
Algorithmic methods for mining large graphs
Lecure 3 : Finding dense subgraphs

Aristides Gionis

Aalto University

Bertinoro International Spring School 2016
March 7–11, 2016

course agenda

• introduction to graph mining Tue afternoon

• computing basic graph statistics Tue afternoon, Wed morning

• finding dense subgraphs Wed afternoon, Thu morning

• spectral graph analysis Thu afternoon

• additional topics Fri morning

– inferring hierarchies in graphs

– mining dynamic graphs

– graph sparsifiers

what this lecture is about . . .

given a graph (network), static or dynamic

(social network, biological network, information network, . . .)

find a subgraph that . . .

. . . has many edges

. . . is densely connected

why I care?

what does dense mean?

review of main problems, and main algorithms

outline

• motivating applications

• preliminaries and measures of density

• algorithms for finding dense subgraphs

• problem variants

motivating applications

motivation – correlation mining

correlation mining: a general framework with many applications

• data is converted into a graph
• vertices correspond to entities
• an edge between two entities denotes strong correlation

1 stock correlation network: data represent stock timeseries
2 gene correlation networks: data represent gene expression

• dense subsets of vertices correspond to highly correlated
entities

• applications:

1 analysis of stock market dynamics
2 detecting co-expression modules

motivation – fraud detection

• dense bipartite subgraphs in page-like data
reveal attempts to inflate page-like counts
[Beutel et al., 2013]

source: [Beutel et al., 2013]

motivation – e-commerce

e-commerce
• weighted bipartite graph

G(A ∪Q,E ,w)

• set A corresponds to advertisers
• set Q corresponds to queries
• each edge (a,q) has weight w(a,q)

equal to the amount of money
advertiser a is willing to spend on
query q

large almost bipartite cliques correspond
to sub-markets

motivation – bioinformatics

• DNA motif detection [Fratkin et al., 2006]
• vertices correspond to k -mers
• edges represent nucleotide similarities between k -mers

• gene correlation analysis

• detect complex annotation patterns from gene annotation
data [Saha et al., 2010]

motivation – mining twitter data

real-time story identification [Angel et al., 2012]
• mining of twitter data
• vertices correspond to entities
• edges correspond to co-occurence of entities
• dense subgraphs capture news stories

motivation – graph mining
understanding the structure of real-world networks
[Sarıyüce et al., 2015]

nucleus decomposition of a graph

(3,4)-nuclei forest for facebook

motivation – distance queries in graphs

• L(u) ≡ set of pairs (v ,dist(u, v))

L(u) is the label of u; each v is a hub for u.

figure from [Delling et al., 2014]

motivation – distance queries in graphs

• preprocessing : compute a label set for every vertex
• cover property : for all s, t intersection L(s) ∩ L(t) must hit

an s–t shortest path

figure from [Delling et al., 2014]

motivation – distance queries in graphs

• to answer an s–t query :
find hub v in L(s) ∩ L(t) minimizing dist(s, v) + dist(v , t)

figure from [Delling et al., 2014]

motivation – distance queries in graphs

hub label queries are trivial to implement :

• entries sorted by hub id
• linear sweep to find matches
• access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small
• can we find small labels sets?
• 2-hop labeling algorithm relies on dense-subgraph

discovery to find such label sets (!) [Cohen et al., 2003]
• state-of-art 2-hop labeling scheme : [Delling et al., 2014]
• more work on the topic : [Peleg, 2000, Thorup, 2004]

motivation – frequent pattern mining

• given a set of transactions over items

• find item sets that occur together in a θ fraction of the
transactions

issue heroes
number

1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

e.g., {Iceman, Storm} appear in 60% of issues

motivation – frequent pattern mining

• one of the most well-studied area in data mining

• many efficient algorithms
Apriori, Eclat, FP-growth, Mafia, ABS, . . .

• main idea: monotonicity
a subset of a frequent set must be frequent, or
a superset of an infrequent set must be infrequent

• algorithmically:
start with small itemsets
proceed with larger itemset if all subsets are frequent

• enumerate all frequent itemsets

motivation – frequent itemsets and dense subgraphs

id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

• transaction data⇔ binary data⇔ bipartite graphs
frequent itemsets⇔ bi-cliques

motivation – frequent itemsets and dense subgraphs

id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

• transaction data⇔ binary data⇔ bipartite graphs
• frequent itemsets⇔ bi-cliques

motivation – finding web communities

[Kumar et al., 1999]

• hypothesis: web communities consist of hub-like pages
and authority-like pages
e.g., luxury cars and luxury-car aficionados

• key observations:

1. let G = (U,V ,E) be a dense web community
then G should contain some small core (bi-clique)

2. consider a web graph with no communities
then small cores are unlikely

• both observations motivated from theory of random graphs

motivation – finding web communities

a web community

authority
pages

hub
pages

[Kumar et al., 1999]

motivation – finding web communities

web communities containts small cores

authority
pages

hub
pages

[Kumar et al., 1999]

motivation – social piggybacking

[Gionis et al., 2013]

✦ majority of activity in social networking

• event feeds

✦ scaling feed generation → scaling social
networking

• event feeds: majority of activity in social networks

motivation – social piggybacking

• system throughput proportional to the data transferred
between data stores

• feed generation important component to optimize

the delivery operations

- push

- pull

u

v

• primitive operation: transfer data between two data stores

• can be implemented as push or pull strategy

• optimal strategy depends on production and consumption
rates of nodes

motivation – social piggybacking
• end of the story?

u

z

v
u

z

v

h l

hub optimization
• hub optimization turns out to be a good idea

• depends on finding dense subgraphs

node v. Observe that any node v has to either pull from at
least one other node u, u ⌅ v ⇧ E (and, in the ideal case, all
the other information required by v will be pushed to u), or,
if v does not pull from any u, then all other of v’s informa-
tion producers need to push to v. In the first case, the cost
attributed to the information flow to v is at least rc(v), which
is the rate at which v is pulling information. In the second
case, the attributed cost is at least

⇧
{u:u�v⇥E} rp(u), which

is the (accumulated) rate at which other nodes are pushing
information. This gives us the following lower bound.

Lemma 2 If all throughput costs are w(u ⌅ v) = 1 then no
feasible dissemination schedule can have a cost of less than:

C =
⌥

v⇥V

min

�
⇤rc(v),

⌥

{u:u�v⇥E}
rp(u)

⇥
⌅ (1)

This lower bound can be further strengthened by the ob-
servation that the same argument applies to each of v’s
“groups” of producing nodes separately: if there are sepa-
rate groups between which there is no information flow then
v needs to pull from or have information push to from each of
the groups individually. Details are given in Appendix A.2
and in our experiments we used the refined version. Our ex-
periments will show that this bound is overly optimistic (as
it assumes a single pull can su⇥ce) and we use the bound
to describe trends in the intrinsic problem di⇥culty.

4. ALGORITHMS

4.1 Approximation algorithm
In this section we describe our approximation algorithm

for the Dissemination problem, which we name ChitChat.
Not surprisingly, since the Dissemination problem asks to
find a schedule that covers all the edges in the network, our
solution is based on the SetCover problem.

For completeness we recall the SetCover problem: We
are given a ground set X and a collection C = {A1, . . . , Am}
of subsets of X, such that

⌃
i Ai = X. Each set A in C is

associated with a cost c(A). The goal is to select a sub-
collection S ⇥ C that covers all the elements in the ground
set, i.e.,

⌃
A⇥S A = X, and the total cost

⇧
A⇥S c(A) of the

sets in the collection S is minimized.
For the SetCover problem, the following simple greedy

algorithm is folklore [2]: Initialize S = ⌥ to keep the itera-
tively growing solution, and Z = X to keep the uncovered
elements of X. Then as long as Z is not empty, select the

set A that minimizes the cost per uncovered element c(A)
|A⇤Z| ,

add the set A to the solution (S ⇤ S�{A}) and update the
set of uncovered elements (Z ⇤ Z \ A).

It can be shown [2] that this greedy algorithm achieves
a solution with approximation guarantee O(log�), where
� = max{|A|} is the size of the largest set in the collection C.
At the same time, this logarithmic guarantee is essentially
the best one can hope for, since Feige [3] showed that the
problem is not approximable within (1 � o(1)) ln n, unless
NP has quasi-polynomial time algorithms.

To map the Dissemination problem to SetCover, we
consider as ground set X the set of edges E in the network.
The question is what should be the sets that form the collec-
tion C. Motivated by the elementary optimization operation

X
Y

w

Figure 2: A hub-graph used in the mapping of Dis-
semination to SetCover problem.

that we discussed in Section 2 we consider the covering sets
to be of the form of a hub-graph, as defined below.

Definition 9 (hub-graph) Given a graph G = (V, E) and
a node w ⇧ V we consider a triple (X, w, Y), with X, Y ⇥ V
such that

(i) w ⌃⇧ X and w ⌃⇧ Y ,

(ii) for all x ⇧ X it is x ⌅ w ⇧ E, and

(iii) for all y ⇧ Y it is w ⌅ y ⇧ E.

The subgraph of G induced by the set of nodes X � Y � {w}
is called hub-graph G(X, w, Y). For notational convenience
we partition the edges of a hub-graph G(X, w, Y) into three
groups: the edges E(X, w) = {x ⌅ w | x ⇧ X} from X to w,
the edges E(w, Y) = {w ⌅ y | y ⇧ Y } from w to Y , and the
cross-edges E(X, Y) = {x ⌅ y | x ⇧ X and y ⇧ Y } E.

A hub-graph G(X, w, Y) is shown in Figure 2. The dashed
edges in the figure are the cross-edges.

