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course agenda

e introduction to graph mining Tue afternoon

e computing basic graph statistics  Tue afternoon, Wed morning

e finding dense subgraphs Wed afternoon, Thu morning
e spectral graph analysis Thu afternoon
e additional topics Fri morning

— inferring hierarchies in graphs
— mining dynamic graphs

— graph sparsifiers



what this lecture is about ...

given a graph (network), static or dynamic

(social network, biological network, information network, ...

find a subgraph that ...
... has many edges

...is densely connected

why | care?
what does dense mean?

review of main problems, and main algorithms



outline

motivating applications

preliminaries and measures of density

algorithms for finding dense subgraphs

problem variants



motivating applications



motivation — correlation mining

correlation mining: a general framework with many applications

data is converted into a graph

vertices correspond to entities

an edge between two entities denotes strong correlation
@ stock correlation network: data represent stock timeseries
® gene correlation networks: data represent gene expression

dense subsets of vertices correspond to highly correlated
entities
applications:

@ analysis of stock market dynamics

@® detecting co-expression modules



motivation — fraud detection

e dense bipartite subgraphs in page-like data
reveal attempts to inflate page-like counts
[Beutel et al., 2013]
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2013]



motivation — e-commerce

e-commerce

e weighted bipartite graph
G(AUQ,E,w)

e set A corresponds to advertisers

e set Q corresponds to queries

e each edge (a, q) has weight w(a, q)
equal to the amount of money
advertiser a is willing to spend on

query q

large almost bipartite cliques correspond
to sub-markets




motivation — bioinformatics
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e DNA motif detection [Fratkin et al., 2006]

¢ vertices correspond to k-mers
e edges represent nucleotide similarities between k-mers

e gene correlation analysis

e detect complex annotation patterns from gene annotation
data [Saha et al., 2010]



motivation — mining twitter data
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e mining of twitter data
¢ vertices correspond to entities
e edges correspond to co-occurence of entities
e dense subgraphs capture news stories



motivation — graph mining
understanding the structure of real-world networks
[Sariylce et al., 2015]
nucleus decomposition of a graph
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motivation — distance queries in graphs
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figure from [Delling et al., 2014]



motivation — distance queries in graphs
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motivation — distance queries in graphs
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motivation — distance queries in graphs

hub label queries are trivial to implement :

e entries sorted by hub id
e linear sweep to find matches
e access to only two contiguous blocks (cache-friendly)

method is practical if labels sets are small
e can we find small labels sets?
e 2-hop labeling algorithm relies on dense-subgraph
discovery to find such label sets (!) [Cohen et al., 2003]
e state-of-art 2-hop labeling scheme : [Delling et al., 2014]
e more work on the topic : [Peleg, 2000, Thorup, 2004]



motivation — frequent pattern mining

e given a set of transactions over items

e find item sets that occur together in a ¢ fraction of the

transactions

issue
number

heroes

abhowonNn =

Iceman, Storm, Wolverine

Aurora, Cyclops, Magneto, Storm
Beast, Cyclops, Iceman, Magneto
Cyclops, Iceman, Storm, Wolverine
Beast, Iceman, Magneto, Storm

e.g., {lceman, Storm} appear in 60% of issues




motivation — frequent pattern mining

e one of the most well-studied area in data mining

e many efficient algorithms
Apriori, Eclat, FP-growth, Mafia, ABS, ...

¢ main idea: monotonicity
a subset of a frequent set must be frequent, or
a superset of an infrequent set must be infrequent

e algorithmically:
start with small itemsets
proceed with larger itemset if all subsets are frequent

e enumerate all frequent itemsets



motivation — frequent itemsets and dense subgraphs

id heroes ABCIMSW
1 Iceman, Storm, Wolverine 1 0001011
2 | Aurora, Cyclops, Magneto, Storm PN 2 1011100
3 | Beast, Cyclops, Iceman, Magneto 3 0111100
4 | Cyclops, Iceman, Storm, Wolverine 4 0011011
5 | Beast, Iceman, Magneto, Storm 5 0101110
| Aurora
Beast
2
Cyclops
= 3 Iceman
Magneto
4 gl
Storm
5 Wolverine

e transaction data < binary data < bipartite graphs



motivation — frequent itemsets and dense subgraphs

id heroes ABCIMSW
1 Iceman, Storm, Wolverine 1 0001011
2 | Aurora, Cyclops, Magneto, Storm PN 2 1011100
3 | Beast, Cyclops, Iceman, Magneto 3 0111100
4 | Cyclops, Iceman, Storm, Wolverine 4 0011011
5 | Beast, Iceman, Magneto, Storm 5 0101110
| Aurora
Beast
2
Cyclops
= 3 Iceman
Magneto
4 g
Storm
5 Wolverine

e transaction data < binary data < bipartite graphs
o frequent itemsets < bi-cliques



motivation — finding web communities

[Kumar et al., 1999]

e hypothesis: web communities consist of hub-like pages
and authority-like pages

e.g., luxury cars and luxury-car aficionados
¢ key observations:

1. let G= (U, V, E)be adense web community
then G should contain some small core (bi-clique)

