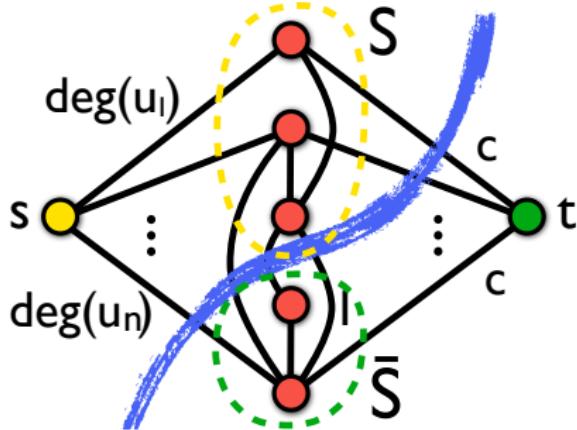
- transform to a **min-cut** instance



- is there S s.t. $\sum_{u \in \bar{S}} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$?
- $S \neq \emptyset$ gives cut of value $\sum_{u \in \bar{S}} \deg(u) + |e(S, \bar{S})| + c|S|$

Goldberg's algorithm for densest subgraph

- transform to a **min-cut** instance



- is there S s.t. $\sum_{u \in S} \deg(u) + |e(S, \bar{S})| + c|S| \leq 2|E|$?
- YES**, if min cut achieved for $S \neq \emptyset$

Goldberg's algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph $G = (V, E)$, number c

output: S , if $d(S) \geq c$

- 1 transform G into min-cut instance $G' = (V \cup \{s\} \cup \{t\}, E', w')$
- 2 find min cut $\{s\} \cup S$ on G'
- 3 if $S \neq \emptyset$ return S
- 4 else return NO

- to find the **densest subgraph** perform **binary search** on c
- **logarithmic** number of min-cut calls
- problem can also be solved with **one** min-cut call using the **parametric max-flow** algorithm

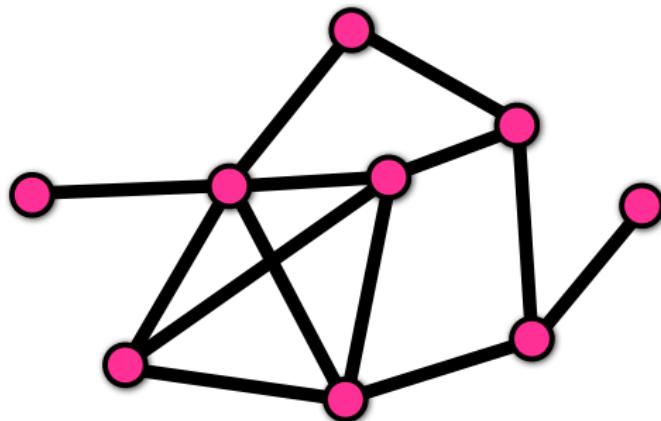
densest subgraph problem – discussion

- Goldberg's algorithm polynomial algorithm, but
- $\mathcal{O}(nm)$ time for one min-cut computation
- not scalable for large graphs (millions of vertices / edges)

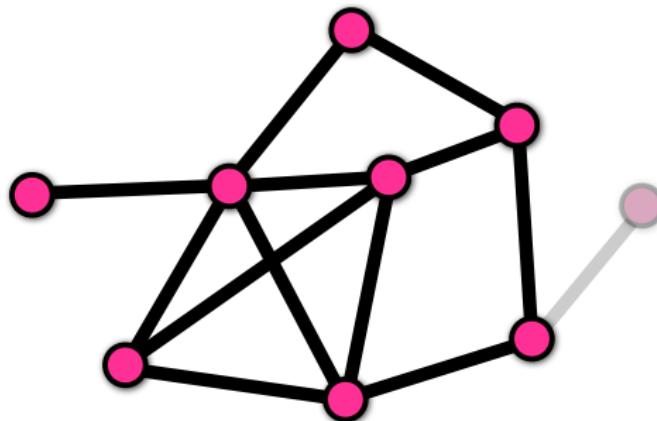
densest subgraph problem – discussion

- Goldberg's algorithm polynomial algorithm, but
- $\mathcal{O}(nm)$ time for one min-cut computation
- not scalable for large graphs (millions of vertices / edges)
- faster algorithm due to [Charikar, 2000]
- **greedy** and simple to implement
- **approximation** algorithm

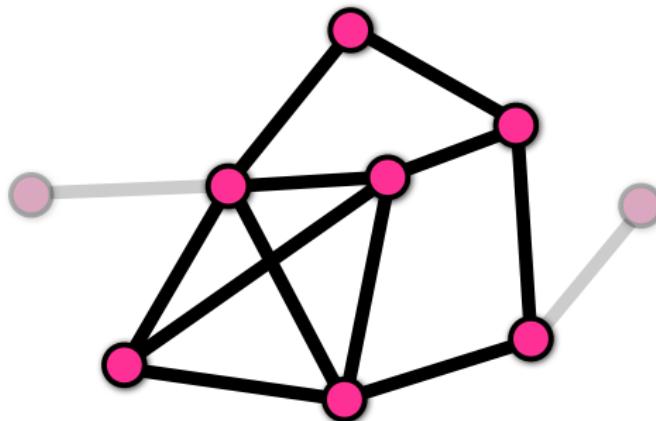
greedy algorithm for densest subgraph — example



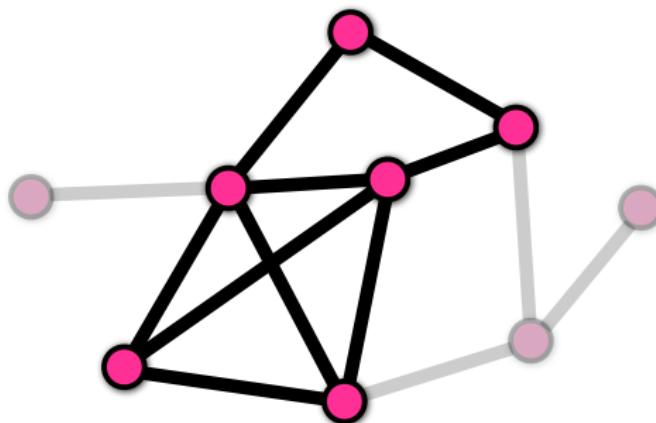
greedy algorithm for densest subgraph — example



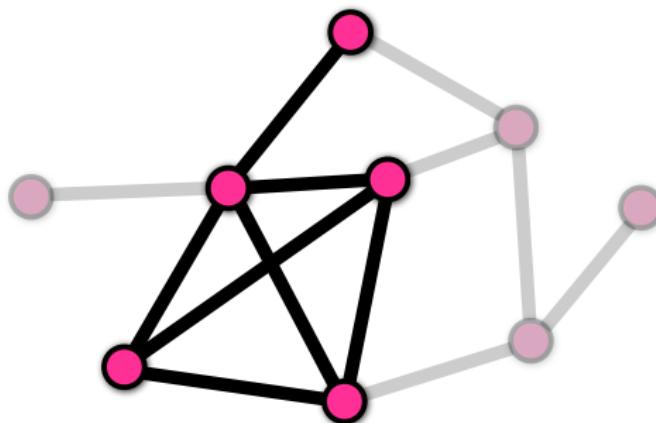
greedy algorithm for densest subgraph — example



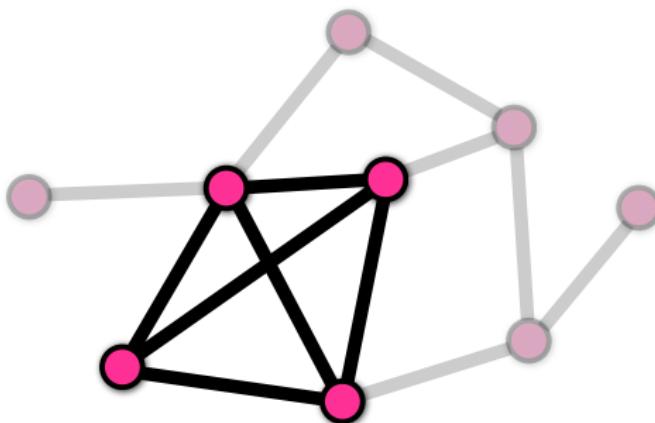
greedy algorithm for densest subgraph — example



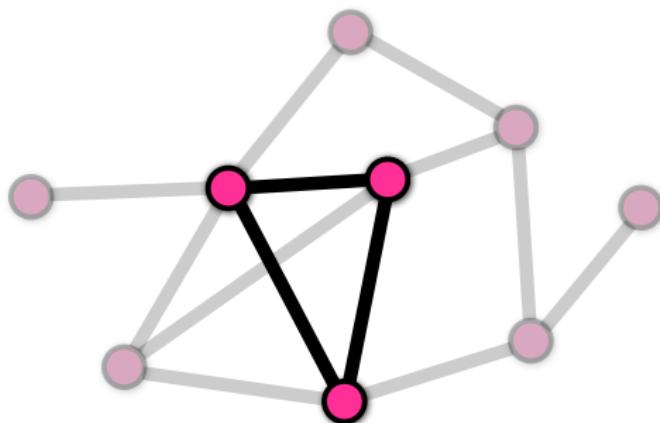
greedy algorithm for densest subgraph — example



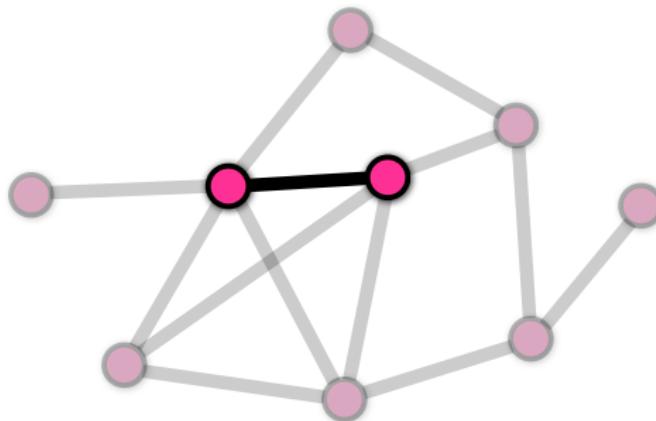
greedy algorithm for densest subgraph — example