The intuition behind the definition of a hub-graph
G(X, w, Y) is that the node w can act as a hub between
nodes in X and Y : by serving all edges in E(X, w) by a
push, and all edges in E(w, Y) by a pull, we can cover all
cross-edges for free, as follows from Observation 1. To spec-
ify in detail how we are using a hub-graph G(X, w, Y) in our
SetCover-based solution, we need to discuss how to treat
each hub-graph in terms of coverage, cost, and dissemination
schedule.

Dissemination schedule. Selecting a hub-graph
G(X, w, Y) implies that we will add in our dissemination
schedule all edges in E(X, w) to be served by a push opera-
tion and all edges in E(w, Y) to be served by a pull opera-
tion.

Coverage. A hub-graph G(X, w, Y) covers all the edges
E(X, w) � E(w, Y) � E(X, Y) = E(X, w, Y).

Cost. The cost of a hub-graph G(X, w, Y) is

c(X, w, Y) =
⌥

u⇥X

h(u ⌅ w) +
⌥

v⇥Y

l(w ⌅ v).

Assume for a moment that we have at our disposal all pos-
sible hub-graphs G(X, w, Y), so let C be the set of all pos-
sible such hub-graphs. For each hub-graph G(X, w, Y) ⇧
C we have access to its coverage E(X, w, Y) and its
cost c(X, w, Y). We can then solve the problem Dissemi-
nation by solving the instance of the SetCover problem
on the collection C. For the latter problem, we need to find
the sub-collection S ⇥ C that covers all the edges in E and
minimizes the total cost

⇧
(X,w,Y)⇥S c(X, w, Y). A dissem-

ination schedule can then be produced by processing each

motivation – graph compression

• compress web graphs by finding and compressing
bi-cliques [Karande et al., 2009]

• many graph mining tasks that can be formulated as
matrix-vector multiplication are more efficient on the
compressed graph [Kang et al., 2009]

motivation – more applications

• graph visualization [Alvarez-Hamelin et al., 2005]

• community detection [Chen and Saad, 2012]

• epilepsy prediction [Iasemidis et al., 2003]

• event detection in activity networks
[Rozenshtein et al., 2014]

• many more

landscape of related work

• brute force [Johnson and Trick, 1996]

• heuristics [Bomze et al., 1999]
• spectral algorithms [Alon et al., 1998, McSherry, 2001,

Papailiopoulos et al., 2014]
• belief-propagation methods [Kang et al., 2011]

• enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973,
Eppstein et al., 2010, Makino and Uno, 2004]

• NP-hard formulations and various relaxations
• maximum clique problem [Karp, 1972, Hastad, 1999]
• k -densest subgraph problem

[Bhaskara et al., 2010, Feige et al., 2001]
• optimal quasi-cliques [Tsourakakis et al., 2013]

• polynomial-time solvable objectives
• densest subgraph problem [Goldberg, 1984]
– “The densest subgraph problem lies at the core of large

scale data mining” [Bahmani et al., 2012]

preliminaries, measures of density

notation

• graph G = (V ,E) with vertices V and edges E ⊆ V × V
• degree of a node u ∈ V with respect to X ⊆ V is

degX (u) = |{v ∈ X such that (u, v) ∈ E}|

• degree of a node u ∈ V is deg(u) = degV (u)

• edges between S ⊆ V and T ⊆ V are

E(S,T) = {(u, v) such that u ∈ S and v ∈ T}

use shorthand E(S) for E(S,S)

• graph cut is defined by a subset of vertices S ⊆ V
• edges of a graph cut S ⊆ V are E(S, S̄) = E(S,V \ S)

• induced subgraph by S ⊆ V is G(S) = (S,E(S))

• triangles: T (S) = {(u, v ,w) | (u, v), (u,w), (v ,w) ∈ E(S)}

density measures

• undirected graph G = (V ,E)

• subgraph induced by S ⊆ V

• clique: all vertices in S are connected to each other

density measures

• edge density (average degree):

d(S) =
2 |E(S,S)|
|S| =

2 |E(S)|
|S|

(sometimes just drop 2)
• edge ratio:

δ(S) =
|E(S,S)|(|S|

2

) =
|E(S)|(|S|

2

) =
2 |E(S)|
|S|(|S| − 1)

• triangle density:

t(S) =
|T (S)|
|S|

• triangle ratio:

τ(S) =
|T (S)|(|S|

3

)

other density measures

• k -core: every vertex in S is connected to

at least k other vertices in S

• α-quasiclique: the set S has at least α
(|S|

2

)
edges

i.e., S is α-quasiclique if E(S) ≥ α
(|S|

2

)

and more

not considered here

• k -cliques: subset of vertices with pairwise distances
at most k

– distances defined using intermediaries, outside the set
– not well connected

• k -club: a subgraph of diameter ≤ k

• k -plex: a subgraph S in which each vertex is connected
to at least |S| − k other vertices

– 1-plex is a clique

reminder: min-cut and max-cut problems

min-cut problem

s t

• source s ∈ V , destination t ∈ V
• find S ⊆ V , s.t.,
• s ∈ S and t ∈ S̄, and
• minimize e(S, S̄)

polynomially-time solvable
equivalent to max-flow problem

max-cut problem
• find S ⊆ V , s.t.,
• maximize e(S, S̄)

NP-hard
approximation algorithms
(0.868 based on SDP)

reminder: min-cut and max-cut problems

min-cut problem

s t
S S

• source s ∈ V , destination t ∈ V
• find S ⊆ V , s.t.,
• s ∈ S and t ∈ S̄, and
• minimize e(S, S̄)

• polynomially-time solvable
• equivalent to max-flow problem

max-cut problem
• find S ⊆ V , s.t.,
• maximize e(S, S̄)

NP-hard
approximation algorithms
(0.868 based on SDP)

reminder: min-cut and max-cut problems

min-cut problem

s t
S S

• source s ∈ V , destination t ∈ V
• find S ⊆ V , s.t.,
• s ∈ S and t ∈ S̄, and
• minimize e(S, S̄)

• polynomially-time solvable
• equivalent to max-flow problem

max-cut problem

S
S

• find S ⊆ V , s.t.,
• maximize e(S, S̄)

• NP-hard
• approximation algorithms

(0.868 based on SDP)

basic algorithms

Goldberg’s algorithm for densest subgraph

• consider first degree density d

G

• is there a subgraph S with
d(S) ≥ c?

• transform to a min-cut
instance

• on the transformed
instance:

• is there a cut smaller
than a certain value?

s t

... ...

G

Goldberg’s algorithm for densest subgraph

• consider first degree density d

G

• is there a subgraph S with
d(S) ≥ c?

• transform to a min-cut
instance

• on the transformed
instance:

• is there a cut smaller
than a certain value?

s t

... ...

G

Goldberg’s algorithm for densest subgraph

• consider first degree density d

G

• is there a subgraph S with
d(S) ≥ c?

• transform to a min-cut
instance

• on the transformed
instance:

• is there a cut smaller
than a certain value?

s t

... ...

G

Goldberg’s algorithm for densest subgraph

is there S with d(S) ≥ c ?

2 |E(S,S)|
|S| ≥ c

2 |E(S,S)| ≥ c|S|

∑

u∈S

deg(u)− |E(S, S̄)| ≥ c|S|

∑

u∈S

deg(u) +
∑

u∈S̄

deg(u)−
∑

u∈S̄

deg(u)− |E(S, S̄)| ≥ c|S|

∑

u∈S̄

deg(u) + |E(S, S̄)|+ c|S| ≤ 2 |E |

Goldberg’s algorithm for densest subgraph

• transformation to min-cut instance

s t... ...

deg(u)1

deg(u)n

c

c
1

G

• is there S s.t.
∑

u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?
a cut of value 2 |E | always exists, for S = ∅∑u∈S̄ |e(S, S̄)|

Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u)1

deg(u)n

c

c
1

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

• a cut of value 2 |E | always exists, for S = ∅∑u∈S̄ |e(S, S̄)|

Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u)1

deg(u)n

c

c
1

S

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

• S 6= ∅ gives cut of value
∑

u∈S̄ deg(u) + |e(S, S̄)|+ c|S|

Goldberg’s algorithm for densest subgraph

• transform to a min-cut instance

s t... ...

deg(u)1

deg(u)n

c

c
1

S

S
• is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

• YES, if min cut achieved for S 6= ∅∑u∈S̄ |e(S, S̄)|

Goldberg’s algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph G = (V ,E), number c
output: S, if d(S) ≥ c
1 transform G into min-cut instance G′ = (V ∪ {s} ∪ {t},E ′,w ′)
2 find min cut {s} ∪ S on G′

3 if S 6= ∅ return S
4 else return NO

• to find the densest subgraph perform binary search on c
• logarithmic number of min-cut calls
• problem can also be solved with one min-cut call

using the parametric max-flow algorithm

densest subgraph problem – discussion

• Goldberg’s algorithm polynomial algorithm, but

• O(nm) time for one min-cut computation

• not scalable for large graphs (millions of vertices / edges)

• faster algorithm due to [Charikar, 2000]

• greedy and simple to implement

• approximation algorithm

densest subgraph problem – discussion

• Goldberg’s algorithm polynomial algorithm, but

• O(nm) time for one min-cut computation

• not scalable for large graphs (millions of vertices / edges)

• faster algorithm due to [Charikar, 2000]

• greedy and simple to implement

• approximation algorithm

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph — example

greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V ,E)
output: S, a dense subgraph of G
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk
2.2 Gk−1 ← Gk \ {v}
3 output the densest subgraph among Gn,Gn−1, . . . ,G1

proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]

• let S∗ be the vertices of the optimal subgraph

• let d(S∗) = λ be the maximum degree density

• notice that for all v ∈ S∗ we have degS∗(v) ≥ λ
• (why?) by optimality of S∗

|e(S∗)|
|S∗| ≥

|e(S∗)| − degS∗(v)

|S∗| − 1

and thus

degS∗(v) ≥ |e(S∗)|
|S∗| = d(S∗) = λ

proof of 2-approximation guarantee (continued)