2. consider a web graph with no communities
then small cores are unlikely

¢ both observations motivated from theory of random graphs



motivation — finding web communities

a web community

hub authority
pages pages

[Kumar et al., 1999]



motivation — finding web communities

web communities containts small cores

hub authority
pages pages

[Kumar et al., 1999]



motivation — social piggybacking

[Gionis et al., 2013]
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e event feeds: majority of activity in social networks



motivation — social piggybacking

e system throughput proportional to the data transferred
between data stores

e feed generation important component to optimize
\4
o)
uo/
e primitive operation: transfer data between two data stores

e can be implemented as push or pull strategy

e optimal strategy depends on production and consumption
rates of nodes



motivation — social piggybacking

2\ A\

e hub optimization turns out to be a good idea

e depends on finding dense subgraphs




motivation — graph compression

e compress web graphs by finding and compressing
bi-cliques [Karande et al., 2009]

e many graph mining tasks that can be formulated as
matrix-vector multiplication are more efficient on the
compressed graph [Kang et al., 2009]

OO0




motivation — more applications

graph visualization [Alvarez-Hamelin et al., 2005]

community detection [Chen and Saad, 2012]

epilepsy prediction [lasemidis et al., 2003]

event detection in activity networks
[Rozenshtein et al., 2014]

e many more



landscape of related work

e brute force [Johnson and Trick, 1996]

heuristics [Bomze et al., 1999]
e spectral algorithms [Alon et al., 1998, McSherry, 2001,
Papailiopoulos et al., 2014]
¢ belief-propagation methods [Kang et al., 2011]

enumerating maximal cliques, e.g., [Bron and Kerbosch, 1973,
Eppstein et al., 2010, Makino and Uno, 2004]

NP-hard formulations and various relaxations
e maximum clique problem [Karp, 1972, Hastad, 1999]
e k-densest subgraph problem
[Bhaskara et al., 2010, Feige et al., 2001]
e optimal quasi-cliques [Tsourakakis et al., 2013]
polynomial-time solvable objectives
e densest subgraph problem [Goldberg, 1984]
— “The densest subgraph problem lies at the core of large
scale data mining” [Bahmani et al., 2012]



preliminaries, measures of density



notation

e graph G = (V, E) with vertices V and edges £ C V x V
e degree of anode u € V with respectio X C V'is

degy(u) = |[{v € X such that (u, v) € E}|

e degree of anode u € Vis deg(u) = degy(u)
e edges between SC Vand T C V are

E(S,T)={(u,v)suchthatue Sandv e T}

use shorthand E£(S) for E(S. S)

e graph cut is defined by a subset of vertices S C V

e edgesofagraphcut SC Vare E(S.S) = E(S,V\ S)

e induced subgraph by S C Vis G(S) = (S, E(S))

e triangles: T(S) = {(u,v,w) | (u,v),(u,w),(v,w) € E(S)}



density measures

e undirected graph G = (V. E)
e subgraph induced by S C V

e cligue: all vertices in S are connected to each other



density measures

e edge density (average degree):

_ 2|E(S,9)| _ 2|E(9)|

=g s
(sometimes just drop 2)
e edge ratio:
|E(S,S)| _ |E(S)I 2|E(S)|
68 = = f—
=" =5 ~1E0s -0
o triangle density:
[7(S)|
S) = L \2J
e triangle ratio:
IT(S)|
)



other density measures

e k-core: every vertex in S is connected to
at least k other vertices in S

S|

2

e a-quasiclique: the set S has at least o (') edges

ie., Sis a-quasiclique if £(S) > o (1§))



and more

not considered here

e k-cliques: subset of vertices with pairwise distances
at most k

distances defined using intermediaries, outside the set
not well connected

k-club: a subgraph of diameter < k

k-plex: a subgraph S in which each vertex is connected
to at least | S| — k other vertices
1-plex is a clique



reminder: min-cut and max-cut problems

min-cut problem

source s € V, destination t € V
find S C V, s.t.,

seSandte S, and

minimize e(S, S)

7]
(o)
o [ ]

max-cut problem

find S C V, s.t.,
maximize (S, S)



reminder: min-cut and max-cut problems

min-cut problem

max-cut problem

source s € V, destination t € V
find S C V, s.t.,

seSandte S, and

minimize e(S, S)
polynomially-time solvable
equivalent to max-flow problem

find S C V, s.t.,
maximize (S, S)



reminder: min-cut and max-cut problems

min-cut problem

max-cut problem

source s € V, destination t € V
find S C V, s.t.,

seSandte S, and

minimize e(S, S)
polynomially-time solvable
equivalent to max-flow problem

find S C V, s.t.,
maximize (S, S)
NP-hard

approximation algorithms
(0.868 based on SDP)



basic algorithms



Goldberg’s algorithm for densest subgraph

e consider first degree density d

e is there a subgraph S with
d(S) > c?



Goldberg’s algorithm for densest subgraph

e consider first degree density d

e is there a subgraph S with
d(S) > c?

e transform to a min-cut
instance



Goldberg’s algorithm for densest subgraph

e consider first degree density d

e is there a subgraph S with
d(S) > c?
e transform to a min-cut
G instance

e on the transformed
instance:

e is there a cut smaller
than a certain value?