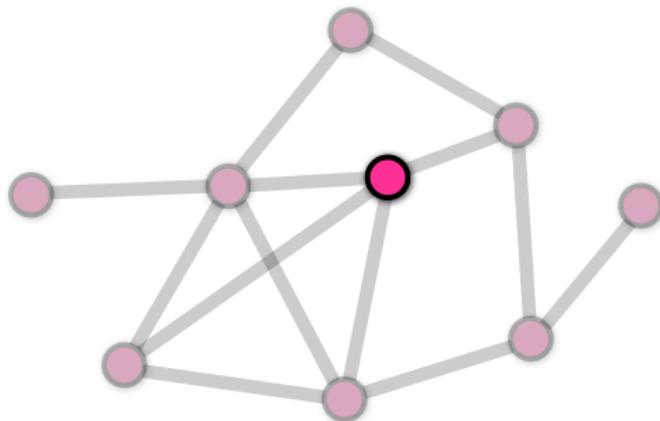
greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



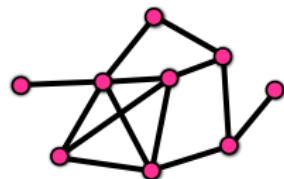
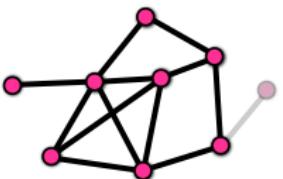
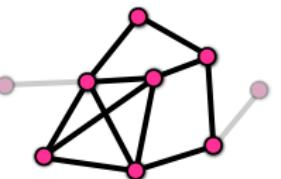
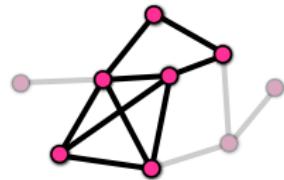
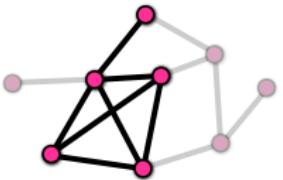
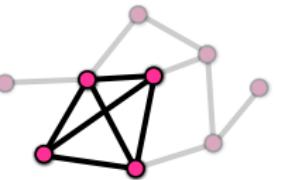
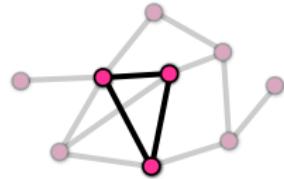
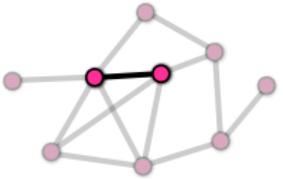
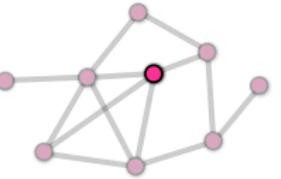
greedy algorithm for densest subgraph — example



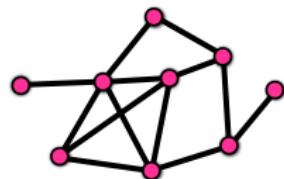
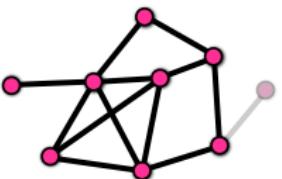
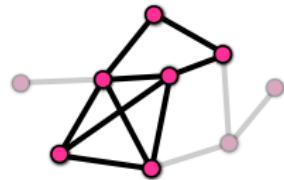
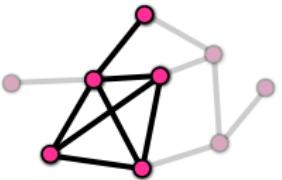
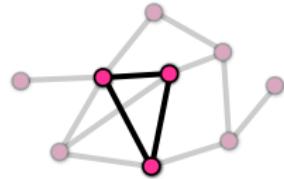
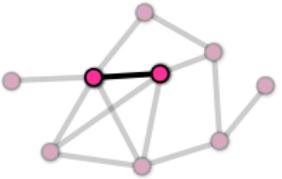
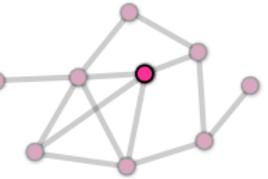
greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph $G = (V, E)$

output: S , a dense subgraph of G

- 1 set $G_n \leftarrow G$
- 2 for $k \leftarrow n$ downto 1
 - 2.1 let v be the smallest degree vertex in G_k
 - 2.2 $G_{k-1} \leftarrow G_k \setminus \{v\}$
- 3 output the densest subgraph among G_n, G_{n-1}, \dots, G_1

proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]

- let S^* be the vertices of the optimal subgraph
- let $d(S^*) = \lambda$ be the maximum degree density
- notice that for all $v \in S^*$ we have $\deg_{S^*}(v) \geq \lambda$
- (why?) by optimality of S^*

$$\frac{|e(S^*)|}{|S^*|} \geq \frac{|e(S^*)| - \deg_{S^*}(v)}{|S^*| - 1}$$

and thus

$$\deg_{S^*}(v) \geq \frac{|e(S^*)|}{|S^*|} = d(S^*) = \lambda$$

proof of 2-approximation guarantee (continued)

[Khuller and Saha, 2009]

- consider greedy when the **first** vertex $v \in S^* \subseteq V$ is **removed**
- let S be the set of vertices, just before removing v
- total number of edges before removing v is $\geq \lambda|S|/2$
- therefore, greedy returns a solution with degree density at least $\lambda/2$

QED

the greedy algorithm

- factor-2 approximation algorithm
- runs in linear time $\mathcal{O}(n + m)$
- for a polynomial problem ...
but faster and easier to implement than the exact algorithm
- everything works for weighted graphs
using heaps: $\mathcal{O}(m + n \log n)$
- things are not as straightforward for **directed graphs**

finding dense subgraphs on directed graphs

dense subgraphs on directed graphs – history

- **goal**: find sets $S, T \subseteq V$ to maximize

$$d(S, T) = \frac{e[S, T]}{\sqrt{|S| |T|}}$$

- first introduced in unpublished manuscript
[Kannan and Vinay, 1999]
- they provided a $\mathcal{O}(\log n)$ -approximation algorithm
- left **open** the problem complexity
- polynomial-time solution using linear programming (LP)
[Charikar, 2000]

dense subgraphs on directed graphs – history

[Charikar, 2000]

- exact LP-based algorithm
- greedy 2-approximation algorithm running in $\mathcal{O}(n^3 + n^2m)$

[Khuller and Saha, 2009]

- first max-flow based exact algorithm
- improved running time of the 2-approximation greedy algorithm to $\mathcal{O}(n + m)$ (!)

directed graphs – algorithms

- reduced problem to $O(n^2)$ LP calls [Charikar, 2000]
- one LP call for each possible ratio $\frac{|S|}{|T|} = c$

$$\begin{aligned} & \text{maximize} && \sum_{(i,j) \in E(G)} x_{ij} \\ & \text{such that} && x_{ij} \leq s_i, \quad \text{for all } (i,j) \in E(G) \\ & && x_{ij} \leq t_j, \quad \text{for all } (i,j) \in E(G) \\ & && \sum_i s_i \leq \sqrt{c} \text{ and } \sum_j t_j \leq \frac{1}{\sqrt{c}} \\ & && x_{ij}, s_i, t_j \geq 0 \end{aligned}$$

directed graphs – algorithms

[Charikar, 2000]

- for a given value of $\frac{|S|}{|T|} = c$ the $\text{LP}(c)$ has an **integral** solution
- it can be shown that

$$\max_{S, T \subseteq V} d(S, T) = \max_c \text{OPT}(\text{LP}(c))$$

[proof sketch]

1. for $S, T \subseteq V$, with $\frac{|S|}{|T|} = c$ the optimal value of $\text{LP}(c)$ is at least $d(S, T)$
2. given a feasible solution of $\text{LP}(c)$ with value v we can construct $S, T \subseteq V$ such that $d(S, T) \geq v$

dense subgraphs on directed graphs – greedy

[Charikar, 2000]

input: directed graph $G = (V, E)$, ratio $c = \frac{|S|}{|T|}$

```
1    $S \leftarrow V, T \leftarrow V$ 
2   while both  $S, T$  non-empty
3        $i_{\min} \leftarrow$  the vertex  $i \in S$  that minimizes  $|E(\{i\}, T)|$ 
4        $d_S \leftarrow |E(\{i_{\min}\}, T)|$ 
5        $j_{\min} \leftarrow$  the vertex  $j \in T$  that minimizes  $|E(S, \{j\})|$ 
6        $d_T \leftarrow |E(S, \{j_{\min}\})|$ 
7       if  $\sqrt{c}d_S \leq \frac{1}{\sqrt{c}}d_T$ 
8           then  $S \leftarrow S \setminus \{i_{\min}\}$ 
9           else  $T \leftarrow T \setminus \{j_{\min}\}$ 
```

- execute $\mathcal{O}(n^2)$ times; one for each $c = \frac{|S|}{|T|}$
- report best solution
- factor 2 approximation guarantee

dense subgraphs on directed graphs – greedy

- brute force execution of greedy:

$$\mathcal{O}(n^2(n + m)) = \mathcal{O}(n^3 + nm)$$

[Khuller and Saha, 2009]

- showed that **only one** execution is needed
(instead of $\mathcal{O}(n^2)$)
- total running time $\mathcal{O}(n + m)$

dense subgraphs on directed graphs – greedy

linear-time greedy [Khuller and Saha, 2009]

definitions:

- let v_i, v_o be the vertices with minimum in- and out-degree
- if $d^-(v_i) \leq d^+(v_o)$ we are in category IN
otherwise in category OUT

algorithm:

- greedy deletes the minimum-degree vertex
- if in IN, it deletes all incoming edges
- if in OUT, it deletes all outgoing edges
- if the vertex becomes a singleton, it is deleted.
- return the densest subgraph encountered

dense subgraphs on directed graphs – exact

we wish to answer “are there $S, T \subseteq V$ such that $d(S, T) \geq g$?”
consider

- consider $\alpha = \frac{|S|}{|T|}$ ($\mathcal{O}(n^2)$ possible values)
- network $G' = (\{s, t\} \cup V_1 \cup V_2, E)$, with $V_1 = V_2 = V$

min-cut transformation

- add edge of capacity m from s to each vertex of V_1 and V_2
- add edge of capacity $2m + \frac{g}{\sqrt{\alpha}}$ from each vertex of V_1 to t
- add edge from each vertex j of V_2 to sink t of capacity

$$2m + \sqrt{\alpha}g - 2\deg(j)$$

- for each $(i, j) \in E(G)$, add an edge from $j \in V_2$ to $i \in V_1$ with capacity 2

dense subgraphs on directed graphs – exact

- proof of correctness of min-cut algorithm of transformed graph G' follows the argument of Goldberg
- the cut $(\{s\}, \{t, V_1, V_2\})$ has weight $m(|V_1| + |V_2|)$
- thus, min cut has weight at most $m(|V_1| + |V_2|)$
- it can be shown that solution to the min-cut with value smaller than $m(|V_1| + |V_2|)$ corresponds to sets $S \subseteq V_1$, $T \subseteq V_2$ with density $d(S, T)$ greater than g
- densest subgraph can be found with binary search on g
- one min-cut computation suffices
(using parametric max-flow algorithm)

dense subgraph problem – summary

- for the **degree density** measure:
- exact algorithms for undirected and directed graphs
- linear-time 2-approximation achieved by greedy
- how good are these subgraphs?
- study other measures and contrast with degree density
- no control on the **size** of the subgraph

k -clique densest subgraphs

motivating question

- how to go beyond **edge density**?
- how to search for **large near-cliques**

- can we combine the best of both worlds, namely
 - have poly-time solvable formulation(s) which
 - . . . succeeds in finding large near-cliques?