[Khuller and Saha, 2009]

• consider greedy when the first vertex v ∈ S∗ ⊆ V
is removed

• let S be the set of vertices, just before removing v

• total number of edges before removing v is ≥ λ|S|/2
• therefore, greedy returns a solution with degree density

at least λ/2

QED

the greedy algorithm

• factor-2 approximation algorithm
• runs in linear time O(n + m)

• for a polynomial problem . . .
but faster and easier to implement than the exact algorithm

• everything works for weighted graphs
using heaps: O(m + n log n)

• things are not as straightforward for directed graphs

finding dense subgraphs on directed graphs

dense subgraphs on directed graphs – history

• goal: find sets S,T ⊆ V to maximize

d(S,T) =
e[S,T]√
|S| |T |

• first introduced in unpublished manuscript
[Kannan and Vinay, 1999]

• they provided a O(log n)-approximation algorithm
• left open the problem complexity

• polynomial-time solution using linear programming (LP)
[Charikar, 2000]

dense subgraphs on directed graphs – history

[Charikar, 2000]

• exact LP-based algorithm

• greedy 2-approximation algorithm running in O(n3 + n2m)

[Khuller and Saha, 2009]

• first max-flow based exact algorithm

• improved running time of the 2-approximation greedy
algorithm to O(n + m) (!)

directed graphs – algorithms

• reduced problem to O(n2) LP calls [Charikar, 2000]

• one LP call for each possible ratio |S||T | = c

maximize
∑

(i,j)∈E(G)

xij

such that xij ≤ si , for all (i , j) ∈ E(G)

xij ≤ tj , for all (i , j) ∈ E(G)
∑

i

si ≤
√

c and
∑

j

tj ≤
1√
c

xij , si , tj ≥ 0

directed graphs – algorithms

[Charikar, 2000]

• for a given value of |S||T | = c the LP(c) has an

integral solution

• it can be shown that

max
S,T⊆V

d(S,T) = max
c

OPT(LP(c))

[proof sketch]

1. for S,T ⊆ V , with |S||T | = c the optimal value of LP(c) is

at least d(S,T)

2. given a feasible solution of LP(c) with value v we can
construct S,T ⊆ V such that d(S,T) ≥ v

dense subgraphs on directed graphs – greedy

[Charikar, 2000]

input: directed graph G = (V ,E), ratio c = |S|
|T |

1 S ← V , T ← V
2 while both S,T non-empty
3 imin ← the vertex i ∈ S that minimizes |E({i},T)|
4 dS ← |E({imin},T)|
5 jmin ← the vertex j ∈ T that minimizes |E(S, {j})|
6 dT ← |E(S, {jmin})|
7 if

√
cdS ≤ 1√

c dT

8 then S ← S\{imin}
9 else T ← T\{jmin}

• execute O(n2) times; one for each c = |S|
|T |

• report best solution
• factor 2 approximation guarantee

dense subgraphs on directed graphs – greedy

• brute force execution of greedy:

O(n2(n + m)) = O(n3 + nm))

[Khuller and Saha, 2009]

• showed that only one execution is needed
(instead of O(n2))

• total running time O(n + m)

dense subgraphs on directed graphs – greedy

linear-time greedy [Khuller and Saha, 2009]

definitions:
• let vi , vo be the vertices with minimum in- and out-degree
• if d−(vi) ≤ d+(vo) we are in category IN

otherwise in category OUT

algorithm:
• greedy deletes the minimum-degree vertex
• if in IN, it deletes all incoming edges
• if in OUT, it deletes all outgoing edges
• if the vertex becomes a singleton, it is deleted.

• return the densest subgraph encountered

dense subgraphs on directed graphs – exact

we wish to answer “are there S,T ⊆ V such that d(S,T) ≥ g?”
consider
• consider α = |S|

|T | (O(n2) possible values)

• network G′ = ({s, t} ∪ V1 ∪ V2,E), with V1 = V2 = V

min-cut transformation
• add edge of capacity m from s to each vertex of V1 and V2

• add edge of capacity 2m + g√
α

from each vertex of V1 to t

• add edge from each vertex j of V2 to sink t of capacity

2m +
√
αg − 2deg(j)

• for each (i , j) ∈ E(G), add an edge from j ∈ V2 to i ∈ V1

with capacity 2

dense subgraphs on directed graphs – exact

• proof of correctness of min-cut algorithm of transformed
graph G′ follows the argument of Goldberg

• the cut ({s}, {t ,V1,V2}) has weight m(|V1|+ |V2|)

• thus, min cut has weight at most m(|V1|+ |V2|)

• it can be shown that solution to the min-cut with
value smaller than m(|V1|+ |V2|) corresponds to
sets S ⊆ V1, T ⊆ V2 with density d(S,T) greater than g

• densest subgraph can be found with binary search on g

• one min-cut computation suffices
(using parametric max-flow algorithm)

dense subgraph problem – summary

• for the degree density measure:

• exact algorithms for undirected and directed graphs

• linear-time 2-approximation achieved by greedy

• how good are these subgraphs?

• study other measures and contrast with degree density

• no control on the size of the subgraph

k -clique densest subgraphs

motivating question

• how to go beyond edge density?

• how to search for large near-cliques

• can we combine the best of both worlds, namely

– have poly-time solvable formulation(s) which

– . . . succeeds in finding large near-cliques?

• yes: the k -clique densest subgraph problem
[Tsourakakis, 2015]

k -clique densest subgraph problem

Definition (k -clique density)

for any S ⊆ V we define its k -clique density ρk (S), k ≥ 2

as ρk (S) = ck (S)
s , where ck (S) is the number of k -cliques

induced by S and s = |S|

Problem (k -clique DSP)
given G(V ,E), find a subset of vertices S∗

such that ρk (S∗) = ρ∗k = maxS⊆V ρk (S)

• notice that the 2-clique DSP is simply the DSP
• we shall refer to the 3-clique DSP as the

triangle densest subgraph problem

max
S⊆V

τ(S) =
t(S)

s

triangle densest subgraph problem
• how different can the densest subgraph be from

the triangle densest subgraph?

• in principle, they can be radically different!
consider G = Kn,n ∪ K3

• the interesting question is what happens on real-data

• can we solve the triangle DSP in polynomial time?

• an we solve the k -clique DSP in polynomial time?

triangle densest subgraph problem

Theorem
there exists an algorithm which solves the TDSP and
runs in time O

(
m3/2 + nt + min (n, t)3)

where t is the number of triangles in the graph

Theorem
the k-clique DSP can be solved in polynomial time
for any k = Θ(1)

• although this construction solves also the (2-clique) DSP
Goldberg’s algorithm is more efficient

triangle densest subgraph problem

exact algorithm

• once again, follow Goldberg’s idea

• perform binary searches:

– is there a set S ⊆ V such that t(S) > α|S|?

• O(log n) queries suffice to solve TDSP (why?)

– any two distinct triangle density values are
at least O(1/n2) away from each other

– for the optimal density 0 ≤ t
n ≤ τ∗ ≤

(n
3)
n

• but what does a binary search correspond to ? . . .

triangle densest subgraph problem

construct-network (G, α, T (G))

• V (H)← {s} ∪ V (G) ∪ T (G) ∪ {t}

• for each vertex v ∈ V (G) add an arc of capacity 1 to
each triangle ti it participates

• for each triangle ∆ = (u, v ,w) ∈ T (G) add arcs to u, v ,w
of capacity 2

• add directed arc (s, v) ∈ A(H) of capacity tv
for each v ∈ V (G)

• add weighted directed arc (v , t) ∈ A(H) of capacity 3α
for each v ∈ V (G)

• return network H(V (H),A(H),w), s, t ∈ V (H)

k -clique densest subgraph problem

construction for k = Θ(1)

triangle densest subgraph problem

exact algorithm for TDSP

1. list the set of triangles T (G), t = |T (G)|
2. l ← t

n ,u ←
(n−1)(n−2)

6
3. S∗ ← ∅
4. while(u ≥ l + 1

n(n−1))

– α← l+u
2

– Hα ← Construct-Network(G, α, T (G))

– (S,T)← minimum st-cut in Hα

– if (S = {s}), then u ← α

– otherwise set S∗ ←
(
S\{s}

)
∩ V (G) and l ← α

5. return S∗

• run time: O
(

m3/2 +
(
nt + min (n, t)3) log n

)

• space complexity: O(n + t) (typically n� t)

triangle densest subgraph problem

greedy works too

1. set Gn ← G
2. for k ← n downto 1

– let v be the smallest triangle count vertex in Gk

– Gk−1 ← Gk\{v}
3. output the triangle-densest subgraph among

Gn,Gn−1, . . . ,G1

• the above peeling algorithm is a 3-approximation algorithm

• the same peeling idea generalizes to the k -clique DSP
providing a k -approximation algorithm

some experimental findings

method measure football
DS |S|

|V | (%) 100
2δ 10.66
fe 0.094
3τ 21.12

1
2 -DS |S|

|V | (%) 100
2δ 10.66
fe 0.094
3τ 21.12

method measure football
TDS |S|

|V | (%) 15.7
2δ 8.22
fe 0.48
3τ 28

1
3 -TDS |S|

|V | (%) 15.7
2δ 8.22
fe 0.48
3τ 28

• observation 1 : approximate algorithms find the same
solution as optimal exact methods

• observation 2 : the TDS is closer to being a large
near-clique compared to the DS

remark

• in many cases, despite being a 2-approximation,
the greedy performs optimally or close to optimally

• evidence that real-data are “far away” from adversarial

• however, 2-approximation bound is tight

– consider G = G1 ∪G2 where G1 = Kd ,D and G2 is the
disjoint union of D cliques, each of size d + 1

– let d � D

• how does the greedy algorithm perform?