Goldberg’s algorithm for densest subgraph

is there S with d(S) > ¢ ?
2|E(S, 9)|

> C
S|

2|E(S,S)| > cl|S|

> deg(u) - |E(S,S)| > c|S]
ueS

> “deg(u)+ > deg(u) — Y _deg(u) - |E(S,8)| > c|S
ues ues uesS

> deg(u) +|E(S,S)| +¢|S| < 2|E

ueS



Goldberg’s algorithm for densest subgraph

e transformation to min-cut instance

o isthere Ss.t. >, _zdeg(u) + |e(S, S)| + ¢|S| < 2|E| ?



Goldberg’s algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ss.t. >, _zdeg(u) + |e(S, S)| + ¢|S| < 2|E| ?

e acut of value 2 | E| always exists, for S = ()



Goldberg’s algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ss.t. >, _zdeg(u) + |e(S, S)| + ¢|S| < 2|E| ?
o S+ () gives cut of value >°,_zdeg(u) + |e(S, S)| + c|S]|



Goldberg’s algorithm for densest subgraph

e transform to a min-cut instance

o isthere Ss.t. >, _zdeg(u) + |e(S, S)| + ¢|S| < 2|E| ?

e YES, if min cut achieved for S # ()



Goldberg’s algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph G = (V, E), number ¢

output: S,if d(S) > ¢

1 transform G into min-cut instance G' = (V U {s} U {t}, E', w’)
2 findmincut {s}uUSon &

3 itS#0Dreturn S

4 else return NO

e to find the densest subgraph perform binary search on ¢
e logarithmic number of min-cut calls
e problem can also be solved with one min-cut call

using the parametric max-flow algorithm



densest subgraph problem — discussion

e Goldberg’s algorithm polynomial algorithm, but
e O(nm) time for one min-cut computation

e not scalable for large graphs (millions of vertices / edges)



densest subgraph problem — discussion

Goldberg’s algorithm polynomial algorithm, but

O(nm) time for one min-cut computation

not scalable for large graphs (millions of vertices / edges)

faster algorithm due to [Charikar, 2000]

greedy and simple to implement

approximation algorithm



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph — example
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greedy algorithm for densest subgraph — example




greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V, E)
output: S, a dense subgraph of G

1 setG,«+ G
2 for k + ndownto 1
2.1 let v be the smallest degree vertex in Gy

2.2 Gk,1 — Gk \ {V}
3  output the densest subgraph among G, G, 1, ..., Gj



proof of 2-approximation guarantee

a neat argument due to [Khuller and Saha, 2009]
e let S* be the vertices of the optimal subgraph
e let d(S*) = \ be the maximum degree density
e notice that for all v € S* we have degg.(v) > A

e (why?) by optimality of S*

&(S")| . [e(S™)| —degs.(v)
S~ [S¥| -1

and thus



proof of 2-approximation guarantee (continued)

[Khuller and Saha, 2009]

e consider greedy when the first vertex v € S* C V
is removed

e let S be the set of vertices, just before removing v
« total number of edges before removing v is > A|S|/2

o therefore, greedy returns a solution with degree density
atleast \/2

QED



the greedy algorithm

o factor-2 approximation algorithm
e runs in linear time O(n + m)
 for a polynomial problem ...
but faster and easier to implement than the exact algorithm

e everything works for weighted graphs
using heaps: O(m + nlog n)

¢ things are not as straightforward for directed graphs



finding dense subgraphs on directed graphs



dense subgraphs on directed graphs — history

e goal: find sets S, T C V to maximize

e[S, T|

A= s

e first introduced in unpublished manuscript
[Kannan and Vinay, 1999]

o they provided a O(log n)-approximation algorithm

e left open the problem complexity

e polynomial-time solution using linear programming (LP)
[Charikar, 2000]



dense subgraphs on directed graphs — history

[Charikar, 2000]
e exact LP-based algorithm

e greedy 2-approximation algorithm running in O(n® + n°m)

[Khuller and Saha, 2009]
o first max-flow based exact algorithm

e improved running time of the 2-approximation greedy
algorithm to O(n+ m) (!)



directed graphs — algorithms

« reduced problem to O(n?) LP calls
e one LP call for each possible ratio

S| _
m=C

[Charikar, 2000]

maximize > X;
(i)EE(G)

Xjj, Sis tj > 0

suchthat x; <s;, forall (/.)€ E(G)
xj < t;, forall(i,j)c E(G)

Y si<veand Y f <
i j

Ve




directed graphs — algorithms
[Charikar, 2000]

e for a given value of ;ﬂ = cthe LP(c) has an
integral solution

e it can be shown that

T)= PT(LP

Jnax d(S, T) = maxOPT(LP(c))
[proof sketch]

1. for S, T C V, with % = ¢ the optimal value of LP(c) is
atleast d(S, T)

2. given a feasible solution of LP(c) with value v we can
construct S. T C Vsuchthatd(S. T) > v



dense subgraphs on directed graphs — greedy

[Charikar, 2000]

input: directed graph G = (V, E), ratio ¢ = %

1 S« V, T+«V

2 while both S, T non-empty

3 Imin < the vertex / € S that minimizes |E({/}, T)|
4 ds = |E({inin}, T)|

5 Jmin <— the vertex j € T that minimizes |E(S, {j})|
6 dr « |E(S, {min})|

7 if ods < zar

8 then S «+ S\{inin}

9 else T« T\{jmin}

o execute O(n?) times; one for each ¢ = %
e report best solution

e factor 2 approximation guarantee



dense subgraphs on directed graphs — greedy

e brute force execution of greedy:
O(rP(n+ m)) = O(n® + nm))