- yes: the ***k*-clique densest subgraph** problem
[Tsourakakis, 2015]

k -clique densest subgraph problem

Definition (k -clique density)

for any $S \subseteq V$ we define its k -clique density $\rho_k(S)$, $k \geq 2$ as $\rho_k(S) = \frac{c_k(S)}{s}$, where $c_k(S)$ is the number of k -cliques induced by S and $s = |S|$

Problem (k -clique DSP)

given $G(V, E)$, find a subset of vertices S^*

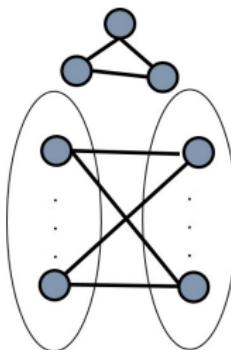
such that $\rho_k(S^*) = \rho_k^* = \max_{S \subseteq V} \rho_k(S)$

- notice that the 2-clique DSP is simply the DSP
- we shall refer to the 3-clique DSP as the triangle densest subgraph problem

$$\max_{S \subseteq V} \tau(S) = \frac{t(S)}{s}$$

triangle densest subgraph problem

- how **different** can the densest subgraph be from the triangle densest subgraph?
- in principle, they can be radically different!
consider $G = K_{n,n} \cup K_3$



- the interesting question is what happens on real-data
- can we solve the triangle DSP in polynomial time?
- can we solve the k -clique DSP in polynomial time?

triangle densest subgraph problem

Theorem

there exists an algorithm which solves the TDSP and runs in time $\mathcal{O}(m^{3/2} + nt + \min(n, t)^3)$ where t is the number of triangles in the graph

Theorem

the k -clique DSP can be solved in polynomial time for any $k = \Theta(1)$

- although this construction solves also the (2-clique) DSP Goldberg's algorithm is more efficient

triangle densest subgraph problem

exact algorithm

- once again, follow Goldberg's idea
- perform binary searches:
 - is there a set $S \subseteq V$ such that $t(S) > \alpha|S|$?
- $\mathcal{O}(\log n)$ queries suffice to solve TDSP (why?)
 - any two distinct triangle density values are at least $\mathcal{O}(1/n^2)$ away from each other
 - for the optimal density $0 \leq \frac{t}{n} \leq \tau^* \leq \frac{\binom{n}{3}}{n}$
- but what does a binary search correspond to ? ...

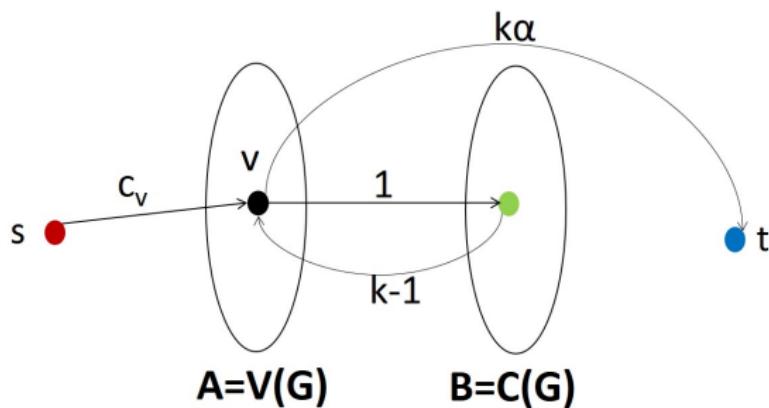
triangle densest subgraph problem

construct-network $(G, \alpha, \mathcal{T}(G))$

- $V(H) \leftarrow \{s\} \cup V(G) \cup \mathcal{T}(G) \cup \{t\}$
- for each vertex $v \in V(G)$ add an arc of capacity 1 to each triangle t_i it participates
- for each triangle $\Delta = (u, v, w) \in \mathcal{T}(G)$ add arcs to u, v, w of capacity 2
- add directed arc $(s, v) \in A(H)$ of capacity t_v for each $v \in V(G)$
- add weighted directed arc $(v, t) \in A(H)$ of capacity 3α for each $v \in V(G)$
- return network $H(V(H), A(H), w), s, t \in V(H)$

k -clique densest subgraph problem

construction for $k = \Theta(1)$



triangle densest subgraph problem

exact algorithm for TDSP

1. list the set of triangles $\mathcal{T}(G)$, $t = |\mathcal{T}(G)|$
2. $l \leftarrow \frac{t}{n}$, $u \leftarrow \frac{(n-1)(n-2)}{6}$
3. $S^* \leftarrow \emptyset$
4. while($u \geq l + \frac{1}{n(n-1)}$)
 - $\alpha \leftarrow \frac{l+u}{2}$
 - $H_\alpha \leftarrow \text{Construct-Network}(G, \alpha, \mathcal{T}(G))$
 - $(S, T) \leftarrow \text{minimum } st\text{-cut in } H_\alpha$
 - if $(S = \{s\})$, then $u \leftarrow \alpha$
 - otherwise set $S^* \leftarrow (S \setminus \{s\}) \cap V(G)$ and $l \leftarrow \alpha$
5. return S^*

- run time: $\mathcal{O}\left(m^{3/2} + (nt + \min(n, t)^3) \log n\right)$
- space complexity: $\mathcal{O}(n + t)$ (typically $n \ll t$)

triangle densest subgraph problem

greedy works too

1. set $G_n \leftarrow G$
2. for $k \leftarrow n$ down to 1
 - let v be the **smallest triangle count** vertex in G_k
 - $G_{k-1} \leftarrow G_k \setminus \{v\}$
3. output the **triangle**-densest subgraph among G_n, G_{n-1}, \dots, G_1

- the above peeling algorithm is a 3-approximation algorithm
- the same peeling idea generalizes to the k -clique DSP providing a k -approximation algorithm

some experimental findings

method	measure	football
DS	$\frac{ S }{ V }(\%)$	100
	2δ	10.66
	f_e	0.094
	3τ	21.12
$\frac{1}{2}$ -DS	$\frac{ S }{ V }(\%)$	100
	2δ	10.66
	f_e	0.094
	3τ	21.12

method	measure	football
TDS	$\frac{ S }{ V }(\%)$	15.7
	2δ	8.22
	f_e	0.48
	3τ	28
$\frac{1}{3}$ -TDS	$\frac{ S }{ V }(\%)$	15.7
	2δ	8.22
	f_e	0.48
	3τ	28

- **observation 1** : approximate algorithms find the same solution as optimal exact methods
- **observation 2** : the TDS is closer to being a large near-clique compared to the DS

remark

- in many cases, despite being a 2-approximation, the greedy performs optimally or close to optimally
- evidence that real-data are “far away” from adversarial

- however, 2-approximation bound is tight
 - consider $G = G_1 \cup G_2$ where $G_1 = K_{d,D}$ and G_2 is the disjoint union of D cliques, each of size $d + 1$
 - let $d \ll D$
- how does the greedy algorithm perform?
 - optimal is bipartite clique with density $dD/(d + D) \approx d$
 - greedy returns a clique of size $d + 1$ with density $d/2$

datasets

non-bipartite

dataset	<i>n</i>	<i>m</i>
■ Web-Google	875 713	3 852 985
☆ Epinions	75 877	405 739
○ CA-Astro	18 772	198 050
■ Pol-blogs	1 222	16 714
○ Email-all	234 352	383 111

bipartite

dataset	<i>n</i>	<i>m</i>
★ IMDB-B	241 360	530 494
★ IMDB-G-B	21 258	42 197

experimental findings

k -cliques

G	$k = 2$		$k = 3$		$k = 4$		$k = 5$	
	f_e	$ S $	f_e	$ S $	f_e	$ S $	f_e	$ S $
★	0.12	1 012	0.26	432	0.40	235	0.50	172
○	0.11	18 686	0.80	76	0.96	62	0.96	62
■	0.19	16 714	0.54	102	0.59	92	0.63	84
●	0.13	553	0.38	167	0.48	122	0.53	104

(p,q) -bicliques

G	$(p, q) = (1, 1)$		$(p, q) = (2, 2)$		$(p, q) = (3, 3)$	
	f_e	$ S $	f_e	$ S $	f_e	$ S $
★	0.001	9 177	0.06	181	0.30	40
●	0.001	6 437	0.41	18	0.43	17

finding densest subgraphs with map-reduce

peeling in batches

the following algorithm due to Bahmani, Kumar and Vassilvitski leads to efficient MapReduce and streaming algorithms
[Bahmani et al., 2012]