– optimal is bipartite clique with density dD/(d + D) ≈ d
– greedy returns a clique of size d + 1 with density d/2

datasets

non-bipartite

dataset n m
� Web-Google 875 713 3 852 985
? Epinions 75 877 405 739
� CA-Astro 18 772 198 050
�Pol-blogs 1 222 16 714
� Email-all 234 352 383 111

bipartite

dataset n m
? IMDB-B 241 360 530 494
? IMDB-G-B 21 258 42 197

experimental findings

k -cliques

G k = 2 k = 3 k = 4 k = 5
fe |S| fe |S| fe |S| fe |S|

? 0.12 1 012 0.26 432 0.40 235 0.50 172
� 0.11 18 686 0.80 76 0.96 62 0.96 62
� 0.19 16 714 0.54 102 0.59 92 0.63 84
� 0.13 553 0.38 167 0.48 122 0.53 104

(p,q)-bicliques

G (p,q) = (1,1) (p,q) = (2,2) (p,q) = (3,3)

fe |S| fe |S| fe |S|
? 0.001 9 177 0.06 181 0.30 40
? 0.001 6 437 0.41 18 0.43 17

finding densest subgraphs with map-reduce

peeling in batches

the following algorithm due to Bahmani, Kumar and Vassilvitski
leads to efficient MapReduce and streaming algorithms
[Bahmani et al., 2012]

1. set S, S̃ ← V
2. while S 6= ∅ do
– A(S)← {i ∈ S : Di(S) ≤ 2(1 + ε)ρ(S)}
– S ← S\A(S)

– if ρ(S) ≥ ρ(S̃) then S̃ ← S
3. return S̃

peeling in batches

• claim: previous algorithm is a 2(1 + ε) approximation
furthermore, it returns after O(log1+ε(n)) rounds

• Proof

• approximation guarantee
– fix an optimal solution S∗

– consider the first round when a node v ∈ S∗ is removed
– let U be the set of vertices at that point
– then, ρ∗ ≤ dS∗(v) ≤ dU(v) ≤ (2 + 2ε)ρ(U)

• number of rounds is O(log1+ε(n))

– in each round we throw a constant fraction of the vertices
2 E(S) >

∑
v /∈A(S) dS(v) > (|S| − |A(S)|)2(1 + ε)ρ(S)

and thus |A(S)| > ε
1+ε |S|

variations of the DSP

k -densest subgraph δ(S) = 2e[S]
|S| , |S| = k NP-hard

DalkS δ(S) = 2e[S]
|S| , |S| ≥ k NP-hard

DamkS δ(S) = 2e[S]
|S| , |S| ≤ k L-reduction to DkS

densest k -subgraph problem

• does not admit a PTAS unless P = NP

• Feige et al. gave a O(n
1
3) approximation algorithm

[Feige et al., 2001]

• state-of-the-art algorithm due to Bhaskara et al. provides

a O(n
1
4 +ε) approximation guarantee for any ε > 0

[Bhaskara et al., 2010]

• closing the gap between lower and upper bounds is a
significant open problem

remarks

• [Andersen and Chellapilla, 2009] proved that an
α-approximation for DamkS implies a O(α2) approximation
algorithm for the DkS

• [Khuller and Saha, 2009] improved this, by showing that
an α approximation for DamkS implies a 4α approximation
algorithm for the DkS

• the algorithmic ideas we showed for undirected case work
for DalkS as well

an alternative density definition

edge-surplus framework

[Tsourakakis et al., 2013]

• for a set of vertices S define edge surplus

f (S) = g(e[S])− h(|S|)

where g and h are both strictly increasing

• optimal (g,h)-edge-surplus problem:

find S∗ such that

f (S∗) ≥ f (S), for all sets S ⊆ S∗

edge-surplus framework

• edge surplus f (S) = g(e[S])− h(|S|)

• example 1
g(x) = h(x) = log x

find S that maximizes log e[S]
|S|

densest-subgraph problem

• example 2

g(x) = x , h(x) =

{
0 if x = k
+∞ otherwise

k -densest-subgraph problem

the optimal quasiclique problem

• edge surplus f (S) = g(e[S])− h(|S|)

• consider
g(x) = x , h(x) = α

x(x − 1)

2

find S that maximizes e[S]− α
(|S|

2

)

optimal quasiclique problem [Tsourakakis et al., 2013]

• theorem: let g(x) = x and h(x) = αx

– we aim to maximize e(S)− α|S|
– solving O(log n) such problems, solves densest subgraph

problem

the edge-surplus maximization problem

theorem: let g(x) = x and h(x) concave

then the optimal (g,h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular

−h(x) is supermodular

g(x)− h(x) is supermodular

maximizing supermodular functions is a polynomial
problem

the edge-surplus maximization problem

• poly-time solvable and interesting objectives have linear h

• the optimal quasiclique problem is NP-hard

• the partitioning version led to a streaming balanced
graph-partitioning algorithm: FENNEL

– goal: maximize g(P) over all possible k -partitions
where

g(P) =
∑

i

e[Si ,Si]

︸ ︷︷ ︸
number of
edges cut

− α
∑

i

|Si |γ

︸ ︷︷ ︸
minimized for

balanced partition

– for more details: [Tsourakakis et al., 2014]

finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E)
output: a quasiclique S
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk
2.2 Gk−1 ← Gk \ {v}
3 output the subgraph in Gn, . . . ,G1 that maximizes f (S)

additive approximation guarantee [Tsourakakis et al., 2013]

top-k dense subgraphs

top-k dense subgraphs

• in many cases we want to find more than one dense
subgraph

• idea: find all dense subgraphs
e.g., denser than a threshold

• cut enumeration techniques to output all near-optimal
dense subgraphs [Saha et al., 2010]

• in practice, this method suffers from output degeneracies:

• many subsets of a dense subgraph tend to be
near-optimally dense as well

top-k dense subgraphs

• another approach

(i) find a dense subgraph S
(ii) remove all vertices and edges of S
(iii) iterate

• reported subgraphs are disjoint

• certain degree of overlap can be desirable
[Balalau et al., 2015]

top-k dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

• given graph G = (V ,E), and parameters k and α
• find k subgraphs S1, . . . ,Sk

• in order to maximize
k∑

i=1

d(Si)

subject to

|Si ∩ Sj |
|Si ∪ Sj |

≤ α, for all 1 ≤ i < j ≤ k

top-k dense subgraphs with limited overlap

algorithm MINANDREMOVE ([Balalau et al., 2015])

input: undirected graph G = (V ,E), parameters k and α
output: k subgraphs G1, . . . ,Gk with overlap at most α
1 while less than k subgraphs found and G non-empty
2 find minimal densest subgraph Gi = (Vi ,Ei)
3 for each v ∈ Vi
4 ∆G(v)← the set of neighbors of v in G
5 remove d(1− α)|Vi |e nodes with minimum |∆G(v) \ Vi |
6 and all their edges from G

top-k dense subgraphs with limited overlap

summary of results ([Balalau et al., 2015])

• MINANDREMOVE finds optimal solution,
if this contains disjoint subgraphs

• MINANDREMOVE works shown to work well in practice
• faster algorithm, at small loss of accuracy

top-k dense subgraphs with limited overlap

alternative problem formulation

• given graph G = (V ,E), and parameters k and α

• find k subgraphs S1, . . . ,Sk

• in order to maximize a reward function

r(S1, . . . ,Sk) =
k∑

i=1

d(Si) + λ
∑

i,j

dist(Si ,Sj)

• fits the max-sum diversification framework
[Borodin et al., 2012]

• possible to obtain an approximation guarantee (1/10)

top-k dense subgraphs with limited overlap

• want to maximize

r(S1, . . . ,Sk) =
k∑

i=1

d(Si) + λ
∑

i,j

dist(Si ,Sj)

• need to define a distance between subgraphs

• define

dist(Si ,Sj) =

{
2− |Si∩Sj |2

|Si | |Sj | if Si 6= Sj

0 otherwise

• distance dist(Si ,Sj) is a metric function

• we can obtain an approximation guarantee (1/10)

top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework
Top-k overlapping densest subgraphs 13

Algorithm 1: DOS; Algorithm for finding top-k overlapping densest
subgraphs (problem Dense-Overlapping-Subgraphs)

Input: G = (V, E), �, k
Output: set of subgraphs W s.t. |W| = k and maximizing r(W)

1 W ; ;
2 foreach i = 1, . . . , k do W W [Peel(G, W, �) ;
3 return W ;

Hence, U will be the largest clique. It follows that the graph G contains a
clique of size c if and only if Dense-Subgraph has a solution for which the
gain is at least (c� 1)/4 + ↵. ut

Despite this hardness result, it is still possible to devise an approximation
algorithm for the Dense-Subgraph problem. Our algorithm, named Peel, is
a variant of the Charikar algorithm for the densest-subgraph problem. Peel,
similar to Charikar, starts with the whole graph and proceeds iteratively, re-
moving one vertex in each step. Peel stops when there is no vertex left, and it
returns the set of vertices that maximizes the gain function, selected among
all vertex sets produced during the execution of the algorithm.

Peel has two main di↵erences when compared to Charikar. First, instead
of removing the minimum-degree vertex in each iteration, Peel removes the
vertex that minimizes the following adjusted degree expression

deg(v; Vi)� 4�
X

Wj3v

|Vi \Wj |
|Wj |

.