[Khuller and Saha, 2009]

e showed that only one execution is needed
(instead of O(n?))

e total running time O(n + m)



dense subgraphs on directed graphs — greedy

linear-time greedy [Khuller and Saha, 2009]

definitions:
e let v;, v, be the vertices with minimum in- and out-degree
o if d(v;) < d"(v,) we are in category IN
otherwise in category OUT

algorithm:
e greedy deletes the minimum-degree vertex
if in IN, it deletes all incoming edges
if in OUT, it deletes all outgoing edges
if the vertex becomes a singleton, it is deleted.

return the densest subgraph encountered



dense subgraphs on directed graphs — exact

we wish to answer “are there S, T C V such that d(S, T) > g?”
consider

e consider a = % (O(n?) possible values)

e network G' = ({s,t} U VU Vo, E), with V; = Vo =V
min-cut transformation
add edge of capacity m from s to each vertex of V4 and V>

add edge of capacity 2m + % from each vertex of V; to ¢

add edge from each vertex j of V5 to sink ¢ of capacity

2m + v/ag — 2deg(j)

for each (/,j) € E(G), add an edge from j € Vo to i € V4
with capacity 2



dense subgraphs on directed graphs — exact

e proof of correctness of min-cut algorithm of transformed
graph G’ follows the argument of Goldberg

e the cut ({s}, {t, V4, Vo}) has weight m(| V| + | V2|)
e thus, min cut has weight at most m(| V| + | V2|)

e it can be shown that solution to the min-cut with
value smaller than m(| V4| + | V»|) corresponds to
sets S C V4, T C V5 with density d(S. T) greater than g

e densest subgraph can be found with binary search on g

e one min-cut computation suffices
(using parametric max-flow algorithm)



dense subgraph problem — summary

for the degree density measure:

exact algorithms for undirected and directed graphs

linear-time 2-approximation achieved by greedy

how good are these subgraphs?

study other measures and contrast with degree density

no control on the size of the subgraph



k-clique densest subgraphs



motivating question

how to go beyond edge density?

how to search for large near-cliques

can we combine the best of both worlds, namely

have poly-time solvable formulation(s) which

...succeeds in finding large near-cliques?

e yes: the k-clique densest subgraph problem
[Tsourakakis, 2015]



k-clique densest subgraph problem

Definition (k-clique density)

forany S C V we define its k-clique density px(S), k > 2
as p(S) = @ where ¢, (S) is the number of k-cliques
induced by S and s = | S|

Problem (k-clique DSP)
given G(V, E), find a subset of vertices S*

such that pi(S*) = pj, = maxscy pk(S)

¢ notice that the 2-clique DSP is simply the DSP
o we shall refer to the 3-clique DSP as the
triangle densest subgraph problem
t(S)

T T(S) = =5~



triangle densest subgraph problem
e how different can the densest subgraph be from
the triangle densest subgraph?

e in principle, they can be radically different!
consider G = K, , U K3

e the interesting question is what happens on real-data
e can we solve the triangle DSP in polynomial time?

¢ an we solve the k-cligue DSP in polynomial time?



triangle densest subgraph problem

Theorem

there exists an algorithm which solves the TDSP and
runs in time O (m®/? + nt + min (n, t)®)

where t is the number of triangles in the graph

Theorem
the k-clique DSP can be solved in polynomial time
forany k = ©(1)

e although this construction solves also the (2-clique) DSP
Goldberg’s algorithm is more efficient



triangle densest subgraph problem

exact algorithm
e once again, follow Goldberg’s idea
e perform binary searches:
— isthereaset S C V such that {(S) > «|S|?

O(log n) queries suffice to solve TDSP (why?)

any two distinct triangle density values are
at least O(1/n?) away from each other

n

ST*S%

for the optimal density 0 < .

e but what does a binary search correspondto ? ...



triangle densest subgraph problem

construct-network (G, o, 7(G))
o V(H) «+ {s}UV(G)UT(G)U({t}

e for each vertex v € V(G) add an arc of capacity 1 to
each triangle f; it participates

o for each triangle A = (u, v, w) € T(G) add arcs to u, v, w
of capacity 2

e add directed arc (s, v) € A(H) of capacity £,
foreach v € V(G)

e add weighted directed arc (v, f) € A(H) of capacity 3«
foreach v € V(G)

e return network H(V(H),A(H),w),s,t € V(H)



k-clique densest subgraph problem

construction for k = ©(1)

A=V(G) B=C(G)



triangle densest subgraph problem

exact algorithm for TDSP

5.

roODdO -

list the set of triangles 7(G), t = |T(G)|

[ by (2002)

S* 0
while(u > I + (n 1))
— I+u

H, «~ Construct-Network(G, a, T(G))

(S, T) « minimum st-cut in H,,

if (S={s}),thenu+ «

otherwise set S* «— (S\{s}) N V(G) and | + «

return S*

e run time: (9(m3/2 + (nt+min(n, t)%) log n)

e space complexity: O(n+ t) (typically n < )



triangle densest subgraph problem

greedy works too

1. setG,+«+ G
2. for k + ndownto 1
— let v be the smallest triangle count vertex in Gy