1. set $S, \tilde{S} \leftarrow V$
2. **while** $S \neq \emptyset$ **do**
 - $A(S) \leftarrow \{i \in S : D_i(S) \leq 2(1 + \epsilon)\rho(S)\}$
 - $S \leftarrow S \setminus A(S)$
 - **if** $\rho(S) \geq \rho(\tilde{S})$ **then** $\tilde{S} \leftarrow S$
3. return \tilde{S}

peeling in batches

- **claim:** previous algorithm is a $2(1 + \epsilon)$ approximation
furthermore, it returns after $\mathcal{O}(\log_{1+\epsilon}(n))$ rounds
- **Proof**
- **approximation guarantee**
 - fix an optimal solution S^*
 - consider the first round when a node $v \in S^*$ is removed
 - let U be the set of vertices at that point
 - then, $\rho^* \leq d_{S^*}(v) \leq d_U(v) \leq (2 + 2\epsilon)\rho(U)$
- **number of rounds is $\mathcal{O}(\log_{1+\epsilon}(n))$**
 - in each round we throw a constant fraction of the vertices

$$2E(S) > \sum_{v \notin A(S)} d_S(v) > (|S| - |A(S)|)2(1 + \epsilon)\rho(S)$$

$$\text{and thus } |A(S)| > \frac{\epsilon}{1+\epsilon} |S|$$

variations of the DSP

k -densest subgraph $\delta(S) = \frac{2e[S]}{|S|}, |S| = k$ **NP-hard**

DalkS $\delta(S) = \frac{2e[S]}{|S|}, |S| \geq k$ **NP-hard**

DamkS $\delta(S) = \frac{2e[S]}{|S|}, |S| \leq k$ *L-reduction to DkS*

densest k -subgraph problem

- does not admit a PTAS unless $\mathbf{P} = \mathbf{NP}$
- Feige et al. gave a $\mathcal{O}(n^{\frac{1}{3}})$ approximation algorithm
[Feige et al., 2001]
- state-of-the-art algorithm due to Bhaskara et al. provides a $\mathcal{O}(n^{\frac{1}{4}+\epsilon})$ approximation guarantee for any $\epsilon > 0$
[Bhaskara et al., 2010]
- closing the gap between lower and upper bounds is a significant open problem

remarks

- [Andersen and Chellapilla, 2009] proved that an α -approximation for DamkS implies a $\mathcal{O}(\alpha^2)$ approximation algorithm for the DkS
- [Khuller and Saha, 2009] improved this, by showing that an α approximation for DamkS implies a 4α approximation algorithm for the DkS
- the algorithmic ideas we showed for undirected case work for DalkS as well

an alternative density definition

edge-surplus framework

[Tsourakakis et al., 2013]

- for a set of vertices S define **edge surplus**

$$f(S) = g(e[S]) - h(|S|)$$

where g and h are both **strictly increasing**

- optimal (g, h) -edge-surplus problem:

find S^* such that

$$f(S^*) \geq f(S), \quad \text{for all sets } S \subseteq S^*$$

edge-surplus framework

- edge surplus $f(S) = g(e[S]) - h(|S|)$
- example 1

$$g(x) = h(x) = \log x$$

find S that maximizes $\log \frac{e[S]}{|S|}$

densest-subgraph problem

- example 2

$$g(x) = x, \quad h(x) = \begin{cases} 0 & \text{if } x = k \\ +\infty & \text{otherwise} \end{cases}$$

k -densest-subgraph problem

the optimal quasiclique problem

- edge surplus $f(S) = g(e[S]) - h(|S|)$
- consider

$$g(x) = x, \quad h(x) = \alpha \frac{x(x-1)}{2}$$

find S that maximizes $e[S] - \alpha \binom{|S|}{2}$

optimal quasiclique problem [Tsourakakis et al., 2013]

- theorem: let $g(x) = x$ and $h(x) = \alpha x$
 - we aim to maximize $e(S) - \alpha|S|$
 - solving $\mathcal{O}(\log n)$ such problems, solves densest subgraph problem

the edge-surplus maximization problem

theorem: let $g(x) = x$ and $h(x)$ concave

then the optimal (g, h) -edge-surplus problem is
polynomially-time solvable

proof

$g(x) = x$ is supermodular

if $h(x)$ concave $h(x)$ is submodular

$-h(x)$ is supermodular

$g(x) - h(x)$ is supermodular

maximizing supermodular functions is a polynomial
problem

the edge-surplus maximization problem

- poly-time solvable and interesting objectives have linear h
- the optimal quasiclique problem is **NP-hard**
- the partitioning version led to a **streaming balanced graph-partitioning** algorithm: **FENNEL**
- **goal**: maximize $g(\mathcal{P})$ over all possible k -partitions where

$$g(\mathcal{P}) = \underbrace{\sum_i e[S_i, S_i]}_{\text{number of edges cut}} - \alpha \underbrace{\sum_i |S_i|^\gamma}_{\text{minimized for balanced partition}}$$

- for more details: [Tsourakakis et al., 2014]

finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph $G = (V, E)$

output: a quasiclique S

- 1 set $G_n \leftarrow G$
- 2 for $k \leftarrow n$ downto 1
 - 2.1 let v be the smallest degree vertex in G_k
 - 2.2 $G_{k-1} \leftarrow G_k \setminus \{v\}$
- 3 output the subgraph in G_n, \dots, G_1 that maximizes $f(S)$

additive approximation guarantee [Tsourakakis et al., 2013]

top- k dense subgraphs

top- k dense subgraphs

- in many cases we want to find more than one dense subgraph
- **idea**: find all dense subgraphs
e.g., denser than a threshold
- cut enumeration techniques to output all near-optimal dense subgraphs [Saha et al., 2010]
- in practice, this method suffers from output degeneracies:
- many subsets of a dense subgraph tend to be near-optimally dense as well

top- k dense subgraphs

- another approach
 - (i) find a dense subgraph S
 - (ii) remove all vertices and edges of S
 - (iii) iterate
- reported subgraphs are disjoint
- certain degree of overlap can be desirable
[Balalau et al., 2015]

top- k dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

- given graph $G = (V, E)$, and parameters k and α
- find k subgraphs S_1, \dots, S_k
- in order to maximize

$$\sum_{i=1}^k d(S_i)$$

subject to

$$\frac{|S_i \cap S_j|}{|S_i \cup S_j|} \leq \alpha, \text{ for all } 1 \leq i < j \leq k$$

top- k dense subgraphs with limited overlap

algorithm MINANDREMOVE ([Balalau et al., 2015])

input: undirected graph $G = (V, E)$, parameters k and α

output: k subgraphs G_1, \dots, G_k with overlap at most α

1 **while** less than k subgraphs found and G non-empty

2 find **minimal** densest subgraph $G_i = (V_i, E_i)$

3 **for each** $v \in V_i$

4 $\Delta_G(v) \leftarrow$ the set of neighbors of v in G

5 remove $\lceil (1 - \alpha) |V_i| \rceil$ nodes with minimum $|\Delta_G(v) \setminus V_i|$

6 and all their edges from G

top- k dense subgraphs with limited overlap

summary of results ([\[Balalau et al., 2015\]](#))

- MINANDREMOVE finds optimal solution, if this contains **disjoint** subgraphs
- MINANDREMOVE works shown to work well in practice
- faster algorithm, at small loss of accuracy

top- k dense subgraphs with limited overlap

alternative problem formulation

- given graph $G = (V, E)$, and parameters k and α
- find k subgraphs S_1, \dots, S_k
- in order to **maximize** a reward function

$$r(S_1, \dots, S_k) = \sum_{i=1}^k d(S_i) + \lambda \sum_{i,j} \text{dist}(S_i, S_j)$$

- fits the **max-sum diversification** framework
[Borodin et al., 2012]
- possible to obtain an approximation guarantee (1/10)

top- k dense subgraphs with limited overlap

- want to maximize

$$r(S_1, \dots, S_k) = \sum_{i=1}^k d(S_i) + \lambda \sum_{i,j} \text{dist}(S_i, S_j)$$

- need to define a **distance** between subgraphs
- define

$$\text{dist}(S_i, S_j) = \begin{cases} 2 - \frac{|S_i \cap S_j|^2}{|S_i||S_j|} & \text{if } S_i \neq S_j \\ 0 & \text{otherwise} \end{cases}$$

- distance $\text{dist}(S_i, S_j)$ is a **metric function**
- we can obtain an approximation guarantee (1/10)

top- k dense subgraphs with limited overlap

adapting the max-sum diversification framework

Algorithm 1: DOS; Algorithm for finding top- k overlapping densest subgraphs (problem DENSE-OVERLAPPING-SUBGRAPHS)

Input: $G = (V, E), \lambda, k$

Output: set of subgraphs \mathcal{W} s.t. $|\mathcal{W}| = k$ and maximizing $r(\mathcal{W})$

```
1  $\mathcal{W} \leftarrow \emptyset$ ;  
2 foreach  $i = 1, \dots, k$  do  $\mathcal{W} \leftarrow \mathcal{W} \cup \text{Peel}(G, \mathcal{W}, \lambda)$  ;  
3 return  $\mathcal{W}$ ;
```

top- k dense subgraphs with limited overlap

adapting the max-sum diversification framework

Algorithm 2: Peel; finds a dense subgraph U of the graph G , overlapping with a collection of previously discovered subgraphs \mathcal{W} .

Input: $G = (V, E), \mathcal{W}, \lambda$

Output: U maximizing $\chi(U; \mathcal{W})$

```
1  $V_n \leftarrow V;$ 
2 foreach  $i = n, \dots, 2$  do
3    $v \leftarrow \arg \min_v \left\{ \deg(v; V_i) - 4\lambda \sum_{W_j \ni v} \frac{|V_i \cap W_j|}{|W_j|} \right\};$ 
4    $V_{i-1} \leftarrow V_i \setminus \{v\};$ 
5 foreach  $i = 1, \dots, n$  do
6   if  $V_i \in \mathcal{W}$  then  $V_i \leftarrow \text{Modify}(V_i, G, \mathcal{W}, \lambda);$ 
7 return  $\arg \max_{V_j} \{\chi(V_j; \mathcal{W})\};$ 
```