Here Vi stands for the set of vertices that constitute the candidate in the cur-
rent iteration—after removing some vertices in earlier iterations. The intuition
for using this adjusted degree is to lower the gain associated to vertices that
belong to subgraphs selected in earlier steps of the greedy process. Indeed, we
want to favor high-degree vertices but we want to penalize such vertices that
are contained in previously selected subgraphs and thereby generate overlap
with (i.e. reduce the distance to) the current subgraph. A further di�culty is
that we do not know the current subgraph (since we are currently searching
for it!) so we use as a proxy the set of vertices still contained in the candidate
at that step (Vi). Despite making this seemingly crude approximation, as we
will see shortly, the Peel algorithm provides an approximation guarantee to
the Dense-Subgraph problem.

The second di↵erence between Peel and Charikar is the following: it is possi-
ble that Peel returns a subgraph that has been selected previously. This could
happen if the value of the parameter � is small compared to dense subgraphs
that may be present in the input graph. When Peel returns a previously-
selected subgraph U , it is su�cient to modify U : we can either add one vertex,
remove one vertex, or just replace U with a trivial subgraph of size 3; among
all these options we select the best solution according to our marginal gain
objective �. A detailed description of this process is given in Algorithm 3.

top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework
14 Esther Galbrun et al.

Algorithm 2: Peel; finds a dense subgraph U of the graph G, overlapping
with a collection of previously discovered subgraphs W.

Input: G = (V, E), W, �
Output: U maximizing �(U ; W)

1 Vn V ;
2 foreach i = n, . . . , 2 do

3 v arg minv

⇢
deg(v; Vi)� 4�

P
Wj3v

|Vi\Wj |
|Wj |

�
;

4 Vi�1 Vi \ {v};

5 foreach i = 1, . . . , n do
6 if Vi 2 W then Vi Modify(Vi, G, W, �);

7 return arg maxVj
{�(Vj ; W)};

Algorithm 3: Modify; modifies U if U 2 W
Input: U, G, W, �
Output: modified U

1 X {U [{x} | x /2 U, U [{x} /2 W};
2 Y {U \ {y} | y 2 U, U \ {y} /2 W};
3 if X = ; and dens(U)  5/3 then
4 U {a wedge of size 3 not in W};
5 else
6 U arg maxC2X[Y {�(C; W)};

7 return U ;

For the quality of approximation of Peel, which is detailed in Algorithm 2,
we can show the following result, which is proved in Appendix.

Proposition 4 Assume that we are given a graph G = (V, E), a collection of
previously discovered vertex sets W and � > 0. Assume that |W| < |V | and G
contains more than |W| wedges, i.e. connected subgraphs of size 3. Then Peel
yields 2/10 approximation for Dense-Subgraph.

The approximation guarantee of 2/10 is rather pessimistic due to patholog-
ical cases, and we can obtain a better ratio if we consider these cases separately.
In particular, if Peel does not call Modify, then the approximation ratio is 1/2.

If X 6= ; during Modify, then the approximation ratio is at least |U |
2(|U |+1) ,

otherwise the ratio is at least 2/10.

We note that the main function of Modify is to allow us to prove a worst-
case approximation guarantee; i.e., for all possible values of �. In practice, if
Modify is called for a certain value of �, the user should perceive this as a
signal that � is too small (as overlaps are not penalized enough) and should
increase it.

top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework

14 Esther Galbrun et al.

Algorithm 2: Peel; finds a dense subgraph U of the graph G, overlapping
with a collection of previously discovered subgraphs W.

Input: G = (V, E), W, �
Output: U maximizing �(U ; W)

1 Vn V ;
2 foreach i = n, . . . , 2 do

3 v arg minv

⇢
deg(v; Vi)� 4�

P
Wj3v

|Vi\Wj |
|Wj |

�
;

4 Vi�1 Vi \ {v};

5 foreach i = 1, . . . , n do
6 if Vi 2 W then Vi Modify(Vi, G, W, �);

7 return arg maxVj
{�(Vj ; W)};

Algorithm 3: Modify; modifies U if U 2 W
Input: U, G, W, �
Output: modified U

1 X {U [{x} | x /2 U, U [{x} /2 W};
2 Y {U \ {y} | y 2 U, U \ {y} /2 W};
3 if X = ; and dens(U)  5/3 then
4 U {a wedge of size 3 not in W};
5 else
6 U arg maxC2X[Y {�(C; W)};

7 return U ;

For the quality of approximation of Peel, which is detailed in Algorithm 2,
we can show the following result, which is proved in Appendix.

Proposition 4 Assume that we are given a graph G = (V, E), a collection of
previously discovered vertex sets W and � > 0. Assume that |W| < |V | and G
contains more than |W| wedges, i.e. connected subgraphs of size 3. Then Peel
yields 2/10 approximation for Dense-Subgraph.

The approximation guarantee of 2/10 is rather pessimistic due to patholog-
ical cases, and we can obtain a better ratio if we consider these cases separately.
In particular, if Peel does not call Modify, then the approximation ratio is 1/2.

If X 6= ; during Modify, then the approximation ratio is at least |U |
2(|U |+1) ,

otherwise the ratio is at least 2/10.

We note that the main function of Modify is to allow us to prove a worst-
case approximation guarantee; i.e., for all possible values of �. In practice, if
Modify is called for a certain value of �, the user should perceive this as a
signal that � is too small (as overlaps are not penalized enough) and should
increase it.

top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework
example
2 Esther Galbrun et al.

1. group

2. group

3. group

no groups

1

1112

13

14

18

2

20

22

3
32

4

5
6

78

9

10

34

15

33

16

19

31

21

2324

26

28

30

25

27

29

17

Fig. 1 Densest overlapping subgraphs on Zachary karate club dataset [44]. k = 3, � = 2.

1 Introduction

Finding dense subgraphs is a fundamental graph-mining problem, and has
applications in a variety of domains, ranging from finding communities in social
networks [25,33], to detecting regulatory motifs in DNA [15], to identifying
real-time stories in news [3].

The problem of finding dense subgraphs has been studied extensively in
theoretical computer science [2,8,13,24], and recently, due to the relevance of
the problem in real-world applications, it has attracted considerable attention
in the data-mining community [5,34–36,33]. In a domain where most inter-
esting problems are NP-hard, much of the recent work has leveraged the fact
that under a specific definition of density, the average-degree density, finding
the densest subgraph is a polynomially-time solvable task [19]. Furthermore,
there is a linear-time greedy algorithm that provides a factor-2 approximation
guarantee [8].

The exact polynomial algorithm [19] and its fast approximation counter-
part [8], apply only to the problem of finding the single densest subgraph. On
the other hand, in most applications of interest we would like to find the top-k
densest subgraphs in the input graph. Given an e�cient algorithm for finding
the single densest subgraph, there is a straightforward way to extend it in or-
der to obtain a set of k dense subgraphs. This is a simple iterative method, in
which we first find the densest subgraph, remove all vertices contained in that
densest subgraph, and iterate, until k subgraphs are found or only an empty
graph is left.

This natural heuristic has two drawbacks: First it produces a solution in
which all discovered subgraphs are disjoint. Such disjoint subgraphs are often
not desirable, as real-world networks are known to have not well-separated
communities and hubs that may belong to more than one community [26],
and hence, may participate in more than one densest subgraph. Second, when
searching for the top-k densest subgraphs, we would like to maximize a global
objective function, such as the sum of the densities over all k subgraphs and, as

top-k dense subgraphs with limited overlap

DOS vs. MAR
Top-k overlapping densest subgraphs 21

D
B
L
P
.
E
2

P
a
p
a
d
im

it
ri

o
u

|E
|=

2
6
1
6

d
en

s(
G

)
=

3
.6

2

6 8 10 12 14
1

1.5

2

MAR

D
O
S

Metis

Links

Dense

Density (dens)

D
is

ta
n
c
e

(D
)

6 8 10 12 14
0

0.5

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is

t.
(J

)

6 8 10 12 14

0.2

0.4

0.6

0.8

1

M
AR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e

(C
)

D
B
L
P
.
C

K
D

D
|E

|=
2
8
9
1

d
en

s(
G

)
=

3
.8

8

5 10 15
1

1.2

1.4

1.6

1.8

2

M
A
R

D
O

S

Metis

Links

Dense

Density (dens)

D
is

ta
n
c
e

(D
)

5 10 15
0

0.2

0.4

0.6

0.8

1

M
A
R

D
O
S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is

t.
(J

)

5 10 15

0.2

0.4

0.6

0.8

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e

(C
)

G
+
.
S

1
1
8
3
..
.6

4
6
7

|E
|=

6
9
4

d
en

s(
G

)
=

4
0
.2

4

20 40 60 80
1

1.5

2

M
AR

D
O
S

Metis Links Dense

Density (dens)

D
is

ta
n
c
e

(D
)

20 40 60 80
0

0.5

1

M
AR

D
O
S

Metis Links
Dense

Density (dens)

J
a
c
c
.
d
is

t.
(J

)

20 40 60 80

0.6

0.7

0.8

0.9

1

M
A
R

DOS

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e

(C
)

F
B

1
6
8
4

|E
|=

7
8
6

d
en

s(
G

)
=

1
7
.8

4

20 40 60
1

1.2

1.4

1.6

1.8

2

MAR

D
O

S

Metis

Links

Dense

Density (dens)

D
is

ta
n
c
e

(D
)

20 40 60
0

0.2

0.4

0.6

0.8

1

MAR

D
O

S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is

t.
(J

)

20 40 60

0.2

0.4

0.6

0.8

1

MAR

D
O
S

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e

(C
)

B
K
G
W

B
K

L
a
ti

n
-A

m
er

ic
a

|E
|=

1
2
1
6

d
en

s(
G

)
=

2
.2

2

5 10 15

1.2

1.4

1.6

1.8

2

M
A
R

D
O

S

Metis

Links

Dense

Density (dens)