- Gk,1 < Gk\{v}
3. output the triangle-densest subgraph among
Gn7Gf7—17~--7G1

 the above peeling algorithm is a 3-approximation algorithm

e the same peeling idea generalizes to the k-clique DSP
providing a k-approximation algorithm



some experimental findings

method | measure | football method | measure | football

DS 171(%) 100 TDS 171(%) 15.7
20 10.66 25 8.22
fo 0.094 fo 0.48

37 21.12 37 28
3DS | #H) 100 1-TDS | FH(%) 15.7
25 10.66 25 8.22
fo 0.094 fo 0.48

37 21.12 37 28

e observation 1 : approximate algorithms find the same
solution as optimal exact methods

e observation 2 : the TDS is closer to being a large

near-clique compared to the DS




remark

in many cases, despite being a 2-approximation,
the greedy performs optimally or close to optimally

evidence that real-data are “far away” from adversarial

however, 2-approximation bound is tight

consider G = Gy U Gy where Gy = Ky p and G is the
disjoint union of D cliques, each of size d + 1

letd < D

how does the greedy algorithm perform?

optimal is bipartite clique with density dD/(d + D) ~ d
greedy returns a clique of size d + 1 with density d/2



datasets

non-bipartite

dataset

n m
Web-Google | 875713 | 3852985
» Epinions 75877 | 405739
© CA-Astro 18772 | 198050
WPol-blogs 1222 16714
Email-all 234352 | 383111
bipartite
dataset n m
* IMDB-B 241360 | 530494
IMDB-G-B | 21258 | 42197




experimental findings

k-cliques

fo S| fe | ISI | fe | ISI | fe | S|

x 1012 ] 1012 | 0.26 | 432 | 0.40 | 235 | 0.50 | 172

© 1 0.11 | 18686 | 0.80 | 76 | 0.96 | 62 | 0.96 | 62

W 0.19| 16714 | 0.54 | 102 | 0.59 | 92 | 0.63 | 84

0.13| 553 | 0.38 | 167 | 0.48 | 122 | 0.53 | 104

(p,q)-bicliques

G (p7 q) - (171) (pv q): (272) (p’ q) = (3’3)
fe S| fo S| fe S|
* | 0.001 | 9177 | 0.06 181 0.30 40
0.001 | 6437 | 0.41 18 0.43 17




finding densest subgraphs with map-reduce



peeling in batches

the following algorithm due to Bahmani, Kumar and Vassilvitski
leads to efficient MapReduce and streaming algorithms
[Bahmani et al., 2012]

1. set S, 5« V

2. while S # () do

= A(S) «+ {ie S:Di(S) <2(1+€)p(S)}
— S+ S\AS)

—if p(S) > p(S)then 5 — S

3. return S



peeling in batches

e claim: previous algorithm is a 2(1 + ¢) approximation
furthermore, it returns after O(log,, .(n)) rounds

e Proof

e approximation guarantee

— fix an optimal solution S*

— consider the first round when a node v € S* is removed

— let U be the set of vertices at that point

— then, p* < ds-(v) < dy(v) < (2 + 2¢)p(V)

e number of rounds is O(log;_.(n))

— in each round we throw a constant fraction of the vertices
2E(S) > >veacs) ds(v) > (IS = |A(S))2(1 + €)p(S)

and thus |A(S)| > 15|




variations of the DSP

k-densest subgraph §(S) = 28 \s ]S[ =k NP-hard

Dalks 4(8) = 2!, |S| > k  NP-hard

DamkS §(S) = 222, |S| < k  L-reduction to DkS



densest k-subgraph problem

e does not admit a PTAS unless P = NP

e Feige et al. gave a O(n%) approximation algorithm
[Feige et al., 2001]

o state-of-the-art algorithm due to Bhaskara et al. provides

a (’)(nj’t“) approximation guarantee for any ¢ > 0
[Bhaskara et al., 2010]

e closing the gap between lower and upper bounds is a
significant open problem



remarks

e [Andersen and Chellapilla, 2009] proved that an
a-approximation for DamkS implies a O(a?) approximation
algorithm for the DkS

e [Khuller and Saha, 2009] improved this, by showing that
an « approximation for DamkS implies a 4« approximation
algorithm for the DkS

e the algorithmic ideas we showed for undirected case work
for DalkS as well



an alternative density definition



edge-surplus framework

[Tsourakakis et al., 2013]

« for a set of vertices S define edge surplus
f(S) = g(elS]) — h(|S])
where g and h are both stricily increasing
e optimal (g, h)-edge-surplus problem:
find S* such that

f(S*) > f(S), forallsets SC S*



edge-surplus framework

e edge surplus 1(S) = g(e[S]) — h(|S])

e example 1
9(x) = h(x) =logx
find S that maximizes log %

densest-subgraph problem

e example 2

0 if x =k
a(x) =x, h(x) —{ +00 otherwise

k-densest-subgraph problem



the optimal quasiclique problem

edge surplus 7(S) = g(e[S]) — h(|S])

consider
x(x—1)