top- k dense subgraphs with limited overlap

adapting the **max-sum diversification** framework

Algorithm 3: `Modify`; modifies U if $U \in \mathcal{W}$

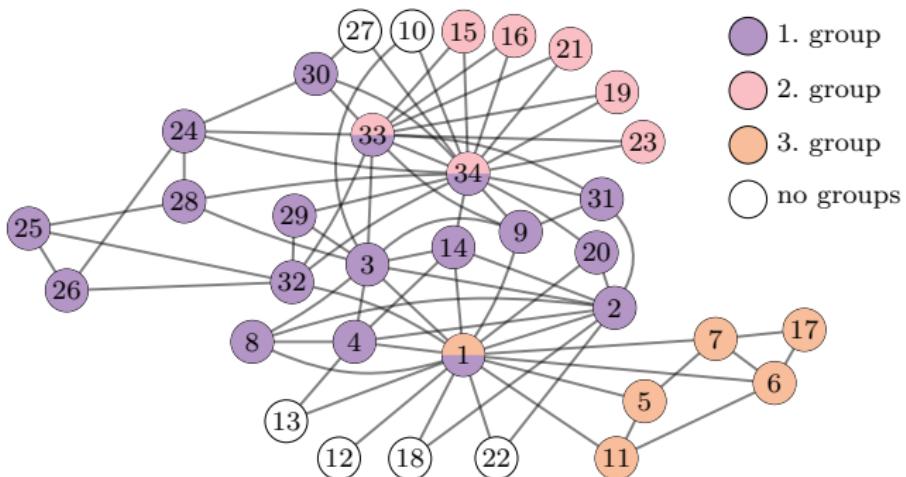
Input: $U, G, \mathcal{W}, \lambda$

Output: modified U

```
1  $X \leftarrow \{U \cup \{x\} \mid x \notin U, U \cup \{x\} \notin \mathcal{W}\};$ 
2  $Y \leftarrow \{U \setminus \{y\} \mid y \in U, U \setminus \{y\} \notin \mathcal{W}\};$ 
3 if  $X = \emptyset$  and  $\text{dens}(U) \leq 5/3$  then
4    $U \leftarrow \{\text{a wedge of size 3 not in } \mathcal{W}\};$ 
5 else
6    $U \leftarrow \arg \max_{C \in X \cup Y} \{\chi(C; \mathcal{W})\};$ 
7 return  $U;$ 
```

top- k dense subgraphs with limited overlap

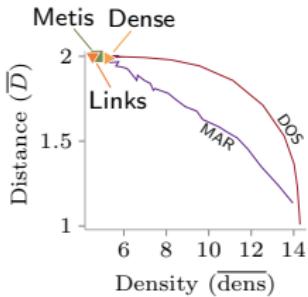
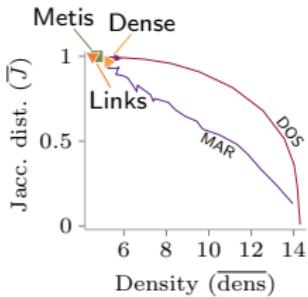
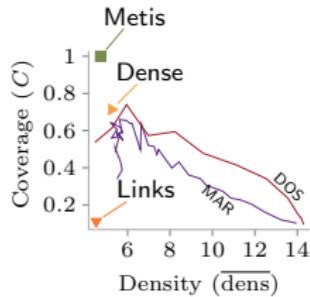
adapting the max-sum diversification framework
example



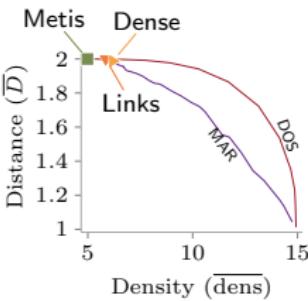
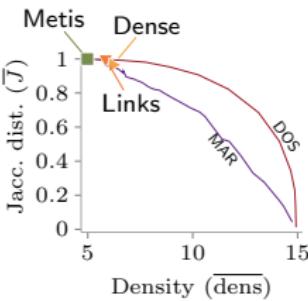
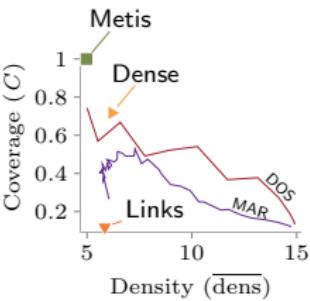
top- k dense subgraphs with limited overlap

DOS vs. MAR

DBLP.E2 Papadimitriou
 $|E| = 2616$
 $\text{dens}(G) = 3.62$



DBLP.C KDD
 $|E| = 2891$
 $\text{dens}(G) = 3.88$



core decomposition

k -core

- (recall) S is a k -core if every vertex in S is connected to at least k other vertices in S
- can be found with the following algorithm:
 1. while (k -core property is satisfied)
 2. remove all vertices with degree less than k
- can also obtain all k -cores (for all k)
- all k -cores form a nested sequence of subgraphs (k -core shell decomposition)
- popular technique in social network analysis
- inner cores : more dense, more central vertices
- note resemblance with Charikar's algorithm

k -core decomposition

widely used technique for partitioning graphs

k -core = largest subgraph with vertex degrees $\geq k$

cores form a chain, k -core $\subseteq (k - 1)$ -core; let

k -shell = vertices in k -core but not in $(k + 1)$ -core

k -core decomposition

widely used technique for partitioning graphs

k -core = largest subgraph with vertex degrees $\geq k$

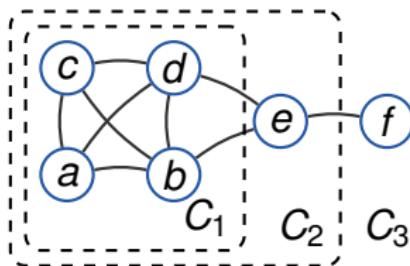
cores form a chain, k -core $\subseteq (k-1)$ -core; let

k -shell = vertices in k -core but not in $(k+1)$ -core

algorithm to find shells:

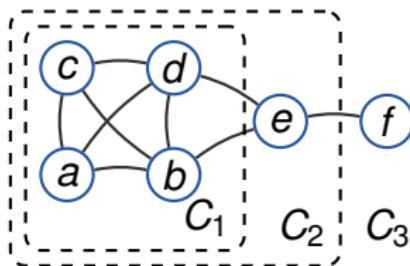
1. **while** G is not empty
2. $v \leftarrow$ vertex with the smallest degree
3. assign v to k -shell
4. remove v from G

core decomposition and density are not compatible

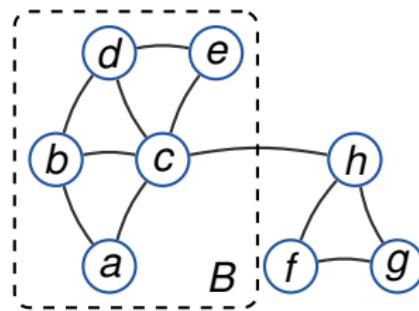


$$d(C_1) = \frac{6}{4} < \frac{8}{5} = d(C_2)$$

core decomposition and density are not compatible



$$d(C_1) = \frac{6}{4} < \frac{8}{5} = d(C_2)$$



only one core but
 $d(B) = \frac{7}{5} > \frac{11}{8} = d(G)$

density-friendly decomposition

goal:

- adapt k -core decomposition for density
- obtain a nested sequence of increasingly dense subgraphs

[Tatti and Gionis, 2015]

locally-dense subgraphs

informally,

subgraph H is **locally-dense** = any subgraph of H is **denser** than any subgraph outside H

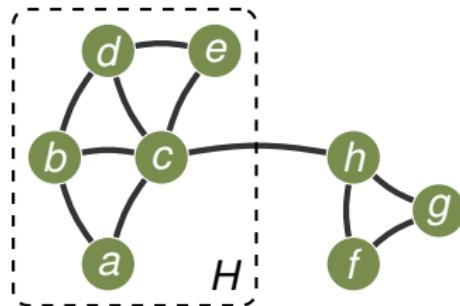
formally, define **augmented density**

$$d(X, Y) = \frac{|E(X)| + |E(X, Y)|}{|X|}, \quad \text{for } X \cap Y = \emptyset$$

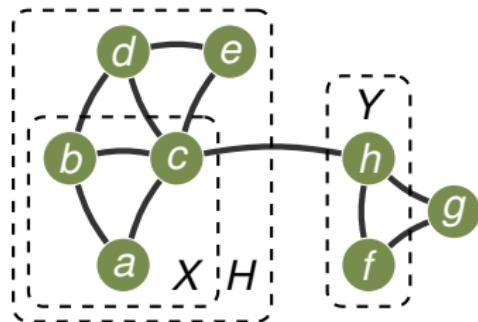
subgraph H is **locally-dense** if

$$d(X, H \setminus X) > d(Y, H), \quad \text{for any } X \subsetneq H, Y \cap H = \emptyset$$

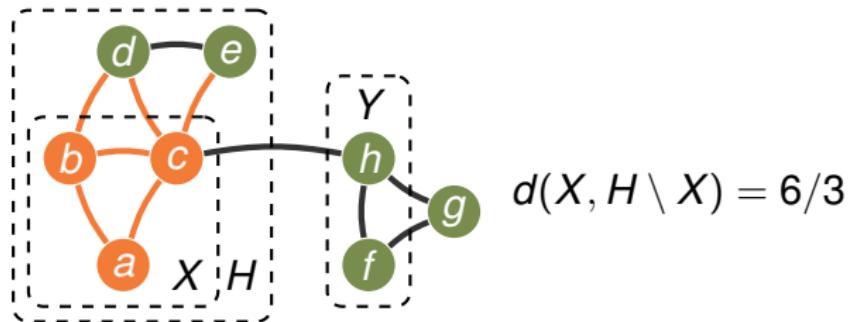
example



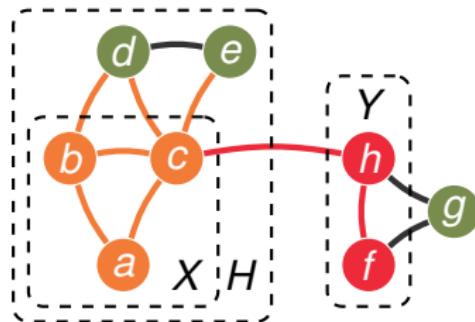
example



example



example



$$\begin{aligned}d(X, H \setminus X) &= 6/3 \\d(Y, H) &= 2/2\end{aligned}$$

properties

locally-dense subgraphs form a **chain**

$$\emptyset = B_0 \subsetneq B_1 \subsetneq B_2 \subsetneq \cdots \subsetneq B_K = G$$