D
is

ta
n
c
e

(D
)

5 10 15

0.2

0.4

0.6

0.8

1

M
A
R

D
O

S

Metis

Links

Dense

Density (dens)

J
a
c
c
.
d
is

t.
(J

)

5 10 15

0.2

0.4

0.6

0.8

1

MAR
DOS

Metis

Links

Dense

Density (dens)

C
o
v
e
ra

g
e

(C
)

Fig. 3 Solution profiles for five networks. Each row corresponds to the profile of one net-
work, as indicated on the left.

core decomposition

k -core

• (recall) S is a k -core if every vertex in S is connected
to at least k other vertices in S

• can be found with the following algorithm:
1. while (k -core property is satisfied)
2. remove all vertices with degree less than k

• can also obtain all k -cores (for all k)
• all k -cores form a nested sequence of subgraphs

(k -core shell decomposition)
• popular technique in social network analysis
• inner cores : more dense, more central vertices

• note resemblance with Charikar’s algorithm

k -core decomposition

widely used technique for partitioning graphs

k -core = largest subgraph with vertex degrees ≥ k

cores form a chain, k -core ⊆ (k − 1)-core; let

k -shell = vertices in k -core but not in (k + 1)-core

algorithm to find shells:

1. while G is not empty
2. v ← vertex with the smallest degree
3. assign v to k -shell
4. remove v from G

k -core decomposition

widely used technique for partitioning graphs

k -core = largest subgraph with vertex degrees ≥ k

cores form a chain, k -core ⊆ (k − 1)-core; let

k -shell = vertices in k -core but not in (k + 1)-core

algorithm to find shells:

1. while G is not empty
2. v ← vertex with the smallest degree
3. assign v to k -shell
4. remove v from G

core decomposition and density are not
compatible

a b

c d
e f

C1 C2 C3

d(C1) = 6
4 <

8
5 = d(C2)

a

b c

d e

f g

h

B

only one core but
d(B) = 7

5 >
11
8 = d(G)

core decomposition and density are not
compatible

a b

c d
e f

C1 C2 C3

d(C1) = 6
4 <

8
5 = d(C2)

a

b c

d e

f g

h

B

only one core but
d(B) = 7

5 >
11
8 = d(G)

density-friendly decomposition

goal:

adapt k -core decomposition for density

obtain a nested sequence of increasingly
dense subgraphs

[Tatti and Gionis, 2015]

locally-dense subgraphs

informally,

subgraph H is locally-dense = any subgraph of H is denser
than any subgraph outside H

formally, define augmented density

d(X ,Y) =
|E(X)|+ |E(X ,Y)|

|X | , for X ∩ Y = ∅

subgraph H is locally-dense if

d(X ,H \ X) > d(Y ,H), for any X (H,Y ∩ H = ∅

example

a

b c

d e

f
g

h

H

example

a

b c

d e

f
g

h

HX

Y

example

a

b c

d e

f
g

h

HX

Y

d(X ,H \ X) = 6/3

example

a

b c

d e

f
g

h

HX

Y

d(X ,H \ X) = 6/3
d(Y ,H) = 2/2

properties

locally-dense subgraphs form a chain

∅ = B0 (B1 (B2 (· · · (Bk = G

Bi is the densest subgraph containing Bi−1

B1 = densest subgraph
B2 = arg max

B)B1
d(B \ B1,B1)

· · ·
Bi = arg max

B)Bi−1
d(B \ Bi−1,Bi−1)

first approach to compute the subgraphs

a

b c

d e

f g

h i

first approach to compute the subgraphs

a

b c

d e

f g

h i

find B1

first approach to compute the subgraphs

a

b c

d e

f g

h i

find B1
delete B1

first approach to compute the subgraphs

a

b c

d e

f g

h i

find B1
delete B1
find B2

first approach to compute the subgraphs

a

b c

d e

f g

h i

find B1
delete B1
find B2
delete B2

first approach to compute the subgraphs

a

b c

d e

f g

h i

find B1
delete B1
find B2
delete B2
find B3

computing the subgraphs

define
F (α) = arg max

X
|E(X)| − α|X |

Goldberg showed that
• F (α) can be solved with a min-cut
• there is α such that F (α) is the densest subgraph

we can show that
• F (α) is locally-dense
• for every Bi there is α such that Bi = F (α)

computing the subgraphs

define
F (α) = arg max

X
|E(X)| − α|X |

Goldberg showed that
• F (α) can be solved with a min-cut
• there is α such that F (α) is the densest subgraph

we can show that
• F (α) is locally-dense
• for every Bi there is α such that Bi = F (α)

computing the subgraphs

find all Bi by varying α (with divide-and-conquer)

algorithm: EXACT(X ,Y)
1. select α such that X ⊆ F (α) (Y
2. Z ← F (α)
2. if (Z 6= X)
3. output Z
3. EXACT(X ,Z)
3. EXACT(Z ,Y)

• we need only 2k − 3 calls of F (α)

(k is the number of locally-dense subgraphs)
• O(n2m) total running time, in practice much faster
• X ⊂ F (α) ⊂ Y allows optimizations

approximation with profiles

approximation guarantees are tricky:
• algorithm may return different number of subgraphs

define a profile:

p(i ;B) =





d(B1) if i ≤ |B1|
d(B2 \ B1,B1) if |B1| < i ≤ |B2|
. . .

core decomposition

let C be the core decomposition

let B be the optimal locally-dense decomposition

then
p(i ; C) ≥ p(i ;B)/2, for every i

for i = 1, this implies

d(C1) ≥ d(B1)/2

extending Charikar’s algorithm

C1 ← densest subgraph of form v1, . . . v|C1|
C2 ← subgraph maximizing d(v1, . . . v|C2| \ C1,C1)

C3 ← subgraph maximizing d(v1, . . . v|C3| \ C2,C2)

. . .

The graphs Ci

• can be found in O(n2)-time naively
• can be found in O(n)-time with PAV algorithm

[Ayer et al., 1955]

greedy decomposition

let C be the greedy decomposition
(found by the extension of Charikar’s algorithm)

let B be the optimal locally-dense decomposition

then
p(i ; C) ≥ p(i ;B)/2, for every i

for i = 1, this implies

d(C1) ≥ d(B1)/2

experiments
how well these algorithm perform?

20 40 60

0

2

4

index i

p
(i
)

lesmis

200 400 600

0

50

100

index i

fb1912

0 5 000 10 000 15 000

0

20

40

index i

astro

0 5 000 10 000

0

50

100

index i

hepph

Core

GreedyLD

ExactLD

summary (density-friendly decomposition)

• decomposition based on average density
• can be computed exactly in O(n2m) time, faster in practice
• can be 1/2-approximated in linear time by

• k -core decomposition
• greedy algorithm

future work:
• consider different density functions
• control the size of the decomposition

community search

community detection problems

• typical problem formulations require non-overlapping
and complete partition of the set of vertices

• quite restrictive

• inherently ambiguous: research group vs. bicycling club

• additional information can resolve ambiquity

• community defined by two or more people

the community-search problem

• given graph G = (V ,E), and

• given a subset of vertices Q ⊆ V (the query vertices)

• find a community H that contains Q

applications

• find the community of a given set of users (cocktail party)

• recommend tags for an image (tag recommendation)

• form a team to solve a problem (team formation)

center-piece subgraph

[Tong and Faloutsos, 2006]

• given: graph G = (V ,E) and set of query vertices Q ⊆ V
• find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

• main concepts:
• k_softAND: a node in H should be well connected to at

least k vertices of Q
• r(i , j) goodness score of j wrt qi ∈ Q
• r(Q, j) goodness score of j wrt Q
• g(H) goodness score of a candidate subgraph H
• H∗ = arg maxH g(H)

center-piece subgraph

[Tong and Faloutsos, 2006]

• r(i , j) goodness score of j wrt qi ∈ Q

probability to meet j in a random walk with restart to qi

• r(Q, j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k
vertices of Q

• proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of Q path to j
3. stop when H becomes large enough

center-piece subgraph — example results

(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source

405

Research Track Paper

[Tong and Faloutsos, 2006]

the community-search problem

• given: graph G = (V ,E) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) optimizes a density function d(H)

(c) possibly other constraints

• density function (b):

average degree, minimum degree, quasiclique, etc.

measured on the induced subgraph H

free riders

• remedy 1: use min degree as density function

• remedy 2: use distance constraint

d(Q, j) =
∑

q∈Q

d2(qi , j) ≤ B

the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E), query vertices Q ⊆ V
output: connected, dense subgraph H
1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gk

among all vertices not in Q
2.3 Gk−1 ← Gk \ {v}
2.4 if left only with vertices in Q or disconnected graph, stop
3 output the subgraph in Gn, . . . ,G1 that maximizes f (H)

properties of the greedy algorithm

• returns optimal solution if no size constraints

• upper-bound constraints make the problem NP-hard
(heuristic solution, also adaptation of the greedy)

• generalization for monotone constraints and
monotone objective functions

experimental evaluation (qualitative summary)

baseline: increamental addition of vertices
• start with a Steiner tree on the query vertices
• greedily add vertices
• return best solution among all solutions constructed

example result in DBLP

• proposed algorithm: min degree = 3, avg degree = 6
• baseline algorithm: min degree = 1.5, avg degree = 2.5

the community-search problem — example results

Kanellakis

Papadimitriou

Abiteboul

Buneman

Vianu
Vardi

Hull

Delobel

Ioannidis

Hellerstein

Ross

Ullman

Bernstein

(a) Database theory

Fortnow

Babai

Nisan

Wigderson

Zuckerman

Safra

Saks

Papadimitriou

Karp

Itai

Lipton

Goldreich

(b) Complexity theory

Karp

Blum

Papadimitriou

Afrati

Johnson

Goldman

Piccolboni

Yannakakis

Crescenzi

TarjanUllman

Sagiv

(c) Algorithms I

Kleinberg

Raghavan

Rajagopalan

Tomkins

Hirsch

Dantsin

Kannan

Goerdt

Papadimitriou

Chakrabarti

Gibson

Kumar

Dom

Schoning

(d) Algorithms II

Figure 4: Different communities of Christos Papadimitriou. Rectangular nodes indicate the query nodes, and elliptical

nodes indicate nodes discover by our algorithm.