2

gx)=x, h(x)=a

find S that maximizes e[S] — o (‘5‘)

optimal quasiclique problem [Tsourakakis et al., 2013]

theorem: let g(x) = x and h(x) = ax

we aim to maximize e(S) — «|S|

solving O(log n) such problems, solves densest subgraph
problem



the edge-surplus maximization problem

theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable

proof

9(x) = x is supermodular

if h(x) concave h(x) is submodular
—h(x) is supermodular

9(x) — h(x) is supermodular

maximizing supermodular functions is a polynomial
problem



the edge-surplus maximization problem

poly-time solvable and interesting objectives have linear h

the optimal quasiclique problem is NP-hard

the partitioning version led to a streaming balanced
graph-partitioning algorithm: FENNEL

goal: maximize g(P) over all possible k-partitions
where

g(P) = Z e[S, Si| - aZ |Si]”

]

number of minimized for
edges cut balanced partition

for more details: [Tsourakakis et al., 2014]



finding optimal quasicliques

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V, E)
output: a quasiclique S

1 setG,«+ G
2 for k + ndownto 1
2.1 let v be the smallest degree vertex in Gi

2.2 Gk,1 — Gk \ {V}
3 output the subgraph in G, ..., Gy that maximizes f(S)

additive approximation guarantee [Tsourakakis et al., 2013]



top-k dense subgraphs



top-k dense subgraphs

e in many cases we want to find more than one dense
subgraph

e idea: find all dense subgraphs
e.g., denser than a threshold

e cut enumeration techniques to output all near-optimal
dense subgraphs [Saha et al., 2010]

e in practice, this method suffers from output degeneracies:

e many subsets of a dense subgraph tend to be
near-optimally dense as well



top-k dense subgraphs

e another approach
(/) find a dense subgraph S
(if) remove all vertices and edges of S
(iii) iterate
e reported subgraphs are disjoint
e certain degree of overlap can be desirable
[Balalau et al., 2015]



top-k dense subgraphs with limited overlap

problem formulation ([Balalau et al., 2015])

e given graph G = (V, E), and parameters k and «
e find k subgraphs S, ..., Sk

e in order to maximize

subject to

|SiN Sl
‘S,'US]'|

<a,forall1 <i<j<k



top-k dense subgraphs with limited overlap

algorithm MINANDREMOVE ([Balalau et al., 2015])

input: undirected graph G = (V, E), parameters k and «
output: k subgraphs Gy, ..., Gi with overlap at most «
1 while less than k subgraphs found and G non-empty
find minimal densest subgraph G; = (V, E;)
foreach v c V;
Ag(v) < the set of neighbors of vin G
remove [(1 — «)|V;|| nodes with minimum |[Ag(v) \ V|
and all their edges from G

OOk~ WN



top-k dense subgraphs with limited overlap

summary of results ([Balalau et al., 2015])

¢ MINANDREMOVE finds optimal solution,

if this contains disjoint subgraphs
¢ MINANDREMOVE works shown to work well in practice
o faster algorithm, at small loss of accuracy



top-k dense subgraphs with limited overlap

alternative problem formulation

e given graph G = (V, E), and parameters k and «
e find k subgraphs Sy, ..., Sk
e in order to maximize a reward function

k

D d(S)+ 2D _dist(S;, S))

i=1 ij

A

»

2
I

o fits the max-sum diversification framework
[Borodin et al., 2012]

e possible to obtain an approximation guarantee (1/10)



top-k dense subgraphs with limited overlap

want to maximize

k

D d(S)+ 2D dist(S;, S))

i=1 ij

~

®

2
Il

need to define a distance between subgraphs

define

dist(S:, 5) = 4 2 Tsmsr 1 Si7 S
0 otherwise

distance dist(S;, S;) is a metric function

we can obtain an approximation guarantee (1/10)



top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework

Algorithm 1: DOS; Algorithm for finding top-k overlapping densest
subgraphs (problem DENSE-OVERLAPPING-SUBGRAPHS)

Input: G = (V,E), \ k

Output: set of subgraphs W s.t. |W| = k and maximizing (W)
1 W< 0;
2 foreachi=1,...,k do W <+ WUPeel(G,W, ) ;
3 return W;




top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework

Algorithm 2: Peel; finds a dense subgraph U of the graph G, overlapping
with a collection of previously discovered subgraphs W.

Input: G = (V,E), W, X
Output: U maximizing x(U; W)
Vo <V,

foreach i = n,...,2 do

[

3 L v 4— arg min, {deg(v;Vi) — 4 ijav |V|";|/V‘|/J‘ };
J

Vier < Vi\ {v}

foreachi=1,...,n do
L if V; € W then V; « Modify(V;, G, W, \);

7 return arg maxy; {X(V],W)},

o o




top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework

Algorithm 3: Modify; modifies U if U € W

Input: U, G, W, \
Output: modified U
X+ {UU{z}|z¢U UU{z} ¢ W}
Y~ {U\{y}|lyeU U\{y} ¢ W}
if X =0 and dens(U) < 5/3 then

| U «+ {a wedge of size 3 not in W};
else

| U+ argmaxcexuy {x(C;W)};

return U;