B_i is the **densest** subgraph **containing** B_{i-1}

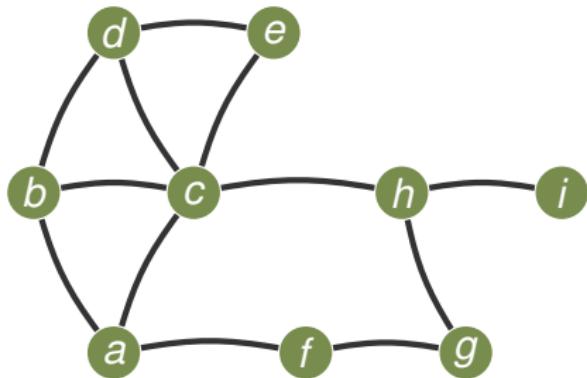
B_1 = densest subgraph

$$B_2 = \arg \max_{B \supsetneq B_1} d(B \setminus B_1, B_1)$$

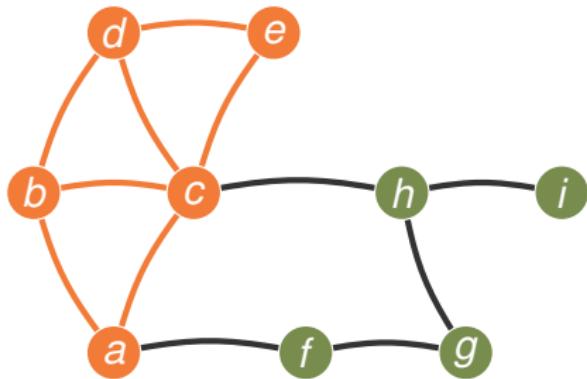
...

$$B_i = \arg \max_{B \supsetneq B_{i-1}} d(B \setminus B_{i-1}, B_{i-1})$$

first approach to compute the subgraphs

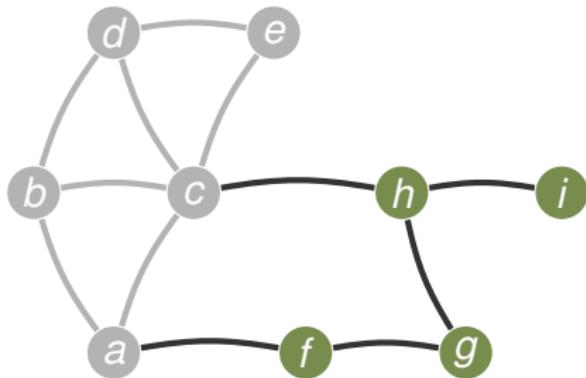


first approach to compute the subgraphs



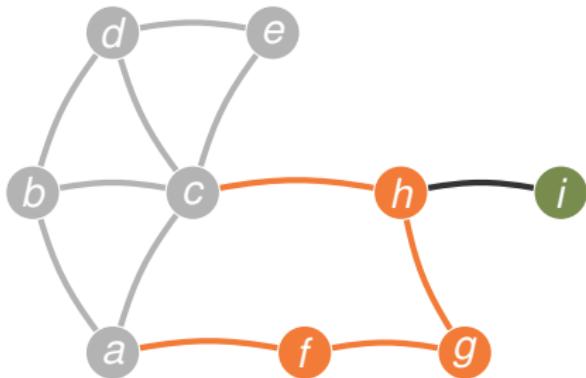
find B_1

first approach to compute the subgraphs



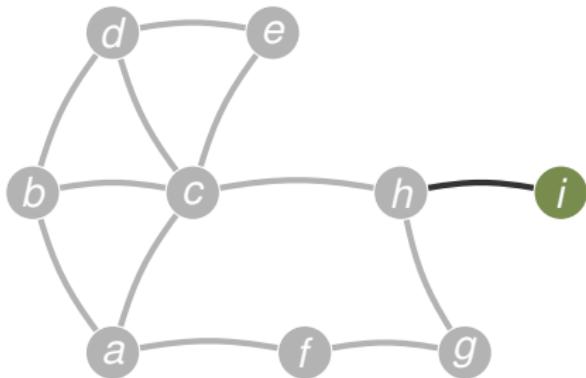
find B_1
delete B_1

first approach to compute the subgraphs



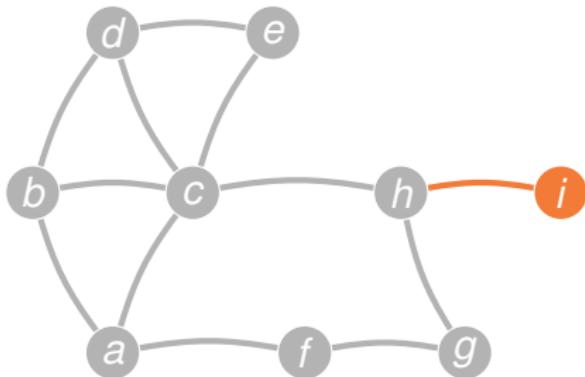
find B_1
delete B_1
find B_2

first approach to compute the subgraphs



find B_1
delete B_1
find B_2
delete B_2

first approach to compute the subgraphs



find B_1
delete B_1
find B_2
delete B_2
find B_3

computing the subgraphs

define

$$F(\alpha) = \arg \max_X |E(X)| - \alpha|X|$$

Goldberg showed that

- $F(\alpha)$ can be solved with a min-cut
- there is α such that $F(\alpha)$ is the densest subgraph

computing the subgraphs

define

$$F(\alpha) = \arg \max_X |E(X)| - \alpha|X|$$

Goldberg showed that

- $F(\alpha)$ can be solved with a min-cut
- there is α such that $F(\alpha)$ is the densest subgraph

we can show that

- $F(\alpha)$ is locally-dense
- for every B_i there is α such that $B_i = F(\alpha)$

computing the subgraphs

find all B_i by varying α (with divide-and-conquer)

algorithm: EXACT(X, Y)

1. select α such that $X \subseteq F(\alpha) \subsetneq Y$
2. $Z \leftarrow F(\alpha)$
2. **if** ($Z \neq X$)
3. **output** Z
3. EXACT(X, Z)
3. EXACT(Z, Y)

- we need only $2k - 3$ calls of $F(\alpha)$
(k is the number of locally-dense subgraphs)
- $O(n^2m)$ total running time, in practice much faster
- $X \subset F(\alpha) \subset Y$ allows optimizations

approximation with profiles

approximation guarantees are tricky:

- algorithm may return **different** number of subgraphs

define a **profile**:

$$p(i; \mathcal{B}) = \begin{cases} d(B_1) & \text{if } i \leq |B_1| \\ d(B_2 \setminus B_1, B_1) & \text{if } |B_1| < i \leq |B_2| \\ \dots & \end{cases}$$

core decomposition

let \mathcal{C} be the core decomposition

let \mathcal{B} be the optimal locally-dense decomposition

then

$$p(i; \mathcal{C}) \geq p(i; \mathcal{B})/2, \text{ for every } i$$

for $i = 1$, this implies

$$d(C_1) \geq d(B_1)/2$$

extending Charikar's algorithm

$C_1 \leftarrow$ densest subgraph of form $v_1, \dots, v_{|C_1|}$

$C_2 \leftarrow$ subgraph maximizing $d(v_1, \dots, v_{|C_2|} \setminus C_1, C_1)$

$C_3 \leftarrow$ subgraph maximizing $d(v_1, \dots, v_{|C_3|} \setminus C_2, C_2)$

...

The graphs C_i

- can be found in $O(n^2)$ -time **naively**
- can be found in $O(n)$ -time with **PAV** algorithm
[Ayer et al., 1955]

greedy decomposition

let \mathcal{C} be the greedy decomposition

(found by the extension of Charikar's algorithm)

let \mathcal{B} be the optimal locally-dense decomposition

then

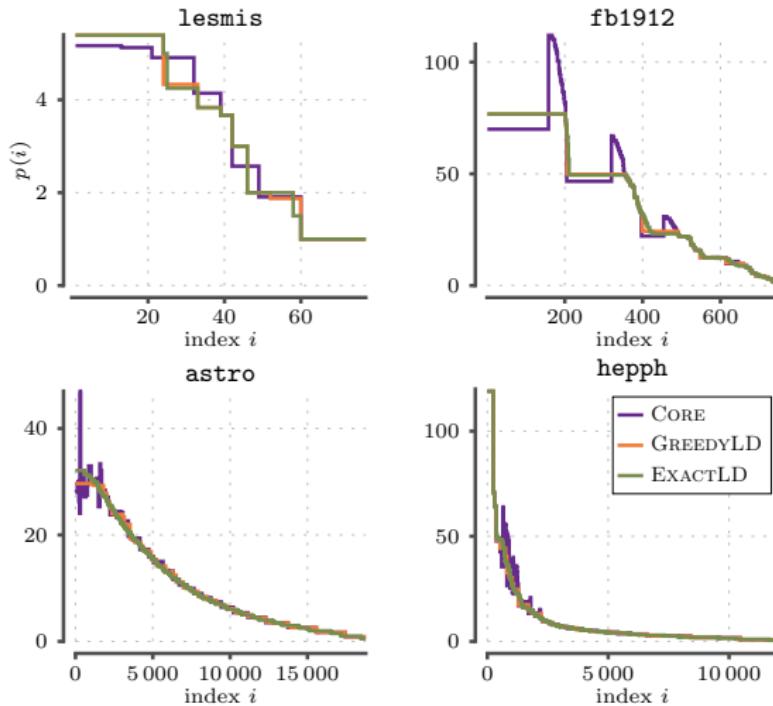
$$p(i; \mathcal{C}) \geq p(i; \mathcal{B})/2, \text{ for every } i$$

for $i = 1$, this implies

$$d(C_1) \geq d(B_1)/2$$

experiments

how well these algorithm perform?



summary (density-friendly decomposition)

- decomposition based on average density
- can be computed exactly in $\mathcal{O}(n^2m)$ time, faster in practice
- can be $1/2$ -approximated in linear time by
 - k -core decomposition
 - greedy algorithm

future work:

- consider different density functions
- control the size of the decomposition

community search

community detection problems

- typical problem formulations require **non-overlapping** and **complete** partition of the set of vertices
- quite **restrictive**
- **inherently ambiguous**: research group vs. bicycling club

- additional information can resolve ambiguity
- community defined by two or more people

the community-search problem

- given graph $G = (V, E)$, and
- given a subset of vertices $Q \subseteq V$ (the query vertices)
- find a community H that contains Q

applications

- find the community of a given set of users (cocktail party)
- recommend tags for an image (tag recommendation)
- form a team to solve a problem (team formation)

center-piece subgraph

[Tong and Faloutsos, 2006]