[10] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In KDD, 2004.

[11] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph
problem. Algorithmica, 29:2001, 1999.

[12] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In KDD, 2000.

[13] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee.
Self-organization and identification of web communities.
Computer, 35(3):66–71, 2002.

[14] S. Fortunato and M. Barthelemy. Resolution limit in
community detection. PNAS, 104(1), 2007.

[15] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs. In VLDB, 2005.

[16] M. Girvan and M. E. J. Newman. Community structure in
social and biological networks. Proceedings of the National
Academy of Sciences of the USA, 99(12):7821–7826, 2002.

[17] J. H̊astad. Clique is hard to approximate within n1−ε.
Electronic Colloquium on Computational Complexity
(ECCC), 4(38), 1997.

[18] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. JSC,
20(1), 1998.

[19] G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: mining
informative entity relationship subgraphs. In CIKM, 2009.

[20] S. Khuller and B. Saha. On finding dense subgraphs. In
ICALP, 2009.

[21] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity graphs in networks. TKDD, 1(3),
2007.

[22] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms (Algorithms and Combinatorics).
Springer, 2007.

[23] L. Kou, G. Markowsky, and L. Berman. A fast algorithm
for steiner trees. Acta Informatica, 15(2):141–145, 1981.

[24] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts
in social networks. In KDD, 2009.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In WWW, 2008.

[26] M. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69, 2003.

[27] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and
H. Toivonen. Link discovery in graphs derived from
biological databases. In DILS, 2006.

[28] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In KDD, 2006.

[29] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SDM, 2005.

948

(from [Sozio and Gionis, 2010])

monotone functions

function f is monotone non-increasing if
for every graph G and
for every subgraph H of G it is

f (H) ≤ f (G)

the following functions are monotone non-increasing:
• the query nodes are connected in H (0/1)
• are the nodes in H able to perform a set of tasks?
• upper-bound distance constraint
• lower-bound constraint on the size of H

generalization to monotone functions

generalized community-search problem

given
• a graph G = (V ,E)

• a node-monotone non-increasing function f
• f1, . . . , fk non-increasing boolean functions

find
• a subgraph H of G
• satisfying f1, . . . , fk and
• maximizing f

generalized greedy

1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating any constraint f1, . . . , fk
2.2 let v minimizing f (Gk , v)
2.3 Gk−1 ← Gk \ {v}
3 output the subgraph H in Gn, . . . ,G1 that maximizes f (H, v)

generalized greedy

theorem
generalized greedy computes an optimum solution
for the generalized community-search problem

running time
• depends on the time to evaluate the functions f1, . . . , fk
• formally O(m +

∑
i nTi)

• where Ti is the time to evaluate fi

heavy subgraphs

discovering heavy subgraphs

• given a graph G = (V ,E ,d ,w)

with a distance function d : E → R on edges

and weights on vertices w : V → R

• find a subset of vertices S ⊆ V

so that

1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014]

discovering heavy subgraphs

• what does total weight and close to each other mean?

• total weight
W (S) =

∑

v∈S

w(v)

• close to each other

D(S) =
∑

u∈S

∑

v∈S

d(u, v)

• want to maximize W (S) and minimize D(S)

• maximize
Q(S) = λW (S)− D(S)

applications of discovering heavy subgraphs

• finding events in networks

• vertices correspond to locations

• weights model activity recorded in locations

• distances between locations

• find compact regions (neighborhoods) with high activity

event detection

• sensor networks and traffic measurements

City events

Dataset – fixed spatially scattered sources of time series

Our dataset: city-movements sensor – public transport
stations and statistics on its activity

event detection

15.11.2012
ordinary day, no events
General problem formulation

Find an event – a subset of spatially and/or temporally close
time sub-series with anomalous behavior

← Normal day

15.11.12: no events

Event day →

11.09.12:
• National day of

Catalonia
• FC Barcelona -

Igualada HC

11.09.2012
Catalunya national dayGeneral problem formulation

Find an event – a subset of spatially and/or temporally close
time sub-series with anomalous behavior

← Normal day

15.11.12: no events

Event day →

11.09.12:
• National day of

Catalonia
• FC Barcelona -

Igualada HC

event detection

• location-based social networks

event detection

• input data: recordings of a certain
measurement in space and time

(a) Barcelona bicycle-share:
11.09.12 National Day of
Catalonia

(b) Minneapolis bicycle-share:
4.07.12 Independence Day in
the USA

(c) Washington,DC
bicycle-share: 27.05.13
Memorial Day in the USA

(d) Los Angeles Twitter
messages: 31.05.10 Memorial
Day in the USA

(e) New York Twitter messages:
6.09.10 Labor Day in the USA

Figure 8: Public holiday city-events

score C(S) for an event S is defined as follows,

C(S) =
1

|S|
X

v2S

|Nk(v) \ S|
k

,

where k is a nearest-neighbors parameter and Nk(v) denotes
the set of the k-nearest neighbors of v in the graph. From
the panels (g) and (h) of Figures 6 and 7, we see that
small values of � give low compactness. This is because
of the small sizes of detected events for those values of
�. When � increases, the accuracy increases and so
does compactness. However, when � becomes very large,
the algorithms downweight the distance objective and the
detected events include noisy nodes. The fact that the
compactness measure “flattens out” gives us some guidance
in selecting an appropriate value of �. In our experiments,
using the Pareto curves and the notion of compactness we
processed real-world datasets to discover meaningful events.

Case studies. In Figure 8 we show events discovered
by our algorithms on the bike-share and twitter data.
These are events found by our algorithms on problem
instances whose solution exhibits high value with respect to
other instances. We are able to a posteriori characterize
those events and associate them with state holidays in
the corresponding cities: National day of Catalonia (for
Barcelona), Independence day, Memorial day and Labor

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

nodes

ru
n

n
in

g
 t

im
e

,
se

c

Figure 9: Scalability of the GreedyAP algorithm

day for the USA. All those days are characterized by high
activity levels, clustered in the center of the cities.

Scalability. The proposed greedy algorithms are e�cient
and can scale to large networks. We report on the scalability
behavior of the GreedyAP algorithm. We use the twitter
dataset, with tweets from the whole US, to compile activity
networks with increased number of nodes. We use k-means
with k up to 10 000 centroids and we apply the GreedyAP
algorithm to detect events in the resulting graph. The
results, shown in Figure 9, are obtained by executing the
algorithm on an Intel Core i7 (4 cores) machine, with 8 GB
RAM and processor running at 2.30GHz. We see that the
algorithm is e�cient and scales linearly with the size of the
graph.

6. CONCLUSION
We formalize the problem of detecting events in

activity networks, as a problem of finding compact
subgraphs in graphs with vertex weights. Depending
on the notion of compactness used—sum of all pairs
of distances or Steiner-tree distance—we formulate two
di↵erent optimization problems. By using ideas from
semidefinite programming and the primal-dual scheme, we
provide approximation algorithms for the two problems
we consider. We also provide simpler and faster greedy
algorithms, for which we are also able to show approximation
guarantees that rely on the submodularity property of the
objective function. Our experiments show that the greedy
approaches are more light-weight and perform as good as
the more sophisticated approximation algorithms.

The event-detection setting we consider has many
applications. In this paper we are experimenting with
real-world datasets from city sensors and social media
applications, and we show that our methods are able to
discover successfully real events.

Our work opens many interesting directions for future
work. One challenge is to incorporate the temporal
dimension of the activity network in the graph-theoretic
framework and be able to discover events of varying
temporal support.

7. REFERENCES
[1] L. Akoglu and C. Faloutsos. What is strange in large

networks? graph-based irregularity and fraud
detection. Available at
http://www.cs.stonybrook.edu/~leman/icdm12,
2012. Tutorial presented at IEEE ICDM 2012.

[2] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karlo↵.
Improved approximation algorithms for

discovering heavy subgraphs

• maximize Q(S) = λW (S)− D(S)

• objective can by negative

• add a constant term to ensure non-negativity

• maximize Q(S) = λW (S)− D(S) + D(V)

discovering heavy subgraphs

• maximize Q(S) = λW (S)− D(S) + D(V)

• objective is submodular (but not monotone)

• can obtain 1
2 -approximation guarantee

[Buchbinder et al., 2012]

• problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee
[Rozenshtein et al., 2014]

events discovered with bicing and 4square data

(a) Barcelona: 11.09.12
National Day of Catalonia

(b) Minneapolis: 4.07.12
Independence Day

(c) Washington, DC:
27.05.13 Memorial Day

(d) Los Angeles: 31.05.10
Memorial Day

(e) New York: 6.09.10
Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

(a) 01.06.12 Primavera
sound music festival

(b) 18.09.12 festival of the
Poblenou neighborhood (c) 31.10.12 Halloween

Figure 5: Top-3 diverse events discovered from Barcelona bicing data using the SDP algorithm.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.
Kalita. An e↵ective unsupervised network anomaly
detection method. ICACCI, 2012.

[10] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and
D. Williamson. A note on the prize-collecting traveling
salesman problem. Mathematical programming,
59(1-3), 1993.