N e oA ® N R




top-k dense subgraphs with limited overlap

adapting the max-sum diversification framework
example

. 1. group
O 2. group
Q 3. group
O no groups




top-k dense subgraphs with limited overlap
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core decomposition



k-core

(recall) Sis a k-core if every vertex in S is connected
to at least k other vertices in S
can be found with the following algorithm:
1. while (k-core property is satisfied)
2. remove all vertices with degree less than k
can also obtain all k-cores (for all k)
all k-cores form a nested sequence of subgraphs
(k-core shell decomposition)
popular technique in social network analysis
inner cores : more dense, more central vertices

note resemblance with Charikar’s algorithm



k-core decomposition

widely used technique for partitioning graphs
k-core = largest subgraph with vertex degrees > k
cores form a chain, k-core C (k — 1)-core; let

k-shell = vertices in k-core but not in (k + 1)-core



k-core decomposition

widely used technique for partitioning graphs

k-core = largest subgraph with vertex degrees > k
cores form a chain, k-core C (k — 1)-core; let

k-shell = vertices in k-core but not in (k + 1)-core
algorithm to find shells:

1. while G is not empty

2. v < vertex with the smallest degree
3. assign v to k-shell

4 remove v from G



core decomposition and density are not
compatible




core decomposition and density are not
compatible

_______________

——————————————— only one core but
d(Ci)=§<&=d(C)  dB)=§>%=dG)



density-friendly decomposition

goal:
adapt k-core decomposition for density

obtain a nested sequence of increasingly
dense subgraphs

[Tatti and Gionis, 2015]



locally-dense subgraphs

informally,

subgraph H is locally-dense = any subgraph of H is denser
than any subgraph outside H

formally, define augmented density

[EX)| + [E(X, Y)

d(X,Y) = X ,

for XNnY=10

subgraph H is locally-dense if

d(X,H\ X) > d(Y,H), forany XCHYnNnH=0



example
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example
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0\“/0 9\@ d(X,H\ X) = 6/3

© xiH ﬂ
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properties

locally-dense subgraphs form a chain
V=B CB CBC--CB=G
B; is the densest subgraph containing B, 4

By = densest subgraph
B, =
> = arg max d(B\ By, By)

B; = arg Jmax d(B\ Bi_1,Bj1)



first approach to compute the subgraphs



first approach to compute the subgraphs

@ e find By



first approach to compute the subgraphs

— 0 find By

/ \ delete B;

O—0—0

WA

O—0—0



first approach to compute the subgraphs

@ e find B4
delete B

@——Xeﬁmae find B2



first approach to compute the subgraphs

@ e find B
/ \ / delete B;
find Bo

Q G 0 0 delete B>

VA

O—0—0



first approach to compute the subgraphs

find B
/ \ / delete B;
0 find Bo

G 0 0 delete B>

VAR



computing the subgraphs

define
F(a) =arg max |[E(X)| — a|X]
Goldberg showed that

e [(«) can be solved with a min-cut
e there is o such that F(«) is the densest subgraph



computing the subgraphs

define
F(a) =arg max |[E(X)| — a|X]

Goldberg showed that

e [(«) can be solved with a min-cut

e there is o such that F(«) is the densest subgraph
we can show that

e F(a) is locally-dense

o for every B; there is o such that B, = F(«)



computing the subgraphs

find all B; by varying « (with divide-and-conquer)

algorithm: EXACT(X, Y)
1. select o suchthat X C F(a) C Y
2. Z+ F(a)

2. if(Z#£X)

3. output Z

3 EXACT(X, Z)

3 EXACT(Z,Y)

e we need only 2k — 3 calls of F(«)

(k is the number of locally-dense subgraphs)
o O(n?m) total running time, in practice much faster
e X C F(o) C Y allows optimizations



approximation with profiles

approximation guarantees are tricky:
e algorithm may return different number of subgraphs

define a profile:

d(By) if i < |By]
pi;B) = { d(B:\ By, By) if|By| < i< Byl



core decomposition

let C be the core decomposition

let B be the optimal locally-dense decomposition

then
p(i;C) > p(i; B)/2, forevery i

for i = 1, this implies

d(C1) > d(B)/2



extending Charikar’s algorithm

Cy « densest subgraph of form vy, ... v¢,
Co <« subgraph maximizing d(vq,... v, \ C1, Cy)
Cz < subgraph maximizing d(vi, ... Vg, \ Cz, C2)

The graphs C;
e can be found in O(n?)-time naively
e can be found in O(n)-time with PAV algorithm
[Ayer et al., 1955]



greedy decomposition

let C be the greedy decomposition
(found by the extension of Charikar’s algorithm)

let B be the optimal locally-dense decomposition

then
p(i;C) > p(i; B)/2, forevery i

for i = 1, this implies

d(Cy) > d(By)/2



experiments

how well these algorithm perform?

lesmis fb1912
100
4
= 50
2
0 0
20 40 60 200 400 600
index i index
astro hepph
40 — CORE
100 ~—— GREEDYLD
— ExactLD
20 50
0 0
0 5000 10000 15000 0 5000
index i