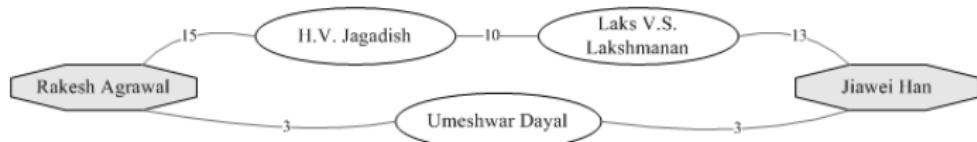
- **given**: graph $G = (V, E)$ and set of query vertices $Q \subseteq V$
- **find**: a connected subgraph H that
 - (a) contains Q
 - (b) optimizes a goodness function $g(H)$
- **main concepts**:
- **k _softAND**: a node in H should be well connected to at least k vertices of Q
- $r(i, j)$ goodness score of j wrt $q_i \in Q$
- $r(Q, j)$ goodness score of j wrt Q
- $g(H)$ goodness score of a candidate subgraph H
- $H^* = \arg \max_H g(H)$

center-piece subgraph

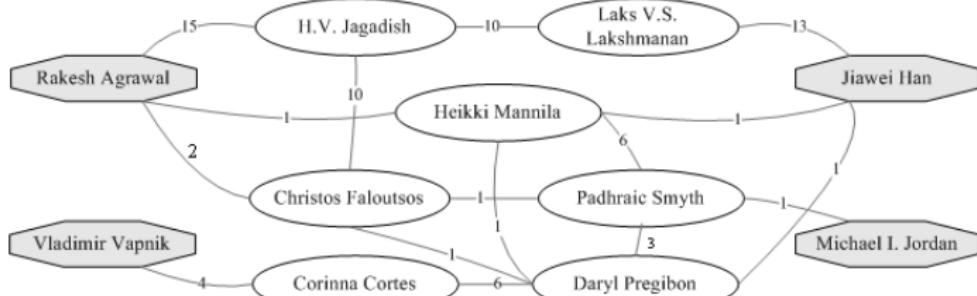
[Tong and Faloutsos, 2006]

- $r(i, j)$ goodness score of j wrt $q_i \in Q$
probability to meet j in a **random walk with restart** to q_i
- $r(Q, j)$ goodness score of j wrt Q
probability to meet j in a **random walk with restart** to k vertices of Q
- **proposed algorithm:**
 1. **greedy**: find a good destination vertex j to add in H
 2. add a path from each of top- k vertices of Q path to j
 3. stop when H becomes large enough

center-piece subgraph — example results



(a) "K-soft AND query": $k = 2$

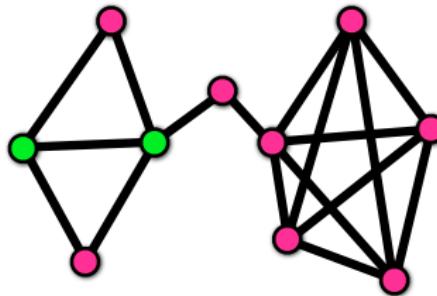


(b) "AND query"

the community-search problem

- **given**: graph $G = (V, E)$ and set of query vertices $Q \subseteq V$
- **find**: a connected subgraph H that
 - (a) contains Q
 - (b) optimizes a **density function** $d(H)$
 - (c) possibly other constraints
- **density function (b)**:
average degree, minimum degree, quasiclique, etc.
measured on the induced subgraph H

free riders



- remedy 1: use min degree as density function
- remedy 2: use distance constraint

$$d(Q, j) = \sum_{q \in Q} d^2(q_i, j) \leq B$$

the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph $G = (V, E)$, query vertices $Q \subseteq V$

output: connected, dense subgraph H

- 1 set $G_n \leftarrow G$
- 2 for $k \leftarrow n$ downto 1
 - 2.1 remove all vertices violating distance constraints
 - 2.2 let v be the smallest degree vertex in G_k among all vertices not in Q
 - 2.3 $G_{k-1} \leftarrow G_k \setminus \{v\}$
 - 2.4 if left only with vertices in Q or disconnected graph, stop
- 3 output the subgraph in G_n, \dots, G_1 that maximizes $f(H)$

properties of the greedy algorithm

- returns optimal solution if no size constraints
- upper-bound constraints make the problem **NP-hard** (heuristic solution, also adaptation of the greedy)
- generalization for monotone constraints and monotone objective functions

experimental evaluation (qualitative summary)

baseline: incremental addition of vertices

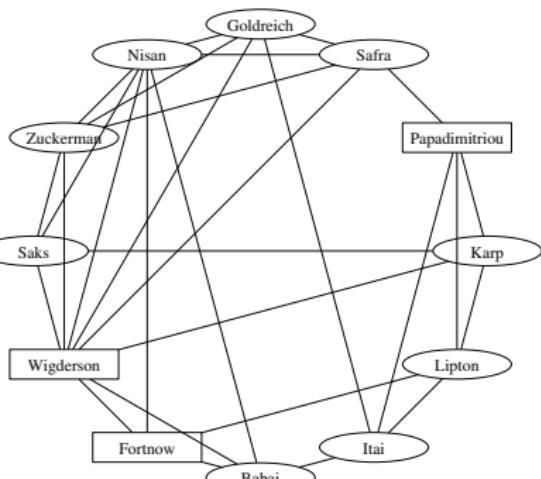
- start with a Steiner tree on the query vertices
- greedily add vertices
- return best solution among all solutions constructed

example result in DBLP

- **proposed algorithm**: min degree = 3, avg degree = 6
- **baseline algorithm**: min degree = 1.5, avg degree = 2.5

the community-search problem — example results

(a) Database theory



(b) Complexity theory

(from [Sozio and Gionis, 2010])

monotone functions

function f is monotone non-increasing if

for every graph G and

for every subgraph H of G it is

$$f(H) \leq f(G)$$

the following functions are monotone non-increasing:

- the query nodes are connected in H (0/1)
- are the nodes in H able to perform a set of tasks?
- upper-bound distance constraint
- lower-bound constraint on the size of H

generalization to monotone functions

generalized community-search problem

given

- a graph $G = (V, E)$
- a node-monotone non-increasing function f
- f_1, \dots, f_k non-increasing boolean functions

find

- a subgraph H of G
- satisfying f_1, \dots, f_k and
- maximizing f

generalized greedy

```
1  set  $G_n \leftarrow G$ 
2  for  $k \leftarrow n$  downto 1
2.1    remove all vertices violating any constraint  $f_1, \dots, f_k$ 
2.2    let  $v$  minimizing  $f(G_k, v)$ 
2.3     $G_{k-1} \leftarrow G_k \setminus \{v\}$ 
3  output the subgraph  $H$  in  $G_n, \dots, G_1$  that maximizes  $f(H, v)$ 
```

generalized greedy

theorem

generalized greedy computes an optimum solution
for the generalized community-search problem

running time

- depends on the time to evaluate the functions f_1, \dots, f_k
- formally $\mathcal{O}(m + \sum_i nT_i)$
- where T_i is the time to evaluate f_i

heavy subgraphs

discovering heavy subgraphs

- given a graph $G = (V, E, d, w)$
with a distance function $d : E \rightarrow \mathbb{R}$ on edges
and weights on vertices $w : V \rightarrow \mathbb{R}$
- find a subset of vertices $S \subseteq V$
so that
 1. total weight in S is high
 2. vertices in S are close to each other

[Rozenshtein et al., 2014]

discovering heavy subgraphs

- what does **total weight** and **close to each other** mean?
- **total weight**

$$W(S) = \sum_{v \in S} w(v)$$

- **close to each other**

$$D(S) = \sum_{u \in S} \sum_{v \in S} d(u, v)$$

- want to **maximize** $W(S)$ and **minimize** $D(S)$
- **maximize**

$$Q(S) = \lambda W(S) - D(S)$$

applications of discovering heavy subgraphs

- finding **events** in networks
- vertices correspond to **locations**
- weights model **activity** recorded in locations
- distances between locations
- find **compact regions** (**neighborhoods**) with **high activity**