[11] B. Boden, S. Günnemann, H. Ho↵mann, and T. Seidl.
Mining coherent subgraphs in multi-layer graphs with
edge labels. KDD, 2012.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. SIGMOD, 2000.

[13] N. Buchbinder, M. Feldman, J. S. Naor, and
R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. FOCS,
2012.

[14] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. APPROX, 2000.

[15] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. ICWSM, 2011.

[16] U. Feige, G. Kortsarz, and D. Peleg. The dense
k-subgraph problem. Algorithmica, 29(3), 2001.

[17] M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2), 1995.

[18] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. JACM, 42(6), 1995.

[19] V. Guralnik and J. Srivastava. Event detection from
time series data. KDD, 1999.

[20] N. A. Heard, D. J. Weston, K. Platanioti, and D. J.
Hand. Bayesian anomaly detection methods for social
networks. Ann. Appl. Stat., 4(2), 2010.

[21] D. S. Johnson, M. Minko↵, and S. Phillips. The
prize-collecting Steiner tree problem: theory and
practice. SODA, 2000.

[22] S. Khuller and B. Saha. On finding dense subgraphs.
ICALP, 2009.

[23] M. Kulldor↵. A spatial scan statistic. Communications
in Statistics-Theory and Methods, 26(6), 1997.

[24] M. Olson, A. Liu, M. Faulkner, and K. M. Chandy.
Rapid detection of rare geospatial events: earthquake
warning applications. DEBS, 2011.

[25] G. P. Patil and C. Taillie. Upper level set scan
statistic for detecting arbitrarily shaped hotspots.
Environmental and Ecological Statistics, 11, 2004.

[26] S. Seufert, S. J. Bedathur, J. Mestre, and G. Weikum.
Bonsai: Growing interesting small trees. In ICDM,
pages 1013–1018, 2010.

[27] T. Tango and K. Takahashi. A flexibly shaped spatial
scan statistic for detecting clusters. International
Journal of Health Geographics, 4-11, 2005.

[28] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3
— a Matlab software package for semidefinite
programming, version 1.3. Optimization methods and
software, 11(1-4), 1999.

[29] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. KDD, 2013.

[30] M. Walther and M. Kaisser. Geo-spatial event
detection in the twitter stream. ECIR, 2013.

[31] K. Watanabe, M. Ochi, M. Okabe, and R. Onai.
Jasmine: a real-time local-event detection system
based on geolocation information propagated to
microblogs. CIKM, 2011.

summary

• the problem of finding dense subgraphs has many different
real-world applications

• a number of density measures have been studied

• problem complexity depends on adopted measure

• for some problem formulations there are exact polynomial
and faster approximate solution

• a number of different techniques has been used
min-cut, greedy, submodularity optimization

• many directions and open problems for future work

acknowledgements

Charalampos
Shamir Khuller Renato Werneck Nikolaj Tatti Tsourakakis

references

Alon, N., Krivelevich, M., and Sudakov, B. (1998).
Finding a large hidden clique in a random graph.
Random Structures and Algorithms, 13(3-4):457–466.

Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., and Vespignani, A.
(2005).
Large scale networks fingerprinting and visualization using the k -core
decomposition.
In NIPS.

Andersen, R. and Chellapilla, K. (2009).
Finding dense subgraphs with size bounds.
In Algorithms and Models for the Web-Graph, pages 25–37. Springer.

Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. (2012).
Dense subgraph maintenance under streaming edge weight updates for
real-time story identification.
Proceedings of the VLDB Endowment, 5(6):574–585.

references (cont.)
Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.
(1955).
An empirical distribution function for sampling with incomplete
information.
The Annals of Mathematical Statistics, 26(4):641–647.

Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).
Densest subgraph in streaming and mapreduce.
Proceedings of the VLDB Endowment, 5(5):454–465.

Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., and Sozio, M. (2015).
Finding subgraphs with maximum total density and limited overlap.
In International Conference on Web Search and Data Mining (WSDM),
pages 379–388.

Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013).
Copycatch: stopping group attacks by spotting lockstep behavior in
social networks.
In Proceedings of the 22nd international conference on World Wide
Web, pages 119–130.

references (cont.)
Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan,
A. (2010).
Detecting high log-densities: an o (n1/4) approximation for densest
k-subgraph.
In Proceedings of the 42nd ACM symposium on Theory of computing,
pages 201–210. ACM.

Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999).
The maximum clique problem.
In Handbook of combinatorial optimization, pages 1–74. Springer.

Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions and dynamic
updates.
In Proceedings of the 31st symposium on Principles of Database
Systems, pages 155–166. ACM.

Bron, C. and Kerbosch, J. (1973).
Algorithm 457: finding all cliques of an undirected graph.
CACM, 16(9).

references (cont.)

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012).
A tight linear time (1/2)-approximation for unconstrained submodular
maximization.
In IEEE Annual Symposium on Foundations of Computer Science
(FOCS).

Charikar, M. (2000).
Greedy approximation algorithms for finding dense components in a
graph.
In APPROX.

Chen, J. and Saad, Y. (2012).
Dense subgraph extraction with application to community detection.
Knowledge and Data Engineering, IEEE Transactions on,
24(7):1216–1230.

Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003).
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355.

references (cont.)

Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. (2014).
Robust distance queries on massive networks.
In Algorithms-ESA 2014, pages 321–333. Springer.

Eppstein, D., Löffler, M., and Strash, D. (2010).
Listing all maximal cliques in sparse graphs in near-optimal time.
In ISAAC.

Feige, U., Kortsarz, G., and Peleg, D. (2001).
The dense k-subgraph problem.
Algorithmica, 29(3).

Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S. (2006).
Motifcut: regulatory motifs finding with maximum density subgraphs.
Bioinformatics, 22(14):e150–e157.

Gionis, A., Junqueira, F., Leroy, V., Serafini, M., and Weber, I. (2013).
Piggybacking on social networks.
Proceedings of the VLDB Endowment, 6(6):409–420.

references (cont.)

Goldberg, A. V. (1984).
Finding a maximum density subgraph.
Technical report, University of California at Berkeley.

Hastad, J. (1999).

Clique is hard to approximate within n1−ε.
Acta Mathematica, 182(1).

Iasemidis, L. D., Shiau, D.-S., Chaovalitwongse, W. A., Sackellares,
J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A.,
Veeramani, B., and Tsakalis, K. (2003).
Adaptive epileptic seizure prediction system.
IEEE Transactions on Biomedical Engineering, 50(5).

Johnson, D. S. and Trick, M. A. (1996).
Cliques, coloring, and satisfiability: second DIMACS implementation
challenge, October 11-13, 1993, volume 26.
American Mathematical Soc.

references (cont.)

Kang, U., Chau, D. H., and Faloutsos, C. (2011).
Mining large graphs: Algorithms, inference, and discoveries.
In International Conference on Data Engineering (ICDE), pages
243–254.

Kang, U., Tsourakakis, C. E., and Faloutsos, C. (2009).
Pegasus: A peta-scale graph mining system implementation and
observations.
In Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on,
pages 229–238. IEEE.

Kannan, R. and Vinay, V. (1999).
Analyzing the structure of large graphs.
Rheinische Friedrich-Wilhelms-Universität Bonn.

Karande, C., Chellapilla, K., and Andersen, R. (2009).
Speeding up algorithms on compressed web graphs.
Internet Mathematics, 6(3):373–398.

references (cont.)
Karp, R. M. (1972).
Reducibility among combinatorial problems.
In Miller, R. and Thatcher, J., editors, Complexity of Computer
Computations.

Khuller, S. and Saha, B. (2009).
On finding dense subgraphs.
In ICALP.

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).
Trawling the Web for emerging cyber-communities.
Computer Networks, 31(11–16):1481–1493.

Makino, K. and Uno, T. (2004).
New algorithms for enumerating all maximal cliques.
In Algorithm Theory-SWAT 2004, pages 260–272. Springer.

McSherry, F. (2001).
Spectral partitioning of random graphs.
In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 529–537. IEEE.

references (cont.)
Papailiopoulos, D., Mitliagkas, I., Dimakis, A., and Caramanis, C. (2014).

Finding dense subgraphs via low-rank bilinear optimization.
In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1890–1898.

Peleg, D. (2000).
Informative labeling schemes for graphs.
In Mathematical Foundations of Computer Science 2000, pages
579–588. Springer.

Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014).
Event detection in activity networks.
In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X.-N. (2010).
Dense subgraphs with restrictions and applications to gene annotation
graphs.
In Research in Computational Molecular Biology, pages 456–472.
Springer.

references (cont.)
Sarıyüce, A. E., Seshadhri, C., Pinar, A., and Catalyurek, U. V. (2015).
Finding the hierarchy of dense subgraphs using nucleus
decompositions.
In Proceedings of the 24th International Conference on World Wide
Web, pages 927–937.

Sozio, M. and Gionis, A. (2010).
The community-search problem and how to plan a successful cocktail
party.
In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Tatti, N. and Gionis, A. (2015).
Density-friendly graph decomposition.
In Proceedings of the 24th International Conference on World Wide
Web.

Thorup, M. (2004).
Compact oracles for reachability and approximate distances in planar
digraphs.
Journal of the ACM (JACM), 51(6):993–1024.

references (cont.)
Tong, H. and Faloutsos, C. (2006).
Center-piece subgraphs: problem definition and fast solutions.
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Tsourakakis, C. (2015).
The k-clique densest subgraph problem.
In Proceedings of the 24th International Conference on World Wide
Web, pages 1122–1132. International World Wide Web Conferences
Steering Committee.

Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013).
Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 104–112. ACM.

Tsourakakis, C., Gkantsidis, C., Radunovic, B., and Vojnovic, M. (2014).
Fennel: Streaming graph partitioning for massive scale graphs.
In Proceedings of the 7th ACM international conference on Web search
and data mining, pages 333–342. ACM.