10000
index



summary (density-friendly decomposition)

e decomposition based on average density
« can be computed exactly in O(n®m) time, faster in practice

e can be 1/2-approximated in linear time by

e k-core decomposition
e greedy algorithm

future work:
 consider different density functions
e control the size of the decomposition



community search



community detection problems

typical problem formulations require non-overlapping
and complete partition of the set of vertices

quite restrictive

inherently ambiguous: research group vs. bicycling club

additional information can resolve ambiquity

community defined by two or more people



the community-search problem

e given graph G = (V. E), and
e given a subset of vertices Q C V (the query vertices)

e find a community H that contains Q

applications

¢ find the community of a given set of users (cocktail party)
e recommend tags for an image (tag recommendation)

e form a team to solve a problem (team formation)



center-piece subgraph

[Tong and Faloutsos, 2006]

e given: graph G = (V. E) and set of query vertices Q C V
e find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

e main concepts:

e k_softAND: a node in H should be well connected to at
least k vertices of Q

e r(i,/) goodness score of jwrt g; € Q

e r(Q,)) goodness score of j wrt Q

e g(H) goodness score of a candidate subgraph H
e H* = argmaxy g(H)



center-piece subgraph

[Tong and Faloutsos, 2006]

e r(i,/) goodness score of jwrt g; € Q

probability to meet j in a random walk with restart to g;

e r(Q.j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k
vertices of Q

¢ proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of Q path to j
3. stop when H becomes large enough



center-piece subgraph — example results
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[Tong and Faloutsos, 2006]



the community-search problem

e given: graph G = (V. E) and set of query vertices Q C V
¢ find: a connected subgraph H that

(a) contains Q
(b) optimizes a density function d(H)
(c) possibly other constraints

¢ density function (b):
average degree, minimum degree, quasiclique, etc.

measured on the induced subgraph H



free riders

e remedy 1: use min degree as density function

e remedy 2: use distance constraint

d(Q.j) =Y d*q.j) <B
qeqQ



the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V. E), query vertices Q C V
output: connected, dense subgraph H
1 set G, + G
2 for k + ndownto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gi
among all vertices not in Q
2.3 Gk,1 — Gk \ {V}
2.4 if left only with vertices in Q or disconnected graph, stop
3  output the subgraphin G, ..., Gy that maximizes f(H)



properties of the greedy algorithm

¢ returns optimal solution if no size constraints

e upper-bound constraints make the problem NP-hard
(heuristic solution, also adaptation of the greedy)

e generalization for monotone constraints and
monotone objective functions



experimental evaluation (qualitative summary)

baseline: increamental addition of vertices
o start with a Steiner tree on the query vertices
e greedily add vertices
e return best solution among all solutions constructed

example result in DBLP
e proposed algorithm: min degree = 3, avg degree = 6
e baseline algorithm: min degree = 1.5, avg degree = 2.5



the community-search problem — example results

(a) Database theory (b) Complexity theory

(from [Sozio and Gionis, 2010])



monotone functions

function f is monotone non-increasing if
for every graph G and
for every subgraph H of Gitis

f(H) < f(G)

the following functions are monotone non-increasing:
¢ the query nodes are connected in H (0/1)
e are the nodes in H able to perform a set of tasks?
e upper-bound distance constraint
¢ lower-bound constraint on the size of H



generalization to monotone functions

generalized community-search problem

given
e agraph G = (V,E)
e a node-monotone non-increasing function f
e fi,..., f non-increasing boolean functions

find
e asubgraph H of G
e satisfying f;,.... fx and
e maximizing f



generalized greedy

1 setG,«+ G
2 for k <~ ndownto 1
2.1 remove all vertices violating any constraint f, ... f

2.2 let v minimizing f( Gy, v)
2.3 Gk,1 — Gk \ {V}
3  output the subgraph Hin G, ..., Gy that maximizes f(H, v)



generalized greedy

theorem
generalized greedy computes an optimum solution
for the generalized community-search problem

running time
¢ depends on the time to evaluate the functions fi, ... f
e formally O(m+ >, nT;)
e where T; is the time to evaluate f;



heavy subgraphs



discovering heavy subgraphs

e givenagraph G=(V,E,d, w)
with a distance function d : E — R on edges

and weights on vertices w: V — R

e find a subset of vertices S C V
so that
1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014]



discovering heavy subgraphs

what does total weight and close to each other mean?

total weight

close to each other

D(S)=> " d(u,v)

ueSveS

want to maximize W(S) and minimize D(S)

maximize
Q(S) = AW(S) — D(S)



applications of discovering heavy subgraphs

finding events in networks

vertices correspond to locations

weights model activity recorded in locations

distances between locations

¢ find compact regions (neighborhoods) with high activity



event detection

e sensor networks and traffic measurements




event detection
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event detection

¢ |ocation-based social networks

foursquare’
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discovering heavy subgraphs

maximize Q(S) = A W(S) — D(S)

objective can by negative

add a constant term to ensure non-negativity

maximize Q(S) = A W(S) — D(S) + D(V)



discovering heavy subgraphs

e maximize Q(S) = X W(S) — D(S) + D(V)
e objective is submodular (but not monotone)

e can obtain %—approximation guarantee
[Buchbinder et al., 2012]

e problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee
[Rozenshtein et al., 2014]



events discovered with bicing and 4square data

e
(a) Barcelona: 11.09.12  (b) Minneapolis: 4.07.12 (c) Washington, DC: (d) Los Angeles: 31.05.10 (e) New York: 6.09.10
National Day of Catalonia Ind d Day 27.05.13 Memorial Day ~ Memorial Day Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

(a) 01.06.12 Primavera (b 18.09.12 festival of the B
sound music festival Poblenou neighborhood  (c) 31.10.12 Halloween




summary

¢ the problem of finding dense subgraphs has many different
real-world applications

e a number of density measures have been studied
e problem complexity depends on adopted measure

» for some problem formulations there are exact polynomial
and faster approximate solution

¢ a number of different techniques has been used
min-cut, greedy, submodularity optimization

e many directions and open problems for future work
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