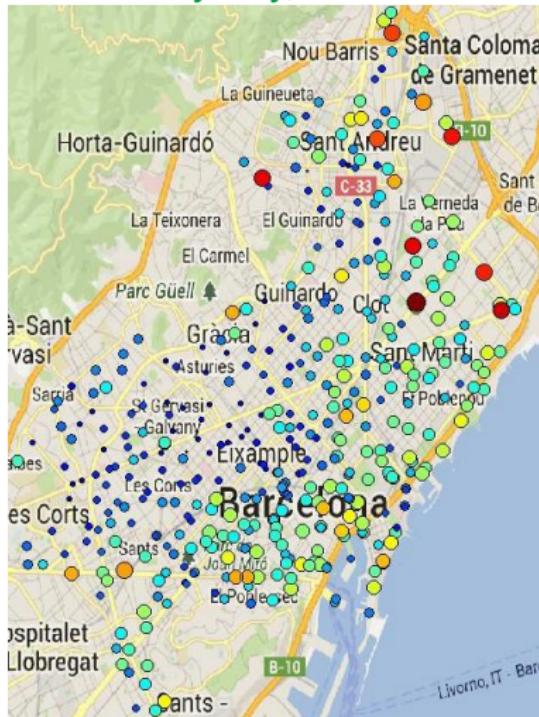
event detection

- sensor networks and traffic measurements

event detection

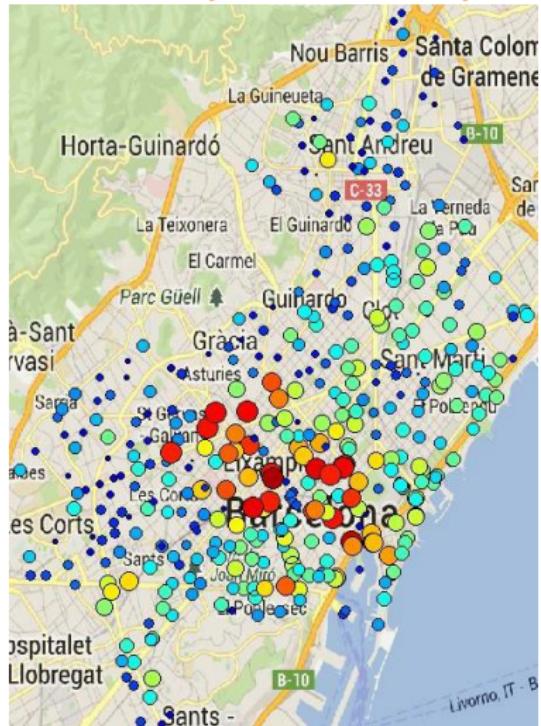
15.11.2012

ordinary day, no events



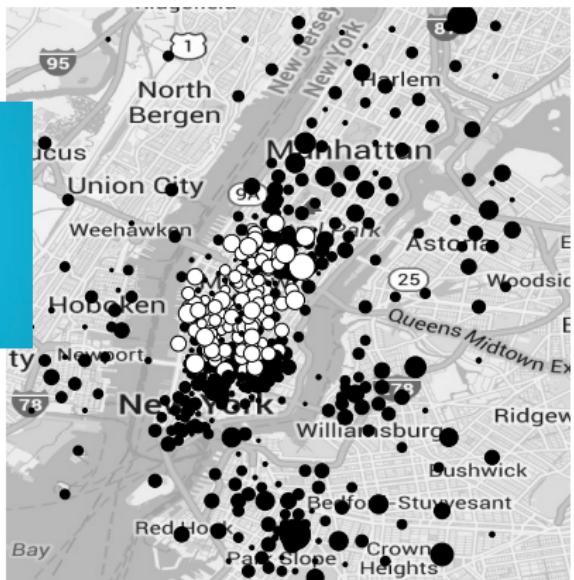
11.09.2012

Catalunya national day



event detection

- location-based social networks



discovering heavy subgraphs

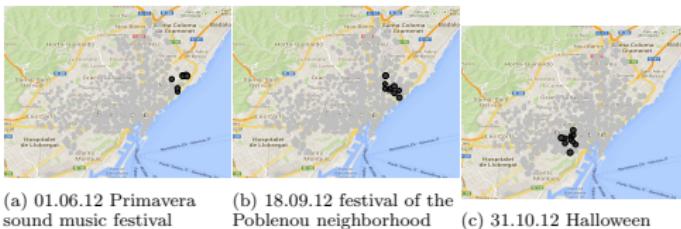
- maximize $Q(S) = \lambda W(S) - D(S)$
- objective can be negative
- add a constant term to ensure non-negativity
- maximize $Q(S) = \lambda W(S) - D(S) + D(V)$

discovering heavy subgraphs

- maximize $Q(S) = \lambda W(S) - D(S) + D(V)$
- objective is submodular (but not monotone)
- can obtain $\frac{1}{2}$ -approximation guarantee
[Buchbinder et al., 2012]
- problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee
[Rozenshtein et al., 2014]

events discovered with bicing and 4square data

Figure 4: Public holiday city-events discovered using the SDP algorithm.



summary

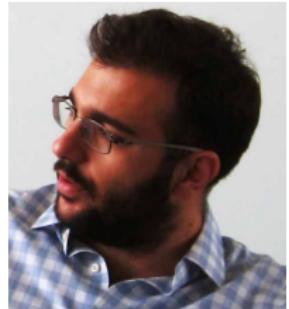
- the problem of finding dense subgraphs has many different real-world applications
- a number of density measures have been studied
- problem complexity depends on adopted measure
- for some problem formulations there are exact polynomial and faster approximate solution
- a number of different techniques has been used
min-cut, greedy, submodularity optimization
- many directions and open problems for future work

acknowledgements

Shamir Khuller

Renato Werneck

Nikolaj Tatti



Charalampos
Tsourakakis

references

- Alon, N., Krivelevich, M., and Sudakov, B. (1998).
 Finding a large hidden clique in a random graph.
Random Structures and Algorithms, 13(3-4):457–466.
- Alvarez-Hamelin, J. I., Dall'Asta, L., Barrat, A., and Vespignani, A. (2005).
 Large scale networks fingerprinting and visualization using the k -core decomposition.
 In *NIPS*.
- Andersen, R. and Chellapilla, K. (2009).
 Finding dense subgraphs with size bounds.
 In *Algorithms and Models for the Web-Graph*, pages 25–37. Springer.
- Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. (2012).
 Dense subgraph maintenance under streaming edge weight updates for real-time story identification.
Proceedings of the VLDB Endowment, 5(6):574–585.

references (cont.)

- Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955).
An empirical distribution function for sampling with incomplete information.
The Annals of Mathematical Statistics, 26(4):641–647.
- Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).
Densest subgraph in streaming and mapreduce.
Proceedings of the VLDB Endowment, 5(5):454–465.
- Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., and Sozio, M. (2015).
Finding subgraphs with maximum total density and limited overlap.
In International Conference on Web Search and Data Mining (WSDM), pages 379–388.
- Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013).
Copycatch: stopping group attacks by spotting lockstep behavior in social networks.
In Proceedings of the 22nd international conference on World Wide Web, pages 119–130.

references (cont.)

- Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan, A. (2010).
Detecting high log-densities: an $\text{O}(n^{1/4})$ approximation for densest k -subgraph.
In *Proceedings of the 42nd ACM symposium on Theory of computing*, pages 201–210. ACM.
- Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999).
The maximum clique problem.
In *Handbook of combinatorial optimization*, pages 1–74. Springer.
- Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions and dynamic updates.
In *Proceedings of the 31st symposium on Principles of Database Systems*, pages 155–166. ACM.
- Bron, C. and Kerbosch, J. (1973).
Algorithm 457: finding all cliques of an undirected graph.
CACM, 16(9).

references (cont.)

- Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012).
A tight linear time $(1/2)$ -approximation for unconstrained submodular maximization.
In *IEEE Annual Symposium on Foundations of Computer Science (FOCS)*.
- Charikar, M. (2000).
Greedy approximation algorithms for finding dense components in a graph.
In *APPROX*.
- Chen, J. and Saad, Y. (2012).
Dense subgraph extraction with application to community detection.
Knowledge and Data Engineering, IEEE Transactions on,
24(7):1216–1230.
- Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003).
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355.

references (cont.)

- Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. (2014).
Robust distance queries on massive networks.
In *Algorithms-ESA 2014*, pages 321–333. Springer.
- Eppstein, D., Löffler, M., and Strash, D. (2010).
Listing all maximal cliques in sparse graphs in near-optimal time.
In *ISAAC*.
- Feige, U., Kortsarz, G., and Peleg, D. (2001).
The dense k -subgraph problem.
Algorithmica, 29(3).
- Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S. (2006).
Motifcut: regulatory motifs finding with maximum density subgraphs.
Bioinformatics, 22(14):e150–e157.
- Gionis, A., Junqueira, F., Leroy, V., Serafini, M., and Weber, I. (2013).
Piggybacking on social networks.
Proceedings of the VLDB Endowment, 6(6):409–420.

references (cont.)

- Goldberg, A. V. (1984).
Finding a maximum density subgraph.
Technical report, University of California at Berkeley.
- Hastad, J. (1999).
Clique is hard to approximate within $n^{1-\epsilon}$.
Acta Mathematica, 182(1).
- Iasemidis, L. D., Shiau, D.-S., Chaovalltwongse, W. A., Sackellares, J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A., Veeramani, B., and Tsakalis, K. (2003).
Adaptive epileptic seizure prediction system.
IEEE Transactions on Biomedical Engineering, 50(5).
- Johnson, D. S. and Trick, M. A. (1996).
Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11-13, 1993, volume 26.
American Mathematical Soc.

references (cont.)

- Kang, U., Chau, D. H., and Faloutsos, C. (2011).
Mining large graphs: Algorithms, inference, and discoveries.
In *International Conference on Data Engineering (ICDE)*, pages 243–254.
- Kang, U., Tsourakakis, C. E., and Faloutsos, C. (2009).
Pegasus: A peta-scale graph mining system implementation and observations.
In *Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on*, pages 229–238. IEEE.
- Kannan, R. and Vinay, V. (1999).
Analyzing the structure of large graphs.
Rheinische Friedrich-Wilhelms-Universität Bonn.
- Karande, C., Chellapilla, K., and Andersen, R. (2009).
Speeding up algorithms on compressed web graphs.
Internet Mathematics, 6(3):373–398.

references (cont.)

- Karp, R. M. (1972).
Reducibility among combinatorial problems.
In Miller, R. and Thatcher, J., editors, *Complexity of Computer Computations*.
- Khuller, S. and Saha, B. (2009).
On finding dense subgraphs.
In *ICALP*.
- Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).
Trawling the Web for emerging cyber-communities.
Computer Networks, 31(11–16):1481–1493.
- Makino, K. and Uno, T. (2004).
New algorithms for enumerating all maximal cliques.
In *Algorithm Theory-SWAT 2004*, pages 260–272. Springer.
- McSherry, F. (2001).
Spectral partitioning of random graphs.
In *Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on*, pages 529–537. IEEE.

references (cont.)

- Papailiopoulos, D., Mitliagkas, I., Dimakis, A., and Caramanis, C. (2014).

Finding dense subgraphs via low-rank bilinear optimization.
In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1890–1898.
- Peleg, D. (2000).

Informative labeling schemes for graphs.
In *Mathematical Foundations of Computer Science 2000*, pages 579–588. Springer.
- Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014).

Event detection in activity networks.
In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X.-N. (2010).

Dense subgraphs with restrictions and applications to gene annotation graphs.
In *Research in Computational Molecular Biology*, pages 456–472. Springer.

references (cont.)

- Sarıyüce, A. E., Seshadhri, C., Pinar, A., and Catalyurek, U. V. (2015). Finding the hierarchy of dense subgraphs using nucleus decompositions.
In *Proceedings of the 24th International Conference on World Wide Web*, pages 927–937.
- Sozio, M. and Gionis, A. (2010). The community-search problem and how to plan a successful cocktail party.
In *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Tatti, N. and Gionis, A. (2015). Density-friendly graph decomposition.
In *Proceedings of the 24th International Conference on World Wide Web*.
- Thorup, M. (2004). Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024.

references (cont.)

- Tong, H. and Faloutsos, C. (2006).
Center-piece subgraphs: problem definition and fast solutions.
In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Tsurakakis, C. (2015).
The k-clique densest subgraph problem.
In *Proceedings of the 24th International Conference on World Wide Web*, pages 1122–1132. International World Wide Web Conferences Steering Committee.
- Tsurakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013).
Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees.
In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 104–112. ACM.
- Tsurakakis, C., Gkantsidis, C., Radunovic, B., and Vojnovic, M. (2014).
Fennel: Streaming graph partitioning for massive scale graphs.
In *Proceedings of the 7th ACM international conference on Web search and data mining*, pages 333–342. ACM.